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ABSTRACT

Spiking Neural Networks (SNN) are now demonstrating comparable accuracy
to intricate convolutional neural networks (CNN), all while delivering remark-
able energy and latency efficiency when deployed on neuromorphic hardware.
In particular, ANN-to-SNN conversion has recently gained significant traction
in developing deep SNNs with close to state-of-the-art (SOTA) test accuracy on
complex image recognition tasks. However, advanced ANN-to-SNN conversion
approaches demonstrate that for lossless conversion, the number of SNN time
steps must equal the number of quantization steps in the ANN activation func-
tion. Reducing the number of time steps significantly increases the conversion
error. Moreover, the spiking activity of the SNN, which dominates the compute
energy in neuromorphic chips, does not reduce proportionally with the number of
time steps. To mitigate the accuracy concern, we propose a novel ANN-to-SNN
conversion framework, that incurs an exponentially lower number of time steps
compared to that required in the SOTA conversion approaches. Our framework
modifies the SNN integrate-and-fire (IF) neuron model with identical complex-
ity and shifts the bias term of each batch normalization (BN) layer in the trained
ANN. To mitigate the spiking activity concern, we propose training the source
ANN with a fine-grained ℓ1 regularizer with surrogate gradients that encourages
high spike sparsity in the converted SNN. Our proposed framework thus yields
lossless SNNs with ultra-low latency, ultra-low compute energy, thanks to the
ultra-low timesteps and high spike sparsity, and ultra-high test accuracy, for ex-
ample, 73.30% with only 4 time steps on the ImageNet dataset.

1 INTRODUCTION

Figure 1: Comparison of the performance-
efficiency trade-off between our proposed ANN-
to-SNN conversion & other SOTA SNN train-
ing methods on ImageNet. Abbreviations are ex-
panded in Section 6.

Spiking Neural Networks (SNNs) (Maass,
1997) have emerged as an attractive spatio-
temporal computing paradigm for a wide range
of complex computer vision (CV) tasks (Pfeif-
fer et al., 2018). SNNs compute and communi-
cate via binary spikes that are typically sparse
and require only accumulate operations in their
convolutional and linear layers, resulting in sig-
nificant compute efficiency. However, training
deep SNNs has been historically challenging,
because the spike activation function in most
neuron models in SNNs yields gradients that
are zero almost everywhere. While there has
been extensive research on surrogate gradients
to mitigate this issue (Bellec et al., 2018; Neftci
et al., 2019; O’Connor et al., 2018; Wu et al.,
2018; Zenke & Ganguli, 2018; Meng et al.,
2022a; Xiao et al., 2022), training deep SNNs
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from scratch is often unable to yield the same accuracies as traditional iso-architecture Artificial
Neural Networks (ANN).

ANN-to-SNN conversion, which leverages the advances in SOTA ANN training strategies, has the
potential to mitigate this accuracy concern (Sengupta et al., 2019; Rueckauer et al., 2017; Fang
et al., 2021). However, since the binary intermediate layer spikes need to be approximated with full-
precision ANN activations for accurate conversion, the number of SNN inference time steps required
is high. To improve the trade-off between accuracy and time steps, previous research proposed
shifting the SNN bias (Deng & Gu, 2021) and initial membrane potential (Bu et al., 2022a; Hao
et al., 2023b;a), while leveraging quantization-aware training in the ANN domain (Bengio et al.,
2013; Bu et al., 2022b). Although this can eliminate the component of the ANN-to-SNN conversion
error incurred by the event-driven binarization, the uneven distribution of the time of arrival of the
spikes causes errors, thereby degrading the SNN accuracy. We first uncover that this deviation error
is responsible for the accuracy drop in the converted SNNs in ultra-low timesteps. To completely
eliminate this deviation as well as other errors with respect to the quantized ANN, we propose a
novel conversion framework that completely matches the ANN and SNN activation outputs, while
honoring the accumulate-only operation paradigm of SNNs. Our framework yields SNNs with
SOTA accuracies among both ANN-to-SNN conversion and backpropagation through time (BPTT)
approaches with only 2−4 time steps. In summary, we make the following contributions.

• We analyze the key sources of error that (i) persist in SOTA ANN-to-SNN conversion approaches,
and (ii) degrade the SNN accuracy when using an ultra-low number of time steps.

• We propose a novel ANN-to-SNN conversion framework that exponentially reduces the number
of time steps required for SOTA accuracy, eliminates nearly all of the ANN-to-SNN conversion
errors, and can be supported in neuromorphic chips, (see Loihi (Davies et al., 2018)).

• We significantly increase the compute efficiency of SNNs by incorporating an additional loss
term in our training framework, along with the task-specific loss (e.g., cross-entropy for image
recognition). Further, we propose a novel surrogate gradient method to optimize this loss.

Our contributions simultaneously provide ultra-low latency, ultra-high energy efficiency, and SOTA
accuracy while surpassing all existing SNN training approaches in performance-efficiency trade-off,
where the efficiency is approximated as the product of the number of time steps and the spiking
activity, as shown in Fig. 1.

2 PRELIMINARIES

2.1 ANN & SNN NEURON MODELS

For ANNs used in this work, a block l that takes al−1 as input, consists of a convolution (denoted by
f conv), batchnorm (denoted by fBN ), and nonlinear activation (denoted by fact), as shown below.

al = fact(fBN (f conv(al−1))) = fact(zl) = fact

(
γl

(
W lal−1 − µl

σl

)
+ βl

)
, (1)

where W l denotes the convolutional layer weights, µl and σl denote the BN running mean and
variance, and γl and βl denote the learnable scale and bias BN parameters. Inspired by (Bu et al.,
2022b), we use quantization-clip-floor-shift (QCFS) as the activation function fact(·) defined as

al = fact(zl) =
λl

L
clip

(⌊
zlλl

L
+

1

2

⌋
, 0, Q

)
, (2)

where Q denotes the number of quantization steps, λl denotes the trainable QCFS activation output
threshold, and zl denotes the activation input. Note that clip(x, 0, µ) = 0, if x < 0; x, if 0 ≤ x ≤
µ; µ, if x ≥ µ. QCFS can enable ANN-to-SNN conversion with minimal error for arbitrary T and
Q, where T denotes the total number of SNN time steps.

The event-driven dynamics of an SNN is typically represented by the IF model where, at each time
step denoted as t, each neuron integrates the input current zl(t) from the convolution, followed by
BN layer, into its respective state, referred to as membrane potential denoted as ul(t). The neuron
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Figure 2: (a) Comparison between the average magnitude of deviation error for different number of
time steps with Q=8 and Q=16, Comparisons of the SNN and ANN output activations, ϕl(T ) and
al respectively for (b) Q=8 and T=4, (c) Q=8 and T=2. Reducing the number of time steps from 4
to 2 increases the expected quantization error from 0.0625λl to 0.125λl.

emits a spike if the membrane potential crosses a threshold value, denoted as θl. Assuming sl−1(t)
and sl(t) are the spike inputs and outputs, the IF model dynamics can be represented as

ul(t) = ul(t−1) + zl(t)− sl(t)θl, (3)

zl(t) =

(
γl

(
W lsl−1(t)θl−1 − µl

σl

)
+ βl

)
, sl(t) = H(ul(t−1) + zl(t)− θl). (4)

where H(·) denotes the heaviside function. Note that instead of resetting the membrane potential
to zero after the spike firing, we use the reset-by-subtraction scheme where the surplus membrane
potential over the firing threshold is preserved and propagated to the subsequent time step.

2.2 ANN-TO-SNN CONVERSION

The primary goal of ANN-to-SNN conversion is to approximate the SNN spike firing rate with the
multi-bit nonlinear activation output of the ANN with the other trainable parameters being copied
from the ANN to the SNN. In particular, rearranging Eq. 3 to isolate the expression for sl(t)θl,
summing for t=1 to t=T , and dividing both sides by T , we obtain∑T

t=1 s
l(t)θl

T
=

∑T
t=1 z

l(t)

T
+

(
−ul(0)− ul(T )

T

)
. (5)

Substituting ϕl(T ) =
∑T

t=1 sl(t)θl
T and Zl(T ) =

∑T
t=1 zl(t)

T to denote the average spiking rate and

presynaptic potential for the layer l respectively, we obtain ϕl(T ) = Zl(T )−
(

ul(T )−ul(0)
T

)
. Note

that for a very large T , ϕl(T ) can be approximated with Zl(T ). Importantly, the resulting function is
equivalent to the ANN ReLU activation function, because ϕl(T )≥0. However, for the ultra-low T of
our use-case, the residual term

(
ul(T )−ul(0)

T

)
introduces error in the ANN-to-SNN conversion error,

which previous works (Hao et al., 2023a;b; Bu et al., 2022b) refer to as deviation error. These works
also took into account two other types of conversion errors, namely quantization and clipping errors.
Quantization error occurs due to the discrete nature of ϕl(T ) which has a quantization resolution
(QR) of θl

T . Clipping error occurs due to the upper bound of ϕl(T ) = θl. However, both these errors
can be eliminated with the QCFS activation function in the source ANN (see Eq. 2) and setting
θl = λl and T=Q. This yields the same QR of θl

T and upper bound of θl as the ANN activation.

3 ANALYSIS OF CONVERSION ERRORS

Although we can eliminate the quantization error by setting T=Q, the error increases as T is de-
creased significantly from Q for ultra-low-latency SNNs1. This is because the absolute difference
between the ANN activations and SNN average post-synaptic potentials increases as (Q−T ) in-
creases as shown in Fig 2(b)-(c). Note that Q cannot be too small, otherwise, the source ANN
cannot be trained with high accuracy. To mitigate this concern, we propose to improve the SNN

1Note that T cannot always be equal to Q for practical purposes, since we may require SNNs with different
time steps from a single pre-trained ANN
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capacity at ultra-low T by embedding the information of both the timing and the binary value of
spikes in each membrane potential. As shown later in Section 4, this eliminates the quantization
error at T= log2 Q, resulting in an exponential drop in the number of time steps compared to prior
works that require T=Q (Bu et al., 2022b). As our work already enables a small value of T , the drop
in SNN performance with further lower T<log2Q becomes negligible compared to prior works.

Moreover, at ultra-low timesteps, the deviation error increases as shown in Fig. 2(a), and even
dominates the total error, which implies its importance for our use case. Previous works (Hao et al.,
2023b;a) attempted to reduce this error by observing and shifting the membrane potential after some
number of time steps, which dictates the upper bound of the total latency. Moreover, (Hao et al.,
2023b) require iterative potential correction by injecting or eliminating one spike per neuron at a
time, which also increases the inference latency.

That said, the deviation error is hard to overcome with the current IF models. To eliminate the
deviation error, vl(T ) must fall in the range [0, θl] (Bu et al., 2022b), which cannot be guaranteed
without the prior information of the post-synaptic potentials (up to T time steps). The key reason this
cannot be guaranteed is the neuron reset mechanism, which dynamically lowers the post-synaptic
potential value based on the input spikes. By shifting all neuron resets to the last time step T , and
matching the ANN activation and SNN post-synaptic values at each time step, we can completely
eliminate this deviation error. This necessitates a new neuron model, and is achieved using our
proposed method detailed in Section 4.

4 PROPOSED METHOD

In this section, we propose our ANN-to-SNN conversion framework, which involves training the
source ANN using the QCFS activation function (Bu et al., 2022b), followed by 1) shifting the bias
term of the BN layers, and 2) modifying the IF neuron model where the neuron spiking mechanism
and reset are pushed after the input current accumulation over all the time steps.

4.1 ANN-TO-SNN CONVERSION

To enable lossless ANN-to-SNN conversion, the IF layer output should be equal to the bit-wise rep-
resentation of the output of the corresponding QCFS layer in the lth block, which can be represented
as sl(t)=alt ∀t ∈ [1, T ], where alt denotes the tth bit of al starting from the most significant bit.

We first show how this is guaranteed for the input block and then for any hidden block l by induction.

Input Block: Similar to prior works targeting low-latency SNNs (Bu et al., 2022b;a; Rathi et al.,
2020a), we directly use multi-bit inputs that incur multiplications in the first layer, whose overhead
is negligible in a deep SNN. Hence, the input to the first IF layer in the SNN (output of the first
convolution, followed by BN layer) is identical to the first QCFS layer in the ANN. The first QCFS
layer yields the output a1 with T= log2 Q bits. The first IF layer also yields identical outputs s1(t) =
a1t at the tth time step, with the proposed neuron model as shown later in Eqs. 7 and 8.

Hidden Block: To incorporate the information of both the firing time and binary value of the spikes,
we multiply the input sl−1(t) of the IF layer (i.e., output of the convolution followed by a BN layer)
in the lth block by 2(t−1) at the tth time step, which can be easily implemented by a left shifter. This
shifting idea is mathematically similar to radix encoding Wang et al. (2022b) and weighted spiking
Kim et al. (2018) proposed in previous SNN works. Note that the additional compute overhead due
to the shifting is negligible as shown later in Section 6.3. The resulting SNN input current in the
lth block is computed as ẑl(t) = fBN (f conv(2t−1sl−1(t))). The input of the corresponding ANN
QCFS layer is fBN (f conv(al−1)) where al−1 can be denoted as

∑T
t=1 2

t−1sl−1(t) by induction.

Condition I: For lossless conversion, let us first satisfy that the accumulated input current over T
time steps is equal to the input of the corresponding QCFS layer in the lth block.

Mathematically, representing the composite function fBN (f conv(·)) as gANN and gSNN for the
source ANN and its converted SNN respectively, Condition I can be re-written as

T∑
t=1

gSNN (k · sl−1(t))=gANN

(
T∑

t=1

k · sl−1(t)

)
where k=2t−1. (6)
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However, this additive property does not hold for any arbitrary source ANN and its converted SNN,
due to the BN layer. We satisfy this property by modifying the bias term of each BN layer during
the ANN-to-SNN conversion, as shown in Theorem I below, whose proof is in Appendix A.2.

Theorem I: For the lth block in the source ANN, let us denote W l as the weights of the convolutional
layer, and µl, σl, γl, and βl as the trainable parameters of the BN layer. Let us denote the same
parameters of the converted SNN for as W l

c , µl
c, σl

c, γl
c, and βl

c. Then, Eq. 6 holds true if W l
c = W l,

µl
c = µl, σl

c = σl, γl
c = γl, and βl

c =
βl

T + (1− 1
T )

γlµl

βl .

Theorem II: If Condition I (Eq. 6) is satisfied and the post-synaptic potential accumulation, neu-
ron firing, and reset model adhere to Eqs. 7 and 8 below, the lossless conversion objective i.e.,
sl(t)=alt ∀t ∈ [1, T ] is satisfied for any hidden block l.

ẑl(t) =

(
γl
c

(
2t−1W l

cs
l−1(t)θl−1 − µl

c

σl
c

)
+ βl

c

)
, (7)

ul(1) =

T∑
t=1

ẑl(t) +
θl

2
, sl(t) = H

(
ul(t)− θl

2t

)
, and ul(t+ 1) = ul(t)− sl(t)

θl

2t
. (8)

Note that our neuron model postpones the firing and reset mechanism until after the input current
is accumulated from the incoming spikes emitted over all the T time steps in the previous layer,
and does not change the complexity of the traditional IF model. Proof of Theorem II is shown
in Appendix A.2. Our neuron model can be supported in programmable neuromorphic chips, that
implements current accumulation, threshold comparison, and potential reset in a modular fashion.
Also, note that our method requires layer-by-layer propagation, as used in advanced conversion
works (Hao et al., 2023b;a), since it needs to acquire ẑl(T ), before transmitting the spikes at any
time step to the subsequent layer. However, this constraint does not impose any penalty, as layer-
by-layer propagation is superior compared to its alternative step-by-step propagation2 in terms of
system efficiency and latency as shown in Appendix A.3.

4.2 ACTIVATION SPARSITY

Although our approach explained above can significantly reduce T while eliminating the conversion
error, the spiking activity does not reduce proportionally. In fact, there is only a ∼3% (36.2% to
33.0%) drop in the spiking activity of a VGG16-based SNN evaluated on CIFAR10 when T de-
creases from 8 to 4. We hypothesize this is because the SNN tries to pack a similar number of spikes
within the few time steps available. To mitigate this concern, we propose a fine-grained regulariza-
tion method that encourages more zeros in the bit-wise representation of the source ANN. As our
approach enforces similarity between the SNN spiking and ANN bit-wise output, this encourages
more spike sparsity under ultra low T , which in turn, decreases the compute complexity of the SNN
when deployed on neuromorphic or sparsity-aware hardware.

The training loss function (Ltotal) of our proposed approach is shown below in Eq. 9.

Ltotal = LCE + λLSP = LCE + λ

L−1∑
l=1

T∑
t=1

N∑
i=1

ai,lt , (9)

where ai,lt denotes the tth bit of the ith activation value in layer l, LCE denotes the cross-entropy
loss calculated on the softmax output of the last layer L, LSP denotes the proposed fine-grained
ℓ1 regularizer loss, and λ is the regularization coefficient. Note that we only accumulate (and do
not spike) the post-synaptic potential in the last layer L, and hence, we do not incorporate the
loss due to ai,lt for l=L. Since ai,lt ∈{0, 1}, its gradients are either zero or undefined, and so, we
cannot directly optimize LSP using backpropagation. To mitigate this issue, inspired by the straight-
through estimator (Bengio et al., 2013), we propose a form of surrogate gradient descent as shown
below, where ai,l denotes the t-bit activation of neuron i in layer l:

∂LSP

∂ai,l
= λ

L∑
l=1

N∑
i=1

T∑
t=1

∂ai,lt
∂ai,l

, where
∂ai,lt
∂ai,l

=

{
1, if 0 < ai,l < λl

0, otherwise
(10)

2The step-by-step propagation enables the start of processing of the subsequent layer before the processing
of the current layer has been finished for all the time steps.
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5 RELATED WORKS

ANN-to-SNN conversion involves estimating the threshold value in each layer by approximating the
activation value of ReLU neurons with the firing rate of spiking neurons (Cao et al., 2015; Rueck-
auer et al., 2017; Diehl et al., 2015; Sengupta et al., 2019; Hu et al., 2018). Some conversion works
estimated this threshold using heuristic approaches, such as using the maximum (or close to) ANN
preactivation value (Rathi et al., 2020b). Others (Kim et al., 2019; Sengupta et al., 2019) proposed
weight normalization techniques while setting the threshold to unity. While these approaches helped
SNNs achieve competitive classification accuracy on the Imagenet dataset, they required hundreds
of time steps for SOTA accuracy. Consequently, there has been a plethora of research (Deng & Gu,
2021; Bu et al., 2022b; Hao et al., 2023b;a) that helped reduce the conversion error while also re-
ducing the number of time steps by an order of magnitude. All these works used trainable thresholds
in the ReLU activation function in the ANN and reused the same values for the SNN threshold. In
particular, (Deng & Gu, 2021; Li et al., 2021a) proposed a shift in the bias term of the convolutional
layers to minimize the conversion error, with the assumption that the ANN and SNN input activa-
tions are uniformly and identically distributed. Other works include burst spikes (Park et al., 2019;
Li & Zeng, 2022), and signed neuron with memory (Wang et al., 2022a). However, they might not
adhere to the bio-plausibility of spiking neurons. Some works also proposed modified ReLU activa-
tion functions in the source ANN, including StepReLU (Wang et al., 2023a) and SlipReLU (Jiang
et al., 2023) to reduce the conversion error. Lastly, there have been works to address the deviation
error in particular. (Bu et al., 2022b) initialized the membrane potential with half of the threshold
value to minimize the deviation error; (Hao et al., 2023b;a) rectified the membrane potential after
observing its trend for a few time steps; (Meng et al., 2022b) proposed threshold tuning and residual
block restructuring.

In contrast to ANN-to-SNN conversion, direct SNN training methods, based on backpropaga-
tion through time (BPTT), aim to resolve the discontinuous and non-differentiable nature of the
thresholding-based activation function in the IF model. Most of these methods (Lee et al., 2016;
Panda & Roy, 2016; Bellec et al., 2018; Neftci et al., 2019; O’Connor et al., 2018; Wu et al., 2018;
2021; Zenke & Ganguli, 2018; Zenke & Vogels, 2021; Meng et al., 2022a; Xiao et al., 2022; Meng
et al., 2023; Guo et al., 2022c) replace the spiking neuron functionality with a differentiable model,
that can approximate the real gradients (that are zero almost everywhere) with the surrogate gradi-
ents. In particular, (Guo et al., 2023a) and (Guo et al., 2022a) proposed a regularizing loss and an
information maximization loss respectively to adjust the membrane potential distribution in order
to reduce the quantization error due to spikes. Some works optimized the BN layer in the SNN to
achieve high performance. For example, (Duan et al., 2022) proposed temporal effective BN, that
rescales the presynaptic inputs with different weights at each time-step; (Zheng et al., 2021) pro-
posed threshold-dependent BN; (Kim et al., 2020) proposed batch normalization through time that
decouples the BN parameters along the temporal dimension; (Guo et al., 2023b) used an additional
BN layer before the spike function to normalize the membrane potential. There have also been
works (Rathi et al., 2020a; Datta & Beerel, 2022) where the conversion is performed as an initializa-
tion step and is followed by fine-tuning the SNN using BPTT. These hybrid training techniques can
help SNNs converge within a few epochs of BPTT while requiring only a few time steps. However,
the backpropagation step in these methods requires these gradients to be integrated over all the time
steps, which significantly increases the SNN memory footprint during training.

6 EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of our framework and compare the same with other
SOTA SNN training methods for image recognition tasks on CIFAR-10 (Lecun et al., 1998), CI-
FAR100 (Krizhevsky, 2009), and ImageNet datasets (Deng et al., 2009). Similar to prior works, we
evaluate our framework on VGG-16 (Simonyan & Zisserman, 2014), ResNet18 (He et al., 2016),
ResNet20, and ResNet34 architectures for the source ANNs. To the best of our knowledge, we are
the first to yield ultra-low latency SNNs based on the MobileNetV2 (Sandler et al., 2018) architec-
ture. We compare our method with the SOTA ANN-to-SNN conversion including Rate Norm Layer
(RNL) (Ding et al., 2021), Signed Neuron with Memory (SNM) (Wang et al., 2022a), radix encoded
SNN (radix-SNN) (Wang et al., 2022b), SNN Conversion with Advanced Pipeline (SNNC-AP) (Li
et al., 2021a), Optimized Potential Initialization (OPI) (Bu et al., 2022a), QCFS (Bu et al., 2022b),
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Table 1: Comparison of our proposed method to existing ANN-to-SNN conversion approaches on
CIFAR10. Q = 16 for all architectures, λ=1e−8. ∗BOS incurs at least 4 additional time steps to
initialize the membrane potential, so their results are reported from T>4.

Architecture Method ANN T=2 T=4 T=6 T=8 T=16 T=32

VGG16

RNL 92.82% - - - - 57.90% 85.40%

SNNC-AP 95.72% - - - - - 93.71%

OPI 94.57% - - - 90.96% 93.38% 94.20%

BOS∗ 95.51% - - 95.36% 95.46% 95.54% 95.61%

Radix-SNN - - 93.84% 94.82% - - -
QCFS 95.52% 91.18% 93.96% 94.70% 94.95% 95.40% 95.54%

Ours 95.82% 94.21% 95.82% 95.79% 95.82% 95.84% 95.81%

ResNet18

OPI 92.74% - - - 66.24% 87.22% 91.88%

BOS∗ 95.64% - - 95.25% 95.45% 95.68% 95.68%

Radix-SNN - - 94.43% 95.26% - - -
QCFS 95.64% 91.75% 93.83% 94.79% 95.04% 95.56% 95.67%

Ours 96.68% 96.12% 96.68% 96.65% 96.67% 96.73% 96.70%

ResNet20

OPI 92.74% - - - 66.24% 87.22% 91.88%

BOS∗ 93.3% - - 89.88% 91.26% 92.15% 92.18%

QCFS 91.77% 73.20% 83.75% 83.79% 89.55% 91.62% 92.24%

Ours 93.60% 86.9% 93.60% 93.57% 93.66% 93.75% 93.82%

Bridging Offset Spikes (BOS) (Hao et al., 2023b), Residual Membrane Potential (SRP) (Hao et al.,
2023a) and direct training methods including Dual Phase (Wang et al., 2023b), Diet-SNN (Rathi
et al., 2020a), Information loss minimization (IM-Loss) Guo et al. (2022a), Differentiable Spike
Representation (DSR) (Li et al., 2021b), Temporal Efficient Training (Deng et al., 2022), paramet-
ric leaky-integrate-and-fire (PLIF) (Fang et al., 2021), RecDis-SNN (Guo et al., 2022c), Membrane
Potential Reset (MPR) Guo et al. (2022b), Temporal Effective Batch Normalization (TEBN) (Duan
et al., 2022), and Surrogate Module Learning (SML) (Deng et al., 2023). More details about the
proposed conversion algorithm and training configurations are provided in Appendix A.1.

6.1 EFFICACY OF PROPOSED METHOD

Figure 3: Comparison of the test accuracy of our conver-
sion method for different time steps with Q = 16 on (a)
CIFAR10 and (b) CIFAR100 datasets. For T=log2Q=4,
the ANN & SNN test accuracies are identical. The source
ANN accuracies are shown in dotted lines.

To verify the efficacy of our proposed
method, we compare the accuracies ob-
tained by our source ANN and the con-
verted SNN. As shown in Fig. 3, for
both VGG and ResNet architectures,
the accuracies obtained by our source
ANN and converted SNN are identi-
cal for T=log2Q. This is expected
since we ensure that both the ANN and
SNN produce the same activation out-
puts with the shift of the bias term of
each BN layer. Hence, unlike previous
works, there is no layer-wise error that
gets accumulated and transmitted to the
output layer. However, the SNN test ac-
curacy starts reducing for lower T , which is due to the difference between the ANN and SNN acti-
vation outputs but is still higher compared with existing works at the same T as shown below.

6.2 COMPARISON WITH SOTA

We compare our proposed framework with the SOTA ANN-to-SNN conversion approaches on CI-
FAR10 and ImageNet in Table 1 and 2 respectively. For an ultra-low number of time steps, especially
T≤4, the test accuracy of the SNNs trained with our method surpasses all the existing methods. Our
SNNs can also outperform some of the recently proposed SNNs that incur even higher number of
time steps. For example, QCFS reported a test accuracy of 94.95% at T=8; our method can surpass
that accuracy (95.82%) at T=4. Note that (Hao et al., 2023a;b) requires additional time steps to
capture the temporal trend of the membrane potential. The authors reported 4 extra time steps for
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Table 2: Comparison of our proposed method to existing ANN-to-SNN conversion methods on
ImageNet. Q=16 for both ResNet34 and MobileNetV2, and λ=5e−10. ∗BOS and SRP incurs at
least 4 and 8 additional time steps to initialize the membrane potential, so their results are reported
from T>4 and T>8 respectively.

Architecture Method ANN T=2 T=4 T=6 T=8 T=16 T=32

ResNet34

SNM 73.18% - - - - - 64.78%

SNNC-AP 75.36% - - - - - 63.64%

OPI 93.63% - - - - - 60.30%

BOS∗ 74.22% - - 67.12% 68.86% 74.17% 73.95%

SRP∗ 74.32% - - - 57.22% 67.62% 68.18%

Radix-SNN - - 72.52% 73.45% 73.65% - -
QCFS 74.32% - - - 35.06% 59.35% 69.37%

Ours 75.12% 54.27% 75.12% 75.00% 75.02% 75.10% 75.14%

MobileNetV2
SNNC-AP 73.40% - - - - - 37.43%

QCFS 69.02% 0.20% 0.26% 0.53% 1.12% 21.74% 58.45%

Ours 69.02% 22.62% 68.81% 68.89% 68.98% 69.02% 69.01%

Table 3: Comparison of our method with SOTA BPTT and hybrid training approaches.
Dataset Method Approach Architecture Accuracy Time Steps

CIFAR10

Dual-Phase Hybrid ResNet18 93.27

4

IM-Loss BPTT ResNet19 95.40
MPR BPTT ResNet19 96.27
TET BPTT ResNet19 94.44

RecDis-SNN BPTT ResNet19 95.53
TEBN BPTT ResNet19 95.58

SurrModu BPTT ResNet19 96.04
Ours ANN-to-SNN ResNet18 96.68

ImageNet

Dspike Supervised learning VGG16 71.24 5
Diet-SNN Hybrid VGG16 69.00 5

PLIF BPTT ResNet34 67.04 7
IM-Loss BPTT VGG16 70.65 5

RMP-Loss BPTT ResNet34 65.27 4
SurrModu BPTT ResNet34 68.25 4

Ours ANN-to-SNN ResNet34 73.30 4

the accuracy numbers shown in Table 1. As a result, they require at least 5 time steps during in-
ference; their reported accuracies are lower compared to our SNNs at iso-time-step across different
architectures and datasets. Moreover, our approach results in >2% increase in test accuracy on both
CIFAR10 and ImageNet compared to radix encoding Wang et al. (2022b) (that proposed the simi-
lar shifting method we used in this work) for ultra-low time steps (<4), thereby demonstrating the
efficacy of our BN bias shift and neuron model. Lastly, as shown in Table 3, our ultra-low-latency
accuracies are also higher compared to other SOTA yet memory-expensive SNN training techniques,
such as BPTT and hybrid training, at iso-time-step. Moreover, compared to these, our conversion
approach leverages standard ANN training with QCFS activation and only requires to change one
parameter of each BN layer that is not repeated across time steps, before the SNN inference process.

6.3 COMPUTE EFFICIENCY

Our modified IF model incurs the same number of membrane potential update, neuron firing, and re-
set, compared to the traditional IF model with identical spike sparsity. The only additional overhead
is the left shift operation that is performed on each convolutional layer output in each time step. As
shown in Table 5 in Appendix A.4, a left shift operation consumes similar energy as an addition op-
eration with identical bit-precision. However, the total number of left shift operations is significantly
lower than the number of addition operations incurred in the SNN for the spiking convolution oper-
ation. Intuitively, this is because the computational complexity of the spiking convolution operation
and the left shift operation is O(sk2cincoutHW ) and O(coutHW ) respectively, where s denotes
the sparsity. Note that k denotes the kernel size, cin and cout denote the number of input and output
channels respectively, and H and W denote the spatial dimensions of the activation map. Even with
a sparsity of 90%, for cin=512 and k=3, in ResNet18, we have sk2cincoutHW

coutHW =406.8. As shown in
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Table 4: Ablation study of the different components of our proposed method on CIFAR10 with
VGG16 and ResNet20.

Architecture Left shift BN bias shift Modified neuron T=2 T=4 T=6 T=8 T=16

VGG16

× × × 91.08% 93.82% 94.68% 94.90% 95.33%

× × ✓ 92.42% 94.80% 95.17% 95.28% 95.21%

✓ × × 93.03% 95.12% 95.24% 95.18% 95.21%

✓ ✓ × 93.33% 95.23% 95.45% 95.45% 95.32%

✓ ✓ ✓ 94.21% 95.82% 95.79% 95.82% 95.84%

ResNet20

× × × 71.42% 83.91% 84.12% 88.72% 92.64%

× × ✓ 76.21% 90.18% 91.92% 92.49% 92.62%

✓ × × 76.10% 91.22% 91.43% 92.40% 92.62%

✓ ✓ × 79.86% 91.81% 92.07% 93.24% 93.48%

✓ ✓ ✓ 86.92% 93.60% 93.57% 93.66% 93.75%

Fig. 4(a), the left shifts incur negligible overhead in the total compute energy across both VGG and
ResNet architectures. Moreover, left shifts can also be supported in programmable neuromorphic
chips, including Loihi (Davies et al., 2021) and Tianjic (Deng et al., 2020).

Figure 4: (a) Comparison of the compute energy of each SNN operation
with λ=1e−8 on CIFAR10. Comparison of the spiking activites of the
SNNs obtained via our and SOTA conversion methods on (b) CIFAR10
and (c) CIFAR100 with VGG16 and ResNet20. In (a), LS denotes the
left shift operation, and CE denotes compute energy.

Our ultra-low-latency
SNNs significantly re-
duce the memory access
cost, which is dominated
by the successive read
and write operations
of the membrane po-
tentials in each time
step. Moreover, our
fine-grained regularizer
significantly reduces
the spiking activity of
the network. As shown
in Fig. 4(b)-(c), with
VGG16, we can obtain a 1.64× reduction for CIFAR10 and 2.40× reduction for CIFAR100. For
ResNet-18 on CIFAR10 and ResNet-34 on CIFAR100, the reduction factors are 2.41× and 2.33×
respectively. Compared to SOTA conversion approaches (Bu et al., 2022b; Hao et al., 2023b), we
obtain 3.73−10.70× reduction in spiking activity. This reduced spiking activity linearly reduces
the compute energy. Thus, our proposed ultra-low-latency conversion framework, coupled with
high spike sparsity, can significantly reduce the combined system energy consumption. Detailed
energy comparisons with ANNs and additional analysis are in Appendix A.4.

6.4 ABLATION STUDY OF NEURON MODEL

We conduct ablation studies of our proposed encoding and conversion framework using the tradi-
tional IF model. As shown in Table 4, the SNN accuracy drops compared to the ANN counterpart,
and the degradation is severe for ultra-low (2-4) time steps. This is due to the deviation error that
appears with the normal IF model, and increases significantly at ultra low time steps, dominating
the total error. These results validate our hypothesis presented in Section 3. Additionally, when we
use the normal IF model, the encoding and bias shift of the BN layers still yield noticeable accuracy
increase compared to the QCFS training method that our work is based on, especially for 2-4 time
steps. Comparing our results with Table 1, we can also conclude that our conversion framework
with the normal IF model yields superior accuracy compared to most of the existing SNN works.

7 CONCLUSIONS

In this paper, we first uncover the key sources of error in ANN-to-SNN conversion that have not been
completely eliminated in existing works. We propose a novel conversion framework, that completely
eliminates all sources of conversion errors when we use the same number of time steps as the bit
precision of the source ANN, resulting in an exponential reduction compared to exponential drop
compared to existing works. We also propose a fine-grained ℓ1 regularizer during the source ANN
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training that minimizes the number of spikes in the converted SNN. This significantly increases the
compute efficiency, while the ultra-low latency increases the memory efficiency of our SNNs.
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A APPENDIX

A.1 NETWORK CONFIGURATIONS AND HYPERPARAMETERS

We train our source ANNs with average-pooling layers instead of max-pooling as used in prior
conversion works (Hao et al., 2023b; Bu et al., 2022b). We also replace the ReLU activation function
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in the ANN with QCFS function as shown in Eq. XX, copy the weights from the source ANN to the
target SNN and set the QCFS activation threshold λl equal to the SNN threshold θl. Note that λl is a
scalar term for the entire layer to minimize the compute associated with the left-shift of the threshold
in the SNN. We set the number of quantization steps Q to 16 for all networks on all datasets.

We leverage the Stochastic Gradient Descent optimizer (Bottou, 2012) with a momentum value of
0.9. We use an initial learning rate of 0.02 for CIFAR-10 and CIFAR-100, and 0.1 for ImageNet,
with a cosine decay scheduler (Loshchilov & Hutter, 2017) to lower the learning rate. For CIFAR
datasets, we set the value of weight decay to 5×10−4, while for ImageNet, it is set to 1×10−4.
Additionally, we leverage advanced input augmentation techniques to boost the performance of our
source ANN models (DeVries & Taylor, 2017; Cubuk et al., 2019), which can eventually improve
the performance of our SNNs. The models for CIFAR datasets are trained for 600 epochs, while
those for ImageNet are trained for 300 epochs.

A.2 PROOF OF THEOREMS & STATEMENTS

Theorem-I: For the lth block in the source ANN, let us denote W l as the weights of the lth hidden
convolutional layer, and µl, σl, γl, and βl as the trainable parameters of the BN layer. Let us denote
the same parameters of the converted SNN for as W l

c , µl
c, σl

c, γl
c, and βl

c. Then, Eq. 6 holds true if
W l

c = W l, µl
c = µl, σl

c = σl, γl
c = γl, and βl

c =
βl

T + (1− 1
T )

γlµl

βl .

Proof : Substituting the value of gSNN for the SNN in the left-hand side (LHS) which is equal to
the accumulated input current over T time steps,

∑T
t=1 ẑl, and gANN in the right-hand side (RHS)

of Equation 6, we obtain∑T
t=1

(
γl
c

(
2t−1W l

cs
l−1(t)θl−1−µl

c

σl
c

)
+ βl

c

)
=
(
γl
(∑T

t=1(2
t−1W lsl−1(t)θl−1)−µl

σl

)
+ βl

)
=⇒ γl

cW
l
cθ

l−1

σl
c

∑T
t=1 2

t−1sl−1(t) + T (βl
c −

µl
cγ

l
c

σl
c
) = γlW lθl−1

σl

∑T
t=1 2

t−1sl−1(t) + (βl − µlγl

σl )

If we assert γl
c = γl, W l

c = W l, σl
c = σl, the first terms of both LHS and RHS are equal. Substitut-

ing γl
c = γl, W l

c = W l, and σl
c = σl with this assertion, LHS=RHS if their second terms are equal,

i.e,
T (βl

c −
µlγl

σl ) = (βl − µlγl

σl ) =⇒ Tβl
c = βl + (T − 1)µ

lγl

σl =⇒ βl
c =

βl

T + (1− 1
T )

µlγl

σl

Theorem-II: If Condition I (Eq. 6) is satisfied and the post-synaptic potential accumulation, neuron
firing, and reset model adhere to Eqs. 7 and 8, the lossless conversion objective i.e., sl(t)=alt ∀t ∈
[1, T ] is satisfied for any hidden block l.

Repeating Eqs. 7 and 8 here,

ẑl(t) =

(
γl

(
2t−1W l

cs
l−1(t)θl−1 − µl

c

σl
c

)
+ βl

c

)
, (11)

ul(1) =

T∑
t=1

ẑl(t), sl(t) = H

(
ul(t)− θl

2t

)
, and ul(t+ 1) = ul(t)− sl(t)

θl

2t
. (12)

Note that ul(1) =
∑T

t=1 ẑ
l(t) is the original LHS of Eq. 6. Given that Eq. 6 is satisfied due to

Theorem-I, we can write ul(1) = hl, where hl is the input to the QCFS activation function of the
lth block of the ANN. The output of the QCFS function is denoted as al = fact(hl), whose tth bit
starting from the most significant bit (MSB) is represented as alt. We can check if alt is zero or one,
iteratively starting from the MSB, using a binary decision tree approach where we progressively
discard one-half of the search range for the subsequent bit checking. With the maximum value of hl

being λl, and λl = θl (see Section 2.2), al1 = H(hl − θl

2 ) = H(ul(1) − θl

2 ) = sl(1). To compute
al2, we can lower hl by half of the previous range, by first updating hl as hl = hl − al1

θl

2 , and then
calculating al2 = H(hl − θl

4 ) = H(ul(2) − θl

4 ) which is equal to sl(2). Similarly, updating hl to
calculate the tth bit ∀ t ∈ [2, T ] as hl = hl − θl

2t−1 and then evaluating alt as alt = H(hl − θl

2t ), we
obtain alt = sl(t), ∀t ∈ [1, T ].
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A.3 EFFICACY OF LAYER-BY-LAYER PROPAGATION

A.3.1 SPATIAL COMPLEXITY

During the SNN inference, the layer-by-layer propagation scheme incurs significantly lower spatial
complexity compared to its alternative step-by-step propagation. This is because in step-by-step
inference, the computations are localized at a single time step for all the layers, and to process
a subsequent time step, all the data, including the outputs and hidden states of all layers at the
previous time step, can be discarded. Thus, the spatial inference complexity of the step-by-step
propagation is O(N ·L), which is not proportional to T . In contrast, for layer-by-layer propagation,
the computations are localized in a single layer, and to process a subsequent layer, all the data of
the previous layers can be discarded. Thus, the spatial inference complexity of the layer-by-layer
propagation scheme is O(N ·T ). Since T << L for deep and ultra low-latency SNNs, the layer-by-
layer propagation scheme has lower spatial complexity compared to the step-by-step propagation.

A.3.2 LATENCY COMPLEXITY

When operating with step-by-step propagation scheme, let us assume that the lth layer requires ts(l)
to process the input sl−1(t) and yield the output sl(t). Then, the latency between the input X and
the output sL(T ) is Dstep = T

∑L
l=1 tstep(l).

With layer-by-layer propagation, let us assume that the delay in processing the layer l i.e., outputting
the spike outputs for all the time steps (sl(t) ∀t ∈ [1, T ]) from the instant the first spike input
sl−1(1) is received, is tlayer(l). Then, the total latency between the input X and the output sL(T )
is Dlayer =

∑L
l=1 tlayer(l).

Although each SNN layer is stateful, the computation across the different time steps can be fused
into a large CUDA kernel in GPUs when operating with the layer-by-layer propagation scheme
(Fang et al., 2020). Even on neuromorphic chips such as Loihi (Davies et al., 2018), there is parallel
processing capability. All these imply that tlayer(l) < T · tstep(l) for any layer l. This further
implies that Dlayer =

∑L
l=1 tlayer(l) <

∑L
l=1 T · tstep(l) < Dstep.

In conclusion, the layer-by-layer propagation scheme is generally superior both in terms of spa-
tial and latency complexity compared to the step-by-step propagation, and hence, our method that
requires layer-by-layer propagation to operate successfully, does not incur any additional overhead.

A.4 ENERGY EFFICIENCY DETAILS

Our proposed IF neuron model incurs the same addition, threshold comparison, and potential reset
operations as that of a traditional IF model. It simply postpones the comparison and reset operations
until after the input current is accumulated over all the T time steps. Thus, our IF model has sim-
ilar latency and energy complexity compared to the traditional IF model. Moreover, our proposed
conversion framework requires that the output of each spiking convolutional layer is left-shifted by
(t−1) at the tth time step. However, as shown in Fig. 4, the number of left-shift operations in any
network architecture is negligible compared to the total number of addition operations (even with
the high sparsity provided by SNNs) incurred in the convolution operation. As a left-shift operation
consumes similar energy as an addition operation for both 8-bit and 32-bit fixed point representation
as shown in Table 5, the energy overhead of our proposed method is negligible compared to existing
SNNs with identical spiking activity. Moreover, the energy overhead due to the addition, compar-
ison and reset operation in our (this holds true for traditional IF models as well) IF model is also
negligible compared to the spiking convolution operations as shown in Fig. 4.

Our SNNs yield high sparsity, thanks to our fine-grained ℓ1 regularizer, and ultra-low latency, thanks
to our conversion framework. While the high sparsity reduces the compute energy compared to
existing SNNs, the reduction compared to ANNs is significantly high. This is because ANNs incur
multiplication operations in the convolutional layer which is 6.6−31× more expensive compared
to the addition operation as shown in Table 5. Thanks to the high sparsity (71−79%) due to the ℓ1
regularizer, and the addition-only operations in our SNNs, we can obtain a 7.2−15.1× reduction in
the compute energy compared to an iso-architecture SNN, assuming a sparsity of 50% due to the
ANN ReLU layers.
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Table 5: Comparison of the energy consumed by the different operations in our proposed IF neuron
model, and multiplication required in ANNs, on an ASIC (45 nm CMOS technology). Data are
obtained from (You et al., 2020; Horowitz, 2014; Gholami et al., 2021; Sekikawa & Yashima, 2023),
and our in-house circuit simulations. Note that the reset operation consumes similar energy as
addition, and is not shown here.

Operation Bit Precision Energy (pJ)

Mult. 32 3.1
8 0.2

Add. 32 0.1
8 0.03

Left Shift 32 0.13
8 0.024

Comparator 32 0.08
8 0.03

Figure 5: Comparison of the test accuracy of our conversion method for different values of the
regularization coefficient λ.

The memory footprint of the SNNs during inference is primarily dominated by the read and write
accesses of the post-synaptic potential at each time step (Datta et al., 2022; Yin et al., 2022). This
is because these memory accesses are not influenced by the SNN sparsity since each post-synaptic
potential is the sum of k2cin weight-modulated spikes. For a typical convolutional layer, k = 3,
cin = 128, and so it is almost impossible that all the k2cin spike values are zero for the membrane
potential to be kept unchanged at a particular time step3. Since our proposed conversion framework
significantly reduces the number of time steps compared to previous SNN training methods, it also
reduces the number of membrane potential accesses proportionally. Hence, we reduce the memory
footprint of the SNN during inference. However, it is hard to accurately quantify the memory savings
since that depends on the system architecture and underlying hardware implementation.

A.5 PERFORMANCE-ENERGY TRADE-OFF WITH BIT-LEVEL REGULARIZER

We can reduce the spiking activity of SNNs using our fine-grained ℓ1 regularizer. In particular, by
increasing the value of the regularization co-efficient λ from 0 to 5e−8, the spiking activity can be
reduced by 2.5−4.1× for different architectures on CIFAR datasets as shown in Fig. 6. However,
this comes at the cost of test accuracy, particularly for a very low number of time steps, T<=3,
as shown in Fig. 5. By carefully tuning the value of λ, we can obtain SNN models with different
sparsity-accuracy trade-offs that can be deployed in scenarios with diverse resource budgets. Using
λ=1e−8 for the CIFAR datasets, and λ=5e−10 for ImageNet, yields a good trade-off for different
time steps. As shown in Fig. 5, λ=1e−8 yields accuracies that are similar to λ=04 for T≈log2Q for
CIFAR datasets. In particular, with ResNet18 for CIFAR10, λ=1e−8 yields SNN test accuracies

3Note that the number of weight read and write accesses can be reduced with the spike sparsity, and thus
typically do not dominate the memory footprint of the SNN

4λ=0 implies training of the source ANN without our fine-grained regularizer
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Figure 6: Comparison of the spiking activity of the SNNs obtained via our conversion method for
different values of the regularization coefficient λ.

Table 6: Comparison of our proposed method to existing ANN-to-SNN Conversion approaches on
CIFAR100 dataset. Q=16 for all architectures, and λ=1e−8. For the reported results below, ∗BOS
incurs 4 additional time steps to initialize the membrane potential, so the total number of time steps
is T>4.

Architecture Method ANN T=2 T=4 T=6 T=8 T=16 T=32

VGG16

SNM 74.13% - - - - - 71.80%

SNNC-AP 77.89% - - - - - 73.55%

OPI 76.31% - - - 60.49% 70.72% 74.82%

BOS∗ 76.28% - - 76.03% 76.26% 76.62% 76.92%

QCFS 76.28% 63.79% 69.62% 72.50% 73.96% 76.24% 77.01%

Ours 76.71% 72.39% 76.71% 76.74% 76.70% 76.78% 76.82%

ResNet20

OPI 70.43% - - - 23.09% 52.34% 67.18%

BOS∗ 69.97% - - 64.21% 65.18% 68.77% 70.12%

QCFS 69.94% 19.96% 34.14% 49.20% 55.37% 67.33% 69.82%

Ours 70.30% 63.80% 70.30% 70.33% 70.45% 70.49% 70.52%

within 0.2% of that of λ = 0, while reducing the spiking activity by ∼2.4× (0.53 to 0.22), which
also reduces the compute energy by a similar factor. With ResNet34 for ImageNet, λ = 5e − 10,
leads to a 0.4% reduction in test accuracy, while reducing the compute energy by 2×. Moreover, as
shown in Fig. 6, the spiking activities of our SNNs trained with non-zero values of λ do not increase
significantly with the number of time steps as that with λ=0, which also demonstrates the improved
compute efficiency resulting from our regularizer.

Table 7: Comparison of our proposed method with SOTA BPTT and hybrid training approaches on
CIFAR100 dataset.

Dataset Approach Architecture Accuracy Time Steps
DSR BPTT ResNet18 73.35 4
Diet-SNN Hybrid VGG16 69.67 5
TEBN BPTT ResNet18 78.71 4
IM-Loss BPTT VGG16 70.18 5
RMP-Loss BPTT ResNet19 78.28 4
SurrModu BPTT ResNet18 79.49 4
Our Work ANN-to-SNN ResNet18 79.89 4
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Table 8: Comparison of the normalized estimated energy of our SNNs on neuromorphic hardware
compared to bit-serial accelerators.

Dataset Architecture Neuromorphic Bit-Serial

CIFAR10
VGG16 1× 3.57×

ResNet18 1× 4.54×

ImageNet
VGG16 1× 3.12×

ResNet34 1× 3.70×

A.6 COMPARISON WITH SOTA WORKS FOR CIFAR100

We compare our proposed framework with the SOTA ANN-to-SNN conversion approaches on CI-
FAR100 in Table 6. Similar to CIFAR10 and ImageNet, for ultra-low number of time steps, espe-
cially T≤4, the test accuracy of our SNN models surpasses existing conversion methods. Moreover,
our SNNs can also outperform SOTA-converted SNNs that incur even higher number of time steps.
For example, the most recent conversion method, BOSQ reported a test accuracy of 76.03% at T=6
(with 4 time steps added on top of T = 2 in Table 6 for the extra 4 time steps required for potential
initialization); our method can surpass that accuracy (76.71%) at T=4.

Additionally, as shown in Table 7, our ultra-low-latency accuracies are also higher compared to
direct SNN training techniques, including BPTT and hybrid training step at iso-time-step. For ex-
ample, our method can surpass the test accuracies obtained by the latest BPTT-based SNN training
methods (Guo et al., 2023a; Deng et al., 2023) by 0.4−1.6%, while significantly reducing the train-
ing complexity.

A.7 COMPARISON WITH BIT-SERIAL QUANTIZATION

Bit-serial quantization is a popular implementation technique for neural network acceleration . It is
often desirable for low precision hardware, including in-memory computing chips based on one-bit
memory cells such as static random access memory (SRAM) and low-bit cells, such as resistive
random access memory (RRAM). Similar to the SNN, it also requires a state variable that stores
the intermediate bit-level computations, however, unlike the SNN that compares the membrane state
with a threshold at each time step, it performs the non-linear activation function and produces the
multi-bit output directly. However, to the best of our knowledge, there is no large-scale bit-serial
accelerator chip currently available. Moreover, unlike neuromorphic chips, bit-serial accelerators do
not leverage the large activation sparsity demonstrated in our work, and hence, incur significantly
higher compute energy compared to neuromorphic chips. Since our SNNs trained with our bit-
level regularizer provides a sparsity of 68−78% for different architectures and datasets, they incur
3.1−4.5× lower energy when run on sparsity-aware neuromorphic chips, compared to bit-serial
accelerators, as shown in Table 8 .

It can be argued that our approach without our bit-level regularizer leads to results similar to bit-serial
computations. However, naively applying bit-serial computing to SNNs with the left-shift approach
proposed in this work, would lead to non-trivial accuracy degradations. This is because unlike
quantized networks, SNNs can only output binary spikes based on the comparison of the membrane
potential against the threshold. Our proposed conversion optimization (bias shift of the BN layers
and modification of the IF model) mitigates this accuracy gap, and ensures the SNN computation is
identical to the activation-quantized ANN computation. This leads to zero conversion error from the
quantized ANNs, and our SNNs achieve identical accuracy with the SOTA quantized ANNs.

A.8 PSEUDO CODE OF PROPOSED CONVERSION FRAMEWORK

In this section, we summarize our proposed ANN-to-SNN conversion framework in Algorithm 1,
which includes training the source ANNs using the QCFS activation function, and then converting
to SNNs.
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Algorithm 1 : Proposed ANN-to-SNN conversion algorithm
1: Inputs: ANN model fANN (a;W,µ, σ, β, γ) with initial weight W , BN layer running mean µ,

running variance σ, learnable scale γ, and learnable variance β; Dataset D; Quantization step
L; Initial dynamic thresholds λ; Learning rate ϵ; Number of SNN time steps T

2: Output: SNN model fSNN (a;W,µ, σ, β, γ) & output sL(t) ∀t∈[1, T ] where L = fSNN .layers
3: #Source ANN training
4: for e = 1 to epochs do
5: for length of dataset D do
6: Sample minibatch (a0, y) from D
7: for l = 1 to fANN .layers do
8: al = QCFS(γl

(
W lal−1−µl

σl

)
+ βl)

9: ai,lt = tth-bit, starting from MSB, of the ith term in al

10: end for
11: loss = CrossEntropy(al, y) + λ

∑L
l=1

∑T
t=1 a

i,l
t

12: for l = 1 to fANN .layers do
13: W l ←W l − ϵ ∂loss

∂W l , µl ← µl − ϵ∂loss
∂µl , µl ← σl − ϵ∂loss

∂σl

14: γl ← γl − ϵ∂loss
∂γl , βl ← βl − ϵ∂loss

∂βl , λl ← λl − ϵ∂loss
∂λl

15: end for
16: end for
17: end for
18: #ANN-to-SNN conversion
19: for l = 1 to fANN .layers do
20: fSNN .W l←fANN .W l, fSNN .θl←fANN .λl, fSNN .µl←fANN .µl

21: fSNN .σl←fANN .σl, fSNN .γl ← fANN .γl, fSNN .βl ← fANN .βl

T
+(1− 1

T
) f

ANN .γlfANN .µl

fANN .βl

22: end for
23: #Perform SNN inference on input a0

24: a1 = QCFS
(
fSNN .γ1

(
x0fSNN .W 1a0−fSNN .µ1

fSNN .σ1

)
+ fSNN .β1

)
25: s1(t) = tth-bit of a1 starting from MSB
26: for l = 2 to fSNN .layers do
27: for t = 1 to T do
28: zl(t) =

(
fSNN .γl

(
2t−1fSNN .W lsl−1(t)−fSNN .µl

fSNN .σl

)
+ fSNN .βl

)
29: end for
30: ul(1) =

∑T
t=1 z

l(t) + θl

2
31: for t = 1 to T do
32: sl(t) = H(ul(t)− fSNN .θl

2 )

33: ul(t+ 1) = ul(t)− sl(t) f
SNN .θl

2
34: end for
35: end for
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