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Abstract

Accelerating materials research using AI technologies requires high-quality, reli-
able data across a wide range of measurement conditions. Powder X-ray diffraction
(PXRD) is crucial for analyzing crystal structures and quantifying phase composi-
tions in materials science. However, PXRD reliability heavily depends on accurate
sample preparation and data analysis, including precise measurements over a broad
angular range, especially at low angles. Recent advancements in AI-driven PXRD
data analysis have improved accuracy and efficiency, shifting the bottleneck and
reproducibility issues to manual sample preparation and measurement processes.
To address these challenges, we developed an autonomous robotic experimentation
(ARE) system for PXRD that integrates sample preparation, measurement, and data
analysis into a single automated workflow. Our system achieves high precision and
reproducibility in sample preparation, enabling quantitative phase analysis with
only one-hundredth of the conventional sample quantity (reducing from 300mg to
3mg) while maintaining a standard deviation below 1%. By combining robotic
precision with machine learning-based data analysis, our approach enhances repro-
ducibility and enables more efficient materials discovery compared to traditional
manual methods.

1 Introduction

As artificial intelligence (AI) technologies are increasingly utilized in materials science, the impor-
tance of reliable data and comprehensive measurements has grown significantly. These data serve
as reference databases for human researchers as well as essential training data for AI algorithms.
Among various experimental techniques, powder X-ray diffraction (PXRD) provides crucial data
in materials science, offering diverse information such as crystal structures1–3, phase identification
and quantification4, and crystal polymorph characterization2,5–9. The versatility and importance of
PXRD data make it a cornerstone in materials research and development. To ensure the reliability of
PXRD data, accurate sample preparation and precise measurement data analysis are crucial. Recent
developments in AI-driven automated analysis methods have greatly improved the accuracy and
efficiency of data interpretation10–12. However, this progress has highlighted a new challenge: sample
preparation and measurement processes have become the bottleneck in the workflow.

Laboratory automation using robots to perform repetitive tasks reproducibly has become increasingly
important in materials research and development13–24. This trend towards automation has naturally
extended to PXRD experiments, with several research groups making significant contributions to the
development of automated systems for PXRD sample preparation and analysis22,24,25. While these
studies have made significant strides in PXRD automation, several critical challenges remain to be
fully addressed. These include ensuring sample homogeneity, achieving optimal surface smoothness,
and effectively reducing background noise, particularly in the low-angle region.
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The minimization of background noise is a critical challenge in obtaining high-quality PXRD
measurement data. Background noise affects analysis results, potentially hindering the accurate
estimation of important parameters such as weight fractions. Conventional methods of fixing powders
on sample holders, such as the use of grease or Kapton tape, often increase background noise, which
is particularly problematic for low-angle measurements. The accuracy of low-angle measurements
is crucial for characterizing a wide range of materials, including organic compounds26,27 and lead
halide perovskites28–31, where it is essential for identifying reactants, products, and verifying reaction
occurrences. Therefore, minimizing background noise and enhancing low-angle measurement
precision are critical for expanding the applicability of automated PXRD systems to a broader range
of materials, including complex structures like metal-organic frameworks.

To address these challenges, we have developed an autonomous robotic experimentation (ARE)
system for PXRD that aims to achieve high-precision quantitative analysis. This ARE system
integrates and automates the entire PXRD workflow, from sample preparation to measurement and
data analysis. By combining robotic precision in sample preparation with data analysis through black-
box optimization, our system demonstrates significant progress in PXRD automation, potentially
offering improvements in efficiency and data quality compared to conventional methods.

Our approach minimizes human error, enabling efficient acquisition of reproducible, high-quality
data, particularly in the low-angle region.

In summary, our contributions are as follows:

1. We developed an autonomous experimentation system for PXRD that integrates the entire
workflow from sample preparation to data analysis; compared to manual methods, our
system achieved high precision and reliability in sample preparation.

2. We demonstrated the ability of precise robotic sample preparation to obtain low-background
patterns, especially at low angles.

3. We investigated the effect of the sample quantity on the accuracy and consistency of
quantitative analysis using our autonomous system; thus, reliable results could be obtained
with reduced sample amounts than those used in manual preparation methods.

4. We validated the autonomous system with different mixture ratios and showed its accuracy
in quantifying phase compositions.

2 Development of the ARE system for PXRD

We have developed the ARE system for PXRD that integrates sample preparation, measurement, and
data analysis into a single automated workflow. Figure 1 shows the ARE system’s workflow and
components.

The key components of our ARE system are as follows:

1. The 6-axis robotic arm (DENSO, COBOTTA) with a multifunctional end effector is capable
of preparing powder samples and transferring the sample holders. (Figure 2-a)

2. A detachable protective cover made of paper is used to protect the soft gel attachment on the
robotic arm’s end effector from environmental contamination. The robotic arm’s automated
movements enable the cover to be attached before sample preparation and detached after
use. This ensures a clean environment for each sample without human intervention.

3. An XRD instrument (Rigaku, MiniFlex 600-C) is equipped with a single-axis actuator to
control the door. The single-axis actuator enables the automatic opening and closing of the
doors of the XRD instrument.

4. A custom-designed sample holder with a frosted glass surface and embedded magnets serves
as a sample support during XRD measurements. (Figure 2-b)

5. A drawer-based sample hotel serves as a storage unit for multiple sample holders and has 20
tiers to accommodate up to 40 samples in total.

6. A sample preparation station is used for processing powder samples into an optimized form
for XRD analysis; this features an integrated pull-out funnel for precise centering of the
powder within the holder.
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Figure 1: Autonomous PXRD system overview. (a) Schematic of the autonomous PXRD experimen-
tal workflow. (b) Key components of the system setup.
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Figure 2: Close-up view of the key components of the autonomous PXRD system. (a) Multifunctional
end effector. (b) Custom-designed sample holder.

The end effector of the robotic arm (Figure 2-a) is a key component of our ARE system. It integrates
three attachments: a claw for drawer manipulation, a metal plate for magnetic coupling with the
sample holder, and a soft gel for surface flattening. This integrated design improves system efficiency
and autonomy, allowing for sample preparation, loading, and unloading without changing attachments.
The soft gel attachment is crucial for creating low-background patterns by gently and uniformly
pressing the powder sample, resulting in a smooth surface that minimizes background noise.

Our custom-designed sample holder (Figure 2-b) is a crucial component of the ARE system. It
features a frosted glass central area that supports the powder sample while reducing background noise,
particularly beneficial for low-angle measurements. The frosted surface also prevents the powder
from slipping off during manipulation. Embedded magnets in the outer frame of the sample holder
ensure secure attachment to the metal plate of the end effector, enabling precise and stable sample
handling throughout the automated process, from transfer to measurement.

The integration of these components into the ARE system allows for a fully automated XRD sample
preparation and measurement process, reducing human errors and improving reproducibility. The
system’s modular design enables adaptation to other analytical methods, with components such
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Figure 3: Key processes performed by the robotic arm in the autonomous PXRD system. (a) The
robotic arm mixes and grinds the powder sample to ensure homogeneity and appropriate particle
size. (b) The robotic arm picks up the sample holder using a multifunctional end effector. (c) In
this study, the prepared powder sample is manually poured into the sample holder due to the need to
measure the amount of powder used. To note, the robotic arm is technically able to perform this step;
however, in the current experiment, this was manually performed. (d) Using a soft gel attachment on
the end effector, the robotic arm gently flattens the surface of the powders to ensure a smooth and
even surface for the XRD measurement. (e) The robotic arm loads the prepared sample into the XRD
instrument for measurement.

as the robotic arm, sample hotel, and control software being adaptable to different measurement
configurations.

3 Detailed workflow of the autonomous PXRD system

The PXRD system operates according to a workflow that reduces human intervention through
automation. Figure 3 illustrates the key processes in our PXRD system workflow. The operation
of our system can be viewed in a demonstration video1. The detailed steps in the workflow are as
follows:

Step 1: The researcher sends a command to the control PC specifying the sample information and
measurement parameters.

Step 2: The control PC processes the command and sends instructions to the robotic arm and the
XRD instrument.

Step 3: The robotic arm (Universal Robots, UR5e) mixes and grinds the powder sample to ensure
homogeneity, as described in our previous work32,33. (Figure 3-a)

Step 4: The robotic arm retrieves the specified sample holder from the sample hotel and transfers it
to the sample preparation station. (Figure 3-b)

Step 5: The ground powder is filled into the sample holder placed at the sample preparation station.
While the robotic arm is technically capable of performing this step autonomously, in this
study, it was done manually to measure the precise amount of powder used. (Figure 3-c)

Step 6: The robotic arm uses soft gel attached to the end effector to gently flatten the surface of the
powder sample. (Figure 3-d)

Step 7: The XRD instrument automatically opens its door using a single-axis actuator, and the robotic
arm loads the prepared sample into the instrument. (Figure 3-e)

Step 8: The XRD instrument closes its door, and the measurement software is automatically con-
trolled using the PyAutoGUI library to start the measurement according to the specified
parameters.

Step 9: After the measurement is complete, the XRD instrument sends the raw data (XRD pattern) to
a workstation, and the robotic arm retrieves the sample from the XRD instrument and returns
it to the sample hotel.

Step 10: The workstation automatically analyzes the XRD pattern using an automated Rietveld
analysis method; the pattern is converted into weight fractions of its constituent phases.

1https://youtu.be/nXfL7gmZPMw
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Step 11: The analyzed results are sent back to the researcher, and the automated PXRD experiment is
complete.

Our developed autonomous PXRD system provides two main advantages over traditional manual
methods. First, automation of the workflow from sample preparation to data acquisition aims to
reduce human intervention and increase reproducibility of the experimental results. The automated
system helps maintain consistent measurement conditions across experiments. Second, the system
improves sample throughput by enabling continuous operation. This allows for analysis of multiple
samples sequentially, while researchers can focus on tasks such as data interpretation and experiment
planning.

4 Automation of quantitative XRD data analysis

Automating the analysis of material characterization data is a key component of a fully closed-loop
autonomous measurement workflow. As discussed in the previous section, our developed autonomous
PXRD system integrates the entire process from sample preparation to data acquisition. To complete
the automation process and achieve a fully self-operating PXRD experiment, automating the analysis
of the acquired data is needed.

PXRD experiments often use a data analysis method called Rietveld analysis, which enables the
quantitative analysis of the phase composition, lattice constants, and other structural parameters.
However, Rietveld analysis is a time-consuming and effort-intensive task. This analysis involves
the optimization of a large number of parameters, which can be several dozen. These parameters
include not only those related to the crystal structure but also those related to the equipment and other
aspects, such as line shape or background. Additionally, the quality of Rietveld analysis results may
vary depending on the researcher’s skill and experience, potentially impacting the reliability of the
analytical outcomes. Such variability could introduce uncertainties in the interpretation of PXRD
data.

To address this challenge, Lee et al. developed an automated Rietveld analysis approach that utilizes
machine learning techniques10. Their method employs a convolutional neural network (CNN) for
phase identification, followed by support vector regression (SVR) for phase fraction prediction. This
approach demonstrated high accuracy in both synthetic and real-world datasets. However, it requires
a large amount of training data and may struggle with previously unseen phases or complex mixtures.

Szymanski et al. proposed a different approach that does not rely on Rietveld analysis11. Instead,
they introduced a machine learning method that uses a dual representation of XRD patterns and
pair distribution functions (PDFs). This method showed improved accuracy in phase identification,
especially for low-intensity features and in the presence of experimental artifacts. However, it may
face challenges in providing detailed structural information compared to Rietveld-based methods.

Ozaki et al. introduced a novel approach called BBO-Rietveld, which combines Bayesian Black-box
Optimization (BBO) with traditional Rietveld refinement12. This method treats the Rietveld refine-
ment process as a black-box optimization problem, using the tree-structured Parzen estimator (TPE)
algorithm to efficiently search the high-dimensional parameter space. BBO-Rietveld demonstrated
superior performance compared to both human experts and rule-based automation systems.

After careful consideration of these approaches, we chose to integrate the BBO-Rietveld method
into our autonomous PXRD system. The Bayesian optimization approach employed in BBO-
Rietveld allows for efficient exploration of the parameter space, potentially surpassing human
expert performance in terms of speed and accuracy. This efficiency is crucial for high-throughput
materials characterization, enabling rapid analysis of a large number of samples. Furthermore, BBO-
Rietveld can be easily integrated with existing crystallographic software packages, facilitating its
implementation in our automated workflow. This integration capability is particularly important as it
allows us to leverage well-established crystallographic analysis tools while benefiting from advanced
optimization techniques. By incorporating BBO-Rietveld into our autonomous PXRD system, we
aim to achieve high-quality, efficient, and adaptable quantitative phase analysis. This integration
brings us closer to realizing a fully self-operating materials characterization platform capable of
handling a wide range of samples and experimental conditions.
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Figure 4: Photographs of the TiO2 samples prepared by manual operation and the robotic arm in
different quantities.
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Figure 5: Comparison of the XRD patterns and Rietveld refinement results for samples prepared by
manual operation and the robotic arm (80mg).

5 Results and discussion

In this study, we conducted three experiments to evaluate the performance and capabilities of the
autonomous PXRD system, using titanium dioxide (TiO2) in its anatase and rutile phases as a model
system.

The first experiment, described in Section 5.1, focused on assessing the precision of the robotic arm
in sample preparation and its impact on the accuracy of quantitative XRD analysis. The goal was to
determine whether the automated system could achieve results comparable to or better than those of
the manual sample preparation methods in terms of reproducibility, consistency, and reliability.

The second experiment, detailed in Section 5.2, investigated the effect of the sample quantity on
the accuracy and precision of the quantitative XRD analysis. By preparing samples with varying
amounts of material using the robotic arm, we aimed to identify the minimum sample quantity needed
to obtain reliable anatase content results with a target standard deviation of less than 1% for the
replicate measurements.

Finally, the third experiment, presented in Section 5.3, validated the autonomous system’s perfor-
mance using samples with different mixture ratios of anatase and rutile TiO2. The purpose of this
experiment was to demonstrate the system’s accuracy in quantifying the phase compositions across a
range of sample compositions; this aspect is essential for high-throughput material discovery and
optimization.

Through these three experiments, we aimed to comprehensively evaluate the capabilities, limitations,
and potential of the autonomous PXRD system for advancing material research and accelerating the
discovery of new materials with desirable properties. All XRD measurements were performed under
standardized conditions to ensure consistent and high-quality data acquisition across various sample
types. The detailed measurement parameters, including radiation characteristics, voltage, current,
scan specifications, and beam conditioning, are provided in Appendix A.1.

5.1 Powder sample preparation by the robotic arm

We evaluated an autonomous PXRD system to investigate the precision of robotic arms in sample
preparation and its impact on the accuracy of the quantitative XRD analysis. Our objective was to
assess whether an autonomous PXRD system using a robotic arm could enhance the reproducibility,
consistency, efficiency, and accuracy of the PXRD sample preparation. We hypothesized that the
robotic arm could reduce human error, increase throughput, standardize procedures, and ultimately
match or even surpass the accuracy and consistency of the manual sample preparation methods.
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Table 1: Comparison of the sample preparation methods: Manual operation and robotic arm.

Method Average Anatase
Content (%)

Standard Deviation
(%)

Operator 1 52.4 0.4
Operator 2 52.2 0.1
Robotic Arm 51.6 0.7

We used a robotic arm to prepare samples containing precise quantities of TiO2 in its anatase and
rutile phases. Figure 4 shows the samples prepared by manual operation and the robotic arm. The
anatase reagent (Kojundo Chemical Laboratory, 99% purity) did not contain any detectable rutile
impurities; however, the rutile reagent (Kojundo Chemical Laboratory, 99.99% purity, 2 µm particle
size, >90% rutilization rate) contained approximately 2.8% anatase as an impurity. To determine
the impurity levels, samples containing only the individual reagents were prepared and analyzed
using the BBO-Rietveld method prior to the main experiment. Equal amounts of the two reagents
were mixed; this resulted in samples with anatase and rutile weight fractions of approximately 51.4%
and 48.6%, respectively. Each sample prepared by the robotic arm weighed 80.0mg, while samples
prepared by human operators weighed approximately 300mg. To ensure consistency, the robotic
arm’s repeatability was evaluated across multiple experiments. The resulting data were analyzed via
the BBO-Rietveld method.

Figure 5 shows a comparison of the XRD patterns and Rietveld refinement results for the samples
prepared by the robotic arm and manual operation. The good agreement between the measured and
calculated patterns, along with the small residuals, demonstrates the high quality of the samples
prepared by both methods. Importantly, compared to previous studies using automated sample
preparation methods, the robotic arm-prepared samples exhibit lower background intensity at low
angles22,25. This achievement can be attributed to the robotic arm’s precise control in Step 6; this
involves gently pressing the powder to create a smooth surface, effectively minimizing the unwanted
background signals that often hinder accurate analysis in the low-angle region. The comparable
background levels between the robotic arm-prepared samples and those prepared by skilled human
operators confirm the effectiveness of the automated sample preparation technique in producing
high-quality samples suitable for a wide range of materials, including those with important structural
features at low angles.

Table 1 lists the average anatase content and standard deviation for samples prepared by two human
operators (Operator 1 and Operator 2) and the robotic arm. The results demonstrate the variability
in the sample preparation between different human operators, as indicated by the differences in the
average anatase content and standard deviation. Although the standard deviation of the robotic arm is
slightly larger than that of the human operators, it is still sufficiently low; these results indicate that
the automated sample preparation can achieve a level of consistency comparable to that of human
operators. Thus, automated sample preparation has the potential to reduce human-induced variability.

The reliability and standardization potential of the robotic arm show the importance of integrating
automated sample preparation with automated XRD measurements and data analysis for the future of
material science research.

5.2 Optimizing the sample quantity for quantitative analysis

We investigated the effect of the sample quantity on the accuracy and precision of the quantitative
XRD analysis by conducting an experiment to determine the minimum sample quantity needed
to obtain the anatase content results with a standard deviation of less than 1% for the replicate
measurements. A robotic arm was used to prepare samples with six different amounts (3.0 , 5.0 ,
10.0 , 20.0 , 40.0 , and 80.0mg) of the TiO2 mixture; this was the same mixture used in Section 5.1.
For each sample quantity, the robotic arm was used to prepare five separate samples; this resulted in a
total of 30 samples (6 quantities × 5 replicates). Figure 4 shows the samples prepared by the robotic
arm in different quantities.

Figure 6-a shows the XRD patterns of the different quantities of the TiO2 samples prepared by the
robotic arm. Based on these patterns, although the peak intensities decrease as the sample quantity
decreases, the overall shapes of the patterns are maintained, and the background intensities remain
sufficiently low; these results show the consistency of the automated sample preparation method.
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Figure 6: XRD analysis of TiO2 samples with varying quantities. (a) XRD patterns for different
sample quantities. (b) Effect of sample quantity on anatase content precision, with error bars
representing standard deviation.

Table 2: Quantitative analysis results for the anatase content in TiO2 samples with different mixture
ratios prepared by the autonomous system.

Mixture Ratio
(Anatase:Rutile)

Average Anatase
Content (%)

Standard Deviation
(%)

9:1 89.8 1.1
7:3 70.9 0.7

Figure 6-b shows the quantitative analysis results for the anatase content of the TiO2 samples. Each
data point is the average anatase content from the five samples at each sample quantity, and the error
bars represent the standard deviation. The results indicate that as the sample quantity decreases,
increased variability is observed in the estimated anatase content between the samples and is shown
by the larger error bars. However, even at the minimum sample quantity of 3.0mg, which is the
lowest amount our system can prepare, the standard deviation of the anatase content was found to be
0.9%; thus, quantitative results with the desired precision can be obtained.

When proper sample preparation and analysis techniques are employed, reliable quantitative data
can be obtained even with small sample quantities. This finding is significant considering that
manual sample preparation typically involves using sample quantities of approximately 300mg.
Our system was able to automatically prepare the samples with sufficient accuracy and precision
for the quantitative analysis using only 1% of the sample quantity traditionally used in manual
preparation. By minimizing the sample quantity, the amount of material needed for synthesis can be
reduced, potentially leading to shorter synthesis times and more efficient use of resources. As a result,
high-throughput material characterization workflows can become more efficient, enabling the rapid
analysis of a larger number of samples. The optimization of the sample quantity, along with other key
parameters, is essential for the development of efficient and reliable autonomous XRD systems for
material discovery and optimization.

5.3 Validation of the autonomous system with different mixture ratios

To further validate the effectiveness of the autonomous PXRD system, we prepared samples with
different mixture ratios of anatase and rutile TiO2 using the optimized sample quantity of 3mg
determined in Section 5.2. Two mixture ratios were tested: anatase:rutile = 9:1 and 7:3 by weight.
For each mixture ratio, the robotic arm was used to prepare five samples 3mg for each mixture; this
resulted in a total of ten samples (2 ratios × 5 replicates).

Table 2 provides a summary of the quantitative analysis results for the anatase content in the TiO2
samples with different mixture ratios. The average anatase contents for the 9:1 and 7:3 mixtures
were found to be 89.8% and 70.9%, respectively. These values were in good agreement with the
expected anatase content based on the prepared mixture ratios and demonstrated the accuracy of the
autonomous system in quantifying the phase compositions. Moreover, the low standard deviations
(1.1% for 9:1 and 0.7% for 7:3) of the anatase content for each mixture ratio highlight the high
precision and reproducibility of the sample preparation and measurement processes performed by the
autonomous system.
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These results further validate the effectiveness of the autonomous PXRD system in accurately and
precisely characterizing materials with different phase compositions, even when using small sample
quantities. This capability is beneficial for high-throughput material discovery and optimization,
where the ability to reliably analyze a large number of samples with varied compositions is essential.

5.4 Limitations

While our autonomous PXRD system demonstrates significant improvements in sample preparation
and analysis, it is important to acknowledge certain limitations:

1. Although we investigated TiO2 as a typical sample, the optimal sample quantity may vary
when using different reagents. Further studies with a wider range of materials are necessary
to establish the system’s versatility across various compounds.

2. Our sample preparation method may not be universally applicable, particularly for materials
with significantly different physical properties such as viscosity. Some materials may require
alternative preparation techniques, which could limit the current system’s applicability in
certain cases.

These limitations highlight the need for continued research and development to expand the system’s
capabilities and ensure its broad applicability in materials science.

6 Conclusion

In this study, we developed an autonomous robotic experimentation system for PXRD that integrates
sample preparation, measurement, and data analysis into a single automated workflow. Our system
demonstrates significant improvements in efficiency, reproducibility, and reliability compared to
traditional manual methods. Key contributions include:

1. Development of an integrated system achieving high precision and reliability in sample
preparation.

2. Demonstration of low-background patterns, particularly at low angles, crucial for character-
izing complex materials.

3. Optimization of sample quantity, enabling reliable results with significantly reduced material
usage.

4. Validation across different mixture ratios, showcasing the system’s accuracy in quantitative
phase analysis.

Future work will focus on extending the system’s capabilities to include automated reagent handling,
aiming to achieve a fully closed-loop material research process. Recent advancements in robotic
manipulation, such as dual-arm solid dispensing systems34, demonstrate the feasibility of further
automating complex tasks. By integrating similar capabilities into our autonomous PXRD system,
we aim to accelerate material discovery and optimization processes.
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A Appendix

A.1 XRD Measurement Conditions

All XRD measurements were performed under the following conditions:

• Radiation: Cu Kα (λ = 1.5419Å)
• Voltage: 40 kV
• Current: 15mA

• Scan range: 10◦–120◦ 2θ
• Step size: 0.01◦

• Scan speed: 4 °/min

• Sample spin rate: 80 rpm

The incident beam was conditioned using a 5mm incident slit and a 1.25◦ divergence slit to control
and reduce the irradiated area on the sample surface.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of this paper:
the development of an autonomous PXRD system, achievement of low background patterns,
optimization of sample quantity, and validation with different mixture ratios. These claims
are thoroughly explained and supported by experimental results in the main text of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a dedicated section (5.4 Limitations) that explicitly dis-
cusses the limitations of the research. Two main limitations are addressed: (1) the use of
TiO2 as the only sample, which may not be representative for all reagents, and (2) the poten-
tial inapplicability of the current sample preparation method to materials with significantly
different physical properties. These limitations provide important insights into the system’s
versatility and scope of application.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper primarily focuses on experimental research and does not include
theoretical results or mathematical proofs. The content of the paper is centered on the
development of an automated PXRD system, description of experimental methods, and
analysis of experimental results. Therefore, questions regarding theoretical assumptions and
proofs are not applicable to this research.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides comprehensive information necessary for reproducing
the experimental results. This includes: detailed description of the experimental system
in Section 3, detailed workflow in Section 4, visual representations of the setup and key
components in Figures 1, 2, and 3, specific XRD measurement conditions in Appendix A,
and detailed descriptions of sample preparation and analysis in each experimental section
(5.1, 5.2, 5.3). This level of detail allows other researchers to replicate the experiments and
verify the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides significant resources for reproducing the main experimental
results:

(a) Detailed descriptions of experimental procedures and conditions are provided in the
main text, allowing other researchers to replicate the experiments.

(b) The BBO-Rietveld method used for data analysis is publicly available, as mentioned in
the paper.

(c) CAD data for the robotic arm’s end effector is included in the supplementary material,
enabling precise replication of this crucial component.

(d) The XRD equipment used is commercially available and clearly specified.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Justification: The paper provides comprehensive details of the experimental setup and
procedures. Section 3 describes the system components, Section 4 outlines the workflow,
and Appendix A provides specific XRD measurement conditions. Each experimental section
(5.1, 5.2, 5.3) includes detailed information on sample preparation and analysis methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports statistical information such as standard deviations for
quantitative analyses. For example, Table 1 in Section 5.1 and Table 2 in Section 5.3
provide standard deviations for anatase content measurements, allowing assessment of result
reliability and reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This research primarily involves hardware experiments and does not require
significant computational resources. The focus is on the autonomous PXRD system and its
physical components rather than computational processing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to general scientific ethics. It does not involve any
human or animal subjects, focusing solely on the development and testing of an automated
PXRD system. The work aims to improve scientific methodology by enhancing efficiency
and reliability in materials science research. There are no apparent ethical concerns as the
research does not involve sensitive data, does not pose risks to individuals or communities,
and does not have obvious potential for dual use or misuse. The study appears to be
conducted with scientific integrity, promoting the advancement of knowledge in materials
science.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the positive impact of improving efficiency and reliability
in materials science research, which can accelerate material discovery and optimization.
While negative impacts are not explicitly discussed, the nature of the research (automating
PXRD analysis) does not present obvious negative societal implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This research does not involve the release of data or models that have a high
risk for misuse. The work focuses on an automated experimental system for PXRD analysis,
which does not pose risks typically associated with large language models or sensitive
datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites and credits the sources of equipment, methods, and
prior work used in the research. For example, the XRD instrument (Rigaku, MiniFlex 600-C)
and the BBO-Rietveld method are appropriately referenced.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new publicly available assets such as datasets or
software models. The focus is on describing a new experimental system and methodology,
which is thoroughly documented within the paper itself.
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research does not involve crowdsourcing or human subjects. The study
focuses on an automated PXRD system and does not require human participants or crowd-
sourced data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects, therefore IRB approval is not
required. The study focuses on the development and testing of an automated PXRD system,
which does not pose risks to human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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