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Abstract

We introduce a 3D VAE-GAN framework that synthesizes brain MRI volumes con-
ditioned on seven clinical attributes, such as Alzheimer’s disease (AD) diagnostic
labels and key volumetric measures, including the hippocampus, amygdala, and
lateral ventricle, which are known to correlate with AD. Leveraging a 3D encoder-
decoder with depthwise-separable convolutions and a style-based modulation, our
model efficiently captures critical biomarkers and injects clinical information di-
rectly into the generation process. During the training, two pre-trained auxiliary
heads, Alzheimer’s Disease and Cognitively Normal (AD/CN) classification and
brain volume vector regression, provide additional cross entropy and regression
losses, ensuring that generated scans remain anatomically plausible and clinically
consistent. To sample realistic clinical vectors during inference, we additionally
train a diffusion model on clinical vectors, enabling flexible sampling of disease
states without the need for manual feature engineering. Experimental results
demonstrate high-quality 3D MRI generations. Additionally, adjusting disease
labels or specific brain volumes demonstrates a feasible level of conditional control,
suggesting that this approach could benefit data augmentation and support clinically
relevant neuro-imaging tasks.

1 Introduction

Alzheimer’s disease (AD) is widely recognized as the most common cause of dementia worldwide,
with recent estimates indicating that 57 million people were living with dementia in 2019, a figure
projected to nearly triple by 2050 (20). Due to the complexity of identifying the etiology of AD and
the wide range of symptoms, identifying biomarker patterns in the disease’s progression would be
critical in the long-term treatment of patients (7). Nevertheless, studying the disease’s time course
and mapping it to certain features requires a large amount of diverse and curated data, which can
often be challenging to acquire (19).

Generative AI has gained increasing interest in medical imaging, where data scarcity, privacy concerns,
and domain shifts present major obstacles to developing robust deep-learning solutions (26). In
particular, 3D MRI datasets can be challenging to acquire and standardize, making it difficult for
segmentation or classification models to generalize to unseen clinical contexts. Recent progress
in generative modeling-spanning Variational Autoencoders (VAEs) (18), Generative Adversarial
Networks (GANs) (5), and Diffusion Models (10), promises data augmentation strategies that can help
address these limitations. By leveraging these models, researchers have generated 3D Alzheimer’s
images to study and predict Alzheimer’s disease progression. (22; 16)
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However, purely visual plausibility is insufficient in a medical setting: synthetic volumes must also
respect clinical attributes such as diagnostic labels and region-specific volumes. Efforts to incorporate
conditional signals have shown that aligning generative processes with meaningful clinical features
can yield anatomically consistent outputs. For instance, latent diffusion approaches have recently
succeeded in controlling brain MRI generation by specifying factors like patient age or overall brain
volume (21). Meanwhile, style-based GAN architectures demonstrate the flexibility to inject global
or local style parameters, though many focus on 2D tasks or lack explicit constraints for medical
applications.

In this work, we propose a 3D VAE-GAN framework with clinical-style conditioning designed to
produce MRI volumes that appear realistic and reflect user-defined brain region volumes and AD
or Cognitively Normal (CN) diagnoses. The main contributions of our work can be summarized as
follows:

• 3D VAE-GAN with Depthwise-Separable Convolutions: We propose a 3D VAE-GAN
framework that integrates a 3D encoder and a clinical-style decoder, both employing
depthwise-separable convolutions inspired by the Xception model (3). This approach
captures volumetric features more efficiently while reducing the overall parameter count
compared to standard 3D convolutions.

• Style-Based Conditioning on Clinical Data: We adopt a style-based approach (inspired by
StyleGAN2 (17)) in the decoder, injecting user-defined or automatically sampled clinical
attributes (e.g., hippocampus, amygdala, and lateral ventricle volumes, AD/CN label) into
each convolutional layer. This design ensures that key morphological details (such as
amygdala size or disease status) are accurately reflected in the generated MRI.

• Auxiliary Supervision for Clinical Fidelity: Our pipeline leverages auxiliary supervision
from a pre-trained AD/CN classifier and a volume feature regression network. This forces
the generator to produce anatomically consistent volumes aligned with diagnostic labels and
numerical region-specific measures, enhancing realism and clinical relevance.

• Separate Diffusion Model for Clinical Feature Sampling: By training a diffusion model on
the clinical feature space alone, we enable on-demand sampling of realistic volume vectors
and labels without hand-crafting each attribute. This approach automatically yields diverse,
clinically valid conditions at inference, supporting large-scale synthetic dataset creation.

2 Methodology

An overview of the proposed model is shown in Fig. 1. Our 3D VAE-GAN architecture uses clinical-
style conditioning to generate realistic MRI volumes guided by both image data and clinical features
(e.g., volumetric measures and AD/CN labels). The system’s encoder incorporates image and clinical
embeddings to produce a latent distribution, while a conditional prior, relying purely on clinical data,
ensures we can sample new MRI volumes at inference without a real image.

2.1 Problem definition and notation

Given a 3D T1-weighted MRI volume x ∈ RH×W×D and an associated clinical vector c (six
regional brain volume ratios + an AD/CN label), we seek a conditional generator pθ(x|c) that can
draw anatomically realistic MRI scans whose distribution matches that of real data with the same
clinical profile.

We introduce a latent code z ∈ Rk and decompose the likelihood as

pθ(x|c) =
∫
pθ(x|z, c) · pθ(z|c) dz. (1)

In practice, the integral in Eq. (1) is intractable. Following the standard variational approach, we
introduce an encoder qϕ(z | x, c) to approximate the true posterior and optimize the evidence lower
bound (ELBO, a standard VAE objective combining reconstruction accuracy and latent regularization).
The latent variable z is sampled via the reparameterization trick, z = µe(x, c) + σe(x, c) ϵ, where
ϵ ∼ N (0, I). During training, we maximize the ELBO by minimizing the reconstruction loss between
x and gθ(z, c), together with a Kullback–Leibler (KL) divergence term that aligns qϕ(z | x, c) with the
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Figure 1: A) VAE-GAN Training: A 3D Xception-based VAE learns latent MRI features. Its style-
based decoder is modulated by clinical vectors (volumes + AD/CN). B) Diffusion Model Training:
Clinical vectors form a learned distribution for realistic sampling. C) At inference, users can either
sample clinical vectors from the diffusion model or provide them manually, then generate synthetic
MRI volumes via a conditional prior and the style-based 3D decoder.

learned conditional prior pθ(z | c). This formulation makes Eq. (1) tractable and allows end-to-end
optimization through gradient descent.

• The decoder gθ implements pθ(x|z, c) (right purple block in Fig. 1-A).

• The conditional prior pθ(z|c) is parameterized as a Gaussian N
(
µp(c), σ

2
p(c)

)
, whose µp

and σp are predicted by a small MLP (FC) that reads embedded c (blocks Priorµ/Priorσ in
Fig. 1-A).

• Separately, we train a diffusion model with parameters ψ on clinical vectors to learn pψ(c)
(Fig. 1-B). At inference, we either sample c ∼ pψ(c) or provide c manually (Fig. 1-C), then
draw z ∼ pθ(z | c) and decode.

At training time, the encoder eϕ maps (x, c) to the variational posterior qϕ(z|x, c); we draw z with
the standard re-parameterization trick. For every mini-batch, we minimize the composite loss:

Ltotal = Lrec + λKLLKL + λadvLadv + λpercLperc + λclsLcls + λregLreg (2)

Table 1: Loss-term definitions

Term Definition
Lrec L1 voxel-wise error between the ground-truth MRI x and reconstruction gθ(z, c)
LKL Kullback-Leibler divergence KL(qϕ(z | x, c) ∥ pθ(z | c))
Ladv PatchGAN adversarial loss conditioned on c
Lperc Perceptual feature loss using pre-trained EfficientNet-B0 layers (25)
Lcls Auxiliary classification (AD vs CN)
Lreg ROI-volume regression loss

Each loss plays a different role. Lrec keeps the reconstruction anatomically aligned with the input and
stabilizes training. LKL aligns the encoder’s latent distribution with the learned clinical prior. Ladv

(PatchGAN) pushes local realism and sharp detail, counteracting the blur that pure reconstruction

3



losses can introduce. Lperc compares high-level features from pre-trained EfficientNet-B0 (25)
rather than raw pixels, encouraging correct global structure and texture. Lcls enforces that generated
images match the AD/CN label in the conditioning vector, while Lreg keeps the six regional volumes
consistent with the requested values.

In all experiments we kept the coefficients fixed at λrec = 10, λKL = 0.1, λadv = 1, λperc = 20,
λcls = 1, λreg = 1, a setting that gave us the best balance between visual sharpness (higher λrec, λperc)
and latent diversity (lower λKL). These values were selected empirically following evaluation of the
results.

2.2 Algorithm Overview

Algorithm 1 VAE–GAN Training Loop (clinical prior)
1: repeat
2: Sample (x, c) from the dataset
3: Encode → z ∼ qϕ(z|x, c)
4: Decode → x̂ = gθ(z, c)
5: Update encoder and decoder with Lrec, LKL, Lperc, Lcls, Lreg
6: Update discriminator and decoder’s adversarial branch with Ladv
7: until convergence

Algorithm 2 Diffusion Training on clinical vectors
1: repeat
2: Sample c from the dataset
3: Add Gaussian noise at a random timestep t
4: Predict the added noise
5: Minimize MSE between the predicted noise and the true noise
6: until convergence

Algorithm 3 Inference (Sampling)
1: Provide or sample c:
2: Manual mode: user supplies volume features and/or label
3: Stochastic mode: draw c ∼ pψ(c) using the diffusion model.
4: Sample z ∼ pθ(z|c) = N

(
µp(c), σ

2
p(c)

)
.

5: Generate x̂ = gθ(z, c), a new MRI that matches c

2.3 Datasets

We used T1-weighted MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(1; 15), focusing on participants diagnosed as CN or AD. After acquiring an initial set of scans, we
excluded poor-quality data or missing labels, resulting in a final cohort of 2564 MRI volumes. We
applied the SynthStrip tool from the FreeSurfer pipeline (12) for skull stripping each MRI scan to
remove non-brain tissue, followed by z-score intensity normalization, cropping, and resampling to a
consistent 128×128×128 resolution using a third-order B-spline interpolation kernel. In addition to the
3D scans, we used regional volume features for the left/right hippocampus, left/right amygdala, and
left/right lateral ventricles, which correlate highly with AD (4). These measurements were normalized
by each subject’s whole brain volume, creating dimensionless ratios that served as conditioning inputs
for both our VAE-GAN and diffusion models. We also used subject-disjoint splits of 80/10/10%
(train/val/test). All metrics are reported on the test set.

2.4 Models Architecture

Differentiable Augmentation: To improve generalization and sample diversity, especially on a
limited dataset, we adopted a two-stage augmentation pipeline. (i) Conventional 3D transforms. Each
training volume was randomly blurred, noised, or gamma adjusted with fixed probabilities, exposing
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the model to diverse appearances and reducing overfitting. (ii) Differentiable augmentation (28)
(DiffAug blocks in Fig. 1-A). Following Zhao et al., we applied differentiable brightness, contrast,
and 3-D translations to both real and generated samples during each adversarial update. Because
these transforms are parameter–free and differentiable, they preserve gradient flow and stabilize GAN
training. Empirically, the combined strategy lowered FID and LPIPS while increasing perceptual
diversity.

VAE encoder architecture: The encoder is a 3D Xception-style stack that reduces a 128×128×128
MRI volume to a compact feature map while keeping compute low. Each stage uses depth-wise
separable 3×3×3 convolutions followed by a 1×1×1 point-wise convolution (Xception factorization
(3)), then down-samples with 3D max-pooling. Channels increase 64 → 128 → 256 → 512, yielding
a feature map at one-eighth spatial resolution (Fig. 2-A). We flatten this map and concatenate (circle
c⃝ in (Fig. 1-A)) an MLP embedding of the clinical vector; two linear heads then predict the posterior

parameters used in qϕ(z|x,c). This Xception design replaced heavy full 3D convolutions with
channel-wise spatial filtering plus 1× 1× 1 mixing, cutting parameters and complexity substantially
while preserving receptive-field depth that is critical for 3D volumes.

VAE decoder architecture: The decoder converts the latent vector z into a full-resolution MRI
while injecting clinical context via StyleGAN-inspired modulation (17). The 7–D clinical vector c is
mapped by an MLP to a style code w. At each up-sampling stage, we applied a separable depth-wise
3× 3× 3 convolution (sd_c3 in Fig. 2-B) whose weights are modulated by w and then de-modulated
similar to StyleGAN2 approach (17). A “style conv” (SC) mixes channels after every up-sample.
This sequence, upsample → SC → (sd_c3 + mod/demod), propagates clinical cues through the
hierarchy while keeping the model lightweight. A final 1× 1× 1 layer produces the reconstructed
3-D MRI.

Conditional VAE with a learned clinical prior: Following the conditional VAE formulation (24),
we replaced the fixed Gaussian prior with a learned, clinical conditioned prior pθ(z|c) (23) (Fig.
1-A). Given an MRI volume x and its clinical vector c, the encoder predicts a mean–variance pair
(µe, σe) that defines the approximate posterior qϕ(z|x, c) (Fig. 1-A, blocks Enµ/Enσ). In parallel, a
shallow prior network maps c to its own parameters (µp, σp), forming pθ(z|c) (blocks Priorµ/Priorσ).
During training, we minimized the KL divergence between these two Gaussians, encouraging z to
stay clinically consistent while retaining patient-specific anatomy. At inference (Fig. 1-C), we drew
z ∼ pθ(z|c), with c sampled from the diffusion model or provided by the user manually and decoded
it into a synthetic MRI.

3D network for clinical-info classification and regression: To enforce clinical consistency, we
attached two pre-trained 3D ResNet-18 heads (8), one for AD/CN classification and one for regional
volume regression, at the output of the generator (cyan modules in Fig. 1-A). As shown in supple-
mentary Fig. S1-A, both backbones employ depth-wise separable 3× 3× 3 convolutions (3), cutting
model complexity by ≈ 40% versus standard ResNet-18 while retaining receptive field depth. A
global average pooling layer converts the final feature map into a vector that feeds a task-specific
fully connected head: (i) two logits with cross-entropy loss for AD/CN discrimination, and (ii) a
six-value vector with mean squared error loss for regional volumes. During VAE-GAN training, the
weights of both heads were frozen; only their losses propagated to the encoder-decoder, compelling it
to synthesize brains that match the conditioning and preserve anatomically plausible volumes. At
inference, these auxiliary networks were removed, so generation incurred no extra cost.

Discriminator: As shown in Fig. 1-A and supplementary Fig. S1-B, we used a 3D PatchGAN
architecture (14) and replaced its standard convolutions with depth-wise separable 3× 3× 3 kernels,
reducing parameters and complexity without sacrificing receptive field size. Instead of a single
real/fake logit, the network outputs a spatial map of authenticity scores, enabling it to judge local
anatomical realism across the entire MRI volume.

Diffusion Model: As shown in Fig. 1-B, we separately trained a diffusion model on the seven-
dimensional clinical vector c (six regional-volume ratios + the AD/CN label). The AD/CN label
is encoded as a single binary value (0 = CN, 1 = AD) and concatenated with the six normalized
regional-volume ratios to form the 7-D clinical vector c. During sampling, the label value can be fixed
to a desired class or sampled jointly with the other features. The model is a three-layer MLP that
predicts the added Gaussian noise at each diffusion step; it is optimized with a mean-squared-error
loss on the noise term. After training, the diffusion prior was used to sample plausible clinical
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conditions automatically, a task that would otherwise require labor-intensive feature engineering to
maintain realistic co-dependencies among the six volumes and the diagnosis label.

2.5 Training Procedure

All networks were trained in PyTorch from scratch using the Adam optimizer (β1 = 0.5, β2 = 0.999).
The VAE–GAN generator, encoder, and decoder used a learning rate of 1×10−4, and the discriminator
used 1×10−3; the diffusion prior used 5×10−4. Training employed ReduceLROnPlateau schedulers
(factor = 0.75, patience = 50–100) and gradient clipping (1.0 for the GAN and diffusion, 5.0 for
auxiliary heads). The AD/CN classifier and ROI–volume regression heads were first trained separately
on real ADNI images (batch = 8, epochs = 50–60), then frozen during VAE–GAN training to provide
auxiliary losses. The VAE–GAN was trained for 2000 epochs (batch = 4) with ReduceLROnPlateau
on validation FID and early stopping (patience = 500). All models were initialized with Xavier
uniform weights.

3 Results

3.1 Quantitative evaluation of generated 3D MRI volumes.

We measured the quality of generated 3D MRI volumes using FID (Frechet Inception Distance) (9) as
well as SSIM (Structural Similarity Index) (13), and LPIPS (Perceptual Image Patch Similarity) (27).
FID was computed on features extracted from a pre-trained 3-D ResNet-18 using 2,000 generated
and test-set real volumes. SSIM and LPIPS were evaluated on tri-planar 2-D slices (32 per plane,
96 per volume) and averaged to obtain per-volume scores. The ablation study in Table 2 shows a
clear progression: adding the Xception backbone, clinical conditioning, and finally the perceptual
loss successively reduces FID and LPIPS while boosting SSIM. Our full model (3D Xception-based
VAE-GAN + Clinical conditions + Perceptual) achieved an FID of 30.64, SSIM of 0.89, and LPIPS
of 0.23, outperforming all weaker variants. These quantitative gains are qualitatively reflected in
Fig. 3, where the generated axial, sagittal, and coronal slices reproduce cortical folding and ventricle
anatomy that are visually indistinguishable from the real ADNI scans.

Table 2: Comparison of different methods

Method #Parameters FID (↓) SSIM (↑) LPIPS (↓)
3D VAE 24.6 M 78.23 ± 1.10 0.72 ± 0.014 0.38 ± 0.016
3D VAE-GAN 35.7 M 53.87 ± 0.95 0.77 ± 0.012 0.31 ± 0.015
3D Xception-based VAE-GAN 7.9 M 47.45 ± 0.82 0.79 ± 0.011 0.28 ± 0.014
3D Xception-based VAE-GAN +
Clinical conditions 8.1 M 45.31 ± 0.78 0.80 ± 0.012 0.26 ± 0.013

3D Xception-based VAE-GAN +
Clinical conditions + Perceptual loss 13.2 M 30.64 ± 0.90 0.89 ± 0.012 0.23 ± 0.014

3.2 Quantitative comparison with state-of-the-art baselines

To ensure a fair comparison, we re-implemented and trained two strong generative models namely
3D-WGAN-GP (6) and 3D-StyleGAN2 (11) using their publicly available PyTorch codes on the
same ADNI train/validation/test split (80/10/10, subject-disjoint), with identical pre-processing and
resolution. We measured FID, SSIM, and LPIPS on our ADNI test set. Table 3 shows that our
clinically conditioned 3D VAE–GAN achieves the best FID (30.64), highest SSIM (0.89), and lowest
LPIPS (0.23) while using only 13.2 M parameters, outperforming 3D–StyleGAN2 by 15 FID points.

3.3 Evaluating Clinical Consistency

To assess how well our synthetically generated MRIs preserve the input clinical attributes, we
evaluated both diagnostic labels and ROI volume features. We sampled 1,000 clinical vectors
(AD/CN label plus ROI volume ratios) using our diffusion model at inference, which were then
decoded into synthetic MRIs with our 3D Clinical-Style decoder. As shown in Table 4, our pre-
trained AD/CN classifier predicted the diagnosis of these synthetic images, achieving 80.6% balanced
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Figure 2: A) 3D Xception encoder. A 3D MRI volume is processed by pairs of depth-wise separable
convolutions with max-pooling at each stage, expanding channels and producing a compact feature
map. B) Schematic of the 3D clinical-style VAE decoder, highlighting depthwise-separable (sd_c3)
convolutions and style-based modulation with clinical embedding.

Figure 3: Comparison of real and generated 3D MRI slices (Axial, Coronal, and Sagittal views)

accuracy, close to the 82.1% obtained on real images. Removing the classifier loss (Lcls in Eq. (2))
during training reduced classification accuracy by 4%. Similar trends were observed with the
pre-trained ROI volume regression model: performance dropped when the regression loss (Lreg in
Eq. (2)) was removed.

We further evaluated whether specific subcortical volumes were preserved in the synthetic MRIs.
Using SynthSeg tool (2), we segmented the synthetic images to estimate hippocampal, amygdala, and
lateral ventricle volumes. Left and right hemisphere measures were summed to obtain total structure
volumes, which were then compared to the target values from the input clinical vectors. As shown in

Table 3: Quantitative comparison of 3D brain-MRI generators trained and evaluated on the same
ADNI dataset. All baselines were trained with identical pre-processing, resolution (1283), splits,
training budget.

Method #Parameters FID (↓) SSIM (↑) LPIPS (↓)
3D-WGAN-GP (6) 25M 78.2 ± 1.1 0.87 ± 0.01 0.34 ± 0.016
3D-StyleGAN2 (11) 7M 46.0 ± 0.9 0.74 ± 0.011 0.28 ± 0.014
Ours 13.2M 30.64 ± 0.9 0.89 ± 0.012 0.23 ± 0.014
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Figure 4: Measured vs. input volumes for the hippocampus, amygdala, and lateral ventricles,
extracted from synthetic MRI scans via SynthSeg.

Figure 5: A) KDE for the ventricle volumes, comparing real vs. generated clinical data; and B) PCA
of normalized clinical vectors, illustrating the overall distribution overlap between real and generated
samples.

Fig. 4, the measured and target volumes exhibited strong correlations, demonstrating that our model
effectively preserves clinically relevant structural information in most cases.

Table 4: Comparison of Real and Synthetic 3D Images in Terms of Balanced Accuracy (BAC)
for AD/CN Classification and Mean Squared Error (MSE) for Volume Regression of Bilateral
Hippocampus, Amygdala, and Ventricle.

Real Gen (with Cls/Reg Loss) Gen (w/o Cls/Reg Loss)
BAC for AD classification
(%)

82.1 ± 1.6 80.6 ± 1.8 76.5 ± 2.1

MSE for volume regression
(×10−5)

3.8 ± 0.3 5.7 ± 0.4 11.1 ± 0.7

3.4 Diffusion Model Evaluation for Clinical Vector Generation

We evaluated the diffusion prior’s ability to reproduce the distribution of real clinical variables.
Specifically, we compared the marginal distributions of key attributes (e.g., ventricle volumes)
between real data and diffusion-sampled clinical vectors. As shown in Fig. 5-A, kernel density
estimates (KDE) of real and generated samples overlap closely, indicating that the model captures
both the range and shape of the true distribution. We further projected the full 7-D clinical vectors into
two dimensions using principal component analysis (PCA). Fig. 5-B shows that real and generated
vectors intermix throughout the latent space, suggesting that the diffusion model explores diverse
modes rather than collapsing to a narrow subset.
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3.5 Computational cost and runtime

To give a practical view of adoption, we reported training times and per sample inference times for
each deep learning component in supplementary Table S1. All measurements were taken on a single
AWS p3.8xlarge instance (4× V100 16 GB; Intel Xeon E5–2686 v4 @ 2.30 GHz; 244 GB RAM).
Supplementary Table S1 summarizes approximate runtimes and hyper parameters. Once trained,
deployment is efficient: the VAE GAN synthesizes one MRI in 164 ms (batch=1), making large
scale testing feasible. The classifier and regression heads are used only during training (times listed
for completeness). The diffusion prior operates on a 7 D vector; with 500 sampling steps it takes
about 450 ms to draw one clinical vector, which can be reduced substantially by fewer steps or fast
samplers. The end–to–end generation time is therefore 0.61 s per volume when diffusion sampling is
used, and 0.16 s when c is provided manually.

4 Discussion

We proposed a 3D VAE-GAN with clinical-style conditioning that efficiently captures both visual and
anatomical features, enabling fully automated large-scale generation of anatomically and clinically
coherent brain scans. On ADNI, the full model reached an FID of 30.64, SSIM of 0.89, and
LPIPS of 0.23, outperforming all ablations and similar state-of-the-art baselines. By integrating
Xception-based convolutions, adversarial loss, and perceptual loss, we achieved improved image
quality and realism. Adding classification and regression constraints during training ensured that
synthetic images retained AD/CN classification accuracy and aligned ROI volumes with the input
clinical covariates. The diffusion prior model also successfully learned correlations among clinical
variables, as shown by KDE and PCA analyses, enabling diverse and realistic sampling without
manual feature engineering. The AD/CN classification and ROI regression heads were trained
separately on real ADNI data, frozen, and then used only to provide auxiliary supervision during
VAE–GAN training. All quantitative evaluations were performed on a held-out test set to avoid data
leakage. We acknowledge, however, that evaluating generated images with the same frozen heads
may introduce bias, since the generator was partially optimized to satisfy these networks. To address
this, we additionally report independent validation using SynthSeg segmentation, which is external to
our training process. Also, in practice, we did not observe major failure cases, though extreme or
contradictory conditioning values (e.g., unusually large ventricles with an AD label or mismatched
volume ratios) occasionally led to anatomically implausible outputs, such as local intensity artifacts
or distorted boundaries.

While our approach demonstrates strong realism, it also carries common risks of generative models,
such as occasional hallucinated anatomy or spurious correlations learned from biased training data.
These should be carefully monitored before downstream clinical use. Also, a key limitation is that
processing full 3D volumes remains computationally demanding, even with depth-wise separable
convolutions. For example, training on 2,564 MRI scans for 2,000 epochs across four V100 GPUs
required 3 days due to memory overhead and floating-point operations needed for 3D data. To
address this, we plan to implement mixed precision training for more efficient memory usage and
exploit gradient checkpointing to lower memory and time costs. In addition, although our experiments
focus on ADNI, the conditioning mechanism is dataset agnostic; future work will test generalization
to other available datasets. We will also extend our approach to include Mild Cognitive Impairment
(MCI), further broadening the clinical relevance of our synthetic data and supporting more nuanced
disease progression studies.

5 Code Availability

The implementation of the proposed framework is publicly available at
https://github.com/NajmehMa/VAE-GAN.
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