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Abstract

We consider the problem of estimating the expected causal effect E[Y |do(X)]1

for a target variable Y when treatment X is set by intervention, focusing on2

continuous random variables. In settings without selection bias or confounding,3

E[Y |do(X)] = E[Y |X], which can be estimated using standard regression meth-4

ods. However, regression fails when systematic missingness induced by selection5

bias, or confounding distorts the data. Boeken et al. [2023] show that when training6

data is subject to selection, proxy variables unaffected by this process can, under7

certain constraints, be used to correct for selection bias to recover E[Y |X], and8

hence E[Y |do(X)], reliably. When data is additionally affected by confounding,9

however, this equality is no longer valid. In this work, we consider a more general10

setting and propose a framework that incorporates both selection bias and con-11

founding. Specifically, we derive theoretical conditions ensuring identifiability and12

recoverability of causal effects under access to external data and proxy variables.13

We further introduce a two-step regression estimator (TSR), capable of exploiting14

proxy variables to adjust for selection bias while accounting for confounding. We15

show that TSR coincides with prior work if confounding is absent, but achieves16

a lower variance. Extensive simulation studies validate TSR’s correctness for17

scenarios that include both selection bias and confounding with proxy variables.18

1 Introduction19

Recovering causal effects under selection bias is a fundamental challenge in empirical research.20

Specifically, we aim to estimate E[Y | do(X)], the causal effect of a continuous treatment X on a21

continuous target variable Y , from observational data that may be affected by selection mechanisms22

and confounding. Selection bias arises when the observed data fails to accurately represent the23

population due to preferential exclusion or conditioning on colliders, while confounding distorts the24

true causal relationships through (unobserved) common causes. Both phenomena are pervasive in25

real-world datasets and, if left unadjusted, can give rise to misleading conclusions.26

Selection bias is a critical challenge in many real-world domains, including medicine [Berkson,27

1946], economics, and machine learning, with recent examples highlighting its role in COVID-1928

research [Herbert et al., 2020, Zhao et al., 2021], cancer progression modeling [Schill et al., 2024],29

and fairness in machine learning [Wang and Singh, 2021, Goel et al., 2021]. As a running example,30

consider that in loan risk assessment, banks may wish to isolate the causal effect of income (X)31

on loan default (Y ) from other risk factors. Naturally, such a dataset only includes cases where32

loans have been issued (S = 1), introducing selection bias, as illustrated in Figure 1. Furthermore,33

unobserved factors like financial literacy of an individual may act as confounders that simultaneously34

influence income and loan default rates. Without proper adjustment for these biases, estimates of risk35

factors may be unreliable or even contradictory.36
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Figure 1: Left: Dataset composition: S is affected by a selection mechanism, D contains unbiased
data. Right: Example applicable to our framework (covered by Assumption 2.3). When estimating
the causal effect of income X on loan default Y , the node “loan issued“ represents the selection
variable S, “financial literacy“ is an unobserved confounder, and all other nodes serve as proxies (Z).

While identifiability of causal effects under confounding has been extensively studied, recoverability37

from selection-biased data has received comparatively less attention. Pearl’s do-calculus provides a38

systematic framework for determining whether causal effects are identifiable under certain assump-39

tions encoded in causal directed acyclic graphs (DAGs) [Pearl, 2009]. Building on this foundation,40

researchers explored recoverability from selection-biased data (s-recoverability) [Pearl, 2012, Correa41

et al., 2018, Jung et al., 2024, Mohan and Pearl, 2021]. Recent work by Boeken et al. [2023]42

emphasizes the importance of proposing practical estimators alongside identification results. They43

introduced regression-based methods to estimate E[Y |X] for continuous targets assuming access to a44

proxy Z for the selection variable, which renders the target Y independent of the selection variable S45

when conditioning on {X,Z}, i.e., Y ⊥⊥S | {X,Z}. Akin to other works on recoverability [Correa46

et al., 2018], they assume access to external data for X,Z unaffected by selection (cf. Figure 1).47

Contributions We derive theoretical results ensuring identifiability and s-recoverability of causal48

effects with access to proxy variables and external data in Section 2.3. In the most general case, our49

results cover the graph shown in Figure 1, in which we can recover the causal effect of income on loan50

default by using the covariates spendings, etc. as a proxy for the selection variable. To account for51

the unobserved confounder “financial literacy”, we leverage the information about the job type of an52

individual. We show that this setting is distinct from assumptions derived in prior work [Bareinboim53

et al., 2014, Correa et al., 2018], and propose a two-step regression estimator (TSR) based on our54

identification results in Section 3. Further, in Section 3.1, we analyze the bias and variance of TSR55

for the case in which confounding is absent, i.e., E[Y |do(X)] = E[Y |X], and show that TSR is56

more efficient than the repeated regression estimator considered by Boeken et al. [2023]. We confirm57

those results, as well as the admissibility and usability of our estimator considering ordinary least58

squares (OLS) and ridge estimation in simulation studies in Section 4. We review closely related59

work in the corresponding sections and provide a more detailed discussion in Appendix A.1.60

2 Recoverability and Identifiability61

In the following, we consider causal effect estimation for a continuous target variable in the presence62

of selection bias and confounding, as illustrated in Figure 1. Before that, we outline the connection63

between missingness and selection bias, and introduce relevant notation and definitions to define64

recoverability from selection bias in Section 2.1. In Section 2.2, we review recoverability from65

selection bias without confounding, as studied by Boeken et al. [2023]. Subsequently, in Section 2.3,66

we derive a set of assumptions which ensure that the causal effect is identifiable and recoverable from67

selection-biased data. All proofs are provided in Appendix A.5.68

2.1 Preliminaries and Notation69

Throughout this paper, we follow the notational conventions introduced by Pearl [2009]. We consider70

a causal directed acyclic graph (DAG) model (G, P ), where P defines a distribution over the set71

of random variables V , which factorizes according to G, and is consistent under interventions. V72

includes all variables of interest ({Y,X,Z} ⊂ V ) except for the binary selection variable S, where73

S = 1 denotes selection. That is, under selection bias, we only observe P (V | S = 1). Further,74

Y ∈ R denotes the one-dimensional continuous target random variable, X ∈ Rp, with p ≥ 1,75

the potentially multidimensional and continuous random vector of covariates. Our interest lies in76

2



X Y

S Z+

(a)

X Y

S Z−

(b)

X Y

S Z+

(c)

X Y

S Z−

Z+

U

(d)

Figure 2: Example graphs that are consistent with Assumption 2.3. For graphs (a) and (b), we only
need to adjust for selection bias since E[Y | X] coincides with E[Y | do(X)], while for graphs (c)
and (d), adjustments for selection bias and confounding, as described in Section 2.3, are required.

estimating the expected causal effect E[Y | do(X)], denoting the expected value of Y when X is set77

to a specific value by intervention (hard or surgical intervention). The potentially multidimensional78

and continuous random vector Z ∈ Rd, with d ≥ 0, may include confounding variables and proxy79

variables for the missing observations.80

Missingness and Selection Bias Selection bias is typically induced by preferential selection and81

can be described as systematic missingness [Correa et al., 2019], also know as missing not at82

random (MNAR), where generally, E[Y | X] ̸= E[Y | X,S = 1]. Therefore, proper adjustment is83

necessary when aiming to estimate E[Y | X] or E[Y | do(X)] from data affected by such systematic84

missingness. To approach this problem, we need to state some assumptions about the missingness85

scenario [Little and Rubin, 2002].86

In the following, we distinguish between two missing data settings illustrated in Figure 1 (left),87

that are consistent with prior work [Boeken et al., 2023]. For both settings, we have independent88

and identically distributed (i.i.d.) observations of (X,Y, Z) ∼ P (X,Y, Z | S = 1) with index set89

S indicated by S = 1, where P (X,Y, Z | S = 1) denotes the joint distribution of X , Y and Z90

conditioned on S = 1. Additionally, we observe realizations of i.i.d. (X,Z) ∼ P (X,Z) with index91

set D not underlying a selection process. In the first setting, the selected sample is a subset of the92

data not underlying the selection process (S ⊂ D). So, for S = 0, only the observations of Y are93

missing. For the second setting, the selection bias setting, we have access to external data D for94

which S ∩D = ∅. Following the notation from Bareinboim et al. [2014], we call the unbiased data in95

both cases external data. If not stated otherwise, our results derived below hold for both settings.96

Recoverability Before introducing a practical estimator, we need to ensure that the causal effect -97

which we are interested in - is recoverable [Pearl, 2009] from the available data. For cases involving98

selection bias, Pearl [2012] first proposed the concept of s-recoverability, which was later developed99

and defined as in Definition A.2 in Appendix A.3 by Bareinboim et al. [2014]. As there are settings100

that are only s-recoverable under consulting external unbiased data (D) - which is the setting we101

focus on - Bareinboim et al. [2014] formulated a compatible definition for this case, restated below.102

Definition 2.1. Given a causal DAG model (G, P ) augmented with a node S, the distribution103

Q = P (Y | X) is said to be s-recoverable from selection bias in G with external information over104

T ⊂ V and selection-biased data over M ⊂ V if the assumptions embedded in the causal model105

render Q expressible in terms of P (M = m | S = 1) and P (T = t), both positive.106

Based on the notation and the definitions introduced above, we will now review the setting that was107

studied by Boeken et al. [2023], with selection bias induced by systematic missingness for which108

P (Y | X) is s-recoverable when observing privileged information.109

2.2 Recovering from Selection Bias in the Absence of Confounding110

To recover from selection-biased data, Boeken et al. [2023] presented a special case of MNAR, the111

concept of privilegedly missing at random (PMAR), which is also known as the terminology of112

comparability in literature [Singh and Zhou, 2022]. In comparison to our work, this line of research113

assumes to have access to interventional/experimenta data. Miao et al. [2024] cover a different114

MNAR case than PMAR. However, their framework does not require external data. PMAR describes115

cases in which the target variable Y is stochastically independent from the selection variable S, when116

conditioning on the covariates X and proxy variables Z, as formalized in the assumption below.117
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Assumption 2.2 (PMAR). Given a privilegedly observed set of variables Z, Y is privilegedly missing118

at random (PMAR) if S⊥⊥Y | {X,Z}.119

Intuitively, PMAR holds when treatment and proxies block all paths between target and selection120

variable, as in the DAG in Figure 2 (a). Under Assumption 2.2, by law of total expectation,121

E[Y | X] = E[E[Y | X,Z] | X] = E[E[Y | X,Z, S = 1] | X]. As discussed by Boeken et al.122

[2023], concerning discrete variables under certain positivity assumptions, s-recoverability is satisfied123

when selection biased P (X,Y, Z | S = 1), as well as unbiased external P (X,Z), are available and124

PMAR holds. They proposed a repeated regression (RR) for estimating E[Y | X]. The first regression125

models E[Y | X,Z, S = 1] using S. Next, predictions Ỹ := Ê[Y | X,Z, S = 1] based on the first126

regression are computed on population-level in dataset D, which is unaffected by selection. A second127

regression models E[Ỹ | X] using D, yielding the final estimate µ̂RR(x) = Ê[Ỹ | X] for E[Y | X].128

Besides repeated regression, Boeken et al. [2023] also proposed an estimator based on inverse129

probability weighting and a doubly robust estimator. However, repeated regression was the clear130

favorite in their evaluation, which is why we omit the other two estimators.131

In absence of confounding between X and Y , this method also provides a reliable estimate for132

E[Y | do(X)] as E[Y | do(X)] = E[Y | X] can be ensured. This is the case in Figure 2 (a) and (b).133

However, as soon as we flip the edge between X and Z in Figure 2 (b), arriving at the graph in134

Figure 2 (c), we additionally need to adjust for confounding. In the following section, we discuss this135

issue in more detail, and propose a solution for such settings.136

2.3 Identification under Selection Bias in Presence of Confounding137

Criteria for causal effect identification and s-recoverability under confounding and selection bias138

have been generalized by multiple authors [Pearl, 2012, Bareinboim and Tian, 2015, Correa et al.,139

2018, 2019]. To treat both sources of bias, they propose to decompose Z = Z+ ∪ Z− into Z+, the140

set of the non-descendants of X and Z−, the set of descendants of X that are included in Z. Based141

on this distinction, Bareinboim et al. [2014] introduced the selection backdoor criterion (provided142

in Assumption A.3) under which the causal effect is identifiable and s-recoverable. We adjust the143

assumptions proposed by Bareinboim et al. [2014], as stated in Assumption 2.3 below, to ensure144

identifiability and s-recoverability of the causal effect for PMAR with potentially unobserved con-145

founding. An example graph, which is not covered by previous approaches is shown in Figure 2 (d),146

where U is not included in Z and may be an unobserved confounder. We compare our assumptions147

with prior works [Bareinboim et al., 2014, Correa et al., 2018] in Appendix A.4.148

Assumption 2.3. Decompose the set of variables Z into Z = Z+ ∪ Z−, where Z+ are non-149

descendants of X and Z− are descendants of X . Assume that150

1. X and Z block all paths between S and Y , namely S⊥⊥G Y | {X,Z} (PMAR)151

2. Z+ blocks all backdoor paths between X and Y , namely Y ⊥⊥GX
X | Z+152

3. Z ∪ {X,Y } ⊂M , where variables M are collected under selection bias (dataset S) and Z ⊂ T ,153

where T is collected on population-level (dataset D). If Z− ̸= ∅, X ⊂ T .154

We illustrate the assumptions shortly. Note that whenever Assumption 2.3 is satisfied and Z+ = ∅,155

confounding is excluded and we recover the setting from Boeken et al. [2023]. When Z+ and Z−156

are present, Z+ shields the confounding of X and Y , and both Z− and Z+ are needed to adjust for157

the selection bias. In case of Z− ̸= ∅, we have to also observe X unbiased.158

For instance, in Figure 1, we may have additional measurements from an unbiased source of159

X = {income} and Z = {job, spending, loans, loan amount}, for which the label is not available,160

e.g., because collecting the label is costly. In Appendix A.4, we will elaborate more on limited access161

to unbiased data. When Assumption 2.3 is satisfied, the causal effect is identifiable and s-recoverable:162

Theorem 2.4. Under Assumption 2.3, the causal effect E[Y | do(X)] is identifiable, s-recoverable163

and can be expressed as follows164 ∫
z+

E[E[Y | X,Z+ = z+, Z−, S = 1] | X,Z+ = z+]P (Z+ = z+)dz+ .

4



Based on the identification result above, we develop a practical estimator for continuous targets. For165

notational reasons, we propose an estimator for linear cases and explain its extension to the non-linear166

setting in Section 3.2. Assumption 2.5 contains the linearity assumptions required for our estimator.167

Assumption 2.5. Let any observation of Y be defined through the following assignment:168

y := β0 + β1x+ β2z
+ + β3z

− + ϵ ,

where (x, y, z) are drawn i.i.d. from P (X,Y, Z) and ϵ is drawn i.i.d. from a standard normal169

distribution N (0, 1). The coefficients β0, β1, β2 and β3 are of the dimension of its corresponding170

vector of variables X ∈ Rp, Z+ ∈ Rd1 or Z− ∈ Rd2 respectively.171

In summary, we assume a linear setting with Gaussian error terms, as common in regression. Based172

on Assumption 2.5, Theorem 2.4 simplifies to Theorem 2.6. Corollary 2.7 further simplifies the173

expression under certain conditions such that no integral calculation needs to be carried out.174

Theorem 2.6. Under Assumption 2.3 and Assumption 2.5, the causal effect E[Y | do(X)] is175

identifiable, s-recoverable and can be expressed as176

E[Y | do(X = x)] = β0+β1x+β2E[Z+]+β3

∫
z+

E[Z− | X = x, Z+ = z+]P (Z+ = z+)dz+.

(1)

Corollary 2.7. If Z+ blocks all backdoor paths between X and Z−, the integral from above reduces177

to E[Z− | do(X)]. If additionally, X and Z− are not confounded, it reduces to E[Z− | X].178

Based on the above results, we will introduce our a practical estimator in the next section.179

3 A Two-Step Regression Estimator180

Next, we derive an estimator for E[Y | do(X)] by substituting each component of the causal effect181

expression in Equation (1) with its corresponding estimator. We refer to this estimator as the Two-Step182

Regression Estimator (TSR). For a specific value of x, it is defined as183

µ̂TSR(x) = β̂0+β̂1 x+β̂2 Ê[Z+]+β̂3

∫
z+

Ê[Z− | X = x, Z+ = z+] P̂ (Z+ = z+) dz+ ,

OLS: Y ∼ X,Z+, Z−
emp. mean OLS: Z− ∼ X,Z+ density est.

(2)

184

where some components can be estimated based on the selected dataset S, whereas parts of185

the estimates require access to an external dataset D, which is not underlying the selection186

mechanism. In particular, we obtain the estimates β̂0, β̂1, β̂2, β̂3 by OLS for the model187

E[Y | X,Z+, Z−, S = 1] = β0 + β1X + β2Z
+ + β3Z

− based on the observations in S in the first188

step. In the second step, we estimate E[Z+] by its empirical mean and approximate the integral189 ∫
z+ E[Z− | X = x, Z+ = z+]P (Z+ = z+)dz+ by OLS estimations of E[Z− | X = x, Z+ = z+]190

weighted by an estimation of the density P (Z+ = z+) of Z+, both based on observations from D.191

In the following, we discuss several possible instantiations of our estimator depending on whether or192

not the data is affected by confounding and whether or not certain sets of variables are empty. For all193

settings, we assume that the considered variables meet the assumptions required for Theorem 2.6.194

In the absence of confounding, where E[Y | X] = E[Y | do(X)] with Z+ = ∅ and implicitly195

Z = Z−, as in Figure 2 (b), TSR - coinciding with RR - reduces to (cf. Appendix A.6)196

µ̂TSR(x) = β̂0 + β̂1x+ β̂2Ê[Z− | X = x] .

In scenarios for which we cannot exclude confounding and thus E[Y | do(X)] = E[Y | X] cannot197

be ensured, we distinguish two cases that are illustrated in Figure 2. First, consider the minimal198

example, presented in Figure 2 (c), with Z = Z+ and Z− = ∅. Here, the TSR estimator reduces to199

µ̂TSR(x) =β̂0 + β̂1x+ β̂2Ê[Z+] , (3)
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which differs from the RR estimation (see Appendix A.6). The second estimation step only200

requires calculating the empirical mean of Z+. This is intuitively comprehensible because201

E[Z+ | do(X)] = E[Z+] when Z+ is a non-descendant of X . Hence, in this setting, only Z+,202

but not X , needs to be observed in an external unbiased dataset.203

For our running example in Figure 1 and Figure 2 (d), we have to compute the full estimator to204

recover the causal effect of X on Y . Hence, the estimator is given by Equation 2. Whenever we can205

assume linearity E[Z− | X = x, Z+ = z+] = γ0 + γ1x+ γ2z
+ with γ0 ∈ Rd2 , γ1 ∈ Rd2×p and206

γ2 ∈ Rd2×d1 , TSR takes the form207

µ̂TSR(x) =β̂0 + β̂1x+ β̂2Ê[Z+] + β̂3(γ̂0 + γ̂1x+ γ̂2Ê[Z+]) , (4)

where we impute the regression coefficient estimates of the regression of Y on X,Z+, Z− in S and208

of the regression of Z− on Z+ and X in D, as well as the mean estimate of Z+ in D.209

In addition to observed confounding, TSR can handle unobserved confounding between X and Y for210

cases in which Z+ blocks all back-door paths between X and Y which arise through the confounder.211

Regularization Note that since the variables in X and Z might be highly correlated in S , it can be212

profitable to implement the first regression in TSR and RR with a ridge regression penalty, to reduce213

the variance of the estimator. In addition, even for the second estimation step, ridge regression in D214

should be considered because, for instance, in Figure 2 (d), X and Z+ are correlated. In our empirical215

evaluation in Section 4.1, we therefore also instantiate both TSR and RR with a ridge penalty.216

3.1 Analysis of Bias and Variance217

Next, we examine unbiasedness, derive the variance of the proposed two-step regression (TSR)218

estimator and compare it to the variance of the repeated regression (RR) estimator from Boeken219

et al. [2023] for graphs aligned with Figure 2 (a), where E[Y | X] = E[Y | do(X)], Z = Z+ and220

Z− = ∅. For simplicity, we assume that all variables are univariate and linearly related, to get an221

intuition of the bias and variance of both estimators. We formalize our assumptions below.222

Assumption 3.1. Let any observation y be generated through the following assignment:223

y := β0 + β1x+ β2z
+ + ϵ ,

where (x, z+) are drawn i.i.d. from P (X,Z+). In particular, z+ = µz+ + ξ, with µz+ ∈ R, ξ and ϵ224

are drawn i.i.d. from N (0, 1). Value x and the coefficients β0, β1, β2 are in R.225

In this simplified setting, TSR reduces to E[Y | do(X = x)] = β0 + β1x + β2µZ+ , where226

µZ+ = E[Z+ | do(X = x)]. Thus, the second step of the TSR estimator reduces to estimating the227

mean of Z+. In contrast, RR performs an OLS estimate of E[Z+|X = x] in D, which is given by228

Ê[Z+ | X = x] = α0 + α1x with correct coefficients α0 = E[Z+] and α1 = 0. Assuming that229

in both regression steps, unbiased estimation is ensured, i.e., the chosen model class includes the230

ground truth generating mechanism, TSR and RR are ensured to be unbiased under S ∩ D = ∅. In231

that case, the data points for both regression steps are independent of each other and therefore the232

coefficient estimators of the two steps are. In contrast, for S ⊂ D, the bias in point x is Cov[β̂2, Z+]233

for TSR and Cov[β̂2, α̂0 + α̂1x] for RR (see derivation in Appendix A.5). We also investigate234

this aspect empirically through simulation studies in Section 4.1, which suggest that the bias terms235

for S ⊂ D might be negligible. Intuitively, the smaller the overlap of S and D, the smaller the236

dependence between the estimates of those two samples. We discuss the bias in a more general case237

in Appendix A.5.238

After studying the bias of both estimators, we now compare their variance. Here, we restrict ourselves239

to the case in which S ∩ D = ∅, exploiting the independence of the observations of S and D.240

Theorem 3.2. Under Assumption 3.1 and S ∩ D = ∅, let Ê[Z+ | X = x] = α̂0 + α̂1x be the OLS241

estimator of the second step for µ̂RR(x) and X̄ = 1
|D|

∑|D|
i=1 Xi, then242

V ar[µ̂RR(x)]− V ar[µ̂TSR(x)] = V ar[β̂2(α̂1(x− X̄))] ≥ 0 .

The result implies that in the second regression step, the irrelevant regressor X inflates the variance243

in small samples. The magnitude of the difference between the variances depends on the estimated244
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S ⊂ D S ∩ D = ∅

Figure 3: Left: Boxplots of the MSE over D for S ⊂ D, and S ∩ D = ∅ (middle) of RR and TSR for
n ∈ {500, 1000, 5000}. On the right, we show the associated 95%-areas of naive, RR and TSR for
n = 500 (for S ∩ D = ∅). The upper boxplot in the figure represents the distribution of X in S and
the lower in D. The curves for RR and TSR display the mean estimation over all simulations.

effect of Z on Y , the error in estimating α1 = 0 and the distance between x and the empirical mean245

of the distribution of X in D. As α̂1 converges to zero when the sample size of D goes towards246

infinity, the difference between the variances of RR and TSR at point x also converges to zero.247

The above results imply that we expect a lower mean squared error (MSE) for TSR than for RR,248

which we confirm by simulation-based experiments in Section 4.1. Subsequently, we empirically249

evaluate both estimators with a ridge regression penalty and observe that regularization can reduce250

the mean squared error by introducing some bias.251

3.2 Introducing Non-linearity252

In the previous sections, we outlined our theory for a linear estimator. As standard, we can extend253

the TSR estimator to non-linear settings by considering feature maps of the inputs. In particular, we254

can exchange X , Z+ or Z− by vectors φX(X), φZ+(Z+), φZ−(Z−) respectively, where φX , φZ+ ,255

φZ− denote feature maps from a vector of variables to a vector of functions of the variables in X ,256

Z+ and Z− respectively. For example, in our experiments we perform polynomial regression. The257

linear case, can hence be seen as a special case with polynomials up to degree 1.258

4 Experiments259

In this section, we empirically evaluate the proposed Two-Step Regression (TSR) estimator, and260

compare it to Repeated Regression (RR) [Boeken et al., 2023]. We also instantiate both estimators with261

a ridge penalty in the regression based on S with penalization parameter λ ∈ {10−2, 10−1.9, ..., 102},262

chosen via cross-validation. As a naive baseline, we consider the OLS regression estimator trained263

only on data from S, which estimates E[Y |X,S = 1] instead of E[Y |X]. We generate train and264

test data, both consisting of a selected dataset S and a population-level dataset D. We chose the265

same sample size n for D in both the test and the training data. The sample size for S is generated266

randomized by the selection process. All results are based on 100 simulation runs respectively.267

First, in Section 4.1, we confirm our results for the variance comparison of TSR and RR from268

Section 3.1. Then, in Section 4.2, we look at several examples with confounding, for which RR is269

not applicable. Finally, we will evaluate the performance in a more challenging setting based on270

Figure 2 (d), in Section 4.3. Additional results are provided in Appendix B.271

4.1 Empirical Variance Evaluation272

As discussed in Section 3.1, the variance of TSR is at most of the same magnitude as of RR. The273

result was proven only for S ∩ D = ∅. Here, we simulate data according to both settings, S ⊂ D274

and S ∩ D = ∅ and consider the causal effect E[Y |do(X = x)] to be both a linear and a quadratic275

function in x. We generate data according to the DAG shown in Figure 2 (a), as follows:276

X, εY ∼ N (0, 1) Z+ ∼ N (−2, 1) S := 1(X + Z+ < −2) .

We use Ylin := 3X + 5Z+ + εY in the linear case, and replace X with X2 for the quadratic case.277

For the linear model, computing TSR and RR, we include regressors up to degree 1. In the quadratic278

model, we used regressors up to degree 2. We chose the sample size n to be 500, 1000 and 5000.279
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Ex. 1
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Figure 4: Left: DAGs representing the DGPs of Examples 1-6, Right: Comparison of the central
95%-areas of RR and TSR with OLS regression for n = 1000 in the setting with S ∩ D = ∅ for
Examples 1-6, respectively. The upper boxplot represents the distribution of X in S and the lower in
D. The curves for RR and TSR display the mean estimation over the simulation runs.

The results for the quadratic model in Figure 3 show that the mean MSE of TSR is consistently lower280

than for RR, whereas the difference vanishes when increasing the sample size n (details are provided281

in Table 1 in Appendix B.1), validating our theoretical results. The plot on the right shows the area in282

which the central 95% of the estimates of E[Y |do(X)] from the 100 simulation runs (for S ∩D = ∅).283

We see that the estimates for TSR are more concentrated around the mean than for RR. As expected,284

the naive estimator is systematically biased.285

We provide all numerical results, and compare the errors on test data sampled from S to data from286

D, for linear and quadratic functions in both scenarios (S ∩ D = ∅, and S ⊂ D) in Appendix B.1.287

Overall, the results shown in Appendix B.1 confirm the conclusions drawn from this section.288

4.2 Simulations with Selection Bias and Confounding289

Next, we consider in total six distinct generating mechanisms, as illustrated in Figure 4, that in-290

clude confounding variables. Hence, RR is not applicable for estimating the causal effect since291

E[Y | do(X)] ̸= E[Y | X], but should be able to recover E[Y | X]. The details for the data generat-292

ing processes are provided in Appendix B.2, where for each graph, we provide a linear and quadratic293

generative mechanism. Corollary 2.7 ensures that no integral has to be computed for TSR in the294

setting from Figure 4 (c). For Ex. 1 & 2, TSR is given by Equation (3). For Ex. 3 & 4, an additional295

summand for a second element in Z+ is included, and for Ex. 5 & 6, we use Equation (4).296

We included regressors up to degree 2, to match the generating mechanisms. In Figure 4, we plot the297

empirical central 95% confidence intervals for TSR, RR, with OLS regression and the naive baseline298

for the case of n = 1000 for each setting. Interestingly, RR and naive have the highest error for299

Examples 1 and 2 for which the underlying graph is depicted in Figure 4 (a), whereas the difference300

between TSR and RR is less pronounced for the other examples. In Example 6, the baseline exhibits301

a strong bias emphasizing the need for adjustment. We further report the results on D and S for OLS,302

and ridge regression for both TSR, and RR increasing sample size in Appendix B.2. Additionally, we303

report the numerical results of the errors on S and D. In most cases, ridge regression matches the304

performance of OLS. In Example 1, however, we observe that ridge regression introduces a bias for305

both TSR and RR, suggesting that, in regions with low support (at the borders), the 95%-areas do not,306

or only barely include E[Y |do(X)] for TSR and E[Y |X] for RR, respectively.307

4.3 Simulations with Selection Bias and Unobserved Confounding308

Last, we consider a case with unobserved confounding. The data generating process is based on309

Figure 2 (d) which is the graph compatible with the motivating example in Figure 1:310

U, εZ+ , εZ− , εX , εY ∼ N (0, 1) Z+ := 2U + εZ+ S := 1(X + Z− > 5)

X := Z+ + εX Z− := X + 2U + 2εZ− Y := 0.5X2 + 2Z− + 2U + 3εY .
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Figure 5: Comparison of the central 95%-areas of TSR and RR for the DAG in Figure 2 (d) with
sample size n = 500 and S ∩ D = ∅. The upper boxplot represents the distribution of X in S and
the lower in D. The curves for RR and TSR display the mean estimation over the simulation runs.

As outlined in Section 3, in this case, TSR is given by Equation (4), where we restrict ourselves311

notational to the linear case. The β coefficients are estimated by OLS from S , whereas γ̂ coefficients312

are estimated from D. Further, Ê[Z+] is the empirical mean of Z+ in D. Akin to the previous313

experiments, we use OLS-based regression and optionally add a ridge penalty for the regressions. We314

explicitly add the penalty also to the second step since X and Z+ are correlated.315

We show the results for n = 500 in Figure 5, where we observe that TSR is able to recover the316

ground truth. We additionally show RR as a baseline, but note that this setting violates its underlying317

assumptions. Hence, it is expected that it does not recover the ground truth causal effect. In addition,318

we observe that the confidence intervals for ridge are slightly smaller than for OLS, while a small bias319

is introduced. We repeat the experiment for n = 2000, for which we show the results in Appendix B.3,320

where we observe that the difference between OLS and ridge is not evident anymore.321

5 Conclusion322

We considered estimation of the causal effect E[Y |do(X)] with continuous target Y and treatments323

X under selection bias and confounding when having access to external data for X and Z not324

underlying the selection mechanism. We derived conditions (Assumption 2.3) under which the causal325

effect is identifiable and s-recoverable (Theorem 2.4). Assuming linearity with Gaussian errors,326

we proposed a generalized estimator, the Two-Step Regression Estimator (TSR), in line with our327

theoretical results. We discussed how TSR simplifies in different situations, e.g., when confounding is328

absent, and how to introduce non-linearity. For a minimal example with uncorrelated X and proxies329

Z, we proved that the variance of TSR is at most of the same magnitude as of repeated regression330

(RR) [Boeken et al., 2023], and confirmed this result through simulation studies. Further, we validated331

our estimator through extensive simulation studies. It became evident that an estimator capable of332

handling both selection bias and confounding is necessary because in wide ranges of the support of333

X , even the centralized 95%-area of the estimates for E[Y |X] did not cover the underlying causal334

effect E[Y |do(X)]. Last, we found that adding a ridge penalty to OLS when applying TSR and RR335

can result in a lower variance of the causal effect estimates, but introduces a bias for some examples.336

Limitations and Future Work Although our estimator covers a range of different settings, we need337

to assume access to proxy variables. In Appendix B.4, we provide an experiment to evaluate slight338

violations of this assumption. Another important assumption is access to external unbiased data for X339

and Z. This assumption may hold when the label is costly but the covariates can be accessed through340

other databases. As in the loan default example (Figure 1), information about job type, income, etc.,341

may be accessible in other databases which do not contain measurements of the loan default. In other342

scenarios, however, this assumption may be restrictive (Appendix A.4). However, for TSR, depending343

on the specific setting, observing X , Z− and Z+ separately unbiased may be sufficient. They only344

need to be observed jointly if variables appear together within an expectation term - such as X and345

Z− in E[Z− | X]. Hence, the conditions for TSR are more attainable in practical applications. In346

contrast, computing Ỹ for RR requires access to data containing X and Z jointly.347

For future work, we plan to relax some of our assumptions, and work on more flexible estimators348

that can, e.g., be instantiated through neural networks, and study more assumption violations. For349

instance the effect of missing variables, or absence of Gaussian errors.350
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A Theory454

In this section, the related work is presented in more detail, although it has already been addressed455

earlier in the paper. After the related work section, we will give the definition of the do-calculus,456

which is fundamental for our theoretic results and the definition of s-recoverability, we referred to457

stating the definition of s-recoverability with access to external data. After this, we state and discuss458

the selection backdoor criterion by Bareinboim et al. [2014] and the generalized adjustment criterion459

type 3 by Correa et al. [2018].460

A.1 Related Work461

One origin of selection bias is systematic missingness or preferential inclusion of datapoints, which462

is a well-studied problem. A comprehensive overview of handling missing data is given by Little463

and Rubin [2002]. Fundamental achievements of research about missing data settings are given in464

Dempster et al. [1977] on the EM algorithm, Heckman [1979] on correcting for selection bias in465

linear regression and Rosenbaum and Rubin [1984] on bias reduction through subclassification on466

the propensity score. Another important aspect is to actually detect if observed data is subject to467

selection bias, which is a topic that has been investigated by Daniel et al. [2012] and Kaltenpoth and468

Vreeken [2023].469

Independent of whenever we know through detection methods or domain experts that a dataset is470

affected by selection bias, it is necessary to properly correct rather than ignore selection bias. This471

has been emphasized by various authors, for instance by Sharma et al. [2022] and Castro et al. [2020].472

Several approaches have been proposed to address selection bias. Examples are Mohan and Pearl473

[2021] who derived a consistent estimation method in missing data problems and Goel et al. [2021]474

who investigated fairness algorithms. A data-driven variable decomposition (D2V D) that jointly475

optimizes separation of variables into confounders and adjustment variables to handle confounding476

but not selection bias is proposed by Kuang et al. [2017], where the focus lies on the estimation of477

the average treatment effect from high dimensional data from observational studies. Further, Liu et al.478

[2024] employed proxy-based two-stage generalized linear regression models (GLMs) to adjust for479

unmeasured confounding in unbiased data.480

Extensive work has been done on conditions that ensure the causal effect to occur identifiable and481

s-recoverable. Bareinboim and Pearl [2012] derived a complete condition indicating feasibility of482

recoverability of the odds ratio (OR) from selection biased data and offered a method enabling to483

recover other effect measures than OR from selection bias using instrumental variables. Pearl [2012]484

and Bareinboim et al. [2014] considered the fundamental problem of the identifiability of P (Y | X)485

based on data potentially underlying a selection bias. Bareinboim et al. [2014] in detail discussed486

the concept of s-recoverability and expanded it to cases that are only s-recoverable under access to487

additional external data not underlying the selection mechanism. They defined assumptions under488

which P (Y | X) or P (Y | do(X)) can be ensured to be s-recoverable having access to external data.489

Forré and Mooij [2020] extended the backdoor and selection backdoor criterion to a general class490

of structural causal models allowing for cycles, and Chen et al. [2024] introduced a conditioning491

operation on structural causal models allowing to model selection bias in a principled manner akin492

to confounding. The results of Bareinboim et al. [2014] were extended to the topic of data fusion493

[Bareinboim and Pearl, 2016] by assuming access to multiple datasets, where some of them may be494

affected by selection bias. Further, Correa and Bareinboim [2017] established complete conditions495

in absence of external data and for the setting in which all proxy variables are observed externally,496

which has been extended to cover the case in which a subset of the proxy variables is observed497

externally [Correa et al., 2018]. Our identifiably result covers a different setting, e.g., the graph498

shown in Figure 1, as we discuss in more detail in Appendix A.4. Similar results that - in contrast499

to our work - require access to experimental data are reported in Singh and Zhou [2022]. Colnet500

et al. [2024] devise an approach that requires selected and external data. However, they focus on501

binary treatments to estimate the average treatment effect. Tchetgen Tchetgen et al. [2024] and Miao502

et al. [2018] address unmeasured confounding through the use of proxy variables, which aligns with503

certain aspects of our adjustment and Louizos et al. [2017] build on VAEs to adjust for confounding504

with similar assumptions.505

Most closely related to our approach is the work by Boeken et al. [2023], who set their focus506

on proposing practical estimators to recover E[Y | X] from selection-biased data with proxy507
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variables. They proposed several estimators from which, repeated regression had the most promising508

performance. Under unconfoundedness, E[Y | do(X)] = E[Y | X]. Hence, the repeated regression509

from Boeken et al. [2023] is applicable for the causal effect estimation in absence of confounding.510

Here, we extend their setting but focus on recovering causal effects from selection-biased data, where511

we, to some extend, allow for (unobserved) confounding. We derive criteria for identifiability and512

s-recoverability of the causal effect and propose an empirical estimator for this case.513

A.2 Do-Calculus514

For completeness, we restate the rules of do-calculus, which we need to derive our theoretical results515

below [Pearl, 2009, Chapter 3].516

Definition A.1 (rules of do-calculus). For arbitrary disjoint sets of nodes X , Y , Z, and W in a causal517

DAG G, we denote the graph obtained by deleting all edges pointing towards a node in X by GX .518

Similarly, the graph obtained by deleting all edges pointing away from a node in X by GX . The519

graph obtained by deleting edges pointing towards nodes in X and edges pointing away from nodes520

in Z is denoted by GX,Z .521

1. (Insertion / deletion of observations):522

P (Y = y | do(X = x), Z = z,W = w) = P (Y = y | do(X = x),W = w)523

if (Y ⊥⊥GX
Z | {X,W})524

2. (Action / observation exchange):525

P (Y = y | do(X = x), do(Z = z),W = w) = P (Y = y | do(X = x), Z = z,W = w)526

if Y ⊥⊥GX,Z
Z | {X,W})527

3. (Insertion / deletion of actions):528

P (Y = y | do(X = x), do(Z = z),W = w) = P (Y = y | do(X = x),W = w)529

if (Y ⊥⊥G
X,Z(W )

Z | {X,W}),530

where Z(W ) is the set of nodes in Z not being ancestors of any node in W in GX531

A.3 Recoverability532

Bareinboim et al. [2014] defined s-recoverability as follows:533

Definition A.2 (s-recoverability). Given a causal DAG model (G, P ) augmented with a node S,534

the distribution Q = P (Y | X) is said to be s-recoverable from selection biased data in Gs if535

the assumptions embedded in the causal model renders Q expressible in terms of the distribution536

P (V | S = 1) under selection bias. Formally, for every two probability distributions P1 and P2537

compatible with Gs, P1(V = v | S = 1) = P2(V = v | S = 1) > 0 implies P1(Y = y | X = x) =538

P2(Y = y | X = x).539

A.4 Discussion of Assumptions540

In the following, we compare our assumptions to prior work, where we first review the selection541

backdoor criterion proposed by Bareinboim et al. [2014], as well as the repeated regression estimator542

by Boeken et al. [2023], and then discuss the generalized adjustment criterion derived by Correa and543

Bareinboim [2017].544

Selection backdoor criterion Bareinboim et al. [2014] proposed assumptions, given in Assump-545

tion A.3, under which the causal effect P (Y |do(X)) is, as stated in Theorem A.4, identifiable and546

s-recoverable.547

Assumption A.3 (Selection backdoor criterion [Bareinboim et al., 2014]). The variables Z can be548

decomposed as Z = Z+ ∪ Z−, where Z+ are non-descendants of X and Z− are descendants of X .549

1. X and Z block all paths between S and Y , namely Y ⊥⊥G S | {X,Z}550

2. Z+ blocks all backdoor paths from X to Y , namely (X ⊥⊥GX
Y | Z+)551

3. X and Z+ block all paths between Z− and Y , namely Z− ⊥⊥G Y | {X,Z+}552
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4. Z ∪ {X,Y } ⊂M , where variables M are collected under selection bias (dataset S) and Z ⊂ T ,553

where T is collected in the population-level (dataset D).554

In comparison to the assumption above, in Assumption 2.3, we do not need (3.) which characterizes555

the relationship of Z+ and Z−, whereas we maintain the first and second subpoint. On the other556

hand, we need to observe X also in the sample D, not underlying the selection bias if Z− ̸= ∅.557

Theorem A.4 (Selection backdoor adjustment [Bareinboim et al., 2014]). If Z satisfies the selec-558

tion backdoor criterion (Assumption A.3) relative to (X,Y ) and (M,T ), then the causal effect559

P (Y | do(X)) is identifiable, s-recoverable and can be expressed as560

P (Y = y | do(X)) =

∫
z

P (Y = y | X,Z = z, S = 1)P (Z = z)dz .

Further, recall that for RR we need to assume PMAR as well as that X and Y are not confounded561

when aiming to estimate E[Y | do(X)]. We want to explain the relationship between the assumptions562

for RR, Assumption A.3 proposed by Bareinboim et al. [2014], and our Assumption 2.3 for TSR563

based on the four DAGs in Figure 2. First, note that Assumption 2.3 is met for all of the four cases.564

The setting in Figure 2 (a) is met by all of the three assumptions. In contrast, in the setting in Figure 2565

(b) Assumption A.3 (3.) is violated as the edge between Z− and Y can not be blocked by X and566

Z+. For the setting in Figure 2 (c) it is exactly the opposite. Here, RR does not recover the causal567

effect but only E[Y |X], whereas Assumption A.3 is fulfilled. The setting in Figure 2 (d) violates568

Assumption A.3 (3.), and induces confounding, which is why RR does not recover the causal effect.569

In Section 2.3, we mentioned that Assumption 2.3 requires X and Z to be observed unbiased, whereas570

for Assumption A.3 only Z must be observed unbiased. That is, if X is not observable unbiased,571

and Z− ̸= ∅, there might be cases which meet Assumption A.3, but not our Assumption 2.3. It is to572

mention, that settings could occur in which our assumption is met, but the selection backdoor criterion573

is not met due to a lack of access to unbiased data. Think of cases for which it is difficult to observe574

Z+ unbiased, whereas observing X unbiased is unproblematic. In those cases, it may be that our575

assumption is fulfilled but the selection backdoor criterion is not. As discussed above, for example,576

Figure 2 (b) does not satisfy the third point of Assumption A.3, whereas Assumption 2.3 is met. Swap577

the direct path Z− → Y to one that goes via confounder Z+, Z− ← Z+ → Y . Assuming, that Z+578

can not be observed unbiased, Assumption A.3 can not be satisfied, whereas, taking advantage of579

Corollary 2.7, Assumption 2.3 can be satisfied if (X,Z−) are observable unbiased.580

Generalized Adjustment Criterion 3 (GACT3) Correa et al. [2018] proposed assumptions,581

given in Definition A.8, under which the causal effect P (Y |do(X)) is, as stated in Theorem A.10,582

identifiable and s-recoverable, which requires some preliminary definitions by Correa et al. [2018],583

which we state below.584

Definition A.5 (Proper Causal Path). Let X and Y be sets of nodes. A causal path from a node in X585

to a node in Y is called proper if it does not intersect X except at the starting point.586

Definition A.6 (Proper Backdoor Graph). Given a causal DAG model (G, P ) and disjoint subsets X587

and Y of variables. The proper backdoor graph, denoted as GpbdXY , is obtained from G by removing588

the first edge of every proper causal path from X to Y .589

Definition A.7 (Adjustment Pair). Given a causal DAG model (G, P ) augmented with a node S,590

disjoint sets of variables X , Y , Z, and a set ZT ⊂ Z, (Z,ZT ) is said to be an adjustment pair for591

recovering the causal effect of X on Y if for every model compatible with G, P (Y=y | do(X=x))592

can be expressed as593 ∑
z

P (Y = y | X = x, Z = z, S = 1)P (Z = z \ ZT = zT | ZT = zT , S = 1)P (ZT = zT ) .

594

Assumption A.8 (Generalized Adjustment Criterion Type 3 (GACT3)). Given a causal DAG model595

(G, P ) augmented with a node S, disjoint sets of variables X,Y, Z and set ZT ⊂ Z; (Z,ZT ) is an596

admissible pair relative to X,Y in G if:597

1. No element in Z is a descendant in GX of any W /∈ X lying on a proper causal path from X to Y .598

2. All non-causal paths in G from X to Y are blocked by Z and S.599
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3. ZT d-separates Y from S in the proper backdoor graph, i.e. (Y ⊥⊥S | ZT )Gpbd
XY

600

Theorem A.9 (Admissible Pairs are Adjustment Pairs). Z, ZT is an adjustment pair for X , Y in G601

if and only if it is admissible by Assumption A.8.602

Corollary A.10 (Causal Effects Recovery by Adjustment). Given a causal DAG model (G, P ) aug-603

mented with a node S representing the selection mechanism. Let V be the set of variables measured604

under selection bias, and T ⊂ V the set of variables measured externally in the overall population.605

Consider disjoint sets of variables X,Y ⊂ V , then the causal effect P (Y = y | do(X = x)) is606

recoverable from {P (V = v | S = 1), P (T = t)} by the adjustment expression in Definition A.7607

while ZT ⊂ T , in every model inducing G if and only if (Z,ZT ) is an admissible pair relative to X ,608

Y in G according to Assumption A.8.609

The assumptions in Assumption A.8 are met in Figure 2 (a)–(c), but are not admissible for (d) in610

cases where U is not contained in Z. Such cases could occur if either we did not include U in Z, or611

it is unobserved. In either case, not all non-causal paths from X to Y can be blocked by Z and S.612

Conditioning on Z− opens the path X → Z− ← U → Y . However, Z− must be included into Z to613

meet the PMAR assumption.614

A.5 Proofs615

In this section, we provide the proofs.616

617

618

Theorem 2.4. Under Assumption 2.3, the causal effect E[Y | do(X)] is identifiable, s-recoverable619

and can be expressed as follows620 ∫
z+

E[E[Y | X,Z+ = z+, Z−, S = 1] | X,Z+ = z+]P (Z+ = z+)dz+ .

Proof. We can express the expected causal effect E[Y | do(X)] as621

E[Y | do(X)] =

∫
z+

E[Y | do(X), Z+ = z+]︸ ︷︷ ︸
=

Y ⊥⊥GX
X|Z+

E[Y |X,Z+=z+]

P (Z+ = z+ | do(X))︸ ︷︷ ︸
=

non-desc
P (Z+=z+)

dz+

=

∫
z+

E[Y | X,Z+ = z+]︸ ︷︷ ︸
=E[E[Y |X,Z+=z+,Z−]|X,Z+=z+]

P (Z+ = z+)dz+

=

∫
z+

E[E[Y | X,Z+ = z+, Z−]︸ ︷︷ ︸
=E[Y |X,Z+=z+,Z−,S=1]

| X,Z+ = z+]P (Z+ = z+)dz+

=

∫
z+

E[E[Y | X,Z+ = z+, Z−, S = 1] | X,Z+ = z+]P (Z+ = z+)dz+

The first and third row follow from the law of total expectation. In row two, we can ap-622

ply the second rule of do-calculus (cf. Definition A.1 in Appendix A.2) since Y ⊥⊥GX
X | Z+623

(Assumption 2.3 (2.)), and Z+ is non-descendant of X . Assumption 2.3 (1.) ensures the final equality.624

625

Following the proof of s-recoverability by Bareinboim et al. [2014] for Theorem A.4, as the causal626

effect can be represented in probability terms of the selected sample and of the external data, along627

with Assumption 2.3, the achieved expression ensures s-recoverability.628

629

Theorem 2.6. Under Assumption 2.3 and Assumption 2.5, the causal effect E[Y | do(X)] is630

identifiable, s-recoverable and can be expressed as631

E[Y | do(X = x)] = β0+β1x+β2E[Z+]+β3

∫
z+

E[Z− | X = x, Z+ = z+]P (Z+ = z+)dz+.

(1)
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Proof.

E[Y |do(X = x)] =

∫
z+

E[E[Y | X = x, Z+ = z+, Z−, S = 1] | X = x, Z+ = z+]P (Z+ = z+)dz+

=

∫
z+

E[β0 + β1X + β2Z
+ + β3Z

− | X = x, Z+ = z+]P (Z+ = z+)dz+

=

∫
z+

(β0 + β1x+ β2z
+ + β3E[Z− | X = x, Z+ = z+])P (Z+ = z+)dz+

=β0 + β1x+ β2

∫
z+

z+P (Z+ = z+)dz+

+ β3

∫
z+

E[Z− | X = x, Z+ = z+]P (Z+ = z+)dz+

=β0 + β1x+ β2E[Z+] + β3

∫
z+

E[Z− | X = x, Z+ = z+]P (Z+ = z+)dz+

632

633

Corollary 2.7. If Z+ blocks all backdoor paths between X and Z−, the integral from above reduces634

to E[Z− | do(X)]. If additionally, X and Z− are not confounded, it reduces to E[Z− | X].635

Proof.

E[Z− | do(X)] =

∫
z+

E[Z− | do(X), Z+ = z+]P (Z+ = z+ | do(X))dz+

=

∫
z+

E[Z− | X,Z+ = z+]P (Z+ = z+)dz+

In the derivation above, we exploit that Z−⊥⊥X | Z+ in GX along with the second rule636

of do-calculus, the Law of total expectation and Z+ being non-descendant of X . Further,637

E[Z− | X] = E[Z− | do(X)], if X and Z− are not confounded.638

A.6 When do RR and TSR coincide?639

RR and TSR coincide when µ̂TSR(x) = β̂0+ β̂1x+ β̂2Ê[Z− | X = x], which is the case in absence640

of confounding and Z+ = ∅ (implying Z = Z−) as in Figure 2 (b). As shown below, this result can641

be expanded to the nonlinear case as described in Section 3.2.642

The first step of regression for both estimators, yields643

β̂ = (β̂x, β̂z) ,

where β̂x := (β̂0, β̂1) and β̂z := β̂2.644

645

Then TSR is given by646

µ̂TSR(x) = β̂x
−→x + β̂z((B

T
XBX)−1BT

XBZ)
T−→x ,

where −→x := (1, xT )T , BX := (1, XT
i )i∈D ∈ R|D|×(p+1) and BZ := (ZT

i )i∈D ∈ R|D|×d.647

648

RR is derived as follows:649

µ̂RR(x) = (−→x )T (BT
XBX)−1BT

X(BX(β̂x)
T +BZ(β̂z)

T )

= (−→x )T (BT
XBX)−1BT

XBX(β̂x)
T + (−→x )T (BT

XBX)−1BT
XBZ(β̂z)

T

= (−→x )T (β̂x)
T + (−→x )T (BT

XBX)−1BT
XBZ(β̂z)

T

= β̂x
−→x + β̂z((B

T
XBX)−1BT

XBZ)
T−→x .
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This verifies the equality µ̂RR(x) = µ̂TSR(x) for the linear case. With the same calculation but other650

definitions for BX , BZ , β̂x, β̂z and −→x , the setting can be generalized - for example to OLS with651

impacts up to a specific degree.652

653

In settings, for which we cannot exclude confounding and Z− = ∅ (implying Z = Z+),654

as in Figure 2 (c), TSR, given by µ̂TSR(x) = β̂0 + β̂1x+ β̂2Ê[Z+] in this setting, does not exactly655

equal the RR estimation. We consider the case, where X and Z are of dimension one.656

As we will show below, using OLS,657

µ̂TSR(x) = β̂0 + β̂1x+ β̂2Z+

and658

µ̂RR(x) = µ̂TSR(x) + β̂2
Ĉov[Z+, X]

V̂ ar[X]
(x− X̄) .

The derivation is at follows. First, define Ỹ for the second regression step for RR as659

Ỹ := β̂0 + β̂1X + β̂2Z
+ .

Then, running again a simple linear regression, we search for estimators α̂0 as intercept and α̂1 as660

coefficient of X for the second step of RR. They are given as follows:661

α̂1 =
Ĉov[Ỹ , X]

V̂ ar[X]
= β̂1 + β̂2

Ĉov[Z+, X]

V̂ ar[X]
662

α̂0 =
¯̃
Y − α̂1X̄

= β̂0 + β̂1X̄ + β̂2Z+ − α̂1X̄

= β̂0 + β̂1X̄ + β̂2Z+ −
(
β̂1 + β̂2

Ĉov[Z+, X]

V̂ ar[X]

)
X̄

= β̂0 + β̂2Z+ − β̂2
Ĉov[Z+, X]

V̂ ar[X]
X̄ .

This results into663

µ̂RR(x) = α̂0 + α̂1x

= β̂0 + β̂2Z+ − β̂2
Ĉov[Z+, X]

V̂ ar[X]
X̄ +

(
β̂1 + β̂2

Ĉov[Z+, X]

V̂ ar[X]

)
x

= β̂0 + β̂1x+ β̂2Z+︸ ︷︷ ︸
=µ̂TSR(x)

+β̂2
Ĉov[Z+, X]

V̂ ar[X]
(x− X̄) .

Even if Cov[Z+, X] = 0, Ĉov[Z+, X] ̸= 0 for finite samples.664

665

With S ∩ D = ∅,666

E

[
β̂2

Ĉov[Z+, X]

V̂ ar[X]
(x− X̄)

]
= E[β̂2]E

[
Ĉov[Z+, X]

V̂ ar[X]
(x− X̄)

]
,

which diminishes for n→∞, provided that the estimate of the variance in the denominator does not667

asymptotically approach zero.668

A.6.1 Bias and Variance669

For the calculation of the bias and variance of RR, we restrict ourselves to the case, where X and Z670

are of dimension one. We make use of the explicit form µ̂RR(x) = β̂0 + β̂1x+ β̂2(α̂0 + α̂1x) and671

justify this expression in the following, deriving the repeated regression estimator by hand. For the672
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second regression, we estimate a simple linear regression and therefore set Ê[Ỹ | X = x] = δ̂0 + δ̂1x.673

The derivation of δ̂0 and δ̂1 will be given in the following:674

First, we use that for the simple linear regression using OLS, δ̂1 = Ĉov[Ỹ ,X]

V̂ ar[X]
, such that675

V̂ ar[X]δ̂1 = Ĉov[Ỹ , X] = Ĉov[β̂0+β̂1X+β̂2Z,X] = Ĉov[β̂0, X]︸ ︷︷ ︸
=0

+ Ĉov[β̂1X,X]︸ ︷︷ ︸
β̂1V̂ ar[X]

+ Ĉov[β̂2Z,X]︸ ︷︷ ︸
=β̂2Ĉov[Z,X]

.

Consequently, we arrive at676

δ̂1 = β̂1 + β̂2
Ĉov[Z,X]

V̂ ar[X]
.

From this, we can calculate δ̂0 as follows:677

δ̂0 =
¯̃
Y−δ̂1X̄ =

¯̃
Y=β̂0+β̂1X̄+β̂2Z̄

β̂0+β̂1X̄+β̂2Z̄−β̂1X̄−β̂2
Ĉov[Z,X]

V̂ ar[X]
X̄ = β̂0+β̂2Z̄−β̂2

Ĉov[Z,X]

V̂ ar[X]
X̄ .

Plugging in δ̂0 and δ̂1, the repeated regression estimator can be expressed as678

µ̂RR(x) = δ̂0 + δ̂1x

= β̂0 + β̂2Z̄ − β̂2
Ĉov[Z,X]

V̂ ar[X]
X̄ + β̂1x+ β̂2

Ĉov[Z,X]

V̂ ar[X]
x

= β̂0 + β̂1x+ β̂2

(
Z̄ − Ĉov[X,Z]

V̂ ar[X]
X̄︸ ︷︷ ︸

=α̂0

+
Ĉov[X,Z]

V̂ ar[X]︸ ︷︷ ︸
=α̂1

x

)

= β̂0 + β̂1X + β̂2(α̂0 + α̂1x) ,

where α̂0 and α̂1 denote the OLS coefficient estimates of α0 and α1 corresponding to the simple679

linear regession model E[Z|X = x] = α0 + α1x.680

681

Unbiasedness Now, we can calculate the empirical mean and discuss its bias for RR and TSR:682

E[µ̂RR(x)] = E[β̂0 + β̂1x+ β̂2(α̂0 + α̂1x)]

linearity
= E[β̂0] + E[β̂1]x+ E[β̂2(α̂0 + α̂1x)]

= E[β̂0] + E[β̂1]x+ E[β̂2]E[α̂0 + α̂1x] + Cov[β̂2, α̂0 + α̂1x]

first step model correctly specified
= β0 + β1x+ β2E[α̂0 + α̂1x] + Cov[β̂2, α̂0 + α̂1x]

second step model correctly specified
= β0 + β1x+ β2(α0 + α1x) + Cov[β̂2, α̂0 + α̂1x]

α0=E[Z+]=E[Z+], α1=0
= β0 + β1x+ β2E[Z+] + Cov[β̂2, α̂0 + α̂1x]︸ ︷︷ ︸

=

̸= 0 S ⊂ D
= 0 S ∩ D = ∅
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E[µ̂TSR(x)] = E[β̂0 + β̂1x+ β̂2Z+]

linearity
= E[β̂0] + E[β̂1]x+ E[β̂2Z+]

= E[β̂0] + E[β̂1]x+ E[β̂2]E[Z+] + Cov[β̂2, Z+]

first step model correctly specified
= β0 + β1x+ β2E[Z+] + Cov[β̂2, Z+]

= β0 + β1x+ β2E[Z+] + Cov[β̂2, Z+]︸ ︷︷ ︸
=

 ̸= 0 S ⊂ D
= 0 S ∩ D = ∅

We discuss the bias for the general case for TSR, where X and Z are not restricted to dimension one.683

Suppose we are in the setting with684

µ̂TSR(x) = β̂0 + β̂1x+ β̂2Z+ + β̂3(γ̂0 + γ̂1x+ γ̂2Z+) .

Due to the unbiasedness of OLS and S ∩ D = ∅, the bias of TSR reduces to the bias of just β̂3γ̂2Z+685

w.r.t. β3γ2E[Z+], which is given by686

Bias[µ̂TSR] =E[β̂3γ̂2Z+]− β3γ2E[Z+]

=E[β̂3]︸ ︷︷ ︸
=β3

E[γ̂2Z+]− β3γ2E[Z+]

=β3(E[γ̂2Z+]− γ2E[Z+])

=β3(E[γ̂2Z+]− E[γ̂2]E[Z+]) ,

where for the second row we used S ∩ D = ∅ and unbiasedness of OLS, and for the fourth we used687

unbiasedness of OLS and linearity of the expectation together with the fact that the repetitions of Z+688

are identically distributed. We can ensure unbiasedness by splitting the unbiased dataset into two689

disjoint subsets - one to estimate γ̂0, γ̂1 and γ̂2 via the second regression, and one to compute the690

empirical mean of Z+ - although this comes at the cost of reduced efficiency.691

692

Next, we proof the result comparing the variances of RR and TSR, which is restated below.693

Theorem 3.2. Under Assumption 3.1 and S ∩ D = ∅, let Ê[Z+ | X = x] = α̂0 + α̂1x be the OLS694

estimator of the second step for µ̂RR(x) and X̄ = 1
|D|

∑|D|
i=1 Xi, then695

V ar[µ̂RR(x)]− V ar[µ̂TSR(x)] = V ar[β̂2(α̂1(x− X̄))] ≥ 0 .

Proof. First, we derive the variance for µ̂RR(x).696

V ar[µ̂RR(x)] =V ar[β̂0 + β̂1x+ β̂2( α̂0︸︷︷︸
=Z+−α̂1X̄

+α̂1x

︸ ︷︷ ︸
=Ê[Z+|X]

)]

=V ar[β̂0 + β̂1x+ β̂2Z+] + V ar[β̂2α̂1(x− X̄)] + 2Cov[β̂0 + β̂1x+ β̂2Z+, β̂2α̂1(x− X̄)]

Based on the above result, we can write the difference in variance of both estimators as697

∆ = V ar[µ̂RR(x)]− V ar[µ̂TSR(x)], where we can express ∆ as698
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∆ =V ar[µ̂RR(x)]− V ar[β̂0 + β̂1x+ β̂2Z+]

=V ar[β̂2α̂1(x− X̄)] + 2Cov[β̂0 + β̂1x+ β̂2Z+, β̂2α̂1(x− X̄)]

=V ar[β̂2α̂1(x− X̄)] + 2(Cov[β̂0, β̂2α̂1x]− Cov[β̂0, β̂2α̂1X̄] + Cov[β̂1x, β̂2α̂1x]

− Cov[β̂1x, β̂2α̂1X̄] + Cov[β̂2Z+, β̂2α̂1x]− Cov[β̂2Z+, β̂2α̂1X̄])

=V ar[β̂2α̂1(x− X̄)] + 2 · ( E[β̂0β̂2α̂1x]︸ ︷︷ ︸
=

S∩D=∅
xE[β̂0β̂2] E[α̂1]︸ ︷︷ ︸

=
X⊥⊥Z+

0

− E[β̂0]E[β̂2α̂1x]︸ ︷︷ ︸
=

S∩D=∅
E[β̂0]xE[β̂2] E[α̂1]︸ ︷︷ ︸

=
X⊥⊥Z+

0

− E[β̂0β̂2α̂1X̄]︸ ︷︷ ︸
=

S∩D=∅
E[β̂0β̂2] E[α̂1X̄]︸ ︷︷ ︸

=E[α̂1]︸ ︷︷ ︸
=

X⊥⊥Z+
0

E[X̄]

+E[β̂0] E[β̂2α̂1X̄]︸ ︷︷ ︸
=

S∩D=∅
E[β̂2] E[α̂1]︸ ︷︷ ︸

=
X⊥⊥Z+

0

E[X̄]

+ E[β̂1xβ̂2α̂1x]︸ ︷︷ ︸
=

S∩D=∅
x2E[β̂1β̂2] E[α̂1]︸ ︷︷ ︸

=
X⊥⊥Z+

0

− E[β̂1x]E[β̂2α̂1x]︸ ︷︷ ︸
=

S∩D=∅
E[β̂1]x2E[β̂2] E[α̂1]︸ ︷︷ ︸

=
X⊥⊥Z+

0

− E[β̂1xβ̂2α̂1X̄]︸ ︷︷ ︸
=

S∩D=∅
xE[β̂1β̂2] E[α̂1X̄]︸ ︷︷ ︸

=E[α̂1]︸ ︷︷ ︸
=

X⊥⊥Z+
0

E[X̄]

+E[β̂1x] E[β̂2α̂1X̄]︸ ︷︷ ︸
=

S∩D=∅
E[β̂2] E[α̂1X̄]︸ ︷︷ ︸

=E[α̂1]︸ ︷︷ ︸
=

X⊥⊥Z+
0

E[X̄]

+ E[β̂2Z+β̂2α̂1x]︸ ︷︷ ︸
=

S∩D=∅
xE[β̂2β̂2] E[Z+α̂1]︸ ︷︷ ︸

=E[Z+] E[α̂1]︸ ︷︷ ︸
=

X⊥⊥Z+
0

−E[β̂2Z+] E[β̂2α̂1x]︸ ︷︷ ︸
=

S∩D=∅
xE[β̂2] E[α̂1]︸ ︷︷ ︸

=
X⊥⊥Z+

0

− E[β̂2Z+β̂2α̂1X̄]︸ ︷︷ ︸
=

S∩D=∅
E[β̂2β̂2]E[Z+α̂1X̄]︸ ︷︷ ︸

=0

+E[β̂2Z+] E[β̂2α̂1X̄]︸ ︷︷ ︸
=

S∩D=∅
E[β̂2] E[α̂1X̄]︸ ︷︷ ︸

=E[α̂1]︸ ︷︷ ︸
=

X⊥⊥Z+
0

E[X̄]

)

= V ar[β̂2α̂1(x− X̄)]

≥ 0 ,

where we used Cov[X̄, α̂1] = 0 and Cov[Z+, α̂1] = 0 exploiting E[X̄α̂1] = E[X̄]E[α̂1] and699

E[Z+α̂1] = E[Z+]E[α̂1], as well as E[Z+α̂1X̄] = 0 which will be proven in the following.700

21



We start with deriving Cov[X̄, α̂1] = 0. Denoting the unbiased empirical variance of X by701

σ̂2
X = 1

|D|−1

∑
j∈D(Xj − X̄)2, we have702

Cov[X̄, α̂1] =Cov

[
X̄,

1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(Z+
j − Z+)

]

=E

[
X̄

1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(Z+
j − Z+)

]
− E[X̄]E

[
1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(Z+
j − Z+)

]

=E

[
X̄

1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)E[Z+
j − Z+ | X]︸ ︷︷ ︸

=E[Z+
j −Z+]=0

]

=− E[X̄]E

[
1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)E[Z+
j − Z+ | X]︸ ︷︷ ︸

=E[Z+
j −Z+]=0

]
= 0

due to the unbiasedness of the empirical mean.703

Next, recall that by assumption Z+
i = µz+ + ξi, where ξi

i.i.d.∼ N (0, 1) implicating704

Z+ = µZ+ + 1
|D|

∑
i∈D ξi. Hence, we can rewrite Cov[Z+, α̂1] as follows:705

Cov[Z+, α̂1] =Cov

[
Z+,

1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(Z+
j − Z+)

]

=Cov

[
ξ̄,

1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(ξj − ξ̄)

]

=E

[
ξ̄

1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(ξj − ξ̄)

]
− E[ξ̄]︸︷︷︸

=0

E

[
1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(ξj − ξ̄)

]
︸ ︷︷ ︸

=0

=
∑
j∈D

E

[(
Xj

(| D | −1)σ̂2
X︸ ︷︷ ︸

=:X̃j

− 1

|D|
∑
i∈D

Xi

(| D | −1)σ̂2
X︸ ︷︷ ︸

=:X̃i

)
(ξj − ξ̄)ξ̄

]

=
∑
j∈D

E

[(
X̃j −

1

|D|
∑
i∈D

X̃i

)
(ξj − ξ̄)ξ̄

]
︸ ︷︷ ︸

=
X ⊥⊥ ξ

E[X̃j − ¯̃X]︸ ︷︷ ︸
=0

E[(ξj−ξ̄)ξ̄]

= 0
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The last line follows due to centrality of ξ, X ⊥⊥ ξ and unbiasedness of the empirical mean. Last, it706

remains to show that E[X̄α̂1Z+] is zero.707

E[X̄α̂1Z+] =E

[
X̄

1

(| D | −1)σ̂2
X

∑
j∈D

(Xj − X̄)(Z+
j − Z+)Z+

]

=
∑
j∈D

E

[
X̄

(| D | −1)σ̂2
X

(Xj − X̄)(Z+
j − Z+)Z+

]

=
∑
j∈D

E

[
X̄

(| D | −1)σ̂2
X

(Xj − X̄)

]
︸ ︷︷ ︸

=E

[
XjX̄

(| D | −1)σ̂2
X︸ ︷︷ ︸

=:X̌j

− 1
|D|

∑
i∈D

XiX̄

(| D | −1)σ̂2
X︸ ︷︷ ︸

=:X̌i

]
E[(Z+

j − Z+)Z+]

=
∑
j∈D

E[X̌j − ¯̌X]︸ ︷︷ ︸
=0

E[(Z+
j − Z+)Z+] = 0 ,

Here, we used X ⊥⊥ Z+ and the unbiasedness of the empirical mean, which concludes the proof.708

709

B Additional Experiments710

In the following section, we show additional experiments to support the results discussed in Section 4.711

Simulations were run in R (version 4.4.3).712

R Core Team (2025). R: A Language and Environment for Statisti-713

cal Computing. R Foundation for Statistical Computing, Vienna, Austria.714

https://www.R-project.org/.715

– ggplot2 was used for data visualization.716

Wickham, H. (2016), ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag717

New York.718

– glmnet was used to perform ridge regression.719

Friedman J., Tibshirani R., Hastie T. (2010). Regularization Paths for Generalized720

Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.721

The simulations were run locally on a laptop (12th Gen Intel Core i7, 32 GB) and the time required722

to run all simulations was around 2.5 hours.723

B.1 Variance724

Below, in Figures 6–9 we show the results for the quadratic and the linear model for RR and TSR as725

well as its versions with ridge penalty for the first of the two regression steps, respectively. For the726

boxplots, we differentiated between two cases. One is based on the biased dataset S and the other on727

the unbiased dataset D. On the right hand side, we show the 95%-areas and mean of the estimations.728

For completeness, we accompany these results by providing the numerical values for them in Table 1729

and Table 2.730

The mean and standard deviation of the MSE remain smaller in S than D, as one would expect, since731

the first regression was performed based only on the data underlying selection. For TSR and RR,732

the mean and standard deviation of MSE decrease for increasing n. For the naive estimator, this733

effect is not that pronounced. Mean and standard deviation of MSE are smaller for TSR than for734

RR, whereby the difference also vanishes when n increases. Furthermore, we observe that mean and735

standard deviation of the MSE of the RR and TSR estimator do not differ distinctly between OLS and736

ridge regression, respectively. Last, there were no clear differences between S ∩ D = ∅ and S ⊂ D737

recognizable.738

23

https://www.R-project.org/


D S

D S

Figure 6: Quadratic model: Boxplots of the MSE over D and S (S ⊂ D) of RR and TSR for
n ∈ {500, 1000, 5000}. The plots on the right show the associated 95%-areas of naive, RR and TSR
estimation for n = 500. The upper boxplot represents the distribution of X in S and the lower in D.
The curves for naive, RR and TSR display the mean estimation over the simulation runs.

D S

D S

Figure 7: Quadratic model: Boxplots of the MSE over D and S (S ∩D = ∅) of RR and TSR for
n ∈ {500, 1000, 5000}. The plots on the right show the associated 95%-areas of naive, RR and TSR
estimation for n = 500. The upper boxplot represents the distribution of X in S and the lower in D.
The curves for naive, RR and TSR display the mean estimation over the simulation runs.
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D S

D S

Figure 8: Linear model: Boxplots of the MSE over D and S (S ⊂ D) of RR and TSR for
n ∈ {500, 1000, 5000}. The plots on the right show the associated 95%-areas of naive, RR and TSR
estimation for n = 500. The upper boxplot represents the distribution of X in S and the lower in D.
The curves for naive, RR and TSR display the mean estimation over the simulation runs.

D S

D S

Figure 9: Linear model: Boxplots of the MSE over D and S (S ∩ D = ∅) of RR and TSR for
n ∈ {500, 1000, 5000}.The plots on the right show the associated 95%-areas of naive, RR and TSR
estimation for n = 500. The upper boxplot represents the distribution of X in S and the lower in D.
The curves for naive, RR and TSR display the mean estimation over the simulation runs.
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Table 1: Quadratic model: mean (sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 12.35 (1.75) 12.00 (1.22) 11.96 (0.48) 12.53 (1.72) 11.94 (1.15) 11.90 (0.47)
RR 0.16 (0.16) 0.08 (0.07) 0.02 (0.01) 0.17 (0.17) 0.09 (0.10) 0.02 (0.02)
RR (ridge) 0.16 (0.16) 0.08 (0.07) 0.02 (0.01) 0.17 (0.17) 0.09 (0.10) 0.02 (0.02)
TSR 0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.06) 0.04 (0.06) 0.01 (0.01)
TSR (ridge) 0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.06) 0.04 (0.05) 0.01 (0.01)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 32.78 (4.68) 31.16 (3.68) 30.93 (1.46) 32.33 (4.79) 31.07 (3.40) 30.93 (1.66)
RR 0.19 (0.14) 0.10 (0.08) 0.02 (0.01) 0.19 (0.17) 0.12 (0.10) 0.02 (0.01)
RR (ridge) 0.19 (0.14) 0.09 (0.07) 0.02 (0.01) 0.19 (0.17) 0.11 (0.09) 0.02 (0.01)
TSR 0.07 (0.07) 0.05 (0.05) 0.01 (0.01) 0.07 (0.08) 0.05 (0.07) 0.01 (0.01)
TSR (ridge) 0.08 (0.07) 0.04 (0.04) 0.01 (0.01) 0.07 (0.08) 0.05 (0.06) 0.01 (0.01)

Table 2: Linear model: mean (sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 11.91 (1.57) 11.52 (1.13) 11.59 (0.46) 12.07 (1.54) 11.48 (1.10) 11.56 (0.46)
RR 0.11 (0.11) 0.05 (0.05) 0.01 (0.01) 0.12 (0.14) 0.06 (0.07) 0.01 (0.01)
RR (ridge) 0.11 (0.11) 0.05 (0.05) 0.01 (0.01) 0.11 (0.14) 0.06 (0.07) 0.01 (0.01)
TSR 0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.07) 0.04 (0.05) 0.01 (0.01)
TSR (ridge) 0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.06) 0.03 (0.05) 0.01 (0.01)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 23.52 (3.10) 22.01 (2.21) 22.38 (0.98) 23.35 (3.08) 22.02 (2.21) 22.37 (1.05)
RR 0.12 (0.10) 0.06 (0.06) 0.01 (0.01) 0.11 (0.12) 0.07 (0.07) 0.01 (0.01)
RR (ridge) 0.12 (0.10) 0.06 (0.06) 0.01 (0.01) 0.11 (0.12) 0.07 (0.07) 0.01 (0.01)
TSR 0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.07) 0.04 (0.06) 0.01 (0.01)
TSR (ridge) 0.07 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.07) 0.04 (0.05) 0.01 (0.01)

B.2 Examples with selection bias as well as confounding739

In this section, we will present further details concerning the six examples mentioned in740

Section 4.1. First, we state the data generating processes. Then, for each example, we show741

six plots (Figures 10–15), which show the 95%-areas and means of TSR and RR for varying742

n ∈ {500, 1000, 5000} and the effect of adding a ridge penalty. Finally, we will present the mean743

and standard deviation of the MSE over all considered settings, evaluated on S as well as on D in744

Tables 3–8.745

The data generating processes are given in the following.746
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Example 1:747

εX , εY ∼ N (0, 1)

Z ∼ N (−2, 1)
X := 2Z + εX
S := 1{X+Z<−6}

Y := 0.2X2 + 5Z + εY
748

E[Y | X = x] = 0.2x2 − 2 + 2x

E[Y | do(X = x)] = 0.2x2 − 10

Example 2:749

εX , εY ∼ N (0, 1)

Z ∼ N (−1, 4)
X := Z + εX

S ∼ Bern
(

1

(1 + exp(−X))(1 + exp(Z))
, n

)
Y := X + 5Z + εY

750

E[Y | X = x] = 5x− 1

E[Y | do(X = x)] = x− 5

Example 3:751

εX , εY ∼ N (0, 1)

W ∼ N (2, 0.32)

X := W + εX
Z ∼ N (−0.3, 1)
S := 1{Z>0,X<9}

Y := 0.2X2 + Z + 3W + εY
752

E[Y | X = x] = 0.2x2 + 5.7 + 3

(
0.32

0.32 + 1
(x− 2)

)
E[Y | do(X = x)] = 0.2x2 − 0.3 + 6

Example 4:753

εX , εY ∼ N (0, 1)

W ∼ N (2, 0.32)

X := W + εX
Z ∼ N (0, 1)

S ∼ Bern
(

1

(1 + exp(X))(1 + exp(Z))

)
Y := 0.5X + Z + 3W + εY

754

E[Y | X = x] = 0.5x+ 6 + 3(0.34 + 0.32)(x− 2)

E[Y | do(X = x)] = 0.5x+ 6
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Example 5:755

εX , εZ , εY ∼ N (0, 1)

W ∼ N (−1, 1)
X := W + εX
Z := −2X + εZ

S ∼ Bern
(

1

(1 + exp(X))(1 + exp(Z))

)
Y := X2 + Z + 2W + εY

756

E[Y | X = x] = x2 − x− 1

E[Y | do(X = x)] = x2 − 2x− 2

Example 6:757

εX , εZ , εY ∼ N (0, 1)

W ∼ N (2, 1)

X := W + εX
Z := X + εZ
S := 1{(ZX)<1,(ZX)2+Z>1}

Y :=
1

10
(X + 5Z + 3W + εY )

758

E[Y | X = x] =
3

10
+

3

4
x

E[Y | do(X = x)] =
3

5
(x+ 1)

The results visualized in Figures 10–15, and Tables 3–8 show that the spread of RR and TSR gets759

reduced by adding ridge penalty. But we also recognize that adding a ridge penalty can go along with760

adding bias, which is evident for n = 500. Especially, for Example 1, the ridge estimation deviates761

far from the true underlying causal effect, which is even outside 95%-area of TSR with ridge penalty.762

The same applies to RR with a ridge regression penalty for Example 1, which in turn does not include763

E[Y | X], in its confidence interval, even though E[Y | X] is the quantity RR aims to estimate. As764

expected, RR does not recover E[Y | do(X)] (since it is misspecified in these settings), which is765

evident since the underlying causal effect is not covered by the 95% of the RR estimator at least766

in a wide range of the distribution of X in D. This is exactly what we would expect to see when767

E[Y | do(X)] and E[Y | X] differ significantly. Of course, the estimates vary stronger the further768

the particular values of X are from the support of X in S. But again, the variation diminishes with769

increasing sample size. Just to notice, particularly for Example 6, it becomes visible how unreliable770

the naive estimation is. It suggests a quadratic relationship instead of the linear ground truth.771
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n = 500 n = 1000 n = 5000

n = 500 n = 1000 n = 5000

Figure 10: Example 1: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (a) with sample size n ∈ {500, 1000, 5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S ∩ D = ∅). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.

n = 500 n = 1000 n = 5000

n = 500 n = 1000 n = 5000

Figure 11: Example 2: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (a) with sample size n ∈ {500, 1000, 5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S ∩ D = ∅). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.
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n = 500 n = 1000 n = 5000

n = 500 n = 1000 n = 5000

Figure 12: Example 3: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (b) with sample size n ∈ {500, 1000, 5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S ∩ D = ∅). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.

n = 500 n = 1000 n = 5000

n = 500 n = 1000 n = 5000

Figure 13: Example 4: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (b) with sample size n ∈ {500, 1000, 5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S ∩ D = ∅). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.
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n = 500 n = 1000 n = 5000

n = 500 n = 1000 n = 5000

Figure 14: Example 5: Comparison of the central 95%-areas naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (c) with sample size n ∈ {500, 1000, 5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S ∩ D = ∅). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.

n = 500 n = 1000 n = 5000

n = 500 n = 1000 n = 5000

Figure 15: Example 6: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (c) with sample size n ∈ {500, 1000, 5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S ∩ D = ∅). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.
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Table 3: Example 1: mean(sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 15.89 (1.94) 15.92 (1.55) 15.91 (0.61) 15.94 (1.95) 15.91 (1.37) 15.90 (0.58)
RR 16.20 (1.81) 16.25 (1.46) 16.26 (0.58) 16.26 (1.82) 16.19 (1.37) 16.28 (0.57)
RR (ridge) 16.20 (1.86) 16.23 (1.51) 16.25 (0.59) 16.27 (1.88) 16.18 (1.40) 16.27 (0.59)
TSR 0.08 (0.10) 0.05 (0.07) 0.01 (0.01) 0.07 (0.08) 0.04 (0.05) 0.01 (0.01)
TSR (ridge) 0.08 (0.09) 0.05 (0.07) 0.01 (0.04) 0.07 (0.07) 0.04 (0.04) 0.02 (0.01)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 12.37 (2.33) 12.37 (1.50) 12.17 (0.69) 12.36 (2.27) 12.37 (1.49) 12.16 (0.66)
RR 19.90 (2.27) 19.94 (1.58) 20.00 (0.83) 19.62 (2.19) 19.95 (1.85) 20.00 (0.70)
RR (ridge) 17.78 (1.87) 17.89 (1.34) 17.95 (0.69) 17.59 (1.85) 17.88 (1.53) 17.94 (0.59)
TSR 0.16 (0.15) 0.08 (0.09) 0.01 (0.01) 0.16 (0.16) 0.08 (0.07) 0.01 (0.01)
TSR (ridge) 0.21 (0.18) 0.14 (0.13) 0.08 (0.04) 0.20 (0.20) 0.13 (0.10) 0.09 (0.05)

Table 4: Example 2: mean(sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 31.64 (7.52) 30.77 (4.99) 30.92 (2.29) 31.89 (8.10) 31.13 (5.51) 30.68 (2.17)
RR 47.27 (8.47) 47.72 (5.23) 48.17 (2.37) 48.86 (9.22) 48.10 (4.88) 48.16 (2.90)
RR (ridge) 46.90 (8.33) 47.57 (5.21) 48.06 (2.37) 48.51 (9.13) 47.94 (4.87) 48.05 (2.89)
TSR 0.30 (0.31) 0.15 (0.22) 0.03 (0.04) 0.22 (0.25) 0.14 (0.15) 0.02 (0.02)
TSR (ridge) 0.30 (0.30) 0.15 (0.22) 0.03 (0.04) 0.23 (0.25) 0.14 (0.15) 0.02 (0.02)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 68.41 (17.95) 65.60 (12.98) 64.47 (5.40) 68.59 (23.01) 64.20 (12.74) 63.82 (6.02)
RR 80.62 (8.17) 79.97 (5.59) 80.11 (2.41) 79.39 (7.54) 80.18 (5.53) 79.88 (2.50)
RR (ridge) 80.28 (8.15) 79.79 (5.58) 79.99 (2.42) 79.01 (7.53) 80.00 (5.51) 79.76 (2.50)
TSR 0.53 (0.59) 0.24 (0.26) 0.04 (0.05) 0.46 (0.48) 0.22 (0.21) 0.04 (0.04)
TSR (ridge) 0.53 (0.58) 0.24 (0.26) 0.04 (0.05) 0.46 (0.48) 0.22 (0.21) 0.04 (0.04)
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Table 5: Example 3: mean(sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 1.09 (0.21) 1.08 (0.15) 1.07 (0.07) 1.08 (0.22) 1.08 (0.15) 1.07 (0.07)
RR 0.26 (0.31) 0.17 (0.13) 0.09 (0.03) 0.25 (0.31) 0.18 (0.15) 0.09 (0.03)
RR (ridge) 0.22 (0.23) 0.16 (0.11) 0.09 (0.03) 0.21 (0.23) 0.17 (0.13) 0.09 (0.03)
TSR 0.19 (0.31) 0.10 (0.13) 0.02 (0.02) 0.18 (0.31) 0.10 (0.15) 0.02 (0.02)
TSR (ridge) 0.16 (0.23) 0.09 (0.11) 0.02 (0.02) 0.15 (0.24) 0.10 (0.13) 0.02 (0.02)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 1.08 (0.21) 1.08 (0.15) 1.07 (0.07) 1.08 (0.21) 1.08 (0.14) 1.07 (0.07)
RR 0.26 (0.31) 0.17 (0.13) 0.09 (0.03) 0.25 (0.31) 0.18 (0.15) 0.09 (0.03)
RR (ridge) 0.22 (0.23) 0.16 (0.11) 0.09 (0.03) 0.21 (0.23) 0.17 (0.13) 0.09 (0.03)
TSR 0.19 (0.31) 0.10 (0.13) 0.02 (0.02) 0.18 (0.31) 0.10 (0.15) 0.02 (0.02)
TSR (ridge) 0.16 (0.23) 0.09 (0.11) 0.02 (0.02) 0.15 (0.24) 0.10 (0.13) 0.02 (0.02)

Table 6: Example 4: mean(sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 0.62 (0.44) 0.51 (0.26) 0.45 (0.11) 0.62 (0.42) 0.51 (0.25) 0.45 (0.11)
RR 0.23 (0.19) 0.17 (0.13) 0.10 (0.04) 0.23 (0.22) 0.16 (0.12) 0.11 (0.03)
RR (ridge) 0.20 (0.16) 0.16 (0.13) 0.10 (0.04) 0.20 (0.18) 0.15 (0.12) 0.11 (0.03)
TSR 0.15 (0.17) 0.06 (0.06) 0.01 (0.01) 0.15 (0.15) 0.06 (0.06) 0.01 (0.01)
TSR (ridge) 0.11 (0.14) 0.05 (0.05) 0.01 (0.01) 0.11 (0.12) 0.05 (0.05) 0.01 (0.01)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 0.71 (0.74) 0.41 (0.26) 0.28 (0.08) 0.73 (0.76) 0.42 (0.26) 0.28 (0.08)
RR 0.31 (0.40) 0.16 (0.15) 0.09 (0.05) 0.32 (0.38) 0.16 (0.16) 0.09 (0.05)
RR (ridge) 0.25 (0.28) 0.15 (0.12) 0.09 (0.05) 0.25 (0.26) 0.15 (0.13) 0.09 (0.05)
TSR 0.24 (0.31) 0.10 (0.13) 0.02 (0.02) 0.24 (0.30) 0.10 (0.14) 0.02 (0.02)
TSR (ridge) 0.17 (0.20) 0.08 (0.08) 0.02 (0.02) 0.17 (0.20) 0.08 (0.09) 0.02 (0.02)
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Table 7: Example 5: mean(sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 1.72 (0.76) 1.69 (0.61) 1.46 (0.21) 1.70 (0.74) 1.61 (0.54) 1.47 (0.22)
RR 1.76 (0.62) 1.70 (0.36) 1.60 (0.16) 1.77 (0.59) 1.63 (0.31) 1.60 (0.16)
RR (ridge) 1.73 (0.60) 1.68 (0.35) 1.59 (0.16) 1.73 (0.56) 1.62 (0.30) 1.59 (0.16)
TSR 0.12 (0.09) 0.06 (0.06) 0.01 (0.01) 0.12 (0.11) 0.05 0.05) 0.01 (0.01)
TSR (ridge) 0.12 (0.10) 0.06 (0.06) 0.01 (0.01) 0.12 (0.11) 0.05 (0.05) 0.01 (0.01)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 5.79 (4.36) 4.35 (2.93) 3.93 (1.12) 5.82 (4.41) 4.33 (2.94) 3.93 (1.15)
RR 2.83 (1.97) 2.19 (0.82) 2.06 (0.39) 2.87 (2.01) 2.15 (0.75) 2.06 (0.40)
RR (ridge) 3.10 (2.33) 2.29 (0.86) 2.09 (0.40) 3.13 (2.28) 2.24 (0.77) 2.09 (0.41)
TSR 0.63 (0.82) 0.32 (0.59) 0.04 (0.06) 0.65 (0.82) 0.29 (0.51) 0.05 (0.06)
TSR (ridge) 0.69 (1.05) 0.31 (0.56) 0.04 (0.06) 0.69 (0.97) 0.28 (0.48) 0.05 (0.07)

Table 8: Example 6: mean(sd) of MSE over S and D.

S
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 0.22 (0.13) 0.21 (0.09) 0.18 (0.03) 0.21 (0.10) 0.20 (0.09) 0.18 (0.03)
RR 0.07 (0.06) 0.05 (0.02) 0.05 (0.01) 0.07 (0.06) 0.05 (0.03) 0.05 (0.01)
RR (ridge) 0.03 (0.02) 0.03 (0.02) 0.02 (0.01) 0.03 (0.02) 0.03 (0.02) 0.04 (0.01)
TSR 0.02 (0.07) 0.01 (0.01) 0.00 (0.00) 0.03 (0.08) 0.01 (0.01) 0.00 (0.00)
TSR (ridge) 0.02 (0.03) 0.01 (0.01) 0.00 (0.00) 0.02 (0.02) 0.01 (0.01) 0.00 (0.00)

D
S ⊂ D S ∩ D = ∅

n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000

naive 4.52 (3.70) 4.23 (2.60) 3.35 (0.82) 4.35 (3.57) 4.28 (2.63) 3.36 (0.82)
RR 0.26 (0.67) 0.10 (0.10) 0.05 (0.03) 0.26 (0.66) 0.11 (0.10) 0.06 (0.03)
RR (ridge) 0.13 (0.22) 0.09 (0.09) 0.04 (0.02) 0.13 (0.23) 0.09 (0.10) 0.04 (0.02)
TSR 0.20 (0.59) 0.06 (0.08) 0.01 (0.01) 0.20 (0.56) 0.06 (0.08) 0.01 (0.01)
TSR (ridge) 0.12 (0.19) 0.07 (0.11) 0.01 (0.01) 0.12 (0.18) 0.07 (0.11) 0.01 (0.01)

B.3 Motivating Example Continued772

In comparison to the example with n = 500 in the main part of the paper (Section 4.3), Figure 16773

shows the results for a larger sample size (n = 2000). We see that when increasing the sample size774

n, the estimations spread less. Further, adding a ridge penalty affects the estimation less than for a775

smaller sample size.776
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Figure 16: Comparison of the central 95%-areas of RR and TSR of the simulation runs for the DAG
in Figure 2 (d) with sample size n = 2000. The upper boxplot represents the distribution of X in S
and the lower in D (S ∩ D = ∅). The curves for RR and TSR display the mean estimation over the
simulation runs.

B.4 Robustness to Misspecification777

In this section, we investigate the robustness of TSR to certain types of misspecification which is778

introduced by an unobserved latent variable U , as illustrated in Figure 17, where we stick to the779

scenario in which S ∩ D = ∅. In case (a) U is a cause of Y , in case (b) U is a cause of S and in case780

(c) U is a confounder between S and Y .

X Y

S Z+

U

(a)

X Y

S Z+

U

(b)

X Y

S Z+

U

(c)

Figure 17: (a) unobserved cause of S, (b) unobserved regressor, (c) unobserved cause of S and
unobserved regressor

781
For case (a), our identifiability assumptions are still met (Theorem 2.4 still holds), but the missing782

regressor introduces a bias for our empirical estimator (i.e. Assumption 2.5 is violated). Hence,783

in the first regression, we estimate the β coefficients biased, in the second step, we just calculate784

Z+ because we are not aware of U . However, as we do not estimate the β for U , Ū cannot785

enter the estimation. For case (b), our assumptions are still fulfilled, however, our proxy Z+ is786

weaker since S has an additional unobserved cause. Last, for case (c), the PMAR assumption is787

violated. Hence, in addition to the bias entered through the missing regressor in (b), here the expres-788

sion for E[Y | do(X)] used to construct µ̂TSR(x) is wrong as its derivation that makes use of PMAR.789

790

Our simulation here closely resembles that of Example 1, when excluding the confounding.791

The DGP without U is as follows:792

εY ∼ N (0, 1)

Z ∼ N (−2, 1)
X ∼ N (−4, 5)
S := 1{X+Z<−6}

Y := 0.2X2 + 5Z + εY
793

E[Y | X = x] = 0.2x2 − 2 + 2x

E[Y | do(X = x)] = 0.2x2 − 10
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without U

U → Y

S ← U (type 1)

S ← U → Y (type 1)

S ← U (type 2)

S ← U → Y (type 2)

n = 1000 n = 5000

Figure 18: Comparison of the central 95%-areas of RR, TSR and the naive estimator of the simulation
runs in absence of U as well as introducing U → Y , S ← U or S ← U → Y with sample size
n ∈ {1000, 5000}. The upper boxplot represents the distribution of X in S and the lower in D
(S ∩ D = ∅). The curves for RR, TSR and the naive estimator display the mean estimation over the
simulation runs.
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For the three cases described above, we include U ∼ N (3, 1). Below we state how the DGP is794

extended for the three cases, respectively. For the edge S ← U , we distinguish between two cases.795

(a) U → Y796

Y := 0.2X2 + 5Z + 4U + εY797

(b) S ← U798

S := 1(X + Z + 0.1U < −5) (type 1)799

S := 1(X + Z < −5)1(U < 1.5) (type 2)800

(c) S ← U → Y801

S := 1(X + Z + 0.1U < −5) (type 1)802

S := 1(X + Z < −5)1(U < 1.5) (type 2)803

Y := 0.2X2 + 5Z + 4U + εY804

We followed the procedure described in Section 4 and included covariates up to degree 2 in the805

regression model. In this analysis, we restricted ourselves to OLS regression. The results, given806

in Figure 18 are consistent with what we expected based on our previous considerations. In case807

(a) a bias arises from the missing regressor (see Figure 18). For case (b), our assumptions are not808

violated. Hence, TSR yields reliable results. For type 2, we just need to increase the sample size n809

to compensate the decrease of sample size of the selected sample induced by adding S ← U . For810

case (c), the estimation gets biased due to the inclusion of an unobserved regressor. In addition, the811

specification of TSR is wrong as the derivation exploits PMAR. For cases (a) and (b), where their812

respective assumptions are satisfied, TSR again shows a smaller variance than RR.813

37


	Introduction
	Recoverability and Identifiability
	Preliminaries and Notation
	Recovering from Selection Bias in the Absence of Confounding
	Identification under Selection Bias in Presence of Confounding

	A Two-Step Regression Estimator
	Analysis of Bias and Variance
	Introducing Non-linearity

	Experiments
	Empirical Variance Evaluation
	Simulations with Selection Bias and Confounding
	Simulations with Selection Bias and Unobserved Confounding

	Conclusion
	Theory
	Related Work
	Do-Calculus
	Recoverability
	Discussion of Assumptions
	Proofs
	When do RR and TSR coincide?

	Additional Experiments
	Variance
	Examples with selection bias as well as confounding
	Motivating Example Continued
	Robustness to Misspecification


