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Abstract

We consider the problem of estimating the expected causal effect E[Y |do(X)]
for a target variable Y when treatment X is set by intervention, focusing on
continuous random variables. In settings without selection bias or confounding,
E[Y|do(X)] = E[Y|X], which can be estimated using standard regression meth-
ods. However, regression fails when systematic missingness induced by selection
bias, or confounding distorts the data. Boeken et al. [2023] show that when training
data is subject to selection, proxy variables unaffected by this process can, under
certain constraints, be used to correct for selection bias to recover E[Y|X], and
hence E[Y |do(X)], reliably. When data is additionally affected by confounding,
however, this equality is no longer valid. In this work, we consider a more general
setting and propose a framework that incorporates both selection bias and con-
founding. Specifically, we derive theoretical conditions ensuring identifiability and
recoverability of causal effects under access to external data and proxy variables.
We further introduce a two-step regression estimator (TSR), capable of exploiting
proxy variables to adjust for selection bias while accounting for confounding. We
show that TSR coincides with prior work if confounding is absent, but achieves
a lower variance. Extensive simulation studies validate TSR’s correctness for
scenarios that include both selection bias and confounding with proxy variables.

1 Introduction

Recovering causal effects under selection bias is a fundamental challenge in empirical research.
Specifically, we aim to estimate E[Y" | do(X)], the causal effect of a continuous treatment X on a
continuous target variable Y, from observational data that may be affected by selection mechanisms
and confounding. Selection bias arises when the observed data fails to accurately represent the
population due to preferential exclusion or conditioning on colliders, while confounding distorts the
true causal relationships through (unobserved) common causes. Both phenomena are pervasive in
real-world datasets and, if left unadjusted, can give rise to misleading conclusions.

Selection bias is a critical challenge in many real-world domains, including medicine [Berkson,
1946], economics, and machine learning, with recent examples highlighting its role in COVID-19
research [Herbert et al., 2020, Zhao et al., 2021], cancer progression modeling [Schill et al., 2024],
and fairness in machine learning [Wang and Singh, 2021, Goel et al., 2021]. As a running example,
consider that in loan risk assessment, banks may wish to isolate the causal effect of income (X)
on loan default (V) from other risk factors. Naturally, such a dataset only includes cases where
loans have been issued (S = 1), introducing selection bias, as illustrated in Figure 1. Furthermore,
unobserved factors like financial literacy of an individual may act as confounders that simultaneously
influence income and loan default rates. Without proper adjustment for these biases, estimates of risk
factors may be unreliable or even contradictory.
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Figure 1: Left: Dataset composition: S is affected by a selection mechanism, D contains unbiased
data. Right: Example applicable to our framework (covered by Assumption 2.3). When estimating
the causal effect of income X on loan default Y, the node “loan issued represents the selection
variable S, “financial literacy* is an unobserved confounder, and all other nodes serve as proxies (Z2).

While identifiability of causal effects under confounding has been extensively studied, recoverability
from selection-biased data has received comparatively less attention. Pearl’s do-calculus provides a
systematic framework for determining whether causal effects are identifiable under certain assump-
tions encoded in causal directed acyclic graphs (DAGs) [Pearl, 2009]. Building on this foundation,
researchers explored recoverability from selection-biased data (s-recoverability) [Pearl, 2012, Correa
et al., 2018, Jung et al., 2024, Mohan and Pearl, 2021]. Recent work by Boeken et al. [2023]
emphasizes the importance of proposing practical estimators alongside identification results. They
introduced regression-based methods to estimate E[Y|X] for continuous targets assuming access to a
proxy Z for the selection variable, which renders the target Y independent of the selection variable S
when conditioning on {X, Z},ie.,Y 1L S | {X, Z}. Akin to other works on recoverability [Correa
et al., 2018], they assume access to external data for X, Z unaffected by selection (cf. Figure 1).

Contributions We derive theoretical results ensuring identifiability and s-recoverability of causal
effects with access to proxy variables and external data in Section 2.3. In the most general case, our
results cover the graph shown in Figure 1, in which we can recover the causal effect of income on loan
default by using the covariates spendings, etc. as a proxy for the selection variable. To account for
the unobserved confounder “financial literacy”, we leverage the information about the job type of an
individual. We show that this setting is distinct from assumptions derived in prior work [Bareinboim
et al., 2014, Correa et al., 2018], and propose a two-step regression estimator (TSR) based on our
identification results in Section 3. Further, in Section 3.1, we analyze the bias and variance of TSR
for the case in which confounding is absent, i.e., E[Y|do(X)] = E[Y|X], and show that TSR is
more efficient than the repeated regression estimator considered by Boeken et al. [2023]. We confirm
those results, as well as the admissibility and usability of our estimator considering ordinary least
squares (OLS) and ridge estimation in simulation studies in Section 4. We review closely related
work in the corresponding sections and provide a more detailed discussion in Appendix A.1.

2 Recoverability and Identifiability

In the following, we consider causal effect estimation for a continuous target variable in the presence
of selection bias and confounding, as illustrated in Figure 1. Before that, we outline the connection
between missingness and selection bias, and introduce relevant notation and definitions to define
recoverability from selection bias in Section 2.1. In Section 2.2, we review recoverability from
selection bias without confounding, as studied by Boeken et al. [2023]. Subsequently, in Section 2.3,
we derive a set of assumptions which ensure that the causal effect is identifiable and recoverable from
selection-biased data. All proofs are provided in Appendix A.5.

2.1 Preliminaries and Notation

Throughout this paper, we follow the notational conventions introduced by Pearl [2009]. We consider
a causal directed acyclic graph (DAG) model (G, P), where P defines a distribution over the set
of random variables V', which factorizes according to G, and is consistent under interventions. V'
includes all variables of interest ({Y, X, Z} C V') except for the binary selection variable S, where
S = 1 denotes selection. That is, under selection bias, we only observe P(V | S = 1). Further,
Y € R denotes the one-dimensional continuous farget random variable, X € RP, with p > 1,
the potentially multidimensional and continuous random vector of covariates. Our interest lies in
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Figure 2: Example graphs that are consistent with Assumption 2.3. For graphs (a) and (b), we only
need to adjust for selection bias since E[Y | X] coincides with E[Y | do(X)], while for graphs (c)
and (d), adjustments for selection bias and confounding, as described in Section 2.3, are required.

estimating the expected causal effect E]Y | do(X)], denoting the expected value of Y when X is set
to a specific value by intervention (hard or surgical intervention). The potentially multidimensional
and continuous random vector Z € R<, with d > 0, may include confounding variables and proxy
variables for the missing observations.

Missingness and Selection Bias Selection bias is typically induced by preferential selection and
can be described as systematic missingness [Correa et al., 2019], also know as missing not at
random (MNAR), where generally, E[Y | X] # E[Y | X, S = 1]. Therefore, proper adjustment is
necessary when aiming to estimate E[Y | X] or E[Y | do(X)] from data affected by such systematic
missingness. To approach this problem, we need to state some assumptions about the missingness
scenario [Little and Rubin, 2002].

In the following, we distinguish between two missing data settings illustrated in Figure 1 (left),
that are consistent with prior work [Boeken et al., 2023]. For both settings, we have independent
and identically distributed (i.i.d.) observations of (X,Y, Z) ~ P(X,Y,Z | S = 1) with index set
S indicated by S = 1, where P(X,Y,Z | S = 1) denotes the joint distribution of X, Y and Z
conditioned on S = 1. Additionally, we observe realizations of i.i.d. (X, Z) ~ P(X, Z) with index
set D not underlying a selection process. In the first setting, the selected sample is a subset of the
data not underlying the selection process (S C D). So, for S = 0, only the observations of Y are
missing. For the second setting, the selection bias setting, we have access to external data D for
which S "D = (). Following the notation from Bareinboim et al. [2014], we call the unbiased data in
both cases external data. If not stated otherwise, our results derived below hold for both settings.

Recoverability Before introducing a practical estimator, we need to ensure that the causal effect -
which we are interested in - is recoverable [Pearl, 2009] from the available data. For cases involving
selection bias, Pearl [2012] first proposed the concept of s-recoverability, which was later developed
and defined as in Definition A.2 in Appendix A.3 by Bareinboim et al. [2014]. As there are settings
that are only s-recoverable under consulting external unbiased data (D) - which is the setting we
focus on - Bareinboim et al. [2014] formulated a compatible definition for this case, restated below.

Definition 2.1. Given a causal DAG model (G, P) augmented with a node .S, the distribution
Q = P(Y | X) is said to be s-recoverable from selection bias in G with external information over
T C V and selection-biased data over M C V if the assumptions embedded in the causal model
render Q expressible in terms of P(M =m | S = 1) and P(T = t), both positive.

Based on the notation and the definitions introduced above, we will now review the setting that was
studied by Boeken et al. [2023], with selection bias induced by systematic missingness for which
P(Y | X) is s-recoverable when observing privileged information.

2.2 Recovering from Selection Bias in the Absence of Confounding

To recover from selection-biased data, Boeken et al. [2023] presented a special case of MNAR, the
concept of privilegedly missing at random (PMAR), which is also known as the terminology of
comparability in literature [Singh and Zhou, 2022]. In comparison to our work, this line of research
assumes to have access to interventional/experimenta data. Miao et al. [2024] cover a different
MNAR case than PMAR. However, their framework does not require external data. PMAR describes
cases in which the target variable Y is stochastically independent from the selection variable .S, when
conditioning on the covariates X and proxy variables Z, as formalized in the assumption below.
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Assumption 2.2 (PMAR). Given a privilegedly observed set of variables Z, Y is privilegedly missing
at random (PMAR)if S L Y | {X, Z}.

Intuitively, PMAR holds when treatment and proxies block all paths between target and selection
variable, as in the DAG in Figure 2 (a). Under Assumption 2.2, by law of total expectation,
ElY | X]|=E[E]Y |X,Z]| X]=E[E]Y | X,Z,S =1] | X]. As discussed by Boeken et al.
[2023], concerning discrete variables under certain positivity assumptions, s-recoverability is satisfied
when selection biased P(X,Y,Z | S = 1), as well as unbiased external P(X, Z), are available and
PMAR holds. They proposed a repeated regression (RR) for estimating F[Y" | X]. The first regression
models E[Y | X, Z,S = 1] using S. Next, predictions Y := E[Y | X, Z, S = 1] based on the first
regression are computed on population-level in dataset D, which is unaffected by selection. A second
regression models E[Y | X] using D, yielding the final estimate figr(z) = E[Y | X] for E[Y | X].

Besides repeated regression, Boeken et al. [2023] also proposed an estimator based on inverse
probability weighting and a doubly robust estimator. However, repeated regression was the clear
favorite in their evaluation, which is why we omit the other two estimators.

In absence of confounding between X and Y, this method also provides a reliable estimate for
E[Y | do(X)] as E]Y | do(X)] = E[Y | X] can be ensured. This is the case in Figure 2 (a) and (b).
However, as soon as we flip the edge between X and Z in Figure 2 (b), arriving at the graph in
Figure 2 (c), we additionally need to adjust for confounding. In the following section, we discuss this
issue in more detail, and propose a solution for such settings.

2.3 Identification under Selection Bias in Presence of Confounding

Criteria for causal effect identification and s-recoverability under confounding and selection bias
have been generalized by multiple authors [Pearl, 2012, Bareinboim and Tian, 2015, Correa et al.,
2018, 2019]. To treat both sources of bias, they propose to decompose Z = Z+ U Z~ into Z 7, the
set of the non-descendants of X and Z—, the set of descendants of X that are included in Z. Based
on this distinction, Bareinboim et al. [2014] introduced the selection backdoor criterion (provided
in Assumption A.3) under which the causal effect is identifiable and s-recoverable. We adjust the
assumptions proposed by Bareinboim et al. [2014], as stated in Assumption 2.3 below, to ensure
identifiability and s-recoverability of the causal effect for PMAR with potentially unobserved con-
founding. An example graph, which is not covered by previous approaches is shown in Figure 2 (d),
where U is not included in Z and may be an unobserved confounder. We compare our assumptions
with prior works [Bareinboim et al., 2014, Correa et al., 2018] in Appendix A.4.

Assumption 2.3. Decompose the set of variables Z into Z = Z+ U Z~, where ZT are non-
descendants of X and Z~ are descendants of X. Assume that

1. X and Z block all paths between S and Y, namely S L g Y | {X, Z} (PMAR)
2. Z™ blocks all backdoor paths between X and Y, namely Y 1l g, X | Z

3. ZU{X,Y} C M, where variables M are collected under selection bias (dataset S) and Z C T,
where T is collected on population-level (dataset D). If Z— # 0, X C T.

We illustrate the assumptions shortly. Note that whenever Assumption 2.3 is satisfied and Z+ = (),
confounding is excluded and we recover the setting from Boeken et al. [2023]. When Z+ and Z~
are present, Z T shields the confounding of X and Y, and both Z~ and Z* are needed to adjust for
the selection bias. In case of Z~ # (), we have to also observe X unbiased.

For instance, in Figure 1, we may have additional measurements from an unbiased source of
X = {income} and Z = {job, spending, loans, loan amount}, for which the label is not available,
e.g., because collecting the label is costly. In Appendix A.4, we will elaborate more on limited access
to unbiased data. When Assumption 2.3 is satisfied, the causal effect is identifiable and s-recoverable:

Theorem 2.4. Under Assumption 2.3, the causal effect E]Y | do(X)] is identifiable, s-recoverable
and can be expressed as follows

/ EEY | X, Zt=2",27,S=1]| X, Zt =T |P(Z" = 2")d=" .
2zt



165
166
167

168

169
170
171

172
173
174

175
176

177
178

179

180

181
182
183

184

185
186

187

189
190

191

192
193
194

195
196

197
198
199

Based on the identification result above, we develop a practical estimator for continuous targets. For
notational reasons, we propose an estimator for linear cases and explain its extension to the non-linear
setting in Section 3.2. Assumption 2.5 contains the linearity assumptions required for our estimator.

Assumption 2.5. Let any observation of Y be defined through the following assignment:

y:=Bo+ Bz + BozT + B3z +¢€,

where (x,y, z) are drawn i.i.d. from P(X,Y,Z) and € is drawn i.i.d. from a standard normal
distribution A/(0, 1). The coefficients 8y, 81, B2 and B3 are of the dimension of its corresponding
vector of variables X € RP, Z+ € R% or Z— € R respectively.

In summary, we assume a linear setting with Gaussian error terms, as common in regression. Based
on Assumption 2.5, Theorem 2.4 simplifies to Theorem 2.6. Corollary 2.7 further simplifies the
expression under certain conditions such that no integral calculation needs to be carried out.

Theorem 2.6. Under Assumption 2.3 and Assumption 2.5, the causal effect E[Y | do(X)] is
identifiable, s-recoverable and can be expressed as

E[Y | do(X = x)] = Bo+ Brz + B E[ZT] + 33 /+ ElZ7 | X =2,Zt =2T|P(Z" = 2")dzT.
’ M

Corollary 2.7. If Z blocks all backdoor paths between X and Z~, the integral from above reduces
to E[Z~ | do(X)). If additionally, X and Z~ are not confounded, it reduces to E[Z~ | X]|.

Based on the above results, we will introduce our a practical estimator in the next section.

3 A Two-Step Regression Estimator

Next, we derive an estimator for E[Y" | do(X)] by substituting each component of the causal effect
expression in Equation (1) with its corresponding estimator. We refer to this estimator as the Two-Step
Regression Estimator (TSR). For a specific value of x, it is defined as

pon) BB DI | FE T r = =)o
1 T Tump mcanJ OLS: 7~ NXVRZJr densuyesl.

OLS:Y ~ X, 2%, 2~

where some components can be estimated based on the selected dataset S, whereas parts of
the estimates require access to an external dataset D, which is not underlying the selection
mechanism. In particular, we obtain the estimates BO, 51, 52, 53 by OLS for the model
EY | X,Z%,Z7,8=1] = Bo + 1 X + $2ZT + 3Z~ based on the observations in S in the first
step. In the second step, we estimate E[ZT] by its empirical mean and approximate the integral
J+EBlZ | X =x,Z% =2T|P(Z* = z¥)dz" by OLS estimations of E[Z~ | X =z, Z" = z7]
weighted by an estimation of the density P(Z+ = zT) of Z™, both based on observations from D.

In the following, we discuss several possible instantiations of our estimator depending on whether or
not the data is affected by confounding and whether or not certain sets of variables are empty. For all
settings, we assume that the considered variables meet the assumptions required for Theorem 2.6.

In the absence of confounding, where E[Y | X| = E[Y | do(X)] with ZT = () and implicitly
Z = Z~, as in Figure 2 (b), TSR - coinciding with RR - reduces to (cf. Appendix A.6)

firsr(@) = fo+ Pra + fEZ7 | X = a] .
In scenarios for which we cannot exclude confounding and thus E[Y | do(X)] = E[Y | X| cannot
be ensured, we distinguish two cases that are illustrated in Figure 2. First, consider the minimal

example, presented in Figure 2 (¢), with Z = Z *+ and Z~ = (). Here, the TSR estimator reduces to

firsr(z) =B + bz + B2E[Z+] , 3)
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which differs from the RR estimation (see Appendix A.6). The second estimation step only
requires calculating the empirical mean of Z*. This is intuitively comprehensible because
E[Z* | do(X)] = E[Z*] when Z* is a non-descendant of X. Hence, in this setting, only Z,
but not X, needs to be observed in an external unbiased dataset.

For our running example in Figure 1 and Figure 2 (d), we have to compute the full estimator to
recover the causal effect of X on Y. Hence, the estimator is given by Equation 2. Whenever we can
assume linearity E[Z~ | X = 2,Z% = 27| = 79 + 712 + 7227 with 9 € R%,y; € R92*P and
~o € R%*d1 TSR takes the form

frsr(x) =Po + Prz + B2 E[ZF] + Bs (5o + A + ’AYzE[ZJr]) , 4)

where we impute the regression coefficient estimates of the regression of Y on X, Z*, Z~ in S and
of the regression of Z~ on Z+ and X in D, as well as the mean estimate of Z T in D.

In addition to observed confounding, TSR can handle unobserved confounding between X and Y for
cases in which Z% blocks all back-door paths between X and Y which arise through the confounder.

Regularization Note that since the variables in X and Z might be highly correlated in S, it can be
profitable to implement the first regression in TSR and RR with a ridge regression penalty, to reduce
the variance of the estimator. In addition, even for the second estimation step, ridge regression in D
should be considered because, for instance, in Figure 2 (d), X and Z™ are correlated. In our empirical
evaluation in Section 4.1, we therefore also instantiate both TSR and RR with a ridge penalty.

3.1 Analysis of Bias and Variance

Next, we examine unbiasedness, derive the variance of the proposed two-step regression (TSR)
estimator and compare it to the variance of the repeated regression (RR) estimator from Boeken
et al. [2023] for graphs aligned with Figure 2 (a), where E[Y | X] = E[Y | do(X)], Z = Z* and
Z~ = (). For simplicity, we assume that all variables are univariate and linearly related, to get an
intuition of the bias and variance of both estimators. We formalize our assumptions below.

Assumption 3.1. Let any observation y be generated through the following assignment:
yi=Bo+ frr+ Pzt +e,

where (2, 27) are drawn i.i.d. from P(X, ZT). In particular, 2™ = p_+ + &, with .+ € R, £ and €
are drawn i.i.d. from N'(0, 1). Value z and the coefficients 3y, 51, B2 are in R.

In this simplified setting, TSR reduces to E[Y | do(X = z)] = Bo + f1x + Bafiz+, where
pz+ = E[ZT | do(X = x)]. Thus, the second step of the TSR estimator reduces to estimating the
mean of Z*. In contrast, RR performs an OLS estimate of E[Z1|X = ] in D, which is given by

~

E[ZT | X = ] = ap + aix with correct coefficients ag = E[ZT] and a; = 0. Assuming that
in both regression steps, unbiased estimation is ensured, i.e., the chosen model class includes the
ground truth generating mechanism, TSR and RR are ensured to be unbiased under S N D = (. In
that case, the data points for both regression steps are independent of each other and therefore the
coefficient estimators of the two steps are. In contrast, for S C D, the bias in point = is Cov [Bg, Zt]
for TSR and Cov[Bg7 &g + @iz for RR (see derivation in Appendix A.5). We also investigate
this aspect empirically through simulation studies in Section 4.1, which suggest that the bias terms
for S C D might be negligible. Intuitively, the smaller the overlap of S and D, the smaller the
dependence between the estimates of those two samples. We discuss the bias in a more general case
in Appendix A.S5.

After studying the bias of both estimators, we now compare their variance. Here, we restrict ourselves
to the case in which S N'D = (), exploiting the independence of the observations of S and D.

Theorem 3.2. Under Assumption 3.1 and SN'D = (), let E[ZT | X = x] = ¢ + a1z be the OLS
estimator of the second step for jirr(x) and X = ﬁ Ellzll X, then

Varlirr(x)] — Varlirsr(z)] = Var[Bg(dl(x —X)]>0.

The result implies that in the second regression step, the irrelevant regressor X inflates the variance
in small samples. The magnitude of the difference between the variances depends on the estimated
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Figure 3: Left: Boxplots of the MSE over D for S C D, and S N D = ) (middle) of RR and TSR for
n € {500, 1000, 5000}. On the right, we show the associated 95%-areas of naive, RR and TSR for
n = 500 (for S ND = @). The upper boxplot in the figure represents the distribution of X in S and
the lower in D. The curves for RR and TSR display the mean estimation over all simulations.

effect of Z on Y, the error in estimating a;; = 0 and the distance between x and the empirical mean
of the distribution of X in D. As &; converges to zero when the sample size of D goes towards
infinity, the difference between the variances of RR and TSR at point x also converges to zero.

The above results imply that we expect a lower mean squared error (MSE) for TSR than for RR,
which we confirm by simulation-based experiments in Section 4.1. Subsequently, we empirically
evaluate both estimators with a ridge regression penalty and observe that regularization can reduce
the mean squared error by introducing some bias.

3.2 Introducing Non-linearity

In the previous sections, we outlined our theory for a linear estimator. As standard, we can extend
the TSR estimator to non-linear settings by considering feature maps of the inputs. In particular, we
can exchange X, Z1 or Z~ by vectors ¢x (X ), pz+(Z71), oz (Z7) respectively, where ¢ x, © 7+,
(pz- denote feature maps from a vector of variables to a vector of functions of the variables in X,
Z* and Z~ respectively. For example, in our experiments we perform polynomial regression. The
linear case, can hence be seen as a special case with polynomials up to degree 1.

4 Experiments

In this section, we empirically evaluate the proposed Two-Step Regression (TSR) estimator, and
compare it to Repeated Regression (RR) [Boeken et al., 2023]. We also instantiate both estimators with
a ridge penalty in the regression based on S with penalization parameter A € {1072, 10719 ..., 102},
chosen via cross-validation. As a naive baseline, we consider the OLS regression estimator trained
only on data from S, which estimates E[Y|X, S = 1] instead of E[Y|X]. We generate train and
test data, both consisting of a selected dataset S and a population-level dataset D. We chose the
same sample size n for D in both the test and the training data. The sample size for S is generated
randomized by the selection process. All results are based on 100 simulation runs respectively.

First, in Section 4.1, we confirm our results for the variance comparison of TSR and RR from
Section 3.1. Then, in Section 4.2, we look at several examples with confounding, for which RR is
not applicable. Finally, we will evaluate the performance in a more challenging setting based on
Figure 2 (d), in Section 4.3. Additional results are provided in Appendix B.

4.1 Empirical Variance Evaluation

As discussed in Section 3.1, the variance of TSR is at most of the same magnitude as of RR. The
result was proven only for S N D = (). Here, we simulate data according to both settings, S C D
and S N D = () and consider the causal effect E[Y |do(X = x)] to be both a linear and a quadratic
function in z. We generate data according to the DAG shown in Figure 2 (a), as follows:

X, ey ~N(0,1) Zt ~ N(=2,1) S:=1X+2"<-2).
We use Yji, := 3X + 5Z7F + ¢y in the linear case, and replace X with X? for the quadratic case.

For the linear model, computing TSR and RR, we include regressors up to degree 1. In the quadratic
model, we used regressors up to degree 2. We chose the sample size n to be 500, 1000 and 5000.
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Figure 4: Left: DAGs representing the DGPs of Examples 1-6, Right: Comparison of the central
95%-areas of RR and TSR with OLS regression for n = 1000 in the setting with S N D = ( for
Examples 1-6, respectively. The upper boxplot represents the distribution of X in S and the lower in
D. The curves for RR and TSR display the mean estimation over the simulation runs.

The results for the quadratic model in Figure 3 show that the mean MSE of TSR is consistently lower
than for RR, whereas the difference vanishes when increasing the sample size n (details are provided
in Table | in Appendix B.1), validating our theoretical results. The plot on the right shows the area in
which the central 95% of the estimates of E[Y'|do(X)] from the 100 simulation runs (for SND = ().
We see that the estimates for TSR are more concentrated around the mean than for RR. As expected,
the naive estimator is systematically biased.

We provide all numerical results, and compare the errors on test data sampled from S to data from
D, for linear and quadratic functions in both scenarios (S N D = ), and S C D) in Appendix B.1.
Overall, the results shown in Appendix B.1 confirm the conclusions drawn from this section.

4.2 Simulations with Selection Bias and Confounding

Next, we consider in total six distinct generating mechanisms, as illustrated in Figure 4, that in-
clude confounding variables. Hence, RR is not applicable for estimating the causal effect since
E[Y | do(X)] # E[Y | X], but should be able to recover E[Y | X]. The details for the data generat-
ing processes are provided in Appendix B.2, where for each graph, we provide a linear and quadratic
generative mechanism. Corollary 2.7 ensures that no integral has to be computed for TSR in the
setting from Figure 4 (c). For Ex. 1 & 2, TSR is given by Equation (3). For Ex. 3 & 4, an additional
summand for a second element in Z™ is included, and for Ex. 5 & 6, we use Equation (4).

We included regressors up to degree 2, to match the generating mechanisms. In Figure 4, we plot the
empirical central 95% confidence intervals for TSR, RR, with OLS regression and the naive baseline
for the case of n = 1000 for each setting. Interestingly, RR and naive have the highest error for
Examples 1 and 2 for which the underlying graph is depicted in Figure 4 (a), whereas the difference
between TSR and RR is less pronounced for the other examples. In Example 6, the baseline exhibits
a strong bias emphasizing the need for adjustment. We further report the results on D and S for OLS,
and ridge regression for both TSR, and RR increasing sample size in Appendix B.2. Additionally, we
report the numerical results of the errors on S and D. In most cases, ridge regression matches the
performance of OLS. In Example 1, however, we observe that ridge regression introduces a bias for
both TSR and RR, suggesting that, in regions with low support (at the borders), the 95%-areas do not,
or only barely include E[Y|do(X)] for TSR and E[Y|X] for RR, respectively.

4.3 Simulations with Selection Bias and Unobserved Confounding

Last, we consider a case with unobserved confounding. The data generating process is based on
Figure 2 (d) which is the graph compatible with the motivating example in Figure 1:

Ucyi ez ex ey ~N(0,1)  ZT:=2U + e+ S=1X+2Z" >5)
X =Z" +ex 77 =X+2U+2, Y :=05X24+2Z 42U + 3¢y.
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Figure 5: Comparison of the central 95%-areas of TSR and RR for the DAG in Figure 2 (d) with
sample size n = 500 and S N D = (). The upper boxplot represents the distribution of X in S and
the lower in D. The curves for RR and TSR display the mean estimation over the simulation runs.

As outlined in Section 3, in this case, TSR is given by Equation (4), where we restrict ourselves
notational to the linear case. The 3 coefficients are estimated by OLS from S, whereas 4 coefficients

are estimated from D. Further, E[Z *] is the empirical mean of Z* in D. Akin to the previous
experiments, we use OLS-based regression and optionally add a ridge penalty for the regressions. We
explicitly add the penalty also to the second step since X and ZV are correlated.

We show the results for n = 500 in Figure 5, where we observe that TSR is able to recover the
ground truth. We additionally show RR as a baseline, but note that this setting violates its underlying
assumptions. Hence, it is expected that it does not recover the ground truth causal effect. In addition,
we observe that the confidence intervals for ridge are slightly smaller than for OLS, while a small bias
is introduced. We repeat the experiment for n = 2000, for which we show the results in Appendix B.3,
where we observe that the difference between OLS and ridge is not evident anymore.

5 Conclusion

We considered estimation of the causal effect E[Y|do(X )] with continuous target Y and treatments
X under selection bias and confounding when having access to external data for X and Z not
underlying the selection mechanism. We derived conditions (Assumption 2.3) under which the causal
effect is identifiable and s-recoverable (Theorem 2.4). Assuming linearity with Gaussian errors,
we proposed a generalized estimator, the Two-Step Regression Estimator (TSR), in line with our
theoretical results. We discussed how TSR simplifies in different situations, e.g., when confounding is
absent, and how to introduce non-linearity. For a minimal example with uncorrelated X and proxies
Z, we proved that the variance of TSR is at most of the same magnitude as of repeated regression
(RR) [Boeken et al., 2023], and confirmed this result through simulation studies. Further, we validated
our estimator through extensive simulation studies. It became evident that an estimator capable of
handling both selection bias and confounding is necessary because in wide ranges of the support of
X, even the centralized 95%-area of the estimates for E[Y'|X] did not cover the underlying causal
effect F[Y'|do(X)]. Last, we found that adding a ridge penalty to OLS when applying TSR and RR
can result in a lower variance of the causal effect estimates, but introduces a bias for some examples.

Limitations and Future Work Although our estimator covers a range of different settings, we need
to assume access to proxy variables. In Appendix B.4, we provide an experiment to evaluate slight
violations of this assumption. Another important assumption is access to external unbiased data for X
and Z. This assumption may hold when the label is costly but the covariates can be accessed through
other databases. As in the loan default example (Figure 1), information about job type, income, etc.,
may be accessible in other databases which do not contain measurements of the loan default. In other
scenarios, however, this assumption may be restrictive (Appendix A.4). However, for TSR, depending
on the specific setting, observing X, Z~ and Z™T separately unbiased may be sufficient. They only
need to be observed jointly if variables appear together within an expectation term - such as X and
Z~ in E[Z~ | X]. Hence, the conditions for TSR are more attainable in practical applications. In

contrast, computing Y for RR requires access to data containing X and Z jointly.
For future work, we plan to relax some of our assumptions, and work on more flexible estimators

that can, e.g., be instantiated through neural networks, and study more assumption violations. For
instance the effect of missing variables, or absence of Gaussian errors.
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A Theory

In this section, the related work is presented in more detail, although it has already been addressed
earlier in the paper. After the related work section, we will give the definition of the do-calculus,
which is fundamental for our theoretic results and the definition of s-recoverability, we referred to
stating the definition of s-recoverability with access to external data. After this, we state and discuss
the selection backdoor criterion by Bareinboim et al. [2014] and the generalized adjustment criterion
type 3 by Correa et al. [2018].

A.1 Related Work

One origin of selection bias is systematic missingness or preferential inclusion of datapoints, which
is a well-studied problem. A comprehensive overview of handling missing data is given by Little
and Rubin [2002]. Fundamental achievements of research about missing data settings are given in
Dempster et al. [1977] on the EM algorithm, Heckman [1979] on correcting for selection bias in
linear regression and Rosenbaum and Rubin [1984] on bias reduction through subclassification on
the propensity score. Another important aspect is to actually detect if observed data is subject to
selection bias, which is a topic that has been investigated by Daniel et al. [2012] and Kaltenpoth and
Vreeken [2023].

Independent of whenever we know through detection methods or domain experts that a dataset is
affected by selection bias, it is necessary to properly correct rather than ignore selection bias. This
has been emphasized by various authors, for instance by Sharma et al. [2022] and Castro et al. [2020].
Several approaches have been proposed to address selection bias. Examples are Mohan and Pearl
[2021] who derived a consistent estimation method in missing data problems and Goel et al. [2021]
who investigated fairness algorithms. A data-driven variable decomposition (D?V D) that jointly
optimizes separation of variables into confounders and adjustment variables to handle confounding
but not selection bias is proposed by Kuang et al. [2017], where the focus lies on the estimation of
the average treatment effect from high dimensional data from observational studies. Further, Liu et al.
[2024] employed proxy-based two-stage generalized linear regression models (GLMs) to adjust for
unmeasured confounding in unbiased data.

Extensive work has been done on conditions that ensure the causal effect to occur identifiable and
s-recoverable. Bareinboim and Pearl [2012] derived a complete condition indicating feasibility of
recoverability of the odds ratio (OR) from selection biased data and offered a method enabling to
recover other effect measures than OR from selection bias using instrumental variables. Pearl [2012]
and Bareinboim et al. [2014] considered the fundamental problem of the identifiability of P(Y | X)
based on data potentially underlying a selection bias. Bareinboim et al. [2014] in detail discussed
the concept of s-recoverability and expanded it to cases that are only s-recoverable under access to
additional external data not underlying the selection mechanism. They defined assumptions under
which P(Y | X) or P(Y | do(X)) can be ensured to be s-recoverable having access to external data.
Forré and Mooij [2020] extended the backdoor and selection backdoor criterion to a general class
of structural causal models allowing for cycles, and Chen et al. [2024] introduced a conditioning
operation on structural causal models allowing to model selection bias in a principled manner akin
to confounding. The results of Bareinboim et al. [2014] were extended to the topic of data fusion
[Bareinboim and Pearl, 2016] by assuming access to multiple datasets, where some of them may be
affected by selection bias. Further, Correa and Bareinboim [2017] established complete conditions
in absence of external data and for the setting in which all proxy variables are observed externally,
which has been extended to cover the case in which a subset of the proxy variables is observed
externally [Correa et al., 2018]. Our identifiably result covers a different setting, e.g., the graph
shown in Figure 1, as we discuss in more detail in Appendix A.4. Similar results that - in contrast
to our work - require access to experimental data are reported in Singh and Zhou [2022]. Colnet
et al. [2024] devise an approach that requires selected and external data. However, they focus on
binary treatments to estimate the average treatment effect. Tchetgen Tchetgen et al. [2024] and Miao
et al. [2018] address unmeasured confounding through the use of proxy variables, which aligns with
certain aspects of our adjustment and Louizos et al. [2017] build on VAEs to adjust for confounding
with similar assumptions.

Most closely related to our approach is the work by Boeken et al. [2023], who set their focus
on proposing practical estimators to recover E[Y | X] from selection-biased data with proxy
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variables. They proposed several estimators from which, repeated regression had the most promising
performance. Under unconfoundedness, E[Y | do(X)] = E[Y | X]. Hence, the repeated regression
from Boeken et al. [2023] is applicable for the causal effect estimation in absence of confounding.
Here, we extend their setting but focus on recovering causal effects from selection-biased data, where
we, to some extend, allow for (unobserved) confounding. We derive criteria for identifiability and
s-recoverability of the causal effect and propose an empirical estimator for this case.

A.2 Do-Calculus

For completeness, we restate the rules of do-calculus, which we need to derive our theoretical results
below [Pearl, 2009, Chapter 3].

Definition A.1 (rules of do-calculus). For arbitrary disjoint sets of nodes X, Y, Z, and W in a causal
DAG G, we denote the graph obtained by deleting all edges pointing towards a node in X by G.
Similarly, the graph obtained by deleting all edges pointing away from a node in X by Gx. The
graph obtained by deleting edges pointing towards nodes in X and edges pointing away from nodes
in Z is denoted by gy, 7

1. (Insertion / deletion of observations):
PY=y|do(X =2),Z=2W=w)=PY =y|do(X =2x),W=w)
it (Y Lo Z[{X,W})

2. (Action / observation exchange):
PY =y|do(X =xz),do(Z=2),W=w)=PY =y|do(X =x),Z =2, W =w)
if Y JLgY‘z Z 1 {X, W}

3. (Insertion / deletion of actions):
PY =y|do(X =x),do(Z =2),W=w)=PY =y |do(X =z), W =w)
(Y Loy, 72 {X,W)),

where Z(W) is the set of nodes in Z not being ancestors of any node in W in G+

A.3 Recoverability

Bareinboim et al. [2014] defined s-recoverability as follows:

Definition A.2 (s-recoverability). Given a causal DAG model (G, P) augmented with a node S,
the distribution Q@ = P(Y | X) is said to be s-recoverable from selection biased data in G, if
the assumptions embedded in the causal model renders () expressible in terms of the distribution
P(V | § = 1) under selection bias. Formally, for every two probability distributions P; and P,
compatible with G,, P, (V =v | S=1) =PV =v|S=1)>0impliess P, (Y =y | X =2) =
PBY =y| X =a).

A.4 Discussion of Assumptions

In the following, we compare our assumptions to prior work, where we first review the selection
backdoor criterion proposed by Bareinboim et al. [2014], as well as the repeated regression estimator
by Boeken et al. [2023], and then discuss the generalized adjustment criterion derived by Correa and
Bareinboim [2017].

Selection backdoor criterion Bareinboim et al. [2014] proposed assumptions, given in Assump-
tion A.3, under which the causal effect P(Y|do(X)) is, as stated in Theorem A .4, identifiable and
s-recoverable.

Assumption A.3 (Selection backdoor criterion [Bareinboim et al., 2014]). The variables Z can be
decomposed as Z = Z+ U Z~, where Z* are non-descendants of X and Z~ are descendants of X.

1. X and Z block all paths between S and Y, namely Y Lg S | {X, Z}
2. Z blocks all backdoor paths from X to Y, namely (X Lg, Y | ZT)

3. X and Z* block all paths between Z~ and Y, namely Z~ Lg Y | {X,Z"}
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4. ZU{X,Y} C M, where variables M are collected under selection bias (dataset S) and Z C T,
where 7' is collected in the population-level (dataset D).

In comparison to the assumption above, in Assumption 2.3, we do not need (3.) which characterizes
the relationship of Z* and Z~, whereas we maintain the first and second subpoint. On the other
hand, we need to observe X also in the sample D, not underlying the selection bias if Z~ # ().

Theorem A.4 (Selection backdoor adjustment [Bareinboim et al., 2014]). If Z satisfies the selec-
tion backdoor criterion (Assumption A.3) relative to (X,Y) and (M, T), then the causal effect
P(Y | do(X)) is identifiable, s-recoverable and can be expressed as

P(Y:y|do(X)):/P(Y:y|X,Z:z,Szl)P(Z:z)dz.

Further, recall that for RR we need to assume PMAR as well as that X and Y are not confounded
when aiming to estimate F[Y | do(X)]. We want to explain the relationship between the assumptions
for RR, Assumption A.3 proposed by Bareinboim et al. [2014], and our Assumption 2.3 for TSR
based on the four DAGs in Figure 2. First, note that Assumption 2.3 is met for all of the four cases.
The setting in Figure 2 (a) is met by all of the three assumptions. In contrast, in the setting in Figure 2
(b) Assumption A.3 (3.) is violated as the edge between Z~ and Y can not be blocked by X and
Z*. For the setting in Figure 2 (c) it is exactly the opposite. Here, RR does not recover the causal
effect but only E[Y'|X], whereas Assumption A.3 is fulfilled. The setting in Figure 2 (d) violates
Assumption A.3 (3.), and induces confounding, which is why RR does not recover the causal effect.

In Section 2.3, we mentioned that Assumption 2.3 requires X and Z to be observed unbiased, whereas
for Assumption A.3 only Z must be observed unbiased. That is, if X is not observable unbiased,
and Z~ # (), there might be cases which meet Assumption A.3, but not our Assumption 2.3. It is to
mention, that settings could occur in which our assumption is met, but the selection backdoor criterion
is not met due to a lack of access to unbiased data. Think of cases for which it is difficult to observe
ZT unbiased, whereas observing X unbiased is unproblematic. In those cases, it may be that our
assumption is fulfilled but the selection backdoor criterion is not. As discussed above, for example,
Figure 2 (b) does not satisfy the third point of Assumption A.3, whereas Assumption 2.3 is met. Swap
the direct path Z~ — Y to one that goes via confounder Z %, Z~ < Z* — Y. Assuming, that Z*
can not be observed unbiased, Assumption A.3 can not be satisfied, whereas, taking advantage of
Corollary 2.7, Assumption 2.3 can be satisfied if (X, Z~) are observable unbiased.

Generalized Adjustment Criterion 3 (GACT3) Correa et al. [2018] proposed assumptions,
given in Definition A.8, under which the causal effect P(Y |do(X)) is, as stated in Theorem A.10,
identifiable and s-recoverable, which requires some preliminary definitions by Correa et al. [2018],
which we state below.

Definition A.5 (Proper Causal Path). Let X and Y be sets of nodes. A causal path from a node in X
to anode in Y is called proper if it does not intersect X except at the starting point.

Definition A.6 (Proper Backdoor Graph). Given a causal DAG model (G, P) and disjoint subsets X
and Y of variables. The proper backdoor graph, denoted as gg(”;l, is obtained from G by removing
the first edge of every proper causal path from X to Y.

Definition A.7 (Adjustment Pair). Given a causal DAG model (G, P) augmented with a node S,
disjoint sets of variables X, Y, Z, and a set 7T ¢ Z, (Z, ZT) is said to be an adjustment pair for
recovering the causal effect of X on Y if for every model compatible with G, P(Y =y | do(X=x))
can be expressed as

Y PY=y|X=2Z=28=1)P(Z=2:\2"=2"|2"=:",8=1)P(z" =2").

Assumption A.8 (Generalized Adjustment Criterion Type 3 (GACT3)). Given a causal DAG model
(G, P) augmented with a node S, disjoint sets of variables X,Y, Z and set Z7 C Z; (Z,Z"7) is an
admissible pair relative to X, Y in G if:

1. No element in Z is a descendant in G of any W ¢ X lying on a proper causal path from X to Y.
2. All non-causal paths in G from X to Y are blocked by Z and S.
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3. ZT d-separates Y from S in the proper backdoor graph, i.e. (Y 1S | Z7T) grbd

Theorem A.9 (Admissible Pairs are Adjustment Pairs). Z, Z T isan adjustment pair for X, Y in G
if and only if it is admissible by Assumption A.8.

Corollary A.10 (Causal Effects Recovery by Adjustment). Given a causal DAG model (G, P) aug-
mented with a node S representing the selection mechanism. Let V be the set of variables measured
under selection bias, and T C 'V the set of variables measured externally in the overall population.
Consider disjoint sets of variables X,Y C V, then the causal effect P(Y =y | do(X = x)) is
recoverable from {P(V = v | S = 1), P(T = t)} by the adjustment expression in Definition A.7
while ZT C T, in every model inducing G if and only if (Z, Z"') is an admissible pair relative to X,
Y in G according to Assumption A.S.

The assumptions in Assumption A.8 are met in Figure 2 (a)—(c), but are not admissible for (d) in
cases where U is not contained in Z. Such cases could occur if either we did not include U in Z, or
it is unobserved. In either case, not all non-causal paths from X to Y can be blocked by Z and S.
Conditioning on Z~ opens the path X — Z~ <— U — Y. However, Z~ must be included into Z to
meet the PMAR assumption.

A.5 Proofs

In this section, we provide the proofs.

Theorem 2.4. Under Assumption 2.3, the causal effect E[Y | do(X)] is identifiable, s-recoverable
and can be expressed as follows

/ EEY | X, Zt=27,Z27,S=1]| X,Zt =21P(Z" = z")d=".
zt

Proof. We can express the expected causal effect E[Y | do(X)] as
E[Y | do(X)] = / ElY |do(X),ZT =21 P(Z" =27 | do(X)) dz"
2zt

= ElY|X,Zt=z1] = P(Z+=zt)
YJ'LgX X|z+ non-desc

= / ElY | X,Z1t = 27] P(ZT =z2N)dz"
2+

=B[E[Y|X,Z+=2+,2-]|X,Z+=2+]

= / EEY |X,Zt=27,27]11 X, Z" =27 \P(ZT = 2")dz"
2zt

=E[Y|X,Z+=2",Z- ,5=1]

= / EE[Y | X, 2 =2t,27,8=1]| X, 2+ = 21|P(ZT = 2")dzt
2zt

The first and third row follow from the law of total expectation. In row two, we can ap-
ply the second rule of do-calculus (cf. Definition A.1 in Appendix A.2) since Y llg, X | Z +
(Assumption 2.3 (2.)), and Z7 is non-descendant of X. Assumption 2.3 (1.) ensures the final equality.

Following the proof of s-recoverability by Bareinboim et al. [2014] for Theorem A.4, as the causal
effect can be represented in probability terms of the selected sample and of the external data, along
with Assumption 2.3, the achieved expression ensures s-recoverability.

O

Theorem 2.6. Under Assumption 2.3 and Assumption 2.5, the causal effect E[Y | do(X)] is
identifiable, s-recoverable and can be expressed as

E[Y | do(X = x)] = Bo+ Brz + B E[ZT] + 33 /+ ElZ7 | X=2,Zt =2T|P(Z" = 2")dz".
) (1)
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Proof.

E[Y|do(X = z)] :/+ EEY | X=2,Zt=212",S=1]|X=2,ZT =2TP(Z" = 2")d="
- /+ Elfo+BiX + BoZ* + B2~ | X = 2,2+ = 2T |P(Z* = 2)dz+
= [ (ot Brat ot 4 BuEIZT | X = 2,27 =) P(2Y = )t

=Bo + bz + ﬁz/ 2TP(ZT =21)dzt

zt

+53/ E(Z7 | X =x,Z" =2P(Z" = 2")d="
2zt

=By + B1x + BoE[ZF] + B3 /+ ElZ7 | X=2,ZY =2TP(Z" = 2z")dz"

632

633 O

e3a  Corollary 2.7. If Z blocks all backdoor paths between X and Z ™, the integral from above reduces
635 to E[Z~ | do(X)]. If additionally, X and Z~ are not confounded, it reduces to E[Z~ | X].

Proof.
E[Z7 | do(X / E[Z7 |do(X),ZT = 2z"P(Z" = 27 | do(X))dz"
:/ E[Z7 | X,Zt =2YP(Z" = z")dz*
2+

636 In the derivation above, we exploit that Z— 1l X | ZT in G x along with the second rule

637 of do-calculus, the Law of total expectation and Z* being non-descendant of X. Further,
es8 FE[Z~ | X]=E[Z | do(X)],if X and Z~ are not confounded. O

639 A.6 When do RR and TSR coincide?

s40 RR and TSR coincide when fipsr(z) = fo+ iz + B2 E[Z~ | X = z], which is the case in absence
e41 of confounding and Z* = ) (implying Z = Z~) as in Figure 2 (b). As shown below, this result can
e42 be expanded to the nonlinear case as described in Section 3.2.

643 The first step of regression for both estimators, yields
B = (Bwa Bz) s
eas  where 3, := (BO, Bl) and B, := Bo.

645

e46 Then TSR is given by
firsr(x) = BT + B.((BxBx) 'BxBz)" 7,

ea7 where 7 := (1,27)7, Bx := (1, X7 )iep € RPX®+D) and By := (Z7)iep € RIPIX4,
648
649 RR is derived as follows:

firr(z) = (@) (BYBx) ™' BX(Bx (8:)" + Bz (8 >>
(?)T(BTBX) 'BEBx(B.)" + (T)"(BXBx) ' BxBz(5.)"

= ()" (B:)" + (2)"(BYBx) ' BXxBz(B.)"

=B, 7 +8 Z((BXBX) 'BEB,)T T .
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This verifies the equality /i fir R( ) = firsr(z) for the linear case. With the same calculation but other

definitions for Bx, Bz, ﬂz, 6z and 7, the setting can be generalized - for example to OLS with
impacts up to a specific degree.

In settings, for which we cannot exclude confounding and Z~ = () (implying Z = Z71),
as in Figure 2 (c), TSR, given by irsg(z) = 8o + B1x + B2 E[ZT] in this setting, does not exactly
equal the RR estimation. We consider the case, where X and Z are of dimension one.

As we will show below, using OLS,
firsr(z) = Bo + Bz + BoZF
and

. Cov|Z+, Xl

frr(x) = firsr(r) + P2 FarlX] - X).

The derivation is at follows. First, define Y for the second regression step for RR as
Y =B+ X + Bzt

Then, running again a simple linear regression, we search for estimators & as intercept and &; as
coefficient of X for the second step of RR. They are given as follows:

. Co[Y,X] . . Cov[ZF,X]
= —— =01+ Ppp—n—
Var[X] Var[X]
do ? O[lX
=Bo+ b X + peZT —n X
. J O Cov[ZT,X
=Bo+ /X + 2T — (51 +5200[])X
Var[X]
Cov[Z+, X]
=Bo+ BoZt — B X
Var|X]
This results into
firr(x) = Go + 1w
Cov[Z+, X . CovlZ+, X
= Bo+ PoZT — ﬂzMX + (5 +»3203[\]>3?
Var(X Var[X]
Cov|Zt,X —
—ﬁo+51$+ﬁ22++ﬂ27m}[ ](x—X).
Var[X]
=prsr(z)
Even if Cov[Z+, X] = 0, Cov[Z+, X] # O for finite samples.
With SND =),
Cov[ZT,X - . Cov[ZT,X -
/32[]@:—)()} ~ Bl3)E [[]< -%) .
Var[X] Var[X]

which diminishes for n — oo, provided that the estimate of the variance in the denominator does not
asymptotically approach zero.

A.6.1 Bias and Variance

For the calculation of the bias and variance of RR, we restrict ourselvAes to Athe case, where X and Z
are of dimension one. We make use of the explicit form figr(z) = o + f1x + B2(&o + dax) and
justify this expression in the following, deriving the repeated regression estimator by hand. For the
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— CoulY. X] qich that

[

second regression, we estimate a simple linear regression and therefore set E[Y | X = z] = §g + o1z

673 i )
e74 The derivation of & and §; will be given in the following
675  First, we use that for the simple linear regression using OLS, d; Var[X]
= Couv[fo, X] + Cov[B1 X, X] + Cov[B: 2, X
p1Var[X] =h2C0v[Z,X]

Var[X]6, = CovlY, X] = Cov[Bo+/1 X+ Z, X]
=0

Consequently, we arrive at
C OU[Z X]

01 = f1 + fo——
Var[X]

676

677 From this, we can calculate g as follows
N o = Cov|Z, X ACOUZ,X =
do=Y-0X = = fothX+pZ-pHX- 52# = Bo+B2Z— P /\[ ]
Y=Fo+b1 X+h22 Var[X] Var[X]

Plugging in dg and 41, the repeated regression estimator can be expressed as

678

firr(x) = do + 012
— fo+ uZ — AQCOU[Z X]X+B1 +52C’01}[Z X]
Var[X] Var[X]
. . (- Co[X,Z] . CovlX,Z )
= J — —— X
Fo +B1x+52< Var[X] * Var[ ]

= Bo + S X + Balbo + dnz)

where &g and &7 denote the OLS coefficient estimates of g and a; corresponding to the simple

679 A A
eso linear regession model F[Z|X = z] = ag + a1z
681
682 Unbiasedness Now, we can calculate the empirical mean and discuss its bias for RR and TSR
[Bo + 1 + Ba(do + G )]

Elfirr(z)] =
= E[fo] + E[B1]x + E[Ba(do + d12)]
[Go 4 G12] + Cov[Ba, do + 2]

linearity
= E[Bo] + E[f1]z + E|[Bs)]
= Bo + b1z + B2 E[éo + dax] + Cov[B2, &o + G ]

= Bo + frz + Ba(ag + arz) + Cov[Ba, G + d12]

first step model correctly specified

= Bo+ Bz + B E[ZT]) + COU[BQ,&O + G ]
_{7&0 ScD

second step model correctly specified

[ZF)=E[Z*], a1 =0
=0 SND=40
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Eljirsr(x)] = E[fo + brz + f2Z7]
= E[Bo] + E|B1]x + E[B2Z7]

linearity
= E[fBo] + E[p1]z + E[B2)E[ZF] + Cov[B, Z ]
= Bo + B + BoE[ZF] + Cov|Ba, Z7F]

first step model correctly specified

=Bo+ P+ BE[ZT]+  CovlBs, Z7]
——

J#0 ScD
=0 SND=10

683 We discuss the bias for the general case for TSR, where X and Z are not restricted to dimension one.
684 Suppose we are in the setting with

firsr(z) = Bo + Bz + BaZT + Bs(Ro + A1 +4227) .

e85 Due to the unbiasedness of OLS and S N D = (), the bias of TSR reduces to the bias of just Bg‘ygﬁ
686 W.r.t. 3372 F[Z 7], which is given by

Bias|jirsr] =E[Bs9227F] — B3 E[Z7]
= E[Bs] E[32 27| — B372E[Z "]
——"
=PBs
=B3(E[2Z+] — 12E[Z7])
=Bs(E[227] - E[32]E[ZY])
687 where for the second row we used S N'D = () and unbiasedness of OLS, and for the fourth we used
ess unbiasedness of OLS and linearity of the expectation together with the fact that the repetitions of Z*
689 are identically distributed. We can ensure unbiasedness by splitting the unbiased dataset into two
690 disjoint subsets - one to estimate 4y, 71 and - via the second regression, and one to compute the

691 empirical mean of ZV - although this comes at the cost of reduced efficiency.
692

693 Next, we proof the result comparing the variances of RR and TSR, which is restated below.

604 Theorem 3.2. Under Assumption 3.1 and SN'D = 0, let E[ZT | X = x] = &¢ + a1 be the OLS
695 estimator of the second step for firg(x) and X = ﬁ Ellzll X, then

Var[irr(z)] — Var[irsg(z)] = Var[fz(d1(z — X))] > 0.

696 Proof. First, we derive the variance for figg(x).

Var(ipr(z)) =Var[fo + Sz + Bo( G0 +érz)]
~—~—
=Zt-a1 X
| —
=E[Z+|X]

:VGT[BO + Bl.’IJ + BQF] + VaT[Ble(.T — X)] + QCOU[BO + Bl.’II + BQF, 32641 (l‘ — X)]

697 Based on the above result, we can write the difference in variance of both estimators as
sse A = Var[igr(x)] — Var[iirsg(x)], where we can express A as
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A =Varljigr(z)] — Var[Bo + iz + B Z7]
=Var[Boiy (x — X))+ 2Cov[Bo + B + B2 ZF, faé (z — X))
zVar[Ble(x - X))+ 2(0011[/30, Bgéqx] - C’ov[Bo, 32011)_(] + C’ov[ﬁlx, Bg&lx]
— Cov[,@’lx, 32641)_(] + Cov[ﬁgﬁ, Bg&lx] - C’ov[,@’gﬁ, Bgdl)_(])

=Var[podi(z — X)|+2-(  Elfofedrz] —  E[Bo|E[Bacura]
NI « A .
s = mElBoBa) Eldn] = Blfo]eE(fs) Eldn]
XJL:ZJFO XJ_:Z+0
- E[BoB2én X] +E[Bo] E[B2é1 X]
— N——
cafo BanX] 5 s Bla] )
=E[d1] E[X] xfz-*—O
= 0
x1z+
+ E[Bl.IBQOAzl.ﬂ — E[Bll‘]E[Bzdl.’E]
M « A «
S BB Elan] = BlAa? B[] Eldn]
XJ_:Z+ _IL:Z+0
- E[p1xf261 X] +E[B4] E[By61 X]
— —
s=_,wEBAe) Elan X] o= BB Elan X]
-E[&1] eix) -E[&1] eix)
= 0 = 0
xX1z+ xX1z+
+ B[BoZ Baéna] —E[3ZV]  E[B2b12]
— i
Sﬁ;:wwE[ﬁ2ﬁ2] E[ZJFOZ ] Sﬁ;:@mE[ﬁz] E[al]
=E[zT] E[dl] X1z+
= 0
xX1iz+
—  ElBZ7haX]  +E[}ZT]  EfiX] )
_ w _
o5 e E[ZF 6 X] oo Blpe] Elan X]
=0 :E[dﬂ E[X]
X :Z+
= Var[Bgdl(x - X))
>0,

s90 where we used Cov[X, 1] = 0 and Co [7 &1] = 0 exploiting E[X&1] = E[X]E[d1] and
J,a

700 E[Z%Yé1] = E[ZF]|E[a1], as well as E[Z a1 X] = 0 which will be proven in the following.
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701 We start w1th deriving COU[X é1] = 0. Denoting the unbiased empirical variance of X by
702 6% \DI 7 2 jep(Xj — X)?, we have

Cov[X, &) =Cov [)_(, W ;)(Xj - )_()(Z;' - Z*‘)]

=B|X — E[X 1 Y\ (7t _T7F
2| o7 g 2~ 0! 2} = 7%)| = BB o 06— X027 - 7°)

S, - X) Elzf 77| X}]

- 1

:E{XA

(ID|-1)o%

=BE[Z} -Z+]=0
_ 1 _ _
—EX|E|7+———7 X, - X)E[Zf —Z% | X]| =0
XIE| (o7 e 2% UJ_,_]]
! =E[Z} -Z+¥]=0

703 due to the unbiasedness of the empirical mean.

704 Next, recall that by assumption Z;}7 = p.+ + &, where & RN (0,1) implicating

705 2t =g + D7 2oiep &i- Hence, we can rewrite Cov[ZF, G4 ] as follows:

JjE€D €D
=X, =X
=ZE[(X] éz&-)(@ 5)5} =0
jED | | i€D
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The last line follows due to cgtrality of &, X L ¢ and unbiasedness of the empirical mean. Last, it
remains to show that E[X & Z+] is zero.
_ _ 1 _ .
E X ZT|=FE| X————5 X, — X\(ZF - ZzHZ+
%o =5 D117 220~ & =70 |

-Y & [(D'Xm%@(j Xz - Z)Z]

jeD
- o o
_j;) E{(I D152 N X)] E((Z} - Z%)Z7)
_E[XleZ- XlX}
(| D I —l)a'g( [D] £<«i€D (| D | _1)(5%(
- = U7 7%,

=X =:X;

=" E[X; - X|E[(Z} - Z¥)ZF] =0,
Jj€D

Here, we used X 1L Z* and the unbiasedness of the empirical mean, which concludes the proof.
O

B Additional Experiments

In the following section, we show additional experiments to support the results discussed in Section 4.

Simulations were run in R (version 4.4.3).

R Core Team (2025). R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, = Vienna,  Austria.
https://www.R-project.org/.

— ggplot2 was used for data visualization.

Wickham, H. (2016), ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York.

— glmnet was used to perform ridge regression.

Friedman J., Tibshirani R., Hastie T. (2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

The simulations were run locally on a laptop (12th Gen Intel Core i7, 32 GB) and the time required
to run all simulations was around 2.5 hours.

B.1 Variance

Below, in Figures 69 we show the results for the quadratic and the linear model for RR and TSR as
well as its versions with ridge penalty for the first of the two regression steps, respectively. For the
boxplots, we differentiated between two cases. One is based on the biased dataset S and the other on
the unbiased dataset D. On the right hand side, we show the 95%-areas and mean of the estimations.
For completeness, we accompany these results by providing the numerical values for them in Table 1
and Table 2.

The mean and standard deviation of the MSE remain smaller in S than D, as one would expect, since
the first regression was performed based only on the data underlying selection. For TSR and RR,
the mean and standard deviation of MSE decrease for increasing n. For the naive estimator, this
effect is not that pronounced. Mean and standard deviation of MSE are smaller for TSR than for
RR, whereby the difference also vanishes when n increases. Furthermore, we observe that mean and
standard deviation of the MSE of the RR and TSR estimator do not differ distinctly between OLS and
ridge regression, respectively. Last, there were no clear differences between SND = (Jand S C D
recognizable.
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Figure 6: Quadratic model: Boxplots of the MSE over D and S (S C D) of RR and TSR for
n € {500, 1000, 5000}. The plots on the right show the associated 95%-areas of naive, RR and TSR
estimation for n = 500. The upper boxplot represents the distribution of X in S and the lower in D.
The curves for naive, RR and TSR display the mean estimation over the simulation runs.
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Figure 7: Quadratic model: Boxplots of the MSE over D and S (S N D = @) of RR and TSR for
n € {500, 1000, 5000}. The plots on the right show the associated 95%-areas of naive, RR and TSR
estimation for n = 500. The upper boxplot represents the distribution of X in S and the lower in D.
The curves for naive, RR and TSR display the mean estimation over the simulation runs.
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Figure 8: Linear model: Boxplots of the MSE over D and S (8§ C D) of RR and TSR for
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estimation for n = 500. The upper boxplot represents the distribution of X in S and the lower in D.
The curves for naive, RR and TSR display the mean estimation over the simulation runs.
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Table 1: Quadratic model: mean (sd) of MSE over S and D.

S
ScD SND=1
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 12.35(1.75)  12.00(1.22) 11.96 (0.48) 12.53(1.72) 11.94(1.15) 11.90 (0.47)
RR 0.16 (0.16) 0.08 (0.07) 0.02 (0.01) 0.17 (0.17) 0.09 (0.10) 0.02 (0.02)
RR (ridge)  0.16(0.16)  0.08 (0.07)  0.02(0.01)  0.17(0.17)  0.09 (0.10)  0.02 (0.02)
TSR 0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.06) 0.04 (0.06) 0.01 (0.01)
TSR (ridge)  0.06 (0.06)  0.03 (0.04)  0.01(0.01)  0.05(0.06)  0.04 (0.05)  0.01(0.01)
D
ScD SND=10
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 32.78 (4.68) 31.16(3.68) 30.93(1.46) 32.33(4.79) 31.07(3.40) 30.93 (1.66)
RR 0.19(0.14)  0.10(0.08)  0.02(0.01) 0.19(0.17)  0.12(0.10)  0.02 (0.01)
RR (ridge) 0.19 (0.14) 0.09 (0.07) 0.02 (0.01) 0.19 (0.17) 0.11 (0.09) 0.02 (0.01)
TSR 0.07 (0.07)  0.05(0.05) 0.01(0.01) 0.07 (0.08)  0.05(0.07)  0.01 (0.01)

TSR (ridge)  0.08 (0.07)  0.04 (0.04)  0.01 (0.01) 0.07(0.08) 0.05(0.06) 0.01(0.01)

Table 2: Linear model: mean (sd) of MSE over S and D.

S
ScD SND=0
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 11.91(1.57) 11.52(1.13) 11.59 (0.46) 12.07 (1.54) 11.48(1.10) 11.56 (0.46)
RR 0.11(0.11)  0.05(0.05)  0.01(0.01) 0.12(0.14)  0.06 (0.07)  0.01 (0.01)
RR (ridge)  0.11(0.11)  0.05(0.05) 0.01(0.01) 0.11(0.14)  0.06 (0.07)  0.01 (0.01)
TSR 0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.07) 0.04 (0.05) 0.01 (0.01)
TSR (ridge)  0.06 (0.06) 0.03 (0.04) 0.01 (0.01) 0.05 (0.06) 0.03 (0.05) 0.01 (0.01)
D
ScD SND=10
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 23.52(3.10) 22.01(2.21) 22.38(0.98) 23.35(3.08) 22.02(2.21) 22.37(1.05)
RR 0.12(0.10)  0.06 (0.06)  0.01(0.01) 0.11(0.12)  0.07 (0.07)  0.01 (0.01)
RR (ridge) 0.12 (0.10) 0.06 (0.06) 0.01 (0.01) 0.11 (0.12) 0.07 (0.07) 0.01 (0.01)
TSR 0.06 (0.06)  0.03(0.04) 0.01(0.01) 0.05(0.07) 0.04(0.06) 0.01(0.01)

TSR (ridge)  0.07 (0.06)  0.03(0.04) 0.01 (0.01) 0.05(0.07) 0.04 (0.05) 0.01(0.01)

B.2 Examples with selection bias as well as confounding

In this section, we will present further details concerning the six examples mentioned in
Section 4.1. First, we state the data generating processes. Then, for each example, we show
six plots (Figures 10-15), which show the 95%-areas and means of TSR and RR for varying
n € {500,1000,5000} and the effect of adding a ridge penalty. Finally, we will present the mean

and standard deviation of the MSE over all considered settings, evaluated on S as well as on D in
Tables 3-8.

The data generating processes are given in the following.
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747 Example 1:

748

749 Example 2:

750

751

Example 3:

752

753 Example 4:

754

EX,EY NN(O,l)
Z ~N(-2,1)
X:=2Z+¢x

S :=1ix1z<_6}

Y :=02X24+52Z + ¢y

ElY | X =2] =0.22° -2+ 2z
E[Y | do(X = 2)] = 0.22% — 10

EX,EY NN(O,l)
Z ~N(—1,4)
X :=Z+ex

S ~ Bern(

1

Y =X+5Z+c¢y

EY | X=a]=5z—1
EY |do(X =z)]=2—-5

EX,EY '\J./\/(O7 1)
W~ N(2,0.3%)
X:=W+ex

Z ~ N(-0.3,1)

S = 11z750,x<0}

Y :=02X24+Z +3W 4 ¢y

2

(1 + eap(—X))(1 + exp(2))’ ”)

E[Y | X = 1] 0.29:2+5.7+3<

E[Y | do(X = x)] =0.22°> —0.3+6

EX,EY NN(O,l)
W~ N(2,0.3%)
X =W +ex
Z ~N(0,1)

S ~ Bern(

)
(1+ exp(X))(1 4+ exp(Z))

Y = 05X + Z +3W + ey

ElY | X =] = 0.5z + 6 + 3(0.3* +0.3%)(z — 2)

E[Y | do(X =) =0.52+6
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759
760
761
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764
765
766
767
768
769
770
771

Example 5:
EX,EZ,EY NN(O,l)

WN./\/(*l,l)
X =W+ex
Z:=-2X+e¢ey

1
S ~B
e”’((1 +exp(X)(1 + exp(zn)
Y :i=X?>+Z+2W +¢y

ElY | X=z]=2>-2z-1
E[Y |do(X =2)] = 2% — 22 — 2

Example 6:

EX,EZ,EY ™~ N(O, 1)
W~ N (2,1)
X =W+ex
Z:=X+ey
S:=1{zx)<1,(zX)2+2>1}

1

Y = (X +5Z+3W +ey)

10
3 3

ElY |do(X =x)] = g(as—k 1)

The results visualized in Figures 10—15, and Tables 3-8 show that the spread of RR and TSR gets
reduced by adding ridge penalty. But we also recognize that adding a ridge penalty can go along with
adding bias, which is evident for n = 500. Especially, for Example 1, the ridge estimation deviates
far from the true underlying causal effect, which is even outside 95%-area of TSR with ridge penalty.
The same applies to RR with a ridge regression penalty for Example 1, which in turn does not include
E[Y | X], in its confidence interval, even though E[Y | X] is the quantity RR aims to estimate. As
expected, RR does not recover E[Y | do(X)] (since it is misspecified in these settings), which is
evident since the underlying causal effect is not covered by the 95% of the RR estimator at least
in a wide range of the distribution of X in D. This is exactly what we would expect to see when
E[Y | do(X)] and E[Y | X] differ significantly. Of course, the estimates vary stronger the further
the particular values of X are from the support of X in S. But again, the variation diminishes with
increasing sample size. Just to notice, particularly for Example 6, it becomes visible how unreliable
the naive estimation is. It suggests a quadratic relationship instead of the linear ground truth.
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— ElYldo(X=x)]
— ElYIX=x]
n
—RR
— TSR

naive
RR (ridge)
TSR (ridge)

— EIY|do(Xx=x)]

— EIYX=q
naive

— RR (ridge)

— TSR (ridge)

n = 500 n = 1000 n = 5000

Figure 10: Example 1: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (a) with sample size n € {500, 1000,5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S N D = ()). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.

nai
RR
TSR

— E[Yldo(x=x)]
— ElYX=x]
n
—RR
— TSR

nnnnn

— E[Yldo(X=x)]
— EIYX=q

nnnnn

n = 500 n = 1000 n = 5000

Figure 11: Example 2: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (a) with sample size n € {500, 1000,5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S N D = ()). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.
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— ElYldo(X=x)]
— ElYIX=x]

n
—RR
— TSR

naive
RR (ridge)
TSR (ridge)

— EIY|do(Xx=x)]

— EIYX=q
naive

— RR (ridge)

— TSR (ridge)

Al

25 00 50 25 00 25 50 25 00

Al

n = 500 n = 1000 n = 5000

Figure 12: Example 3: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (b) with sample size n € {500, 1000,5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S N D = ()). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.

nai
RR
TSR

— E[Yldo(x=x)]
— ElYX=x]
n
—RR
— TSR

nnnnn

— E[Yldo(X=x)]
— EIYX=q

nnnnn

.. . - . _ o
! N .. T I - — TSR (njge)
25 00 25 50 25 00 25 s0 25 00 25 50
X X X
n = 500 n = 1000 n = 5000

Figure 13: Example 4: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (b) with sample size n € {500, 1000,5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S N D = ()). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.
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— ElYldo(X=x)]

— ElYIX=x]
naive

—RR

— TSR

naive
RR (ridge)
TSR (ridge)

— EIY|do(Xx=x)]

— EIYX=q
naive

— RR (ridge)

— TSR (ridge)

n = 500 n = 1000 n = 5000

Figure 14: Example 5: Comparison of the central 95%-areas naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (c) with sample size n € {500, 1000,5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S N D = ()). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.

— ElYldo(x=x)]

— EIYX=x]
naive

—RR

— TSR

naive
RR (ridge)
TSR (ridge)

— EIY|do(X=x)]

— EIYX={
naive

— RR (ridge)

— TSR (ridge)

n = 500 n = 1000 n = 5000

Figure 15: Example 6: Comparison of the central 95%-areas of naive, RR and TSR of the simulation
runs for the DAG in Figure 4 (c) with sample size n € {500,1000,5000}. The upper boxplot
represents the distribution of X in S and the lower in D (S N D = }). The curves for naive, RR and
TSR display the mean estimation over the simulation runs.
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naive

RR

RR (ridge)
TSR

TSR (ridge)

naive

RR

RR (ridge)
TSR

TSR (ridge)

naive

RR

RR (ridge)
TSR

TSR (ridge)

naive

RR

RR (ridge)
TSR

TSR (ridge)

Table 3: Example 1: mean(sd) of MSE over S and D.

S
ScD SND=90
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
1589 (1.94) 1592 (1.55) 1591(0.61) 15.94(1.95) 15.91(1.37) 15.90(0.58)
16.20 (1.81) 16.25(1.46) 16.26(0.58) 16.26(1.82) 16.19(1.37) 16.28 (0.57)
16.20 (1.86) 16.23 (1.51) 16.25(0.59) 16.27 (1.88) 16.18 (1.40) 16.27 (0.59)
0.08 (0.10)  0.05(0.07)  0.01 (0.01) 0.07 (0.08)  0.04 (0.05) 0.01(0.01)
0.08 (0.09)  0.05(0.07) 0.01(0.04) 0.07(0.07) 0.04 (0.04) 0.02(0.01)
D
ScD SND=10
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
12.37 (2.33) 1237 (1.50) 12.17 (0.69) 12.36 (2.27) 12.37(1.49) 12.16 (0.66)
19.90 (2.27) 19.94 (1.58) 20.00 (0.83) 19.62 (2.19) 19.95 (1.85) 20.00 (0.70)
17.78 (1.87) 17.89(1.34) 17.95(0.69) 17.59 (1.85) 17.88 (1.53) 17.94(0.59)
0.16 (0.15)  0.08 (0.09) 0.01(0.01) 0.16(0.16) 0.08 (0.07)  0.01 (0.01)
0.21(0.18)  0.14(0.13)  0.08 (0.04) 0.20(0.20)  0.13(0.10)  0.09 (0.05)
Table 4: Example 2: mean(sd) of MSE over S and D.
S
ScD SND=10
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
31.64 (7.52) 30.77 (4.99) 30.92(2.29) 31.89(8.10) 31.13(5.51) 30.68 (2.17)
4727 (8.47) 47.72(5.23) 48.17 (2.37) 48.86(9.22) 48.10(4.88) 48.16(2.90)
46.90 (8.33) 47.57(5.21) 48.06(2.37) 48.51(9.13) 47.94 (4.87) 48.05(2.89)
0.30(0.31) 0.15(0.22) 0.03(0.04) 0.22(0.25) 0.14(0.15)  0.02 (0.02)
0.30(0.30)  0.15(0.22) 0.03(0.04) 0.23(0.25) 0.14(0.15)  0.02 (0.02)
D
ScD SND=10
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
68.41 (17.95) 65.60(12.98) 64.47 (5.40) 68.59(23.01) 64.20(12.74) 63.82 (6.02)
80.62 (8.17)  79.97(5.59) 80.11(2.41) 79.39(7.54) 80.18 (5.53) 79.88 (2.50)
80.28 (8.15)  79.79(5.58) 79.99 (2.42) 79.01(7.53)  80.00 (5.51) 79.76 (2.50)
0.53 (0.59) 0.24 (0.26) 0.04 (0.05) 0.46 (0.48) 0.22 (0.21) 0.04 (0.04)
0.53 (0.58) 0.24 (0.26) 0.04 (0.05) 0.46 (0.48) 0.22 (0.21) 0.04 (0.04)
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naive

RR

RR (ridge)
TSR

TSR (ridge)

naive

RR

RR (ridge)
TSR

TSR (ridge)

naive

RR

RR (ridge)
TSR

TSR (ridge)

naive

RR

RR (ridge)
TSR

TSR (ridge)

Table 5: Example 3: mean(sd) of MSE over S and D.

S

n = 500

ScD
n = 1000

n = 5000

n = 500

SND=10
n = 1000

n = 5000

1.09 (0.21)
0.26 (0.31)
0.22 (0.23)
0.19 (0.31)
0.16 (0.23)

1.08 (0.15)
0.17 (0.13)
0.16 (0.11)
0.10 (0.13)
0.09 (0.11)

1.07 (0.07)
0.09 (0.03)
0.09 (0.03)
0.02 (0.02)
0.02 (0.02)

1.08 (0.22)
0.25 (0.31)
0.21 (0.23)
0.18 (0.31)
0.15 (0.24)

1.08 (0.15)
0.18 (0.15)
0.17 (0.13)
0.10 (0.15)
0.10 (0.13)

1.07 (0.07)
0.09 (0.03)
0.09 (0.03)
0.02 (0.02)
0.02 (0.02)

n = 500

ScD
n = 1000

n = 5000

n = 500

SND=10
n = 1000

n = 5000

1.08 (0.21)
0.26 (0.31)
0.22 (0.23)
0.19 (0.31)
0.16 (0.23)

1.08 (0.15)
0.17 (0.13)
0.16 (0.11)
0.10 (0.13)
0.09 (0.11)

1.07 (0.07)
0.09 (0.03)
0.09 (0.03)
0.02 (0.02)
0.02 (0.02)

1.08 (0.21)
0.25 (0.31)
0.21 (0.23)
0.18 (0.31)
0.15 (0.24)

1.08 (0.14)
0.18 (0.15)
0.17 (0.13)
0.10 (0.15)
0.10 (0.13)

Table 6: Example 4: mean(sd) of MSE over S and D.

S

1.07 (0.07)
0.09 (0.03)
0.09 (0.03)
0.02 (0.02)
0.02 (0.02)

n = 500

ScD
n = 1000

n = 5000

n = 500

SND=90
n = 1000

n = 5000

0.62 (0.44)
0.23 (0.19)
0.20 (0.16)
0.15(0.17)
0.11 (0.14)

0.51 (0.26)
0.17 (0.13)
0.16 (0.13)
0.06 (0.06)
0.05 (0.05)

0.45 (0.11)
0.10 (0.04)
0.10 (0.04)
0.01 (0.01)
0.01 (0.01)

0.62 (0.42)
0.23 (0.22)
0.20 (0.18)
0.15 (0.15)
0.11 (0.12)

0.51 (0.25)
0.16 (0.12)
0.15(0.12)
0.06 (0.06)
0.05 (0.05)

0.45 (0.11)
0.11 (0.03)
0.11 (0.03)
0.01 (0.01)
0.01 (0.01)

n = 500

ScD
n = 1000

n = 5000

n = 500

SND=90
n = 1000

n = 5000

0.71 (0.74)
0.31 (0.40)
0.25 (0.28)
0.24 (0.31)
0.17 (0.20)

0.41 (0.26)
0.16 (0.15)
0.15 (0.12)
0.10 (0.13)
0.08 (0.08)

0.28 (0.08)
0.09 (0.05)
0.09 (0.05)
0.02 (0.02)
0.02 (0.02)
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0.73 (0.76)
0.32 (0.38)
0.25 (0.26)
0.24 (0.30)
0.17 (0.20)

0.42 (0.26)
0.16 (0.16)
0.15 (0.13)
0.10 (0.14)
0.08 (0.09)

0.28 (0.08)
0.09 (0.05)
0.09 (0.05)
0.02 (0.02)
0.02 (0.02)



Table 7: Example 5: mean(sd) of MSE over S and D.

S
ScD SND=0
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 1.72(0.76) 1.69(0.61) 1.46(0.21) 1.70(0.74) 1.61(0.54) 1.47(0.22)
RR 1.76 (0.62) 1.70(0.36) 1.60(0.16) 1.77(0.59) 1.63(0.31) 1.60(0.16)
RR (ridge)  1.73(0.60) 1.68 (0.35) 1.59(0.16) 1.73(0.56) 1.62(0.30) 1.59 (0.16)
TSR 0.12 (0.09) 0.06 (0.06) 0.01(0.01) 0.12(0.11) 0.050.05) 0.01(0.01)
TSR (ridge) 0.12(0.10) 0.06 (0.06) 0.01 (0.01) 0.12(0.11) 0.05(0.05) 0.01 (0.01)
D
ScD SND=10
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 579 (4.36) 4.35(2.93) 3.93(1.12) 5.82(4.41) 433(2.94) 3.93(1.15)
RR 2.83(1.97) 2.19(0.82) 2.06(0.39) 2.87(2.01) 2.15(0.75) 2.06(0.40)
RR (ridge)  3.10(2.33) 2.29(0.86) 2.09 (0.40) 3.13(2.28) 2.24(0.77) 2.09 (0.41)
TSR 0.63(0.82) 0.32(0.59) 0.04(0.06) 0.65(0.82) 0.29(0.51) 0.05(0.06)

TSR (ridge) 0.69 (1.05) 0.31(0.56) 0.04 (0.06) 0.69(0.97) 0.28 (0.48) 0.05 (0.07)

Table 8: Example 6: mean(sd) of MSE over S and D.

S
ScD SND=0
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 0.22 (0.13) 0.21(0.09) 0.18(0.03) 0.21(0.10) 0.20(0.09) 0.18 (0.03)
RR 0.07 (0.06)  0.05 (0.02) 0.05(0.01) 0.07 (0.06) 0.05(0.03) 0.05 (0.01)
RR (ridge) 0.03(0.02) 0.03(0.02) 0.02(0.01) 0.03(0.02) 0.03(0.02) 0.04(0.01)
TSR 0.02 (0.07) 0.01 (0.01) 0.00(0.00) 0.03 (0.08) 0.01(0.01) 0.00 (0.00)
TSR (ridge) 0.02 (0.03) 0.01 (0.01) 0.00 (0.00) 0.02(0.02) 0.01(0.01) 0.00 (0.00)
D
ScD SND=90
n = 500 n = 1000 n = 5000 n = 500 n = 1000 n = 5000
naive 452 (3.70) 4.23(2.60) 3.35(0.82) 4.35(3.57) 4.282.63) 3.36(0.82)
RR 0.26 (0.67) 0.10 (0.10)  0.05(0.03) 0.26 (0.66) 0.11 (0.10)  0.06 (0.03)
RR (ridge) 0.13(0.22) 0.09 (0.09) 0.04(0.02) 0.13(0.23) 0.09 (0.10) 0.04 (0.02)
TSR 0.20 (0.59) 0.06 (0.08) 0.01 (0.01) 0.20 (0.56) 0.06 (0.08) 0.01 (0.01)

TSR (ridge) 0.12(0.19) 0.07 (0.11) 0.01 (0.01) 0.12(0.18) 0.07 (0.11) 0.01 (0.01)

772 B.3 Motivating Example Continued

773 In comparison to the example with n = 500 in the main part of the paper (Section 4.3), Figure 16
774 shows the results for a larger sample size (n = 2000). We see that when increasing the sample size
775 n, the estimations spread less. Further, adding a ridge penalty affects the estimation less than for a
776~ smaller sample size.
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RR
TSR

RR (ridge)
TSR (ridge)

— E[Y|do(X=x)]
—RR
— TSR

— E[Y|do(X=x)]
— RR (ridge)
— TSR (ridge)

Figure 16: Comparison of the central 95%-areas of RR and TSR of the simulation runs for the DAG
in Figure 2 (d) with sample size n = 2000. The upper boxplot represents the distribution of X in S
and the lower in D (S N'D = 0). The curves for RR and TSR display the mean estimation over the
simulation runs.

777 B.4 Robustness to Misspecification

778 In this section, we investigate the robustness of TSR to certain types of misspecification which is

779 introduced by an unobserved latent variable U, as illustrated in Figure 17, where we stick to the

780 scenario in which S N D = (. In case (a) U is a cause of Y, in case (b) U is a cause of S and in case
(¢) U is a confounder between S and Y.

(a) (b) (©

Figure 17: (a) unobserved cause of S, (b) unobserved regressor, (c) unobserved cause of S and
unobserved regressor
781
782 For case (a), our identifiability assumptions are still met (Theorem 2.4 still holds), but the missing
783 regressor introduces a bias for our empirical estimator (i.e. Assumption 2.5 is violated). Hence,
784 in the first regression, we estimate the 5 coefficients biased, in the second step, we just calculate
785 Z1 because we are not aware of U. However, as we do not estimate the 5 for U, U cannot
786 enter the estimation. For case (b), our assumptions are still fulfilled, however, our proxy Z* is
7e7  weaker since S has an additional unobserved cause. Last, for case (c), the PMAR assumption is
788 violated. Hence, in addition to the bias entered through the missing regressor in (b), here the expres-
789 sion for E[Y" | do(X)] used to construct firsr(x) is wrong as its derivation that makes use of PMAR.
790
791 Our simulation here closely resembles that of Example 1, when excluding the confounding.
792 The DGP without U is as follows:

Ey ~~ N(O, 1)

Z ~ N(-2,1)

X ~ N (—4,5)
S:=1(x1z7<—6)

Y :=02X?+5Z +¢y

ElY | X =2]=022>-2+22
E[Y | do(X = x)] = 0.22% — 10
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— EIYldo(X=x]]

naive
—RR
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— E[Yldo(X=x)]
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— ElY|do(X=x)]
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—RR
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naive

— E[Yldo(X=x)]

-10 naive
—RR
TSR

i

— EIYldo(X=x)]
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—RR

— TSR

— E[YIdo(x=x)]
naive

—RR

— TSR

n = 1000 n = 5000

Figure 18: Comparison of the central 95%-areas of RR, TSR and the naive estimator of the simulation
runs in absence of U as well as introducing U — Y, S < U or S <~ U — Y with sample size
n € {1000,5000}. The upper boxplot represents the distribution of X in S and the lower in D
(S N'D = (). The curves for RR, TSR and the naive estimator display the mean estimation over the
simulation runs.
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For the three cases described above, we include U ~ N (3,1). Below we state how the DGP is
extended for the three cases, respectively. For the edge S <— U, we distinguish between two cases.

(@ U—=Y
Y :=02X2+5Z +4U + ¢y

by S« U
S:=1(X+4+Z+0.1U < —5) (type 1)
S:=1(X+Z < -5)1(U < 1.5) (type 2)

c) S« U—-Y
S:=1(X+4+Z+0.1U < —5) (type 1)
S:=1(X +Z < =5)1(U < 1.5) (type 2)
Y :=0.2X2+5Z +4U + ey

We followed the procedure described in Section 4 and included covariates up to degree 2 in the
regression model. In this analysis, we restricted ourselves to OLS regression. The results, given
in Figure 18 are consistent with what we expected based on our previous considerations. In case
(a) a bias arises from the missing regressor (see Figure 18). For case (b), our assumptions are not
violated. Hence, TSR yields reliable results. For type 2, we just need to increase the sample size n
to compensate the decrease of sample size of the selected sample induced by adding S <— U. For
case (c), the estimation gets biased due to the inclusion of an unobserved regressor. In addition, the
specification of TSR is wrong as the derivation exploits PMAR. For cases (a) and (b), where their
respective assumptions are satisfied, TSR again shows a smaller variance than RR.
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