

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TEMPORAL REPRESENTATIONS FOR EXPLORATION: LEARNING COMPLEX EXPLORATORY BEHAVIOR WITH- OUT EXTRINSIC REWARDS

Anonymous authors

Paper under double-blind review

ABSTRACT

Effective exploration in reinforcement learning requires not only tracking where an agent has been, but also understanding how the agent perceives and represents the world. To learn powerful representations, an agent should actively explore states that contribute to its knowledge of the environment. Temporal representations can capture the information necessary to solve a wide range of potential tasks while avoiding the computational cost associated with full state reconstruction. In this paper, we propose an exploration method that leverages temporal contrastive representations to guide exploration, prioritizing states with unpredictable future outcomes. We demonstrate that such representations can enable the learning of complex exploratory behaviors in locomotion, manipulation, and embodied-AI tasks, revealing capabilities and behaviors that traditionally require extrinsic rewards. Unlike approaches that rely on explicit distance learning or episodic memory mechanisms (e.g., quasimetric-based methods), our method builds directly on temporal similarities, yielding a simpler yet effective strategy for exploration.

1 INTRODUCTION

Exploration remains a key challenge in reinforcement learning (RL), especially in tasks that demand reasoning over increasingly long horizons (Thrun, 1992) or with high-dimensional observations (Stadie et al., 2015; Burda et al., 2019b; Pathak et al., 2017).

Effective exploration in high-dimensional settings requires that agents (futilely) do not attempt to visit every last state, but only visit those states where they have something to learn. But how can an RL agent recognize such states? One direction is to leverage representation learning to compress the observations into a meaningful space where the agent can measure some sense of "usefulness," to drive and guide exploration. This raises the question *Which representations should be used to drive exploration?*

We start by observing that the RL problem is fundamentally about time, so representations that reflect temporal structure should be more useful than those that additionally include all bits required to reconstruct the input. We therefore adopt representations acquired by temporal contrastive learning. Theoretically, such representations are appealing because they are sufficient statistics for any Q function (Mazoure et al., 2023) (they are effectively a kernelized successor representation (Dayan, 1993; Barreto et al., 2017)). Computationally, these representations avoid the computational costs associated with world models and reconstruction (Achiam & Sastry, 2017; Stadie et al., 2015; Sekar et al., 2020; Bai et al., 2020). Indeed, prior work has shown that such representations are useful for learning policies (Myers et al., 2025) and value functions (Laskin et al., 2020). In our method, we use these representations to reward the agent for visiting states with unpredictable futures.

Our work is closely related to Jiang et al. (2025), which uses contrastive learning to estimate a similarity metric for exploration via quasimetric learning and constructs a reward signal using an episodic memory. Our method differs by (1) avoiding quasimetric learning and (2) avoiding episodic memory, which makes our method more amenable to off-policy RL algorithms. A graphical summary of our method is shown in Fig. 1.

054
 055 **Figure 1: Curiosity-Driven**
 056 **Exploration via Temporal**
 057 **Contrastive Learning.**
 058 We learn temporal rep-
 059 resentations so that the
 060 representation of (s_0, a_0) is
 061 more similar to $(s_{2,3,4}, \dots)$.
 062 We reward the agent for
 063 visiting future states that
 064 seem unpredictable. For
 065 example, from state s_0 ,
 066 state s_1 should confer lower
 067 reward than the state s_4 .



068 The main contribution of this work is a new objective for exploration based on the prediction error of
 069 temporal representations. We demonstrate our approach by maximizing these intrinsic rewards with
 070 PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018c). Our approach achieves state-of-the-
 071 art state coverage across navigation (Ant and Humanoid mazes), manipulation, and open-world
 072 environments (Craftax-Classic).

2 RELATED WORK

073
 074 **Exploration.** Prior work on exploration (Schmidhuber, 2010; sch, 1991; Sorg et al., 2012; Brafman
 075 & Tennenholz, 2002; Kearns & Singh, 2002) in reinforcement learning has proposed a variety of
 076 task-agnostic methods for encouraging agents to acquire diverse behaviors without relying on external
 077 rewards(also known as unsupervised RL) (Laskin et al., 2021). A central line of research focuses
 078 on intrinsic motivation, where agents seek novelty by maximizing state coverage or surprise. In
 079 low-dimensional and/or discrete environments, count-based exploration methods (Gardeux et al.,
 080 2016; Bellemare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017; Martin et al., 2017; Xu
 081 et al., 2017; Machado et al., 2020) have demonstrated effective performance, particularly in Atari
 082 games. However, these methods often struggle in high-dimensional or continuous state spaces. In
 083 such settings, prediction-error-based approaches (Pathak et al., 2017; Burda et al., 2019a;b; Lee
 084 et al., 2019) have been more successful, showing effectiveness both in video game environments and
 085 continuous control tasks. Another direction leverages representation learning: compact features are
 086 extracted from raw inputs, and entropy estimators are applied to these representations to quantify
 087 novelty (Liu & Abbeel, 2021; Laskin et al., 2022).
 088

089 Beyond novelty-driven exploration, another class of methods emphasizes the agent’s ability to
 090 influence or regulate its environment. Empowerment-based approaches maximize mutual information
 091 between states and actions, encouraging agents to discover actions that yield significant control
 092 over future states (Klyubin et al., 2005b;a; Biehl et al., 2015; Zhao et al., 2021; Mohamed &
 093 Jimenez Rezende, 2015; Karl et al., 2019; Hayashi & Takahashi, 2025; Levy et al., 2024; Jung
 094 et al., 2011; Du et al., 2020; Myers et al., 2024). While conceptually appealing, solving the full
 095 empowerment objective remains intractable. A complementary perspective is surprise minimization,
 096 where agents reduce prediction uncertainty to maintain stability or create structured niches in the
 097 environment (Friston, 2010; Berseth et al., 2021; Rhinehart et al., 2021; Hugessen et al., 2024). These
 098 approaches demonstrate how regulating predictability can give rise to complex behaviors in both
 099 fully and partially observed domains.

100 **Representation learning for RL.** Prior work on representation learning for RL focuses on self-
 101 supervised methods to improve the data efficiency of RL agents. A notable approach in this category
 102 involves the use of unsupervised auxiliary tasks, where a pseudo-reward is added to the task reward to
 103 shape the learned representations and provide an additional training signal. Examples of this approach
 104 include (Jaderberg et al., 2017; Farebrother et al., 2023; Oord et al., 2018; Laskin et al., 2020;
 105 Schwarzer et al., 2021). Another line of work focuses on forward-backward representations (Touati &
 106 Ollivier, 2021; Touati et al., 2023), which aim to capture the dynamics under all optimal policies and
 107 have been shown to exhibit zero-shot generalization capabilities. Moreover, contrastive learning has
 108 been applied in various exploration settings, including goal-conditioned learning (Eysenbach et al.,

108 2022; Liu et al., 2025), skill discovery (Laskin et al., 2022; Yang et al., 2023; Zheng et al., 2025), and
 109 state coverage or curiosity (Liu & Abbeel, 2021; Du et al., 2021; Yarats et al., 2021). In the context of
 110 curiosity-driven exploration, (Du et al., 2021; Yarats et al., 2021) employ contrastive learning to learn
 111 visual representations in image-based environments, where the RL agent is trained to maximize the
 112 error of the representation learner (similar in spirit to prediction-error approaches). Our work is similar
 113 to these method as it also uses contrastive learning, but for learning representations that capture the
 114 temporal structure of the policy and environment dynamics, without explicit world-modeling, or skill
 115 learning. Jiang et al. (2025) uses a special parametrization of contrastive learning to learn temporal
 116 distances via quasimetric learning. It then constructs an aggregated intrinsic reward to maximize the
 117 minimum temporal distance between the state at the current time step and the states from previous
 118 time steps, which are stored in an episodic memory. Our work is closely related to Jiang et al. (2025),
 119 which likewise uses contrastive learning to estimate a similarity metric for exploration. Our method
 120 differs by (1) avoiding the quasimetric parametrization and (2) avoiding episodic memory, which
 121 makes our method more amenable to the off-policy setting. We compare with ETD (Jiang et al.,
 122 2025) in the experiments.

3 BACKGROUND

123 We consider a controlled Markov process, defined by time-indexed states s_t and actions a_t . The
 124 initial state is sampled from $p_0(s_0)$, and subsequent states are sampled from the Markovian dynamics
 125 $p(s_{t+1} | s_t, a_t)$. Actions are selected by a stochastic, parameterized policy $\pi(a_t | s_t)$. Without
 126 loss of generality, we assume that episodes have an infinite horizon; the finite-horizon problem can
 127 be incorporated by augmenting the dynamics with an absorbing state. The key to C-TeC is to use
 128 a self-supervised, or intrinsic reward, built on temporal contrastive representations. We detail the
 129 necessary preliminaries below.

130 **Discounted state occupancy measure.** Formally, we define the γ -discounted state occupancy
 131 measure of policy π conditioned on a state and an action (Ho & Ermon, 2016; Eysenbach et al., 2021;
 132 2022) as

$$133 p_\pi(s_f | s_t, a_t) \triangleq (1 - \gamma) \sum_{\Delta=0}^{\infty} \gamma^\Delta p_\pi(s_{t+\Delta} = s_f | s_t, a_t), \quad (1)$$

134 where $p_\pi(s_f | s, a)$ is the probability of being at future state s_f conditioned on s_t, a_t and following
 135 policy π . In continuous settings, the future state distribution $p_\pi(s_f | s, a)$ is a probability density.

136 Traditionally, the discounted state occupancy measure is defined with respect to a policy as $p_\pi(s_f |$
 137 $s_t, a_t)$. However, in this work, the intrinsic reward r_{intr} is defined using a discounted state occupancy
 138 measure over the trajectory buffer \mathcal{T} , which contains trajectories collected from a history of policies:

$$139 p_{\mathcal{T}}(s_f | s_t, a_t) \triangleq (1 - \gamma) \sum_{\Delta=0}^{\infty} \gamma^\Delta p_{\mathcal{T}}(s_{t+\Delta} = s_f | s_t, a_t).$$

140 To sample from the *trajectory buffer* distribution $p_{\mathcal{T}}(s_f | s_t, a_t)$, we first sample an offset $\Delta \sim$
 141 $\text{GEOM}(1 - \gamma)$, then set the future state $s_f = s_{t+\Delta}$. Here, future state $s_f = s_{t+\Delta}$ is the state reached
 142 from (s_t, a_t) after executing Δ -number of actions within a sampled stored trajectory.

143 **Contrastive learning.** Contrastive representation learning methods (Chopra et al., 2005; Oord
 144 et al., 2018; Chen et al., 2020) train a critic function C_θ that takes as input pairs of positive and
 145 negative examples, and learn representations so that positive pairs have similar representations and
 146 negative pairs have dissimilar representations. To estimate the discounted state occupancy, positive
 147 examples are sampled from a joint distribution $p_{\mathcal{T}}((s_t, a_t), s_f) = p_{\mathcal{T}}(s_t, a_t)p_{\mathcal{T}}(s_f | s_t, a_t)$, while
 148 the negative examples are sampled from the product of marginal distributions $p_{\mathcal{T}}(s_t, a_t)p_{\mathcal{T}}(s_f)$. Here,
 149 $p_{\mathcal{T}}(s_f)$ is the marginal discounted state occupancy $p_{\mathcal{T}}(s_f) = \int \int p_{\mathcal{T}}(s_f | s_t, a_t)p_{\mathcal{T}}(s_t, a_t) ds_t da_t$.
 150 We use the InfoNCE loss to train the contrastive learning model (Oord et al., 2018). Let $\mathcal{B} =$
 151 $\{(s_t^{(i)}, a_t^{(i)}, s_f^{(i)})\}_{i=1}^K$ be the sampled batch, where $s_f^{(1)}$ is the positive example and $\{s_f^{(2:K)}\}$ are
 152 the $K - 1$ negatives sampled independently from $(s_t^{(i)}, a_t^{(i)})$. In addition to the standard InfoNCE
 153 objective, prior work has shown that a LogSumExp regularizer is necessary for control (Eysenbach
 154

162 et al., 2021). The full contrastive reinforcement learning (CRL) loss is as follows:
 163

$$164 \quad \mathcal{L}_{\text{CL}}(\theta) = -\mathbb{E}_{\substack{(s_t, a_t) \sim p_{\mathcal{T}}(s_t, a_t) \\ s_f^{(1)} \sim p_{\mathcal{T}}(s_f | s_t, a_t) \\ s_f^{(2:K)} \sim p_{\mathcal{T}}(s_f)}} \left[\log \left(\frac{e^{C_{\theta}((s_t, a_t), s_f^{(1)}) / \tau}}{\sum_{j=1}^K e^{C_{\theta}((s_t, a_t), s_f^{(j)}) / \tau}} \right) \right]. \quad (2)$$

168 where τ is a temperature parameter. The optimal critic $C^*((s_t, a_t), s_f)$ corresponds to a log probability
 169 ratio (Ma & Collins, 2018), $C^*((s_t, a_t), s_f) \approx \log p_{\mathcal{T}}(s_f | s_t, a_t) - \log p_{\mathcal{T}}(s_f)$, where we use
 170 the negative ℓ^1 and ℓ^2 distances as the critic function (see Appendix G.3) Conceptually, the critic C_{θ}
 171 gives a temporal similarity score between state-action pairs (s_t, a_t) and future states s_f via learned
 172 representation ϕ_{θ} and ψ_{θ} .
 173

174 4 EXPLORATION VIA TEMPORAL CONTRASTIVE LEARNING

177 To improve exploration, we learn representations that encode the agent’s future state occupancy using
 178 temporal contrastive learning. We begin by describing how contrastive representation learning can
 179 be used to estimate state occupancy by learning a similarity function that assigns high scores to
 180 frequently visited future states and low scores to rarely visited ones (Eysenbach et al., 2022; Oord
 181 et al., 2018). We then explain how this similarity score can be leveraged to derive an intrinsic reward
 182 signal for exploration.

183 4.1 TRAINING THE CONTRASTIVE MODEL

185 The contrastive model $C_{\theta}(s_t, a_t, s_f)$ is trained on batches \mathcal{B} of (s_t, a_t, s_f) tuples, where each s_f is
 186 sampled from the discounted future state distribution (Section 3). We use two parameterized encoders
 187 to define the contrastive model: $\phi_{\theta}(s_t, a_t)$ for state-action pairs and $\psi_{\theta}(s_f)$ for future states. A batch
 188 of state-action pairs $\{(s_t^{(i)}, a_t^{(i)})\}_{i=1}^K$ is passed through ϕ_{θ} , while the corresponding batch of future
 189 states $\{s_f^{(i)}\}_{i=1}^K$ is passed through ψ_{θ} . The resulting representations are then normalized to have unit
 190 norm. To compute the similarity between representations in practice, we found that using either the
 191 negative ℓ^1 or ℓ^2 norm was effective, depending on the environment. The contrastive encoder is
 192 trained to minimize the InfoNCE loss (Equation (2)) (Oord et al., 2018). For each batch sample, the
 193 positive examples of other samples are treated as negatives, following common practice (Chen et al.,
 194 2020). The temperature parameter τ is learned during training. The details of the implementation are
 195 provided in Appendix E.
 196

197 4.2 EXTRACTING AN EXPLORATION SIGNAL FROM THE CONTRASTIVE MODEL

199 Given the contrastive model, a useful intrinsic reward can be constructed. The aim is to reach
 200 unexpected but *meaningful* states. This is in contrast to surprise maximization or similar objectives
 201 which may prioritize unexpected but meaningless (i.e. random) states as those observed in the Noisy
 202 TV problem (see Figure 21) (Gruaz et al., 2024).
 203

203 The contrastive model produces a similarity score between state-action pairs (s_t, a_t) and future states
 204 s_f . *Negating* this similarity score results in our exploration signal r_{intr} , encouraging the agent to visit
 205 states that are not predictive of future states in the same trajectory *in the eyes of the representations*.
 206 The expression for the expectation of r_{intr} is as follows:

$$207 \quad \mathbb{E}[r_{\text{intr}}(s_t, a_t)] = \mathbb{E}_{p_{\mathcal{T}}(s_f | s_t, a_t)} [-C_{\theta}((s_t, a_t), s_f)] = \mathbb{E}_{p_{\mathcal{T}}(s_f | s_t, a_t)} [| | | \phi_{\theta}(s_t, a_t) - \psi_{\theta}(s_f) | | |] \quad (3)$$

209 where the norm can be taken to be ℓ^1 or ℓ^2 (See Section 6). Here, r_{intr} rewards the agent for
 210 exploring states that provide the least amount of information about future states. The reward captures
 211 both temporal distance and possible inconsistencies in the model, where the representations assign
 212 erroneously low relative likelihoods to future states (see Section 5.2 for analysis).
 213

213 We use PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018b;a;c) for policy training
 214 (pseudocode in Algorithm 1). In practice, we found that using a single sample future state to
 215 approximate the expectation in Equation (3) works well, except in Craftax-Classic, where we used a
 Monte Carlo estimate. Additional details are provided in Appendix E.4.1, furthermore, we ablate the

216 **Algorithm 1** Curiosity-Driven Exploration via Temporal Contrastive Learning

```

217 1: Initialize:  $\pi, \phi_\theta, \psi_\theta$ , trajectory buffer  $\mathcal{T}$ 
218 2: for each iteration do
219 3:   for each environment step  $1 \leq t \leq T$  do
220 4:      $| a_t \sim \pi(a_t | s_t), s_{t+1} \sim p(s_{t+1} | s_t, a_t),$ 
221 5:      $| \tau_j \leftarrow \tau_j \cup \{s_t, a_t, s_{t+1}\},$ 
222 6:    $\mathcal{T} \leftarrow \mathcal{T} \cup \tau_j, \tau_j \leftarrow \{\}$ 
223 7:   Sample  $\{(s_t^i, a_t^i)\}_{i=1}^{|\mathcal{B}|} \sim \mathcal{T}$  ▷ Sample a batch of state,action pairs
224 8:   Sample  $\Delta_i \sim \text{GEOM}(1 - \gamma) \forall i \in \{1, 2, \dots, |\mathcal{B}|\}$  ▷ Sample a geometric offsets
225 9:   Set  $s_f^i = s_{t+\Delta_i}^i \forall i \in \{1, 2, \dots, |\mathcal{B}|\}$  ▷ Set the future state  $s_f$  according to  $\Delta_i$ 
226 10:  Compute intrinsic rewards:  $\mathbf{r}_i = -C_\theta((s_t^i, a_t^i), s_f^i)$  ▷ Equation (3)
227 11:  Update representations:  $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}_{\text{InfoNCE}}(\mathcal{B} = \{(s_t^i, a_t^i, s_f^i)\}_{i=1}^{|\mathcal{B}|}; \theta)$  ▷ Equation (2)
228 12:  RL update using  $\{(s_t^i, a_t^i, \mathbf{r}_t^i)\}_{i=1}^{|\mathcal{B}|}$  ▷ Update the policy using PPO/SAC
229
230

```

231
232 future state sampling strategy. We observe that sampling from the discounted occupancy measure
233 yields good performance across environments and we stick to this strategy in our experiments. We
234 also show the performance differences between these sampling strategies in Appendix G.6.
235

236 **5 INTERPRETATION OF C-TEC**

237 In the below sections, we provide intuition for how the representation-parameterized intrinsic reward
238 may drive effective exploration behavior. Sec. 5.1 details an info-theoretic interpretation of C-TeC,
239 ignoring learned representations to help build intuition and compare with other common objectives
240 (see Appendix I). In Section 5.2, we discuss the importance of the learned contrastive representations
241 to C-TeC performance. For example, contrastive representations enable C-TeC’s performance to
242 remain the same with or without noise in the Noisy TV environment (Figure 21).
243

244 **5.1 INFORMATION-THEORETIC EXPRESSION OF C-TEC**

245 The intrinsic reward has an information-theoretic interpretation. We consider the limit where representations perfectly capture the underlying point-wise mutual information (MI). In this regime, the
246 intrinsic reward evaluates to the negative of the KL-divergence between the conditional future-state
247 distribution $p_{\mathcal{T}}(s_f | s_t, a_t)$ and the marginal future-state distribution $p_{\mathcal{T}}(s_f)$:

$$248 \mathbb{E}[r_{\text{intr}}(s_t, a_t)] = -\mathbb{E}_{p_{\mathcal{T}}(s_f | s_t, a_t)} \left[\log \frac{p_{\mathcal{T}}(s_f | s_t, a_t)}{p_{\mathcal{T}}(s_f)} \right] \quad (4)$$

$$249 = -D_{\text{KL}}[p_{\mathcal{T}}(s_f | s_t, a_t) || p_{\mathcal{T}}(s_f)]. \quad (5)$$

250 This intrinsic reward describes mode-seeking behavior (Murphy, 2022, Section 6.2.6): the conditional
251 should only have support where the marginal $p_{\mathcal{T}}(s_f)$ has support. This optimization is distinct from
252 minimizing the forward KL-divergence $D_{\text{KL}}[p_{\mathcal{T}}(s_f) || p_{\mathcal{T}}(s_f | s_t, a_t)]$, which instead prioritizes
253 mean-seeking behavior over regions of the state space where the marginal may *not* have support.

254 This mode-seeking reward can be interpreted as prioritizing (s, a) that are minimally informative
255 about reached future states:

$$256 \mathbb{E}[r_{\text{intr}}(s_t, a_t)] = -D_{\text{KL}}[p_{\mathcal{T}}(s_f | s_t, a_t) || p_{\mathcal{T}}(s_f)] \\ 257 = \underbrace{H[S_f | s_t, a_t]}_{\text{surprise}} + \underbrace{\mathbb{E}_{p_{\mathcal{T}}(s_f | s_t, a_t)}[\log p_{\mathcal{T}}(s_f)]}_{\text{"familiarity" term}},$$

258 where S_f denotes the future state *random variable* and $s_f \sim p_{\mathcal{T}}(s_f | s_t, a_t)$. State-action pairs
259 with spread-out trajectories (“surprise”) over states that *have actually been seen* (“familiarity”) have
260 higher reward i.e., a high reward should be given to states that have been visited but are temporally
261 distant, rather than giving a high reward to unvisited states.. States encountered during roll-out are
262 then added to the marginal, and the process repeats.

270 The success of the intrinsic reward cannot solely be attributed to “fitting” $p_{\mathcal{T}}(s_f | s, a)$ to $p_{\mathcal{T}}(s_f)$ via
 271 the policy rollout distribution. To test the hypothesis that the mode-seeking behavior is important,
 272 we ran experiments where the intrinsic reward is the forward mean-seeking KL (Equation (20)).
 273 Appendix G.5 shows that the objective succeeds because it is minimizing this mode-seeking formula-
 274 tion of the KL rather than fitting the conditional future states to a broad marginal. A linear stability
 275 analysis on the fixed points of C-TeC is in Appendix J.1; we simplify the problem setting for analysis
 276 and find that there are no easily-achievable stable fixed points for general nontrivial MDPs, meaning
 277 that the distribution over reached states continually evolves with iteration time.

279 5.2 REPRESENTATIONS ARE NECESSARY FOR C-TEC TO SUCCEED

280 The representations not only capture a raw info-theoretic exploration signal but also a form of
 281 representation prediction error. All of the analysis in Section 5.1 assumes a fully-expressive critic
 282 that perfectly captures the point-wise MI. However, the true learned representations only approximate
 283 the point-wise MI. The full expected intrinsic reward is the following

$$285 \mathbb{E}[r_{\text{intr}, \phi, \psi}(s_t, a_t)] = -\mathbb{E}_{p_{\mathcal{T}}(s_f | s_t, a_t)} \left[\log \frac{p_{\phi, \psi}(s_f | s_t, a_t)}{p_{\phi, \psi}(s_f)} \right]$$

287 where $p_{\phi, \psi}$ describe probability ratios under the learned contrastive representations ϕ and ψ . Thus,
 288 the reward prioritizes exploration in areas where state-actions are not informative of future states
 289 *according to a contrastive model*. In other words, the method rewards state-actions with low
 290 predictability of future states. Learned representations that fail to capture features necessary for the
 291 classification task lead to higher intrinsic reward.

292 When the representations *do* capture features important for temporal classification, the resulting
 293 reward is invariant to classification-irrelevant perturbations such as spurious noise. This is a highly
 294 useful property: in the Noisy TV environment, C-TeC performance is strong (see Fig. 21 results) and
 295 unaffected by noise. Noise randomly sampled from the same distribution every timestep does not
 296 lead to stronger classifier performance, and, thus, the intrinsic reward is invariant to these distractors.

297 Finally, the contrastive representations are crucial C-TeC’s performance. Experimental results
 298 in Appendix G.4 show that the method is *not* robust to the usage of a monolithic critic $f(s, a, g)$,
 299 indicating that the representation parameterization of the critic is key.

301 6 EXPERIMENTS

304 Our experiments show that contrastive representations can
 305 be used to reward the agent for visiting less-occupied or
 306 distant future states. We then use the C-TeC reward func-
 307 tion for exploration in robotic environments and Craftax-
 308 Classic. We mainly study the following questions: (Q3)
 309 How well does C-TeC compare to ETD Jiang et al. (2025)?
 310 (Q2) How well does C-TeC reward capture the agent’s fu-
 311 ture state distribution? (Q3) How effectively does C-TeC
 312 explore in locomotion, manipulation, and Craftax environ-
 313 ments compared to prior work?

314 **Environments** We use environments from the JaxGCRL
 315 codebase (Bortkiewicz et al., 2025). Specifically,
 316 we evaluate C-TeC on the `ant_large_maze`,
 317 `humanoid_u_maze`, and `arm_binpick_hard`
 318 environments, which require solving long directed plans
 319 to reach goal states. In the maze-based environments,
 320 the agent’s objective is to reach a designated goal
 321 specified at the start of each episode. Exploration in
 322 these settings corresponds to maze coverage: an agent
 323 that visits more unique positions in the maze demonstrates better exploration capabilities. In the
 324 `arm_binpick_hard` environment, which differs from the more navigation-themed tasks used in
 325 prior work, the agent must pick up a cube from a blue bin and place it at a specified target location in

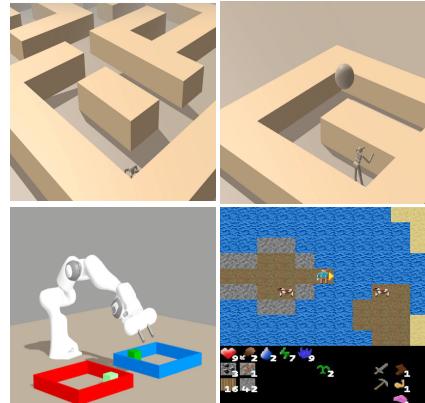


Figure 2: **Environments.** Maze coverage, robotic manipulation, and the survival game Craftax.

324 a red bin. This represents a challenging exploration task, as the agent must locate the cube, grasp it,
 325 and successfully place it at the correct target location.

326 Our experiments with the ant and humanoid agents assess the method’s ability to achieve broad
 327 state coverage using two complex embodiments. Meanwhile, the `arm_binpick_hard` task
 328 evaluates the method’s effectiveness at exploration in an object manipulation setting. We also run C-
 329 TeC on Craftax-Classic (Matthews et al., 2024), a challenging open-world survival game resembling
 330 a 2D Minecraft. The agent’s goal is to survive by crafting tools, maintaining food and shelter, and
 331 defeating enemies

332 In the locomotion and manipulation environments, we compare C-TeC to common prior methods for
 333 exploration: **Random Network Distillation (RND)** (Burda et al., 2019b) and **Intrinsic Curiosity
 334 Module (ICM)** (Pathak et al., 2017), both of which are popular intrinsic motivation methods for ex-
 335 ploration. **Active Pre-training (APT)** (Liu & Abbeel, 2021): APT learns observation representations
 336 using contrastive learning, where positives are augmentations of the same observation and negatives
 337 are different observations. It uses the KNN distance between state representations as an exploration
 338 signal, which correlates with state entropy. Unlike C-TeC, APT does not learn representations that
 339 are predictive of the future.

340 In Craftax, we compare against RND, ICM, and **Exploration via Elliptical Episodic Bonuses
 341 (E3B)** (Henaff et al., 2022), a count-based exploration method. We found that using the negative
 342 L_1 distance (Equation (16)) as the critic function works best in the robotics environments, while
 343 the negative L_2 distance (Equation (17)) performs best in Craftax. A comparison of different critic
 344 functions can be found in the appendix. We also compare our method to ETD (Jiang et al., 2025).
 345 While C-TeC is implemented in JAX, to ensure a fair comparison we re-implemented it on top
 346 of the ETD codebase and ran the experiments on the same robotic environments as well as on
 347 Crafter (Hafner, 2022). The comparison results are presented in Section 6.1.

349 6.1 COMPARISON TO ETD (Q1)

350 In this section, we compare C-TeC to ETD (Jiang et al., 2025), a recent method that uses contrastive
 351 learning to learn a quasimetric that encodes temporal distances between states via metric residual
 352 networks (MRN) (Liu et al., 2023; Myers et al., 2024). ETD extracts an exploration signal by
 353 measuring the minimum temporal distance between the current state and previous states stored in an
 354 episodic memory. By contrast, C-TeC is simpler: it does not require episodic memory or an explicit
 355 quasimetric, and it works in both on-policy and off-policy settings.

356 For a fair comparison, we implemented C-TeC on top of the ETD codebase¹. We ran C-TeC across
 357 multiple hyperparameter configurations (primarily ablating different contrastive similarity functions)
 358 and selected the configuration with the best overall performance. We used the same contrastive
 359 encoder architecture as ETD, and for ETD we adopted the hyperparameters reported in Appendix
 360 E of Jiang et al. (2025). **Our experiments use only intrinsic rewards, as our goal is to understand
 361 C-TeC’s behavior in the absence of any task rewards.**

362 Figure 3 shows the results on the robotic environments and Crafter. All experiments are conducted
 363 in the intrinsic exploration setting (without providing the task reward). Both methods perform
 364 similarly on `ant_hardest_maze`. C-TeC outperforms ETD in `humanoid_u_maze`, albeit with
 365 higher variance, while ETD performs better in `arm_binpick_hard`. In Crafter, however, C-TeC
 366 significantly outperforms ETD.

367 We speculate that this improvement stems from a difference in the exploration signals: ETD encour-
 368 ages novelty by maximizing the minimum temporal distance from past states (backward-looking),
 369 while C-TeC prioritizes states that can lead to a larger set of possible future states (forward-looking).
 370 This forward-looking perspective may better capture the long-term exploratory value of states, which
 371 could explain C-TeC’s stronger performance in Crafter (We refer the reader to Appendix K and J.2
 372 for a didactic example that illustrate the differnce between C-TeC and ETD rewards). Moreover, as
 373 mentioned, ETD requires a more constrained architecture, specifically the MRN (Liu et al., 2023),
 374 to learn quasimetric representations that encode temporal distance. Our findings show that such
 375 architectural constraints are not necessary for effective exploration. Learning representations that

376 377 ¹<https://github.com/Jackory/ETD/tree/main>

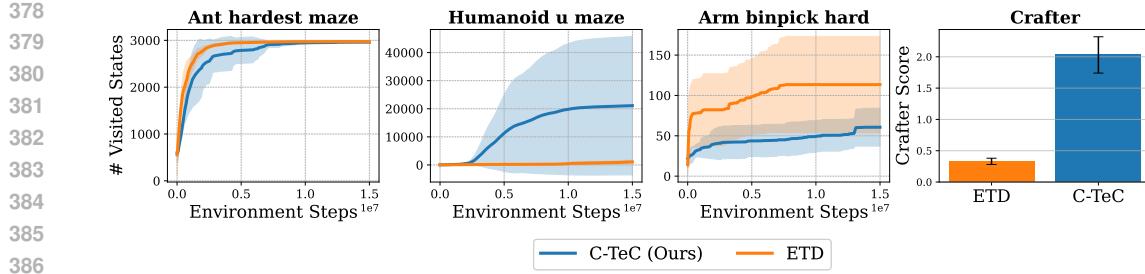


Figure 3: **C-TeC Performance compared to ETD (Jiang et al., 2025)** C-TeC is competitive to ETD in terms of state coverage in continuous control environments, and outperform ETD in Crafter.

capture the temporal structure of policy behavior and environment dynamics seems sufficient to achieve meaningful exploration without the MRN architecture or temporal distances.

The key takeaway is that, while C-TeC is conceptually similar to ETD, **C-TeC achieves comparable or stronger performance while also reducing algorithmic complexity.**

6.2 LEVERAGING THE FUTURE STATE DISTRIBUTION FOR EXPLORATION (Q2, Q3)

In this section we demonstrate that the C-TeC reward captures the future state distribution and it can be used to incentivize the agent to visit less-occupied and more distant future states. We visualize the C-TeC reward at different stages of training in the `ant_hardest_maze` environment. The contrastive critic is defined as the negative L_1 distance (Equation (16)), and the policy is trained to maximize the intrinsic reward defined in Equation (3). Figure 4 shows the reward values in a section of the maze. Following the qualitative results in Figure 4, we evaluate C-TeC in the `ant_large_maze`, `humanoid_u_maze`, and `arm_binpick_hard` environments. We run two variants of the experiment: (1) using the complete state vector as the future state, which is common in exploration tasks where the agent is encouraged to explore the entire state space; and (2) incorporating prior knowledge by narrowing the future state to specific components of the state vector. The latter allows us to assess whether C-TeC can flexibly explore subspaces of the state space, which is often useful in practice. In `ant_large_maze`, we define the future state as the future (x, y) position of the ant's torso. In `humanoid_u_maze`, we use the future (x, y, z) position of the humanoid's torso. Finally, in `arm_binpick_hard`, we define the future state as the future position of the cube.

As an evaluation metric, we count the number of unique discretized states covered by each agent. In `ant_large_maze`, we count the number of unique (x, y) positions in the maze visited by each agent. Similarly, in `humanoid_u_maze`, we count the number of visited (x, y, z) positions, and in `arm_binpick_hard`, we count the number of unique cube positions. We compare C-TeC to RND, ICM, APT, and a uniformly random policy. Figure 5 shows the learning curve when using the complete future state vector while Figure 10 shows the performance when we incorporate prior knowledge by restricting the future state to specific components of the state vector. Each agent is run with 5 random seeds, and we plot the mean and standard deviation (Patterson et al., 2024).

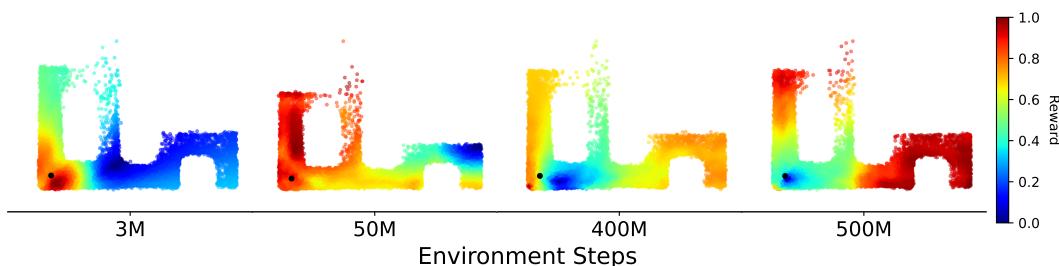


Figure 4: **Evolution of the C-TeC reward during training.** This figure shows how the intrinsic reward changes over the course of training based on future state visitation. The black circle in the lower-left corner represents the starting state. C-TeC reward captures the agent's future state density and rewards the agent for visiting states faraway in the future.

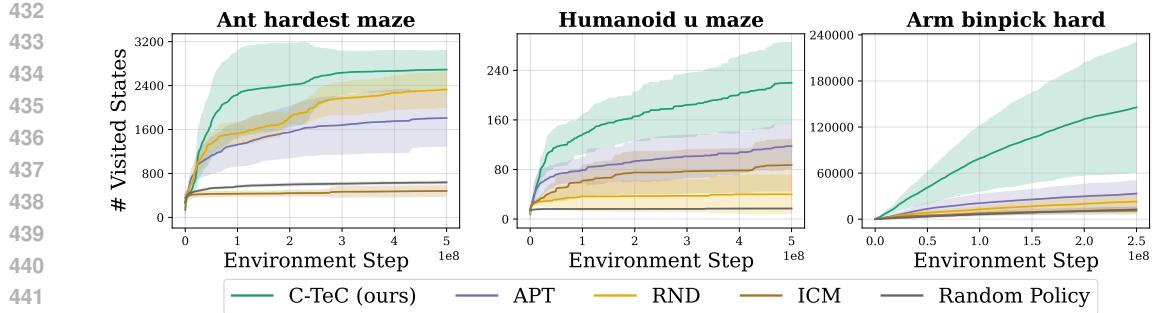


Figure 5: **C-TeC explores more states than prior methods.** We compare the state coverage of C-TeC to APT (Liu & Abbeel, 2021), RND (Burda et al., 2019b) and ICM (Pathak et al., 2017). We include a uniform random policy as well.

Our agent outperforms the baselines in both variants of the experiment and learns interesting behaviors in the challenging humanoid_u_maze environment. Figure 6 shows screenshots of C-TeC behavior. More visuals are provided in Appendix M. This improvement can be the result of C-TeC’s consistent reward properties. Methods like RND and ICM will eventually tend to zero reward as the state distribution is covered. A nice property of C-TeC is that it does not have zero reward in the limit.

6.3 LEARNING COMPLEX BEHAVIOR IN CRAFTAX-CLASSIC

Can an RL policy learn complex behavior in Craftax-Classic without any task reward? To answer this question, we run C-TeC on Craftax-Classic (Matthews et al., 2024), a complex survival game where the agent’s goal is to survive by crafting tools, maintaining food and shelter, and defeating enemies.

In this experiment, we use the same PPO implementation as used in the baselines in the Craftax paper (Matthews et al., 2024), adding the C-TeC reward on top of it.

We compare against RND, ICM, E3B, and a uniform random policy. We found that using PPO with memory (PPO-RNN) yields the best performance. The results are presented in Figure 7. The y-axis represents the sum of the achievements success rate, which measures how many capabilities and useful objects the agent has discovered. C-TeC outperforms the baselines and unlocks more achievements. Figure 29 visualizes some of the achievements of the C-TeC agent during an evaluation episode.

7 CONCLUSION

This work has shown how to learn and leverage temporal contrastive representations for intrinsic exploration. With these representations, we construct a reward function that seeks out states with unpredictable future outcomes. We find that C-TeC is a simple method that yields strong performance on state visitation metrics. These results hold across different RL algorithms and environments. Future work includes further investigating the role of temporal representations in effective exploration, combining the C-TeC reward with task rewards, and adapting the method to pixel-based and partially observed settings.

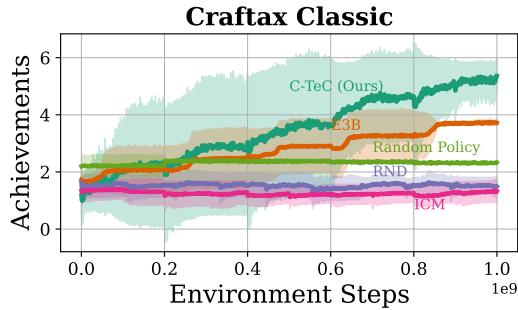


Figure 7: C-TeC achieves higher achievements in the Craftax survival game.

²Agent videos: <https://sites.google.com/view/ctec-anonymous-submission>

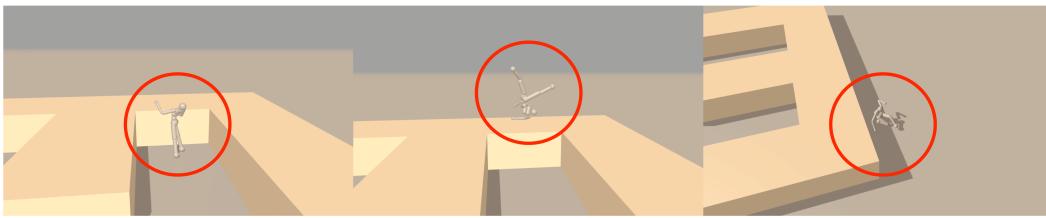


Figure 6: **C-TeC behavior in humanoid-u-maze.** C-TeC agent learns to escape the u-maze by jumping over the wall. None of the alternative exploration methods discovered this kind of unexpected behavior².

REPRODUCIBILITY STATEMENT

For reproducing the paper’s results, we provide the algorithm codebase in the supplementary material and the anonymous GitHub links <https://anonymous.4open.science/r/c-tec-DFE7/README.md> and <https://anonymous.4open.science/r/c-tec-5E12/README.md>, training details and hyperparameters are included in Appendix E.

REFERENCES

- A possibility for implementing curiosity and boredom in model-building neural controllers. In *Proc. of the international conference on simulation of adaptive behavior: From animals to animats*, pp. 222–227, 1991.
- Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement learning. *arXiv preprint arXiv:1703.01732*, 2017.
- Chenjia Bai, Peng Liu, Zhaoran Wang, Kaiyu Liu, Lingxiao Wang, and Yingnan Zhao. Variational dynamic for self-supervised exploration in deep reinforcement learning. *IEEE Transactions on Neural Networks and Learning Systems*, 34:4776–4790, 2020. URL <https://api.semanticscholar.org/CorpusID:224704606>.
- André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David Silver. Successor features for transfer in reinforcement learning. *Advances in neural information processing systems*, 30, 2017.
- Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-based exploration and intrinsic motivation. *Advances in neural information processing systems*, 29, 2016.
- Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Jayaraman, and Sergey Levine. {SM}irl: Surprise minimizing reinforcement learning in unstable environments. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=cPZOyoDloxl>.
- Martin Biehl, Christian Guckelsberger, Christoph Salge, C Smith, and Daniel Polani. Free energy, empowerment, and predictive information compared. Technical report, Technical report, University of Hertfordshire. URL: <https://www.mis.mpg.de/...>, 2015.
- Michał Bortkiewicz, Władysław Pałucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski, Łukasz Kuciński, and Benjamin Eysenbach. Accelerating goal-conditioned reinforcement learning algorithms and research. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4gaySj8kvX>.
- Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal reinforcement learning. *Journal of Machine Learning Research*, 3(Oct):213–231, 2002.
- Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros. Large-scale study of curiosity-driven learning. In *International Conference on Learning Representations*, 2019a. URL <https://openreview.net/forum?id=rJNwDjAqYX>.
- Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. In *International Conference on Learning Representations*, 2019b. URL <https://openreview.net/forum?id=H11JJnR5Ym>.

- 540 Junya Chen, Zhe Gan, Xuan Li, Qing Guo, Liqun Chen, Shuyang Gao, Tagyoung Chung, Yi Xu, Belinda Zeng,
 541 Wenlian Lu, et al. Simpler, faster, stronger: Breaking the log-k curse on contrastive learners with flatnce.
 542 *CoRR*, 2021.
- 543 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
 544 learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PMLR,
 545 2020.
- 546 S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face
 547 verification. In *2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*
 548 (*CVPR’05*), volume 1, pp. 539–546 vol. 1, 2005. doi: 10.1109/CVPR.2005.202.
- 549 Thomas M. Cover and Joy A. Thomas. *Elements of information theory*. Wiley series in telecommunications.
 550 Wiley, New York, NY [u.a.], 1991. URL <http://www.loc.gov/catdir/toc/onix06/90045484.html>.
- 551 Peter Dayan. Improving generalization for temporal difference learning: The successor representation. *Neural*
 552 *computation*, 5(4):613–624, 1993.
- 553 Yilun Du, Chuang Gan, and Phillip Isola. Curious representation learning for embodied intelligence. *ieee*. In
 554 *CVF International Conference on Computer Vision*, pp. 10388–10397, 2021.
- 555 Yuqing Du, Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter Abbeel, and Anca Dragan. Ave: Assistance via
 556 empowerment. *Advances in Neural Information Processing Systems*, 33:4560–4571, 2020.
- 557 Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve goals via
 558 recursive classification. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=tc5qisoB-C>.
- 559 Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive learning as goal-
 560 conditioned reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
 561 (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=vGQiU5sqUe3>.
- 562 Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel Castro,
 563 and Marc G Bellemare. Proto-value networks: Scaling representation learning with auxiliary tasks. In *The*
 564 *Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=oGDKSt9JrZi>.
- 565 Karl Friston. The free-energy principle: a unified brain theory? *Nature reviews neuroscience*, 11(2):127–138,
 566 2010.
- 567 Vincent Gardeux, Fabrice David, Adrian Shajkofci, Petra C. Schwalie, and Bart Deplancke. Asap: a web-based
 568 platform for the analysis and interactive visualization of single-cell rna-seq data. *Bioinformatics*, 33:3123 –
 569 3125, 2016. URL <https://api.semanticscholar.org/CorpusID:2237186>.
- 570 Lucas Gruaz, Alireza Modirshanechi, Sophia Becker, and Johann Brea. Merits of curiosity: a simulation study.
 571 *PsyArXiv*, 2024.
- 572 Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning to walk via
 573 deep reinforcement learning. *arXiv preprint arXiv:1812.11103*, 2018a.
- 574 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
 575 entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause (eds.),
 576 *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of*
 577 *Machine Learning Research*, pp. 1861–1870. PMLR, 10–15 Jul 2018b. URL <https://proceedings.mlr.press/v80/haarnoja18b.html>.
- 578 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
 579 Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. *arXiv preprint*
 580 *arXiv:1812.05905*, 2018c.
- 581 Danijar Hafner. Benchmarking the spectrum of agent capabilities. In *International Conference on Learning*
 582 *Representations*, 2022. URL <https://openreview.net/forum?id=1W0z96MFEoH>.
- 583 Yusuke Hayashi and Koichi Takahashi. Universal ai maximizes variational empowerment. *arXiv preprint*
 584 *arXiv:2502.15820*, 2025.

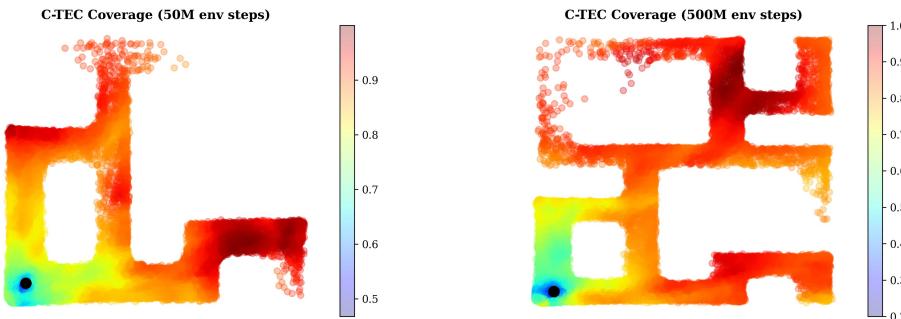
- 594 Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical episodic bonuses.
 595 In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information
 596 Processing Systems*, 2022. URL <https://openreview.net/forum?id=Xg-yZos9qJQ>.
- 597 R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler,
 598 and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization. In
 599 *International Conference on Learning Representations*, 2019.
- 600 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural information
 601 processing systems*, 29, 2016.
- 603 Adriana Hugessen, Roger Creus Castanyer, Faisal Mohamed, and Glen Berseth. Surprise-adaptive intrinsic
 604 motivation for unsupervised reinforcement learning. *Reinforcement Learning Journal*, 2:547–562, 2024.
- 606 Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, and
 607 Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In *International Conference
 608 on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJ6yPD5xg>.
- 609 Yuhua Jiang, Qihan Liu, Yiqin Yang, Xiaoteng Ma, Dianyu Zhong, Hao Hu, Jun Yang, Bin Liang, Bo XU,
 610 Chongjie Zhang, and Qianchuan Zhao. Episodic novelty through temporal distance. In *The Thirteenth Inter-
 611 national Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=I7DeajDEx7>.
- 613 Tobias Jung, Daniel Polani, and Peter Stone. Empowerment for continuous agent—environment systems.
 614 *Adaptive Behavior*, 19(1):16–39, 2011.
- 615 Maximilian Karl, Philip Becker-Ehmck, Maximilian Soelch, Djalel Benbouzid, Patrick van der Smagt, and Justin
 616 Bayer. Unsupervised real-time control through variational empowerment. In *The International Symposium of
 617 Robotics Research*, pp. 158–173. Springer, 2019.
- 618 Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. *Machine learning*,
 619 49(2):209–232, 2002.
- 621 Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be empowered. In
 622 *European Conference on Artificial Life*, pp. 744–753. Springer, 2005a.
- 623 A.S. Klyubin, D. Polani, and C.L. Nehaniv. Empowerment: a universal agent-centric measure of control. In
 624 *2005 IEEE Congress on Evolutionary Computation*, volume 1, pp. 128–135 Vol.1, 2005b. doi: 10.1109/CEC.
 625 2005.1554676.
- 626 Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for
 627 reinforcement learning. In *International conference on machine learning*, pp. 5639–5650. PMLR, 2020.
- 629 Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel Pinto,
 630 and Pieter Abbeel. URLB: Unsupervised reinforcement learning benchmark. In *Thirty-fifth Conference on
 631 Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL https://openreview.net/forum?id=lwrPkQP_is.
- 633 Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel. Unsupervised
 634 reinforcement learning with contrastive intrinsic control. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 635 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=9HBbWAsZxFt>.
- 637 Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric P. Xing, Sergey Levine, and Ruslan Salakhutdinov.
 638 Efficient exploration via state marginal matching. *ArXiv*, abs/1906.05274, 2019. URL <https://api.semanticscholar.org/CorpusID:186206676>.
- 640 Andrew Levy, Alessandro Allievi, and George Konidaris. Latent-predictive empowerment: Measuring empower-
 641 ment without a simulator. *arXiv preprint arXiv:2410.11155*, 2024.
- 643 Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual network for sample efficient goal-conditioned
 644 reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 8799–8806,
 645 2023.
- 646 Grace Liu, Michael Tang, and Benjamin Eysenbach. A single goal is all you need: Skills and exploration emerge
 647 from contrastive RL without rewards, demonstrations, or subgoals. In *The Thirteenth International Conference
 648 on Learning Representations*, 2025. URL <https://openreview.net/forum?id=xCkgX4Xfu0>.

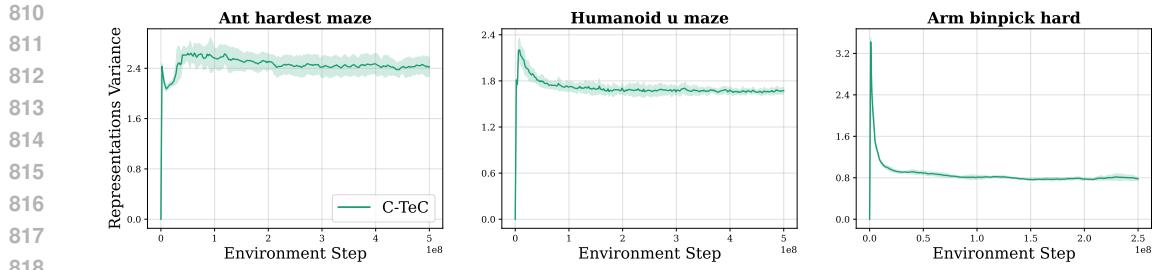
- 648 Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. In A. Beygelzimer,
 649 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
 650 2021. URL <https://openreview.net/forum?id=fIn4wLs2XzU>.
- 651 Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for conditional models:
 652 Consistency and statistical efficiency. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii
 653 (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp.
 654 3698–3707, Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 655 10.18653/v1/D18-1405. URL <https://aclanthology.org/D18-1405/>.
- 656 Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the successor
 657 representation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 5125–5133, 2020.
- 658 Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based exploration in feature
 659 space for reinforcement learning. *arXiv preprint arXiv:1706.08090*, 2017.
- 660 Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Thomas Jackson,
 661 Samuel Coward, and Jakob Nicolaus Foerster. Craftax: A lightning-fast benchmark for open-ended
 662 reinforcement learning. In *Forty-first International Conference on Machine Learning*, 2024. URL
 663 <https://openreview.net/forum?id=hg4wXlrQCV>.
- 664 Bogdan Mazoure, Benjamin Eysenbach, Ofir Nachum, and Jonathan Tompson. Contrastive value learning:
 665 Implicit models for simple offline rl. In *Conference on Robot Learning*, pp. 1257–1267. PMLR, 2023.
- 666 Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically motivated
 667 reinforcement learning. *Advances in neural information processing systems*, 28, 2015.
- 668 Kevin P Murphy. *Probabilistic machine learning: an introduction*. 2022.
- 669 Vivek Myers, Evan Ellis, Sergey Levine, Benjamin Eysenbach, and Anca Dragan. Learning to assist humans
 670 without inferring rewards. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 671 2024. URL <https://openreview.net/forum?id=WCnJmb7cv1>.
- 672 Vivek Myers, Bill Chunyuan Zheng, Anca Dragan, Kuan Fang, and Sergey Levine. Temporal representation
 673 alignment: Successor features enable emergent compositionality in robot instruction following. *arXiv preprint*
 674 *arXiv:2502.05454*, 2025.
- 675 Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sinii, and Sergey Kolesnikov.
 676 Xland-minigrid: Scalable meta-reinforcement learning environments in jax. *Advances in Neural Information
 677 Processing Systems*, 37:43809–43835, 2024.
- 678 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
 679 *arXiv preprint arXiv:1807.03748*, 2018.
- 680 Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with neural
 681 density models. In *International conference on machine learning*, pp. 2721–2730. PMLR, 2017.
- 682 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
 683 supervised prediction. In *International conference on machine learning*, pp. 2778–2787. PMLR, 2017.
- 684 Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement, 2019. URL
 685 <https://arxiv.org/abs/1906.04161>.
- 686 Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in reinforcement learning.
 687 *Journal of Machine Learning Research*, 25(318):1–63, 2024. URL <http://jmlr.org/papers/v25/23-0183.html>.
- 688 Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration for
 689 long horizon multi-goal reinforcement learning, 2020. URL <https://arxiv.org/abs/2007.02832>.
- 690 Nicholas Rhinehart, Jenny Wang, Glen Berseth, John D Co-Reyes, Danijar Hafner, Chelsea Finn, and Sergey
 691 Levine. Information is power: Intrinsic control via information capture. In A. Beygelzimer, Y. Dauphin,
 692 P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL
 693 <https://openreview.net/forum?id=M076tBoz9RL>.
- 694 Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). *IEEE Transactions
 695 on Autonomous Mental Development*, 2(3):230–247, 2010. doi: 10.1109/TAMD.2010.2056368.

- 702 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
 703 algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- 704 Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman. Data-
 705 efficient reinforcement learning with self-predictive representations. In *International Conference on Learning
 706 Representations*, 2021. URL <https://openreview.net/forum?id=uCQfPZwRaUu>.
- 707 Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Planning to
 708 explore via self-supervised world models. In *International conference on machine learning*, pp. 8583–8592.
 709 PMLR, 2020.
- 710 Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards for approximate bayesian
 711 reinforcement learning. *arXiv preprint arXiv:1203.3518*, 2012.
- 712 Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement learning with
 713 deep predictive models. *arXiv preprint arXiv:1507.00814*, 2015.
- 714 Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip
 715 DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep reinforcement
 716 learning. *Advances in neural information processing systems*, 30, 2017.
- 717 Sebastian B Thrun. *Efficient exploration in reinforcement learning*. Carnegie Mellon University, 1992.
- 718 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In A. Beygelzimer,
 719 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
 720 2021. URL <https://openreview.net/forum?id=2a96Bf7Qdrg>.
- 721 Ahmed Touati, Jérémie Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In *The
 722 Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=MYEap_OcQI.
- 723 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and
 724 uniformity on the hypersphere. In *International conference on machine learning*, pp. 9929–9939. PMLR,
 725 2020.
- 726 Zhi-Xiong Xu, Xi-Liang Chen, Lei Cao, and Chen-Xi Li. A study of count-based exploration and bonus for
 727 reinforcement learning. In *2017 IEEE 2nd International Conference on Cloud Computing and Big Data
 728 Analysis (ICCCBDA)*, pp. 425–429. IEEE, 2017.
- 729 Rushuai Yang, Chenjia Bai, Hongyi Guo, Siyuan Li, Bin Zhao, Zhen Wang, Peng Liu, and Xuelong Li. Behavior
 730 contrastive learning for unsupervised skill discovery. In *International conference on machine learning*, pp.
 731 39183–39204. PMLR, 2023.
- 732 Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with prototypical
 733 representations. In *International Conference on Machine Learning*, pp. 11920–11931. PMLR, 2021.
- 734 Ruihan Zhao, Kevin Lu, Pieter Abbeel, and Stas Tiomkin. Efficient empowerment estimation for unsu-
 735 pervised stabilization. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=u2YNJPcQlwg>.
- 736 Chongyi Zheng, Jens Tuyls, Joanne Peng, and Benjamin Eysenbach. Can a MISL fly? analysis and ingredients for
 737 mutual information skill learning. In *The Thirteenth International Conference on Learning Representations*,
 738 2025. URL <https://openreview.net/forum?id=xoIeVdFO7U>.
- 739 Alicia Ziarko, Michał Bortkiewicz, Michał Zawalski, Benjamin Eysenbach, and Piotr Miłoś. Contrastive
 740 representations for temporal reasoning. In *The Thirty-ninth Annual Conference on Neural Information
 741 Processing Systems*, 2025. URL <https://openreview.net/forum?id=UlkcH5Ccrk>.
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 **A USAGE OF LARGE LANGUAGE MODELS (LLMs)**
757758 We used LLMs as a grammar and spelling correction tool. We provide each section in the prompt and
759 ask the LLM to correct any obvious grammatical or spelling mistakes; however, we prevent the LLM
760 from changing the style or introducing any new claims.
761762 **B SAMPLE EFFICIENCY OF C-TEC**
763764
765 In this section, we show the performance of C-TeC with different amounts of environment steps.
766 In the main experiments, we used 500M environment steps. In Table 1, we present the results of
767 running C-TeC with significantly fewer environment steps: 50M (10x less) and 30M (16x less)
768 than the main experiments. Our results demonstrate that C-TeC can explore effectively with fewer
769 environment interactions, and they also highlight C-TeC’s scalability with respect to the number of
770 environment interactions, an important property for a pure exploration method. We also visualize the
771 state coverage with the C-TeC reward heatmap in the ant-hardest-maze by plotting the x,y positions
772 that the agent covered during training (Figure 8).
773

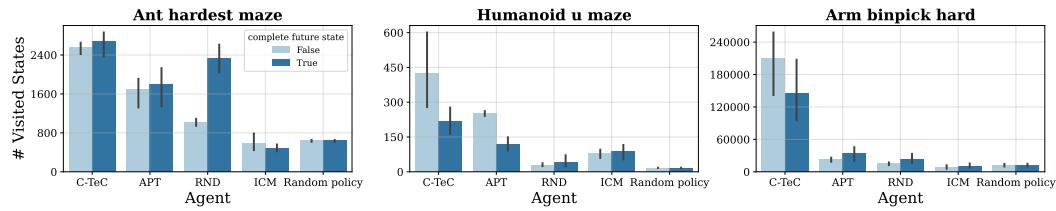
Environment	500M steps	50M steps	30M steps
Ant-hardest-maze	2500 ± 300	1916 ± 430	1119 ± 304
Humanoid-u-maze	230 ± 40	143 ± 34	102 ± 11
Arm-binpick-hard	135000 ± 10000	40000 ± 14000	31150 ± 3156

774
775 Table 1: Sample Efficiency of C-TeC
776
777778
779 Figure 8: **C-TeC State Coverage** The Black circle in the lower left corner is the starting state.
780 The figure on the left shows the state coverage when we run C-TeC with 50M environment steps
781 in ant-hardest-maze. On the right, we show state coverage when we run C-TeC with 500M
782 environment steps.
783801 **C DOES C-TEC’S CONTRASTIVE MODEL SUFFER FROM REPRESENTATION
802 COLLAPSE?**
803804
805 In this section, we investigate the representations of C-TeC’s contrastive model. Specifically, do
806 the contrastive representations suffer from mode collapse? This is a common issue in contrastive
807 learning, as one possible local optimum is to output a constant vector if the negative examples are not
808 chosen carefully. As a measure for collapse, we plot the variance of the contrastive representations in
809 the robotic environments during training in Figure 9. Our plot shows that C-TeC does not suffer from
810 mode collapse, and the variance is steady during most of the training time.
811

Figure 9: **Representations Variance** C-TeC’s contrastive model does not suffer from mode collapse.

D INCORPORATING PRIOR KNOWLEDGE

Figure 10 shows the performance when we incorporate prior knowledge on our method by restricting the future state to specific components of the state vector. Each agent is run with 5 random seeds, and we plot the mean and standard deviation (Patterson et al., 2024).

Figure 10: **State coverage when leveraging prior knowledge** C-TeC outperforms prior methods APT, RND, ICM, and can explore effectively when leveraging prior knowledge. This shows the improved flexibility of C-TeC in incorporating prior knowledge by narrowing the exploration space compared to prior work.

E TRAINING DETAILS

We summarize the hyperparameters and model architectures for all experiments. In Appendix E.1, we provide the training details for the locomotion and manipulation experiments. In Appendix E.2, we provide the details of the Craftax experiments. In Appendix E.3, we provide the details of each environment.

Finally, in Appendix G, we include the ablation experiments.

E.1 ROBOTICS ENVIRONMENTS

In the robotics environments, we used SAC as the RL algorithm. Table 2 shows the hyperparameters that are shared across all methods. Table 3 and Table 4 show the algorithm-specific hyperparameters for C-TeC and the baselines, respectively.

864	Hyperparameter	Value
865	num_timesteps	500,000,000
866	max_replay_size	10,000
867	min_replay_size	1,000
868	episode_length	1,000
869	discounting	0.99
870	num_envs	1024 (256 for humanoid_u_maze)
871	batch_size	1024 (256 for humanoid_u_maze)
872	multiplier_num_sgd_steps	1
873	action_repeat	1
874	unroll_length	62
875	policy_lr	3e-4
876	critic_lr	3e-4
877	hidden layers (for both actor and critic)	[256,256]

Table 2: Hyperparameters for all methods in robotics environments

883	Hyperparameter	Value
884	contrastive_lr	3e-4
885	contrastive_loss_function	InfoNCE
886	similarity_function	L1
887	logsumexp_penalty	0.1
888	hidden layers (for both encoders)	[1024,1024]
889	representation dimension	64

Table 3: Hyperparameters for C-TeC in robotics environments

894	Hyperparameter	Value
895	rnd encoder lr	3e-4
896	rnd embedding dim	512
897	rnd encoder hidden layers	[256, 256]
898	icm encoder lr (forward and inverse models)	3e-4
899	icm embeddings_dim	512
900	icm encoders hidden layers	[1024, 1024]
901	icm weight on forward loss	0.2
902	apt contrastive lr	3e-4
903	apt similarity function	L1
904	apt contrastive hidden layers	[1024, 1024]
905	apt representation dimension	64
906	Augmentation type	$\mathcal{N}(0, 0.5)$

Table 4: Hyperparameters for baselines in robotics environments

E.2 CRAFTAX

In Craftax, we used PPO as the RL algorithm². Table 5 shows the hyperparameters shared across all methods. Table 6 and Table 7 show the algorithm-specific hyperparameters for C-TeC and the baselines, respectively.

²https://github.com/MichaelTMatthews/Craftax_Baselines

918	Hyperparameter	Value
919	920 num_timesteps	1,000,000,000
921	922 num_steps	64
923	924 learning_rate	2e-4
925	926 anneal_learning_rate	True
927	928 update_epochs	4
929	930 discounting	0.99
930	931 gae_lambda	0.8
931	932 clip_epsilon	0.2
932	933 ent_coeff	0.01
933	934 max_grad_norm	1.0
934	935 activation	tanh
935	936 action_repeat	1
936	937 RNN_layers (GRU)	[512 (embedding dim), 512 (hidden dim)]
937	938 hidden layers (both actor and value)	[512, 512]

Table 5: Hyperparameters for all methods in robotics environments

937	Hyperparameter	Value
938	939 contrastive_lr	3e-4
939	940 contrastive_loss_function	InfoNCE
940	941 similarity_function	L2
941	942 Discounting	0.3
942	943 logsumexp_penalty	0.0
943	944 hidden layers (for both encoders)	[1024, 1024, 1024]
944	945 representation dimension	64

Table 6: Hyperparameters for C-TeC in Craftax

949	Hyperparameter	Value
950	951 rnd encoder lr	3e-4
951	952 rnd embedding dim	512
952	953 rnd encoder hidden layers	[256, 256]
953	954 icm encoder lr (forward and inverse models)	3e-4
954	955 icm embeddings_dim	512
955	956 icm encoders hidden layers	[256, 256]
956	957 icm weight on forward loss	1.0
957	958 e3b (icm) lambda	0.1

Table 7: Hyperparameters for baselines in Craftax

E.3 ENVIRONMENT DETAILS

- **Ant-hardest-maze** The observation space of this environment has 29 dimensions, consisting of joint angles, angular velocities, and the x,y position of the ant’s torso. The action space is 7-dimensional, representing the torque applied to each joint.
- **Humanoid-u-maze** The observation space of this environment has 268 dimensions, consisting of joint angles, angular velocities, and the x,y position of the humanoid’s torso. The action space is 17-dimensional, representing the torque applied to each joint.
- **Arm-binpick-hard** The observation space of this environment has 18 dimensions, consisting of joint angles, angular velocities, the cube position, and the end-effector position and offset. The action space is 5-dimensional, representing the displacement of the end-effector.

- 972
 973
 974
 975
 976
- **Craftax-Classic** The observation space is a one-hot encoding of size 1345, capturing player information (inventory, health, hunger, attributes, etc.) as well as the types of blocks and creatures within the player’s visual field. The action space is discrete and consists of 17 actions.

977 E.4 DETAILS ON C-TEC REWARD
 978

979 One important detail is that the policy’s objective is slightly different from the (negative) representation
 980 objective (Equation (2)) because it omits the log-sum-exp term. This can be seen by rewriting
 981 the reward function as follows:

982
$$r_{\text{intr}}(s, a) = \mathbb{E}_{p_{\mathcal{T}}(s_f|s, a)} [\underbrace{\|\phi(s, a) - \psi(s_f)\| + \log \sum_{s'_f} e^{-\|\phi(s, a) - \psi(s'_f)\|}}_{\text{(neg) contrastive loss}} - \log \sum_{s'_f} e^{-\|\phi(s, a) - \psi(s'_f)\|}].$$

 983
 984
 985
 986

987 To further gain intuition for what this is doing, we note that (in practice) the $\phi(s, a)$ representations
 988 are quite similar to the $\psi(s)$ representation evaluated at the same state. Thus, we can approximate
 989 this second term as

990
 991
$$\log \sum_{s'_f} e^{-\|\psi(s) - \psi(s'_f)\|} \approx \log \hat{p}(s),$$

 992
 993

994 which we identify as a kernel density estimate of the marginal likelihood of state s under the replay
 995 buffer distribution $p_{\mathcal{T}}(s)$. This observation helps explain why including the log-sum-exp term in the
 996 reward would degrade performance – it effectively corresponds to *minimizing* state entropy, which can
 997 often hinder exploration, especially in environments without much noise (Zheng et al., 2025). One
 998 additional consideration here is that, because the likelihood is measured using learned representations,
 999 it is sensitive to the policy’s understanding of the environment. While ordinarily maximizing state
 1000 entropy can lead to degenerate solutions (like the noisy TV), our approach mitigates this problem
 1001 because the contrastive representations will only learn features that are predictive of future states
 1002 (hence, they would ignore a noisy TV).

1003 E.4.1 VARIANCE REDUCTION IN THE REWARD ESTIMATE

1004 We can decrease the variance in our estimate of the expectation in Equation (3) by looking at all
 1005 future states $s_f = s_{t+1}, s_{t+2}, \dots$ and weighting each summand by γ^i :

1006
$$r_t = \mathbb{E}_{p(s_f|s_t, a_t)} [r_{\text{int}}(s_t, a_t, s_f)]$$
 (8)

1007
$$= \mathbb{E}_{p(s_f|s_t, a_t)} [\|\phi(s, a) - \psi(s_f)\|_2]$$
 (9)

1008
$$\approx \frac{1 - \gamma^{H-t}}{1 - \gamma} \sum_{t'=t}^H \gamma^{t'-t} \|\phi(s, a) - \psi(s_{t'})\|_2$$
 (10)

1009 The (unbiased) approximation comes because we only look at future states that occur in one trajectory,
 1010 and other trajectories might visit different future states. The ugly fraction is the normalizing constant
 1011 for a truncated geometric series. In the last line, note that the summation $\sum_{t'=t}^H \gamma^{t'-t} \psi(s_{t'})$ can
 1012 be quickly computed for every r_t by starting at $T = H$ and decrementing t , updating $\psi_{\text{sum}} =$
 1013 $\psi(s_t) + \gamma \psi_{\text{sum}}$. This is the same trick that’s usually used for computing the empirical future returns
 1014 in REINFORCE, and decreases compute from $\mathcal{O}(H^2)$ to $\mathcal{O}(H)$. We use this estimator in Craftax-
 1015 Classic but we found that omitting the normalization term results in much better performance.

1016 F COMPUTE RESOURCES

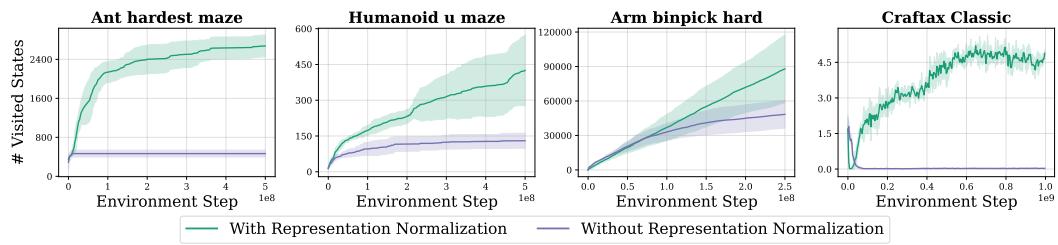
1017 In all experiments, we use 2 CPUs, a single GPU, and 8 GB of RAM. The specific GPU type varies
 1018 depending on the job scheduling system, but most experiments run on NVIDIA RTX 8000 or V100
 1019 GPUs. Training in the robotics environments takes approximately 24 hours on average, while Craftax
 1020 experiments require around 30 hours.

1026 G ABLATION STUDY

1028 To understand the contribution of each component to the overall performance of C-TeC, we conduct
 1029 an ablation study on several key elements of the algorithm, illustrated in the following section.
 1030

1031 G.1 REPRESENTATION NORMALIZATION

1034 Is it important to normalize the contrastive representations when computing the intrinsic reward? To
 1035 answer this question, we compare the exploration performance of C-TeC across all environments,
 1036 keeping all hyperparameters fixed except for the normalization of the representations.
 1037



1046 **Figure 11: Normalizing the contrastive representations.** Normalizing the representations is crucial
 1047 for effective exploration—using unnormalized representations significantly degrades exploration
 1048 performance.
 1049

1051 G.2 CONTRASTIVE LOSSES

1053 We compare the performance of C-TeC using different contrastive loss functions. Specifically, we
 1054 evaluate InfoNCE, symmetric InfoNCE, NCE (Hjelm et al., 2019), FlatNCE (Chen et al., 2021),
 1055 and a Monte-Carlo version of the forward-backward (FB) (Touati & Ollivier, 2021) loss, as defined
 1056 in [Equation (11)–Equation (15)]. Figure 12 presents the results. Overall, NCE leads to poorer
 1057 exploration, particularly in Craftax. InfoNCE and symmetric InfoNCE exhibit similar performance
 1058 across all environments. In general, the method is reasonably robust to the choice of contrastive loss.
 1059

$$\mathcal{L}_{\text{InfoNCE}}(\theta) = - \sum_{i=1}^K \log \left(\frac{e^{C_\theta((s_i, a_i), s_f^{(i)})}}{\sum_{j=1}^K e^{C_\theta((s_i, a_i), s_f^{(j)})}} \right) \quad (11)$$

$$\mathcal{L}_{\text{symmetric_InfoNCE}}(\theta) = - \left[\sum_{i=1}^K \log \left(\frac{e^{C_\theta((s_i, a_i), s_f^{(i)})}}{\sum_{j=1}^K e^{C_\theta((s_i, a_i), s_f^{(j)})}} \right) + \log \left(\frac{e^{C_\theta((s_i, a_i), s_f^{(i)})}}{\sum_{j=1}^K e^{C_\theta((s_j, a_j), s_f^{(i)})}} \right) \right] \quad (12)$$

$$\mathcal{L}_{\text{Binary(NCE)}}(\theta) = - \left[\sum_{i=1}^K \log \left(\sigma \left(C_\theta((s_i, a_i), s_f^{(i)}) \right) \right) - \sum_{j=2}^K \log \left(1 - \sigma \left(C_\theta((s_i, a_i), s_f^{(j)}) \right) \right) \right] \quad (13)$$

$$\mathcal{L}_{\text{FlatNCE}}(\theta) = - \sum_{i=1}^K \log \left(\frac{\sum_{j=1}^K e^{C_\theta(s_i, a_i, s_f^{(j)}) - C_\theta(s_i, a_i, s_f^{(i)})}}{\text{detach} \left[\sum_{j=1}^K e^{C_\theta(s_i, a_i, s_f^{(j)}) - C_\theta(s_i, a_i, s_f^{(i)})} \right]} \right) \quad (14)$$

$$\mathcal{L}_{\text{FB}}(\theta) = - \sum_{i=1}^K \left(e^{C_\theta(s_i, a_i, s_f^{(i)})} \right) + \frac{1}{2(K-1)} \sum_{i=1}^K \sum_{\substack{j=1 \\ j \neq i}}^K \left(e^{C_\theta(s_i, a_i, s_f^{(j)})} \right)^2 \quad (15)$$

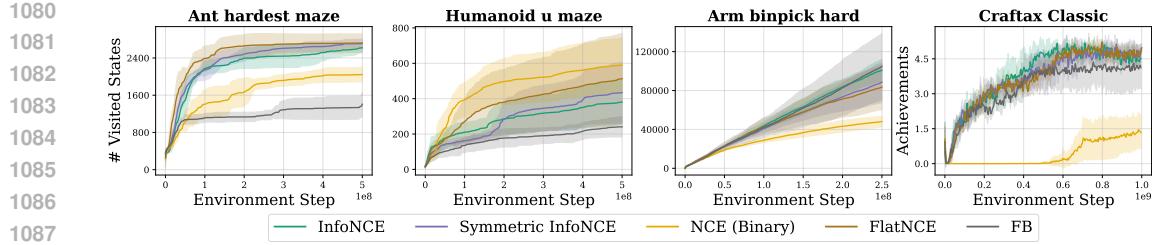


Figure 12: **Comparison of Different Contrastive Losses.** Overall, C-TeC is robust to the choice of contrastive loss. A notable exception is the Binary NCE loss in Craftax, where it performs relatively poorly.

G.3 CONTRASTIVE CRITIC FUNCTIONS

We compare four critic similarity functions shown below:

$$C_\theta((s_t, a_t), s_f)_{L1} = -\|\phi_\theta(s_t, a_t) - \psi_\theta(s_f)\|_1. \quad (16)$$

$$C_\theta((s_t, a_t), s_f)_{L2} = -\|\phi_\theta(s_t, a_t) - \psi_\theta(s_f)\|_2. \quad (17)$$

$$C_\theta((s_t, a_t), s_f)_{L2-w/o-sqrt} = -\|\phi_\theta(s_t, a_t) - \psi_\theta(s_f)\|_2^2 \quad (18)$$

$$C_\theta((s_t, a_t), s_f)_{dot} = -\phi_\theta(s_t, a_t)^\top \psi_\theta(s_f) \quad (19)$$

Figure 13 shows the results. In general, using the L_1 distance yields the best performance across the robotic environments, while L_2 performs better in Craftax. This highlights the importance of this design choice and suggests that some tuning may be required to select the most effective critic function.

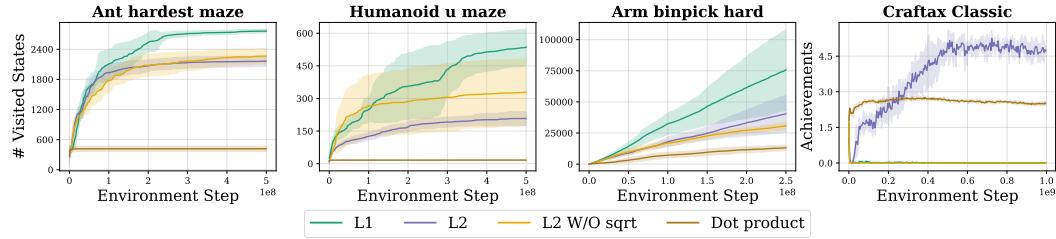


Figure 13: **Comparison of Critic function.** Overall, the L_1 distance yields the best performance across the robotic environments, while L_2 performs better in Craftax.

G.4 CONTRASTIVE CRITIC ARCHITECTURE

In this ablation we compare two architectures of the contrastive critic, the separable architecture $(\phi_\theta(s_t, a_t), \psi_\theta(s_f))$, which is the one we use in all of our experiment, and the monolithic critic f_θ i.e., a single model that takes in triplet $f(s, a, s_f)$.

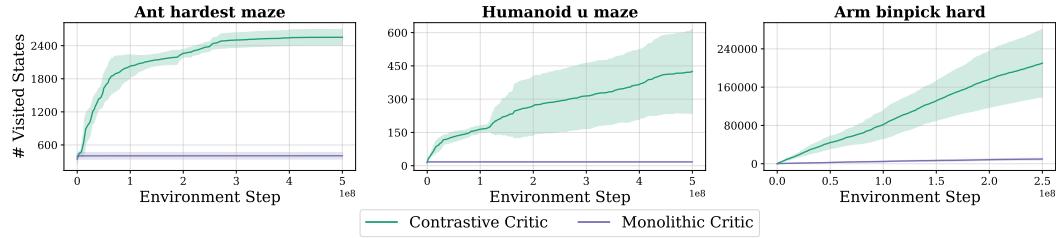


Figure 14: **Critic parameterization** Using a monolithic critic results in poor exploration performance, while using the separable architecture results in much better exploration. This shows the importance of the critic parameterization as a distance function between two representations.

Importantly, these experiments show that the factorized representation parameterization is a necessary (relative to the monolithic critic) condition for effective exploration. We discuss the possible failure mode of using the monolithic critic in Section 5.2. These experiments do not demonstrate sufficiency, and we claim that the information-theoretic interpretation for a critic that fully captures the point-wise MI is still useful for analysis.

G.5 FORWARD VS. REVERSE KL

As mentioned in Section 5.1, we hypothesized that the reverse KL C-TeC reward is important for exploration. As it encourages mode-seeking behavior (prioritizing unfamiliar states), to test this hypothesis we run C-TeC with the negative-forward KL reward (Equation (20)), the results shown in Appendix G.5 indicates that using the reverse is necessary for exploration.

$$\begin{aligned} \mathbb{E}[r_{\text{intr}}(s_t, a_t)] &= -\mathbb{E}_{p_{\mathcal{T}}(s_f)} \left[\log \frac{p_{\mathcal{T}}(s_f)}{p_{\mathcal{T}}(s_f \mid s_t, a_t)} \right] \\ &= -D_{\text{KL}}[p_{\mathcal{T}}(s_f) \parallel p_{\mathcal{T}}(s_f \mid s_t, a_t)] \leq 0. \quad (D_{\text{KL}} \text{ is always non-negative.}) \end{aligned} \quad (20)$$

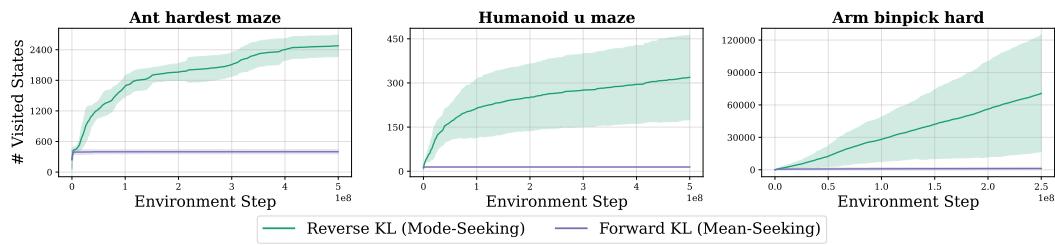


Figure 15: **Forward vs Reverse KL** C-TeC with the reverse KL reward promotes mode-seeking behavior which encourages the agent to prioritize visiting unfamiliar states resulting in much better exploration.

G.6 FUTURE STATE SAMPLING STRATEGY

In this experiment (Figure 16), we investigate the sensitivity of C-TeC to the future state sampling strategy. Specifically, we consider two variants in addition to the geometric sampling. The first is uniformly sampling from the future. Unlike geometric sampling, uniform sampling does not prefer states that are sooner in the future over later ones. The second is geometric sampling with an increasing γ value. The intuition behind this strategy is that exploring nearby states is easier for the agent at the start of training, and as the agent becomes better at exploring them, it can progressively explore farther states in the future. We refer to this strategy as the γ -schedule, and we experiment with two different starting values of γ : one ranging from $\gamma = 0.9$ to $\gamma = 0.99$, and another from $\gamma = 0.1$ to $\gamma = 0.99$. The results are shown in Figure 16. Regardless of the future state sampling strategy, the contrastive method explores better than the baselines in all three environments and appears robust.

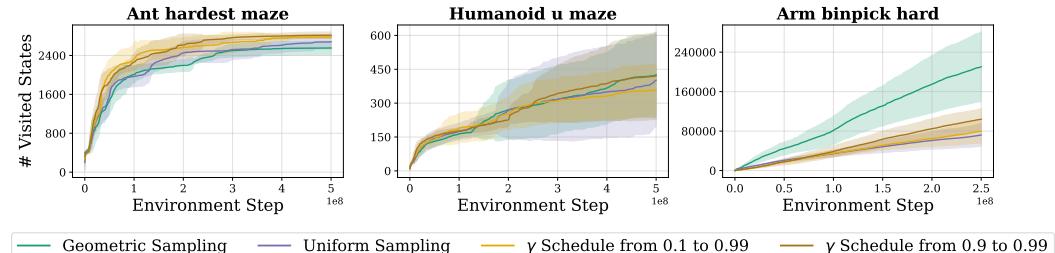


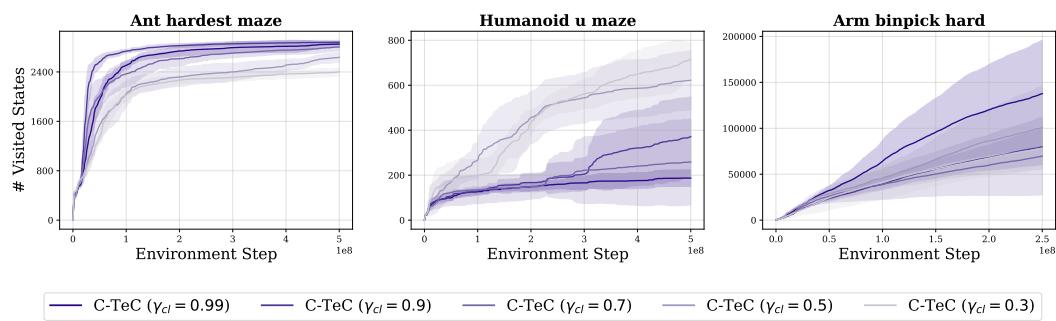
Figure 16: **Sensitivity to future state sampling strategy.** We compare variants of C-TeC with different future state sampling strategies, the method is robust to the choice of the sampling strategy and all the variants outperform the baselines.

1188
1189

G.7 EFFECT OF THE CONTRASTIVE MODEL DISCOUNT FACTOR

1190
1191
1192
1193
1194
1195
1196
1197

We study the effect of the discount factor γ_{cl} in Equation (1), which defines the sampling window of future states; this discount is distinct from the discount factor γ used in the underlying RL algorithm. We found that, in general, a discount value of $\gamma_{cl} = 0.99$ yields good exploration performance; however, we suspect that adjusting the discount might result in better performance depending on the environment. Figure 17 shows the results in the robotic environments. In humanoid-u-maze, smaller values of γ_{cl} result in better performance. In ant-hardest-maze, a discount of $\gamma_{cl} = 0.9$ leads to faster exploration; however, by the end of training, performance is similar. Finally, in arm-binpick-hard, a discount of $\gamma_{cl} = 0.99$ achieves the best performance.

1198
1199
1200
1201
1202
1203
1204
1205
1206

1207

Figure 17: **Sensitivity of C-TeC to the discount factor** Different environments require different discount factors to obtain the best exploration performance.

1212
1213
1214
1215
1216
1217
1218
1219
1220G.8 EFFECT OF THE TEMPERATURE PARAMETER τ

In practice, τ (Equation (2)) is learned during training as an additional learnable parameter. However, we study the effect of different fixed values of τ . Intuitively, we can think of τ as a weight on the alignment and uniformity terms in the contrastive loss (Wang & Isola, 2020): smaller values of τ put more weight on the alignment term, while larger values put more weight on the uniformity term. Figure 18 illustrates that a temperature value of 1 often results in good performance, indicating the importance of both alignment and uniformity in learning representations for exploration.

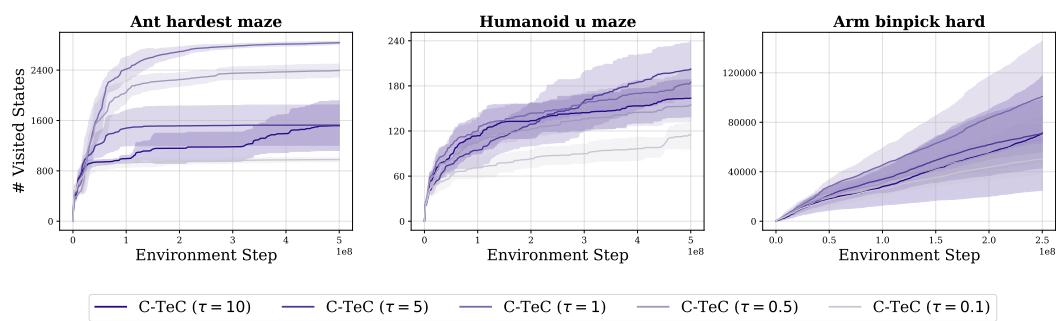
1221
1222
1223
1224
1225
1226
1227
1228
12291231
1232
1233
1234

Figure 18: **Sensitivity of C-TeC to the temperature τ in the contrastive loss (Equation (2))** C-TeC is sensitive to the temperature parameter, however, in general, a value of $\tau = 1$ yields a large state coverage across environments.

1235
1236
1237

G.9 IN-EPIISODE VS ACROSS-EPIISODE NEGATIVE SAMPLING

1238
1239
1240
1241

Contrastive learning requires negative sampling to prevent representations from collapsing. In practice, for each batch sample, the positive examples of other samples are treated as negatives, following common practice (Chen et al., 2020). However, it might be desirable to sample negatives from the same trajectory, and results from Zdziarski et al. (2025) suggest that doing so leads to learning better temporal structures compared to standard practice. To sample negatives in-episode, we utilize the

method from Ziarko et al. (2025), where we control the amount of in-episode negatives by duplicating the same trajectory in the sampled batch. We adjust the amount of duplication using a repetition factor, where a repetition factor of 1 is equivalent to sampling negatives across episodes, and larger values indicate more in-episode samples. Figure 19 shows that in-episode sampling can result in better exploration performance, particularly in `humanoid-u-maze` and `arm-binpick-hard`.

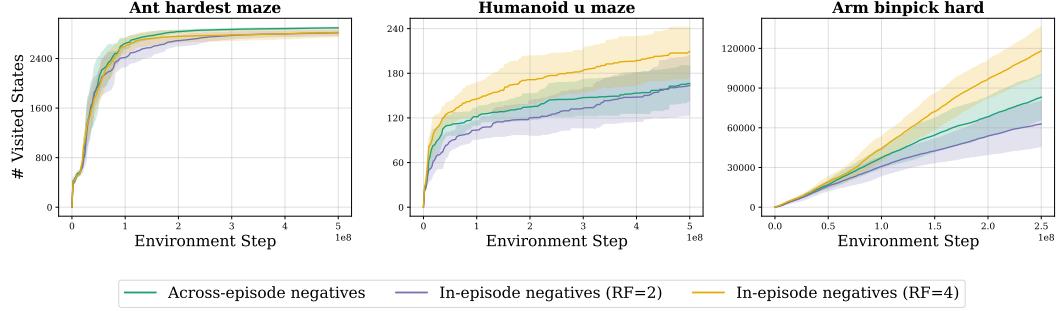


Figure 19: **In-episode vs Across-episode negative sampling** Sampling in-episode negatives results in additional performance boost in `humanoid-u-maze` and `arm-binpick-hard`.

H EXPLORATION IN NOISY TV SETTING

We investigate C-TeC performance in the presence of a noisy TV state, we run this experiment on a modified grid environment from `xland-minigrid` (Nikulin et al., 2024) of size 256×256 Figure 21 with a noisy TV region. We did not observe any evidence of worse exploration performance namely the agent has covered all the states in the grid world, Appendix H shows the state coverage of C-TeC compared to the maximum coverage.

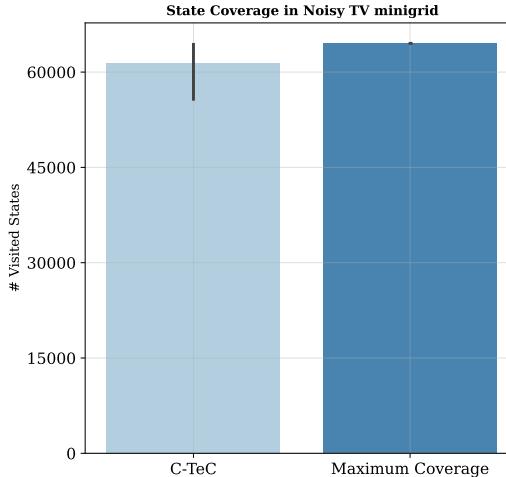


Figure 20: **C-TeC Coverage in noisy TV setting** C-TeC can effectively explore in the presence of noisy states

I COMPARISON WITH PREVIOUS METHODS

At a high level, C-TeC is related to other intrinsic exploration objectives that reward uncertainty. Objectives such as RND (Burda et al., 2019b) and Disagreement (Pathak et al., 2019) explore unfamiliar states, presumably leading to these states becoming more familiar in future rounds. A related method, CURL (Du et al., 2021), also relies on using a negative contrastive similarity score

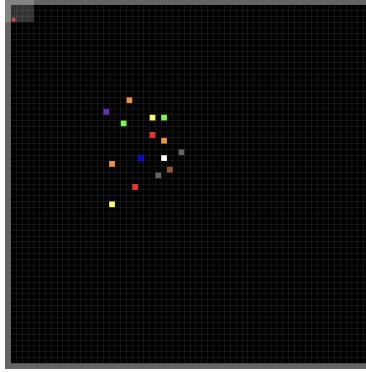


Figure 21: Xland-Minigrid (Nikulin et al., 2024) with noisy TV states indicated by the random colors.

for exploration like C-TeC. CURL prioritizes exploration over states with high error/low similarity scores with augmented states; however, the contrastive features learned in CURL are not temporal and can be concretely related to prediction error.

The key difference between prior methods and C-TeC lies in the usage of temporal contrastive features. Our method drives the agent to explore areas where *future* outcomes have been seen but appear improbable. Taken together, our analysis and results show that temporal contrastive representations are simple yet powerful frameworks for intrinsic motivation.

J INTRINSIC REWARD INTERPRETATION

On information-theoretic interpretation of reward. The intrinsic reward with representations rewards (s, a) pairs that result in the largest additional number of bits needed to encode the representation induced $p_{\phi, \psi}(s_f | s_t, a_t)$ with a code optimized for the marginal $p_{\phi, \psi}(s_f)$. In other words, it prioritizes exploration in areas where the representation encoding schemes is highly inefficient.

On information-theoretic interpretation of objective assuming perfect estimation of point-wise MI. We assume that representations perfectly capture point-wise MI. Taking an additional expectation of the roll-out state-occupancy reveals that the PPO/SAC objective is a minimization of MI

$$J^\pi = \mathbb{E}_{p_\pi(s, a), p_{\mathcal{T}}(s_f | s, a)}[r_{\text{intr}}(s_t, a_t)] \approx -I[S_f; S_\pi, A_\pi] \quad (21)$$

where p_π is the policy induced discounted state-occupancy measure (see Eq. 1).

On C-TeC as a Two-Player Game

In addition to quantifying temporal similarity, the converged InfoNCE loss $\mathcal{L}_{\text{CRL}}^*$ provides a lower bound on the mutual information (MI) (Ord et al., 2018; Eysenbach et al., 2021):

$$I(S_f; S_t, A_t) \geq \log K - \mathcal{L}_{\text{CRL}}^*(\mathcal{B}; \theta).$$

Contrastive learning finds representations that maximize a lower bound on the MI between *current* states and actions and *future* state distributions.

Thus, we can view C-TeC as a two-player game over an ever-expanding buffer. Namely, the CL step learns to minimize \mathcal{L}_{CRL} . Meanwhile, the policy objective learns to approximately maximize \mathcal{L}_{CRL} when state-action pairs are strictly drawn from the roll-out policy (as opposed to the entire buffer), and the conditional and marginal future-state distributions are still defined over the buffer.

J.1 NO (ACHIEVABLE) TRIVIAL FIXED POINTS

Does C-TeC have stable fixed points? Without additional simplifications, this problem is intractable. Notably, standard analysis would fail to prove convergence due to the non-convexity/concavity of the objectives. While the zero-gradient condition for the InfoNCE objective is clear, the zero-gradient condition for the objective is not obvious due to the complex relationship between π and the state occupancy measure.

1350 A more aggressive simplification that can simplify analysis of the global optimum is to (1) assume that
 1351 the policy optimization is done directly over S_π and A_π and (2) assume the representations perfectly
 1352 capture the point-wise MI. Furthermore, we assume that future states are exclusively sampled from
 1353 the one-step transition dynamics and are deterministic.

1354 In practice, these assumptions are very unrealistic; however, such simplifications have been used in
 1355 prior work on unsupervised RL to give a conceptual picture of exploration methods (Pitis et al., 2020).
 1356 Throughout, we assume fully expressive representations that capture the point-wise MI – thus, we
 1357 are strictly analyzing fixed points and fixed point-stability/achievability without taking into account
 1358 representations.

1359 Though the following analysis assumes a discrete setting (summations vs. integrals, Kronecker Deltas
 1360 vs. Dirac Deltas), we do not directly invoke the assumption of discreteness. The conclusions should
 1361 continue to hold in the continuous case assuming all relevant probability distributions are bounded
 1362 and smooth.

1363 With these simplifications, the InfoNCE objective reduces to:

$$\max_{\phi, \psi} [\log K - \mathcal{L}_{\phi, \psi}(Z_T, F_T)] \xrightarrow{K \rightarrow \infty, \text{infinitely expressive reps}} I(S_T, A_T; S_f).$$

1367 Because the “policy” optimization is fixed in $p(s_f \mid s, a)$, the MI $I(S_f; S_\pi, A_\pi)$ (see Eq. 21)
 1368 is concave in $p_\pi(s, a)$ and $p_\pi(s_f)$ (Cover & Thomas, 1991). Our objective has now reduced to
 1369 a constrained optimization problem with conditions $\sum_{s, a} p_\pi(s, a) = 1$ and $p_\pi(s, a) \geq 0$ for all
 1370 $(s, a) \in \mathcal{S} \times \mathcal{A}$.

1371 Consider the fixed point conditions given by the Lagrangian that is Lipschitz-continuous over the
 1372 probability simplex $\Delta_{\mathcal{S}}$. Let λ and $\mu(s, a)$ denote the Lagrange multipliers for the normalization and
 1373 non-negativity conditions respectively. Then, the full Lagrangian $\mathcal{L}_{\text{Lagrangian}}$ is as follows:

$$\mathcal{L}_{\text{Lagrangian}}(p_\pi, \lambda, \mu) = I(S_\pi, A_\pi; S_f) + \lambda \left(\sum_{s, a} p_\pi(s, a) - 1 \right) - \sum_{s, a} \mu(s, a) p_\pi(s, a).$$

1377 Note that by complementary slackness, we have $\mu(s, a)p_\pi(s, a) = 0$. Taking the functional derivative
 1378 of $\mathcal{L}_{\text{Lagrangian}}$ with respect to distribution $p(s, a)$ yields the KL-divergence:

$$\frac{\delta \mathcal{L}_{\text{Lagrangian}}}{\delta p_\pi}[s, a] = D_{KL}[p_T(s_f \mid s, a) \parallel p_T(s_f)] - 1 + \lambda - \mu(s, a).$$

1382 By the complementary slackness, the distribution $p_\pi(s, a)$ is a fixed point if the KL-divergence
 1383 $D_{KL}[p_T(s_f \mid s, a) \parallel p_T(s_f)]$ is constant for any (s, a) where $p_\pi(s, a)$ has support. Any deviation
 1384 would lead to a non-zero gradient at the point (s, a) . In other words, all conditional trajectory future
 1385 state distributions look equally “far” from the marginal.

1386 Stationarity over iterations of C-TeC requires an additional condition: that the D_{KL} remains constant
 1387 over all (s, a) after updating buffer $p_T(s_f)$ with states encountered during the roll-out. A model
 1388 of this is reweighing the marginal with the rollout probability distribution $p_\pi(s_f) = \sum_{s, a} p_\pi(s_f \mid
 1389 s, a)p_\pi(s, a)$:

$$D_{KL}[p_T(s_f \mid s, a) \parallel p'(s_f)] = D_{KL}[p_T(s_f \mid s, a) \parallel (1 - \alpha) \cdot p_T(s_f) + \alpha \cdot p_\pi(s_f)] \quad (22)$$

1392 where $0 < \alpha < 1$. Again, we assume deterministic dynamics for simplicity and that s_f is always the
 1393 next state (i.e. small discount factor like the Craftax setting) so the conditional distribution does not
 1394 change; otherwise, we have no easy way of determining the change in $p_T(s_f \mid s, a)$ after roll-out.

1396 We drop subscripts on transitions and simplify:

$$\begin{aligned} 1397 \text{LHS} &= \sum_{s_f} p(s_f \mid s, a) \log \frac{p(s_f \mid s, a)}{p_T(s_f)} - \sum_{s_f} p(s_f \mid s, a) \log \frac{p_T(s_f)}{(1 - \alpha) \cdot p_T(s_f) + \alpha \cdot p_\pi(s_f)} \\ 1398 &= D_{KL}[p_T(s_f \mid s, a) \parallel p_T(s_f)] - \mathbb{E}_{p(s_f \mid s, a)} \left[\log \frac{p_T(s_f)}{(1 - \alpha) \cdot p_T(s_f) + \alpha \cdot p_\pi(s_f)} \right] \\ 1399 &= C_{\text{old}} - \mathbb{E}_{p(s_f \mid s, a)} \left[\log \frac{p_T(s_f)}{(1 - \alpha) \cdot p_T(s_f) + \alpha \cdot p_\pi(s_f)} \right] \end{aligned}$$

1404 where C_{old} is the old constant D_{KL} across (s, a) . Thus, for the LHS to also be constant across (s, a) ,
 1405 the difference must also be constant. We assume that transitions are nontrivial (as in, $p(s_f | s, a) \neq$
 1406 $p(s_f)$). This implies that the updated D_{KL} remains constant iff

$$\begin{aligned} 1407 \quad (1 - \alpha) \cdot p_{\mathcal{T}}(s_f) + \alpha \cdot p_{\pi}(s_f) &= p_{\mathcal{T}}(s_f) \\ 1408 \quad \Rightarrow p_{\mathcal{T}}(s_f) &= p_{\pi}(s_f). \end{aligned}$$

1410 Under the assumptions of one-step, deterministic transitions and the α -reweighing of the buffer
 1411 distribution, the distribution $p_{\pi}(s, a)$ remains a fixed point iff the roll-out future distribution and
 1412 buffer future distribution are identical.

1413 What is the stability of these fixed points? We can do linear fixed-point stability analysis by calculating
 1414 the Jacobian of the update, where prime ('') denotes the next-step $\delta p_{\pi}(s_f)$. The update of $\delta p_{\pi}(s_f)$ is
 1415 as follows:

$$\delta p'_{\pi}(s_f) = \delta p_{\pi}(s_f) - \eta p(s_f | s, a) \left[\left(\nabla_{p_{\pi}(s, a)}^2 I(S_{\pi}, A_{\pi}; S_f) \right) \delta p_{\pi} \right] (s, a) \quad (23)$$

$$= \delta p_{\pi}(s_f) - \eta \left[\left(\nabla_{p_{\pi}(s_f)}^2 I(S_{\pi}, A_{\pi}; S_f) \right) \delta p_{\pi} \right] (s_f) \quad (\text{change of vars.})$$

$$= \left(I - \eta \nabla_{p_{\pi}(s_f)}^2 I(S_{\pi}, A_{\pi}; S_f) \right) \delta p_{\pi}(s_f), \quad (24)$$

1422 We can similarly calculate the update for $\delta p_{\mathcal{T}}(s_f)$:

$$\delta p'_{\mathcal{T}}(s_f) = \alpha \left(I - \eta \nabla_{p_{\pi}(s_f)}^2 I(S_{\pi}, A_{\pi}; S_f) \right) \delta p_{\pi}(s_f) \quad (\text{weight new traj.})$$

$$+ (1 - \alpha) \delta p_{\mathcal{T}}(s_f). \quad (\text{down-weight old traj.})$$

1427 Thus, the equation relating $(\delta p_{\pi}(s_f), \delta p_{\mathcal{T}}(s_f))$ and $(\delta p'_{\pi}(s_f), \delta p'_{\mathcal{T}}(s_f))$ is

$$\begin{pmatrix} \delta p'_{\pi}(s_f) \\ \delta p'_{\mathcal{T}}(s_f) \end{pmatrix} = \underbrace{\begin{pmatrix} I - \eta H & 0 \\ \alpha (I - \eta H) & (1 - \alpha) I \end{pmatrix}}_J \begin{pmatrix} \delta p_{\pi}(s_f) \\ \delta p_{\mathcal{T}}(s_f) \end{pmatrix}.$$

1432 to first order in iteration time τ , where H is the Hessian of the MI with respect to $p_{\pi}(s_f)$. Because
 1433 the MI is concave in $p_{\pi}(s_f)$, the Hessian H is negative semi-definite; note that if H has any negative
 1434 eigenvalues at the fixed point, the Jacobian would have at least one eigenvalue > 1 . Thus, the
 1435 non-vertex fixed points in the product of two probability simplices $\Delta_S \times \Delta_S$ (where $p_{\mathcal{T}} = p_{\pi}(s_f)$)
 1436 are either unstable, where at least one direction corresponds to an eigenvalue > 1 in the Jacobian,
 1437 or semi-stable fixed points, where the MI is locally flat at the fixed point. Finally, fixed points at
 1438 the vertices of the probability simplex (Delta functions) are uninteresting and are not observed in
 1439 practice.

1440 For an arbitrary MDP, we note that semi-stable fixed points are generally hard to achieve: a nontrivial,
 1441 non-constant transition function, random roll-outs at initialization, the mixture of policies in the
 1442 buffer, and newly encountered states prevent such semi-stable states from being easily accessible.
 1443 Particularly, the random roll-outs help prevent no-op from being a trivial fixed point.

1444 This analysis shows that there are no easily-obtainable, stable fixed points for standard MDPs even
 1445 under aggressive simplifications, implying constantly evolving probability distributions. Future work
 1446 remains to investigate the existence of dynamical steady-states and whether the reached probability
 1447 distributions cover a large region of the probability simplex.

1449 J.2 DIDACTIC TOY EXAMPLE

1451 We present a didactic example that clarifies the mode-seeking interpretation of C-TeC reward and
 1452 the difference between our reward and the ETD reward by Jiang et al. (2025). The ETD reward (at
 1453 convergence of contrastive representations) can be written as follows:

$$r_{\text{ETD}} = \min_{k \in [0, t)} \log \frac{p(s_t | s_t)}{p(s_t | s_{k < t})}. \quad (25)$$

1454 ETD rewards states s_t that are improbable from prior episodic states s_k (low $p(s_+ = s_t | s = s_k)$)
 1455 relative to $p(s_+ = s_t | s_+ = s_t)$, where the reward is computed in the worst case over the episodic

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
memory. The overall ETD objective is to maximize the discounted sum of worst-case temporal
distance. The C-TeC reward can be expressed as

$$\mathbb{E}[r_{\text{C-TeC}}] = \mathbb{E} \left[\log \frac{p(s_f)}{p(s_f | s, a)} \right]. \quad (26)$$

C-TeC rewards states that are that are improbable (have low $p(s_f | s, a)$) relative to the overall marginal $p(s_f)$. Thus, C-TeC rewards states present in the buffer (“familiarity”) that are tough to reach from the current state-action.

We show the difference in optimal agent behavior from maximizing Equation (25) and Equation (26) in a simple MDP (Figure 22). The MDP consists of a root node connected to a right and a left branch. All trajectories begin from this root node. The left branch contains fast dynamics: the agent deterministically moves down the branch to the leaf node, progressing one level per timestep.

The right branch contains sticky dynamics. With 90% probability, the agent will remain stuck at the state for a given timestep. With 10% probability, the agent will progress down the tree. The dynamics of the agent are independent of the policy after choosing the branch. Thus, this problem is a 2-armed bandit where the agent chooses a left or right branch. We consider episodes of length 30 with $\gamma = 0.99$ for both the discount factor and future state sampling in C-TeC.

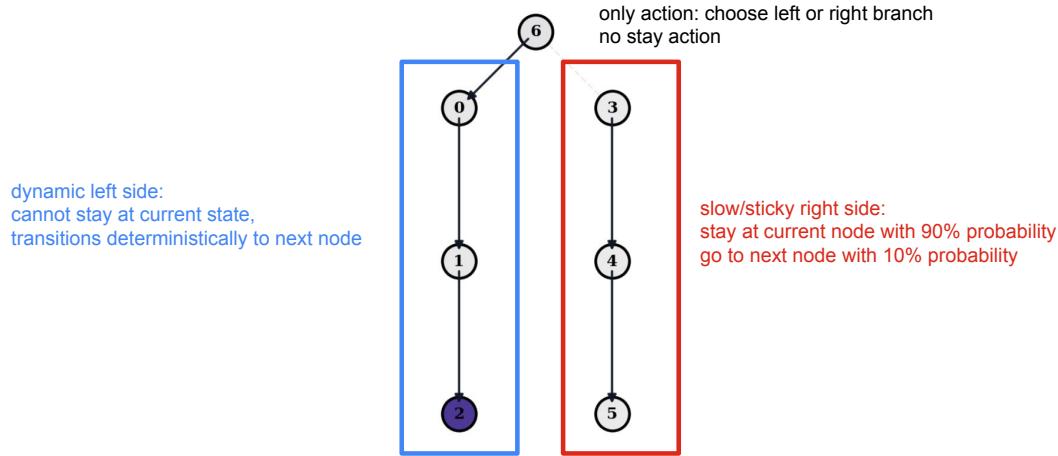
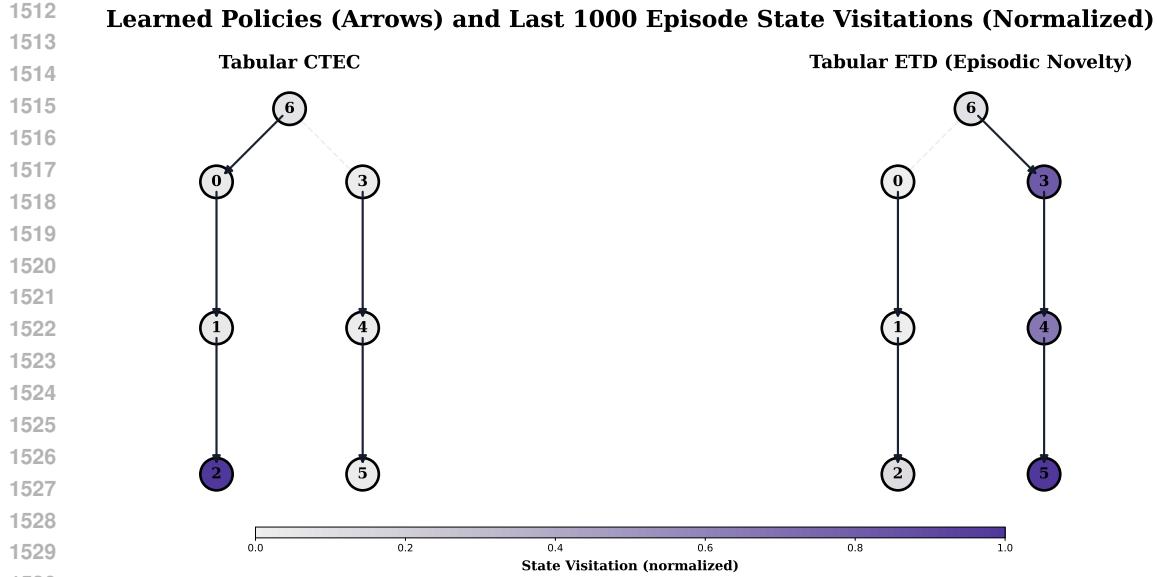


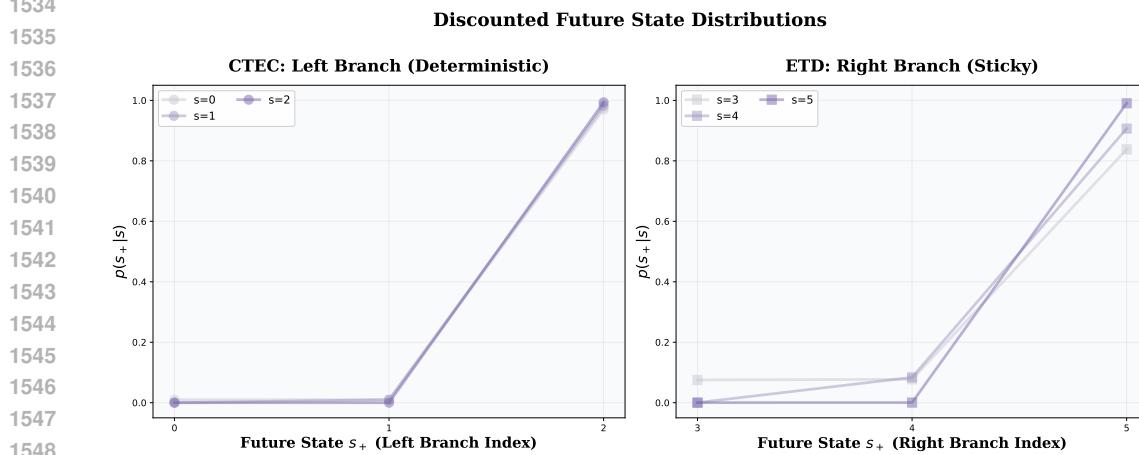
Figure 22: From the root, trajectories go either left or right. The left branch has fast, deterministic dynamics: the agent moves one level per timestep to the leaf. The right branch has slow, sticky dynamics: the agent stays in place with some probability and progresses with the remaining probability. After choosing a branch, the dynamics are policy-independent, reducing the problem to a two-armed bandit.

An agent that maximizes the C-TeC reward is incentivized to match the marginal $p(s_f)$ and $p(s_f | s, a)$. We visualize the future state distributions for different nodes in Figure 23. Clearly, the left side of the MDP leads to $p(s_f | s, a)$ that much more readily matches the marginal $p(s_f)$: the state visitation has a mode at leaf node 2 with very little probability mass on nodes 0 and 1 in the buffer. Meanwhile, the right branch assigns more visitation probability to nodes 3 and 4 from the slow dynamics: the distributions $p(s_f | s, a)$ are less aligned with the marginal. Correspondingly, the CTEC agent chooses the left, fast-moving branch, reflecting our mode-seeking interpretation, and the ETD agent chooses the right, slow-moving/sticky branch where nodes are temporally distant.

To visualize the mode-seeking nature of C-TeC, Figure 24 shows the discounted future state distribution for C-TeC on the preferred (left) side of the MDP and ETD on the preferred (right) side of the MDP. Even though the graphical MDP structure on the left and right are identical, the difference in the transition kernel splits the methods’ behaviors. The left side of the MDP more readily enables $p(s_+ | s)$ to seek modes in $p(s_+)$



1531 Figure 23: State visitation of C-TeC and ETD, C-TeC distribution has a mode on the most left node,
1532 while ETD prefers to stay in any state in the right branch



1553
1554
1555 Figure 24: Future state distribution in the toy MDP in Figure 22. C-TeC prefers the states in the
1556 left branch with fast, deterministic dynamics while ETD prefers the right branch with slow, sticky
1557 dynamics.

K FORWARD-LOOKING VS BACKWARD-LOOKING REWARDS

1558 In this section, we illustrate when a forward-looking reward like C-TeC may lead to divergent behavior
1559 when compared with ETD-type backward-looking reward (Jiang et al., 2025). We work in the tabular
1560 setting to isolate our results from any function approximation error.

1561 We claim that forward-looking rewards may be beneficial when there are environment transitions
1562 with arbitrarily long waiting times. Consider an MDP in which a subgraph is a tree with actions
1563 $\mathcal{A} = \{\text{left child, right child, stay}\}$. Actions are fully deterministic from the root, with the exception
1564 of a 10% chance of a random action at any node. At depth 1 of the tree, there is a 90% probability
1565 that taking a left child or right child action will simply lead to the agent staying in place. Episodes
1566 are of a maximum length of 10 with $\gamma = 0.9$ for both the discount and future geometric sampling
1567 parameter (Figure 25).

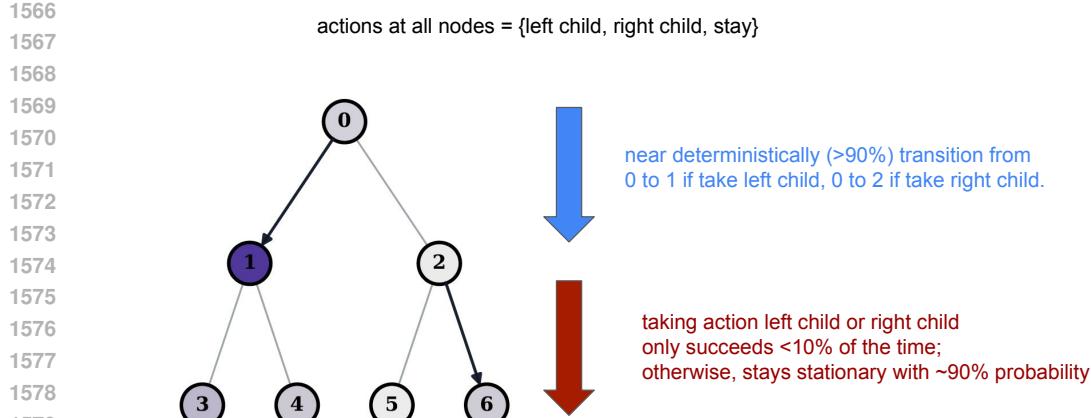


Figure 25: **Toy Tree MDP.** At the root, transitions are near deterministic. At level 1, taking the left child or right child action works only 10% of the time, while action stay works 90% of the time.

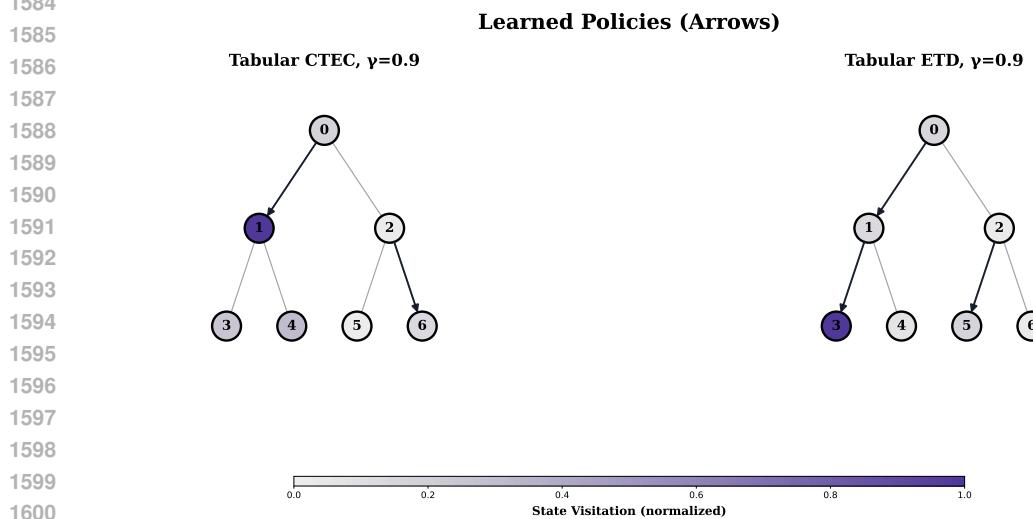


Figure 26: **forward-looking (C-TeC) vs backward-looking (ETD) rewards** As indicated by the large state visitation C-TeC prefers to stay at node 1 since it can reach multiple distinct future states, while ETD prefers to stay at node 3, the deepest node in the tree.

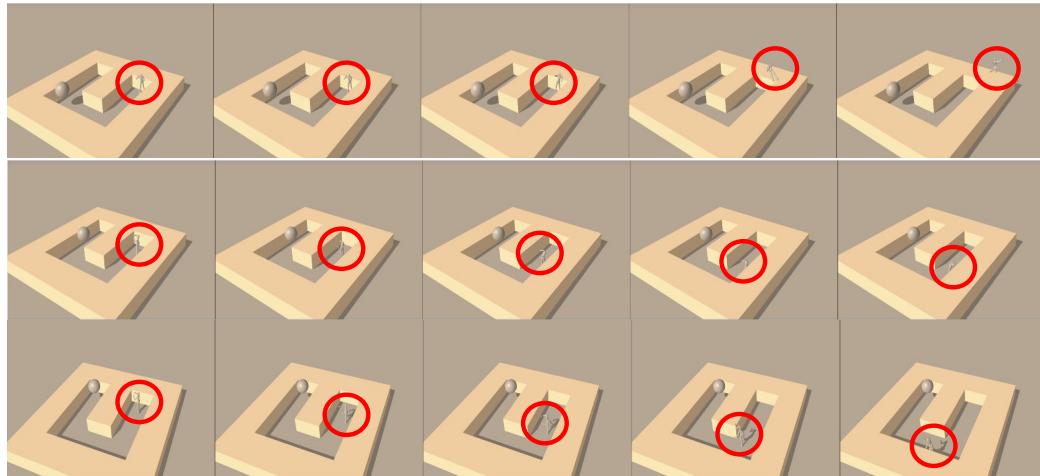
1601
 1602 By definition, temporally distant states take a long time to reach. A backward-looking agent will be
 1603 rewarded for visiting these states even if it has already visited them before, which can be a problem, as
 1604 the agent might spend valuable training time repeatedly visiting those regions. In the aforementioned
 1605 toy MDP, we expect that maximizing the backward-looking reward will incentivize the agent to
 1606 continually push down the tree, and this is indeed the result in practice. On the other hand, we expect
 1607 that maximizing the forward-looking reward will incentivize the agent to stay, for example, at state 1
 1608 or at the root, as the agent is rewarded for being in a state that can reach distinct future states.

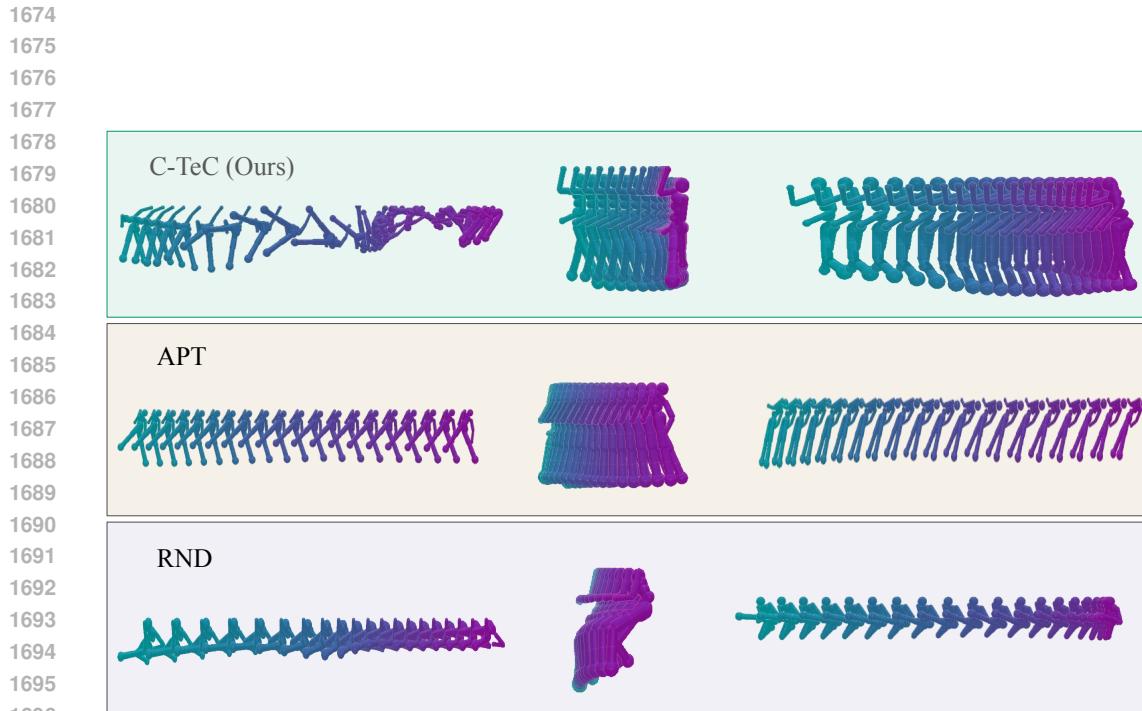
1609
 1610 To test this hypothesis, we ran C-TeC and ETD on the aforementioned MDP. We show the results
 1611 in Figure 26, where arrows display the optimal learned policy after 20k episodes and color intensity
 1612 denotes normalized state visitation in the last 1k episodes of training. Our results reflect the behavior
 1613 of forward-looking (C-TeC) and backward-looking (ETD) policies: C-TeC prefers to stay at decision-
 1614 making node 1 since it can reach diverse future states from it, while ETD tries to stay at the deepest
 1615 node.

1616
 1617
 1618
 1619

1620 **L COMPARISON TO MODEL-BASED BASELINES**
16211622 We compare C-TeC to a model-based based on Stadie et al. (2015) and we show the results in ??,
1623 C-TeC outperforms model-based exploration and explore more states.
1624

1625 Environment	1626 C-TeC	1627 MBRL (Stadie et al., 2015)
1626 Ant-hardest-maze	1627 2500 ± 300	1628 849 ± 63
1627 Humanoid-u-maze	1628 230 ± 40	31 ± 8
1628 Arm-binpick-hard	1629 135000 ± 10000	35000 ± 3170

1630 Table 8: Sample Efficiency of C-TeC
1631
16321633 **M EMERGENT EXPLORATION BEHAVIOR**
16341635 Figure 27 shows some of the learned behaviors of C-TeC in the humanoid-u-maze, where the
1636 agent learns to jump over the wall to escape the maze.
16371639
1640 Figure 27: **Emergent Exploration Behavior in humanoid-u-maze.** C-TeC exhibits interesting
1641 emergent behaviors; for example, in the humanoid-u-maze environment, the agent learns to jump
1642 over the maze walls to escape the maze. Each row represents an independent evaluation episode.
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653

Figure 28: **Qualitative Comparison in humanoid-u-maze.**Figure 29: **C-TeC Achievements.** C-TeC unlocks interesting achievements in Craftax-Classic; the plot shows a subset of the unlocked achievements during an evaluation episode.