
Co-training an Unsupervised Constituency Parser
with Weak Supervision

Anonymous ACL submission

Abstract

We introduce a method for unsupervised pars-001
ing that relies on bootstrapping classifiers to002
identify if a node dominates a specific span in003
a sentence. There are two types of classifiers,004
an inside classifier that acts on a span, and an005
outside classifier that acts on everything out-006
side of a given span. Through self-training and007
co-training with the two classifiers, we show008
that the interplay between them helps improve009
the accuracy of both, and as a result, effec-010
tively parse. A seed bootstrapping technique011
prepares the data to train these classifiers.012
Our analyses further validate that such an ap-013
proach in conjunction with weak supervision014
using prior branching knowledge of a known015
language (left/right-branching) and minimal016
heuristics injects strong inductive bias into the017
parser, achieving 63.1 F1 on the English (PTB)018
test set. In addition, we show the effectiveness019
of our architecture by evaluating on treebanks020
for Chinese (CTB) and Japanese (KTB) and021
achieve new state-of-the-art results.1022

1 Introduction023

Pre-trained language models (PLMs) have become024

a standard tool in the Natural Language Process-025

ing (NLP) toolkit, offering the benefits of learning026

from large amounts of unlabeled data while pro-027

viding modular function in many NLP tasks that028

require supervision. Recent work has shown that029

PLMs capture different types of linguistic regulari-030

ties and information, for instance, the lower layers031

capture phrase-level information which becomes032

less prominent in the upper layers (Jawahar et al.,033

2019), span representations constructed from these034

models can encode rich syntactic phenomena, like035

the ability to track subject-verb agreement (Gold-036

berg, 2019), dependency trees can be embedded037

within the geometry of BERT’s hidden states (He-038

witt and Manning, 2019), and most relevantly to039

1For code or data, please contact the authors.

Using neural language model by Shen et al. (2018): Parsing-Reading-Predict Network (PRPN)
introduces a new neural parsing network that can make differentiable parsing decisions through the
use a new structured attention mechanism to control skip connections in a recurrent neural network.

Using RNNs with no independence assumptions by Kim et al. (2019b): Unsupervised Re-
current neural network grammars (URNNG) uses variational inference over latent trees to perform
unsupervised optimization of the RNNG, an RNN model that defines a joint distribution over
sentences and trees via shift and reduce operations.

Using RNNs with no independence assumptions by Kim et al. (2019a): Compound PCFG
paper found the original PCFG is sufficient to induce trees if it uses a neural parameterization,
and the model can be further enhanced via latent sentence vectors to reduce the independence
assumptions. The Compound PCFG model is basically a VAE with a PCFG decoder.

Using Constituency tests by Cao et al. (2020): By specifying a set of transformations and
using an unsupervised neural acceptability model to make grammaticality decisions, they design an
unsupervised parser. They conducted interpretability of constituency tests to highlight and explain
the parser’s strengths and shortcomings.

2 INFERENCE

While our learning algorithm is grammarless, for inference we make use of a dynamic programming
algorithm, akin to CYK, to predict the parse tree. Inference assumes that each possible span in the
tree was scored with a score function s(i, j) where i and j are endpoints in the sentence. The score
function is learned through our algorithm. We then proceed by finding the tree t⇤ such that:

t⇤ = max
t2T

X

(i,j)2t

s(i, j), (1)

where T is the set of possible binary trees over the sentence and (i, j) 2 t, with a slight abuse of
notation, denotes that the span (i, j) appears in t.

When s(i, j) is the probability of a span (i, j) being in the correct tree, this formulation gives the
tree with highest expected number of correct constituents ?. This formulation has been used recently
by several unsupervised constituency parsing algorithms ?.

3 TRAINING ALGORITHM

At the core of our approach lies the notion of inside and outside strings. For a given sentence
x = x1 · · ·xn and a span (i, j), the inside string of span (i, j) is the sequence xi · · ·xj while the
outside string is the pair (x1 · · ·xi�1, xj+1 · · ·xn).

These two types of strings provide two views of a given possible splitting point in the syntax tree.
We offer three ways, with increasing complexity, to bootstrap a score function that helps identify
whether a node should dominate a given span.

The main idea behind this bootstrapping is to start with a small seed set of training examples
(x, i, j, b) where (i, j) is a span in a sentence x and b is 1 or 0, depending on whether the span
(i, j) is dominated by a node in the syntactic tree.

Bootstrapping the seed set is dependent only on either the inside string or the outside string, and
the corresponding classifier build from this bootstrapped seed set returns a probability p(b | x, i, j).
Once a classifier is learned using the bootstrapping seed set, the classifier is applied on the training
set, and the seed set is added more examples where the classifier is confident of the label b. This is
also known as self-training ?.

In the next three sections, we present three learning algorithms of increasing complexity in their use
of inside and outside strings

2

Using neural language model by Shen et al. (2018): Parsing-Reading-Predict Network (PRPN)
introduces a new neural parsing network that can make differentiable parsing decisions through the
use a new structured attention mechanism to control skip connections in a recurrent neural network.

Using RNNs with no independence assumptions by Kim et al. (2019b): Unsupervised Re-
current neural network grammars (URNNG) uses variational inference over latent trees to perform
unsupervised optimization of the RNNG, an RNN model that defines a joint distribution over
sentences and trees via shift and reduce operations.

Using RNNs with no independence assumptions by Kim et al. (2019a): Compound PCFG
paper found the original PCFG is sufficient to induce trees if it uses a neural parameterization,
and the model can be further enhanced via latent sentence vectors to reduce the independence
assumptions. The Compound PCFG model is basically a VAE with a PCFG decoder.

Using Constituency tests by Cao et al. (2020): By specifying a set of transformations and
using an unsupervised neural acceptability model to make grammaticality decisions, they design an
unsupervised parser. They conducted interpretability of constituency tests to highlight and explain
the parser’s strengths and shortcomings.

2 INFERENCE

While our learning algorithm is grammarless, for inference we make use of a dynamic programming
algorithm, akin to CYK, to predict the parse tree. Inference assumes that each possible span in the
tree was scored with a score function s(i, j) where i and j are endpoints in the sentence. The score
function is learned through our algorithm. We then proceed by finding the tree t⇤ such that:

t⇤ = max
t2T

X

(i,j)2t

s(i, j), (1)

where T is the set of possible binary trees over the sentence and (i, j) 2 t, with a slight abuse of
notation, denotes that the span (i, j) appears in t.

When s(i, j) is the probability of a span (i, j) being in the correct tree, this formulation gives the
tree with highest expected number of correct constituents ?. This formulation has been used recently
by several unsupervised constituency parsing algorithms ?.

3 TRAINING ALGORITHM

At the core of our approach lies the notion of inside and outside strings. For a given sentence
x = x1 · · ·xn and a span (i, j), the inside string of span (i, j) is the sequence xi · · ·xj while the
outside string is the pair (x1 · · ·xi�1, xj+1 · · ·xn).

These two types of strings provide two views of a given possible splitting point in the syntax tree.
We offer three ways, with increasing complexity, to bootstrap a score function that helps identify
whether a node should dominate a given span.

The main idea behind this bootstrapping is to start with a small seed set of training examples
(x, i, j, b) where (i, j) is a span in a sentence x and b is 1 or 0, depending on whether the span
(i, j) is dominated by a node in the syntactic tree.

Bootstrapping the seed set is dependent only on either the inside string or the outside string, and
the corresponding classifier build from this bootstrapped seed set returns a probability p(b | x, i, j).
Once a classifier is learned using the bootstrapping seed set, the classifier is applied on the training
set, and the seed set is added more examples where the classifier is confident of the label b. This is
also known as self-training ?.

In the next three sections, we present three learning algorithms of increasing complexity in their use
of inside and outside strings

2

Using neural language model by Shen et al. (2018): Parsing-Reading-Predict Network (PRPN)
introduces a new neural parsing network that can make differentiable parsing decisions through the
use a new structured attention mechanism to control skip connections in a recurrent neural network.

Using RNNs with no independence assumptions by Kim et al. (2019b): Unsupervised Re-
current neural network grammars (URNNG) uses variational inference over latent trees to perform
unsupervised optimization of the RNNG, an RNN model that defines a joint distribution over
sentences and trees via shift and reduce operations.

Using RNNs with no independence assumptions by Kim et al. (2019a): Compound PCFG
paper found the original PCFG is sufficient to induce trees if it uses a neural parameterization,
and the model can be further enhanced via latent sentence vectors to reduce the independence
assumptions. The Compound PCFG model is basically a VAE with a PCFG decoder.

Using Constituency tests by Cao et al. (2020): By specifying a set of transformations and
using an unsupervised neural acceptability model to make grammaticality decisions, they design an
unsupervised parser. They conducted interpretability of constituency tests to highlight and explain
the parser’s strengths and shortcomings.

2 INFERENCE

While our learning algorithm is grammarless, for inference we make use of a dynamic programming
algorithm, akin to CYK, to predict the parse tree. Inference assumes that each possible span in the
tree was scored with a score function s(i, j) where i and j are endpoints in the sentence. The score
function is learned through our algorithm. We then proceed by finding the tree t⇤ such that:

t⇤ = max
t2T

X

(i,j)2t

s(i, j), (1)

where T is the set of possible binary trees over the sentence and (i, j) 2 t, with a slight abuse of
notation, denotes that the span (i, j) appears in t.

When s(i, j) is the probability of a span (i, j) being in the correct tree, this formulation gives the
tree with highest expected number of correct constituents ?. This formulation has been used recently
by several unsupervised constituency parsing algorithms ?.

3 TRAINING ALGORITHM

At the core of our approach lies the notion of inside and outside strings. For a given sentence
x = x1 · · ·xn and a span (i, j), the inside string of span (i, j) is the sequence xi · · ·xj while the
outside string is the pair (x1 · · ·xi�1, xj+1 · · ·xn).

These two types of strings provide two views of a given possible splitting point in the syntax tree.
We offer three ways, with increasing complexity, to bootstrap a score function that helps identify
whether a node should dominate a given span.

The main idea behind this bootstrapping is to start with a small seed set of training examples
(x, i, j, b) where (i, j) is a span in a sentence x and b is 1 or 0, depending on whether the span
(i, j) is dominated by a node in the syntactic tree.

Bootstrapping the seed set is dependent only on either the inside string or the outside string, and
the corresponding classifier build from this bootstrapped seed set returns a probability p(b | x, i, j).
Once a classifier is learned using the bootstrapping seed set, the classifier is applied on the training
set, and the seed set is added more examples where the classifier is confident of the label b. This is
also known as self-training ?.

In the next three sections, we present three learning algorithms of increasing complexity in their use
of inside and outside strings

2

Using neural language model by Shen et al. (2018): Parsing-Reading-Predict Network (PRPN)
introduces a new neural parsing network that can make differentiable parsing decisions through the
use a new structured attention mechanism to control skip connections in a recurrent neural network.

Using RNNs with no independence assumptions by Kim et al. (2019b): Unsupervised Re-
current neural network grammars (URNNG) uses variational inference over latent trees to perform
unsupervised optimization of the RNNG, an RNN model that defines a joint distribution over
sentences and trees via shift and reduce operations.

Using RNNs with no independence assumptions by Kim et al. (2019a): Compound PCFG
paper found the original PCFG is sufficient to induce trees if it uses a neural parameterization,
and the model can be further enhanced via latent sentence vectors to reduce the independence
assumptions. The Compound PCFG model is basically a VAE with a PCFG decoder.

Using Constituency tests by Cao et al. (2020): By specifying a set of transformations and
using an unsupervised neural acceptability model to make grammaticality decisions, they design an
unsupervised parser. They conducted interpretability of constituency tests to highlight and explain
the parser’s strengths and shortcomings.

2 INFERENCE

While our learning algorithm is grammarless, for inference we make use of a dynamic programming
algorithm, akin to CYK, to predict the parse tree. Inference assumes that each possible span in the
tree was scored with a score function s(i, j) where i and j are endpoints in the sentence. The score
function is learned through our algorithm. We then proceed by finding the tree t⇤ such that:

t⇤ = max
t2T

X

(i,j)2t

s(i, j), (1)

where T is the set of possible binary trees over the sentence and (i, j) 2 t, with a slight abuse of
notation, denotes that the span (i, j) appears in t.

When s(i, j) is the probability of a span (i, j) being in the correct tree, this formulation gives the
tree with highest expected number of correct constituents ?. This formulation has been used recently
by several unsupervised constituency parsing algorithms ?.

3 TRAINING ALGORITHM

At the core of our approach lies the notion of inside and outside strings. For a given sentence
x = x1 · · ·xn and a span (i, j), the inside string of span (i, j) is the sequence xi · · ·xj while the
outside string is the pair (x1 · · ·xi�1, xj+1 · · ·xn).

These two types of strings provide two views of a given possible splitting point in the syntax tree.
We offer three ways, with increasing complexity, to bootstrap a score function that helps identify
whether a node should dominate a given span.

The main idea behind this bootstrapping is to start with a small seed set of training examples
(x, i, j, b) where (i, j) is a span in a sentence x and b is 1 or 0, depending on whether the span
(i, j) is dominated by a node in the syntactic tree.

Bootstrapping the seed set is dependent only on either the inside string or the outside string, and
the corresponding classifier build from this bootstrapped seed set returns a probability p(b | x, i, j).
Once a classifier is learned using the bootstrapping seed set, the classifier is applied on the training
set, and the seed set is added more examples where the classifier is confident of the label b. This is
also known as self-training ?.

In the next three sections, we present three learning algorithms of increasing complexity in their use
of inside and outside strings

2

Figure 1: A depiction of a syntax tree, with the
inside string as depicted by the sequence xi · · ·xj
and the outside string as depicted by the sequence
(x1 · · ·xi−1, xj+1 · · ·xn) that provides external con-
text for the inside representations.

this paper, syntactic information via self-attention 040

mechanisms (Wang et al., 2019; Kim et al., 2020). 041

We offer another perspective on the way PLMs 042

represent syntactic information. We demonstrate 043

the usability of PLMs to capture syntactic informa- 044

tion by developing an unsupervised parsing model 045

that makes heavy use of PLMs. The learning algo- 046

rithm is light in the injection of hard bias to parse 047

text, emphasizing the role of PLMs in capturing 048

syntactic information. 049

Our approach to unsupervised parsing is inspired 050

by recent work in the area of spectral learning for 051

parsing (Cohen et al., 2014, 2013) and unsuper- 052

vised estimation of probabilistic context-free gram- 053

mars (PCFGs; Clark and Fijalkow, 2020). At its 054

core, our learning algorithm views the presence or 055

absence of a node dominating a substring in the fi- 056

nal parse tree as a latent variable, where patterns of 057

co-occurrence of the string that the node dominates 058

(the “inside” string) and the rest of the sentence (the 059

“outside” string) dictate whether the node is present 060

or not. With spectral learning for latent-variable 061

PCFGs (L-PCFGs; Cohen et al., 2012) the notion 062

of inside trees versus outside trees is important, 063

but in our case, given that the trees are not present 064

during learning, we have to further specialize it to 065

extract information only from the strings. 066

1

Consider the diagram of a syntax tree in Figure 1,067

decomposed into two parts. Following the main068

notion in spectral learning, each of these parts (the069

orange part and the blue part) is a “view” of the070

whole tree that provides information on the identity071

of the node that spans the words xi · · ·xj . In the072

case of the tree being unobserved during training,073

we have to rely only on the substrings that are074

spanned by the blue part or the orange part, to075

hypothesize whether indeed a node exists there.076

To represent the inside and outside views, we077

make use of PLMs. We encode these substrings,078

and then bootstrap a classifier that determines079

whether a given span is a constituent or not. The080

bootstrapping process alternates between the two081

views, and at each point adds predictions on the082

training set that it is confident about to train a new083

classifier. This can be thought of as a form of084

co-training (Yarowsky, 1995; Blum and Mitchell,085

1998), a training technique that relies on multiple086

views of training instances. We formulate the task087

of identifying constituents and distituents (referring088

to spans that are not constituents) in a sentence as a089

binary classification task by devising a strategy to090

convert the unlabeled data into a classification task.091

Firstly, we build a sequence classification model by092

fine-tuning a Transformer-based PLM on the unla-093

beled training sentences to distinguish between the094

true and false inside strings of constituents. Sec-095

ondly, we use the highly-confident inside strings to096

produce the outside strings. Additionally, through097

the use of semi-supervised learning techniques, we098

jointly use both the inside and outside passes to099

enrich the model’s ability to determine the break-100

points in a sentence. Our final model achieves 63.1101

sentence F1 averaged over multiple runs with ran-102

dom seed on the Penn Treebank test set. We also103

report strong results for the Japanese and Chinese104

treebanks.105

2 Problem Formulation and Inference106

We give a treatment to the problem of unsupervised107

constituency parsing. In that setup, the training108

algorithm is given an unlabeled corpus (set of sen-109

tences) and its goal is to learn a function mapping110

a sentence x to an unlabeled phrase-structure tree111

y that indicates the constituents in x. In previous112

work with models such as the Constituent-Context113

Model (CCM; Klein and Manning 2002), the De-114

pendency Model with Valence (DMV; Klein and115

Manning 2005), and Unsupervised Maximum Like-116

lihood estimator for Data-Oriented Parsing (UML- 117

DOP; Bod 2006), the parts of speech (POS) of the 118

words in x are also given as input both during infer- 119

ence and during training, but we do not make use 120

of such POS tags. 121

Inference While our learning algorithm is gram- 122

marless, for inference we make use of a dynamic 123

programming algorithm, akin to CYK, to predict 124

the parse tree. Inference assumes that each possible 125

span in the tree was scored with a score function 126

s(i, j) where i and j are endpoints in the sentence. 127

The score function is learned through our algorithm. 128

We then proceed by finding the tree t∗ such that: 129

t∗ = argmax
t∈T

∑
(i,j)∈t

s(i, j), 130

where T is the set of possible binary trees over 131

the sentence and (i, j) ∈ t, with a slight abuse of 132

notation, denotes that the span (i, j) appears in t. 133

When s(i, j) is the probability of a span (i, j) 134

being in the correct tree, this formulation gives the 135

tree with the highest expected number of correct 136

constituents (Goodman, 1996). This formulation 137

has been used recently by several unsupervised con- 138

stituency parsing algorithms (Kim et al., 2019b,a; 139

Cao et al., 2020; Li et al., 2020a). 140

3 Training Algorithm 141

At the core of our approach lies the notion of in- 142

side and outside strings. For a given sentence 143

x = x1 · · ·xn and a span (i, j), the inside string 144

of span (i, j) is the sequence xi · · ·xj while the 145

outside string is the pair (x1 · · ·xi−1, xj+1 · · ·xn). 146

We denote by hin(i, j) representations for inside 147

strings and hout(i, j) representations for outside 148

strings. Both are vectors derived from a PLM 149

(RoBERTa (Liu et al., 2019), as we see later). 150

These two types of strings provide two views 151

of a given possible splitting point in the syntax 152

tree. We offer three ways, with increasing com- 153

plexity, to bootstrap a score function that helps 154

identify whether a node should dominate a given 155

span. The main idea behind this bootstrapping is 156

to start with a small seed set of training examples 157

(x, i, j, b) where (i, j) is a span in a sentence x and 158

b ∈ {0, 1}, depending on whether the span (i, j) 159

is dominated by a node in the syntactic tree or not. 160

Bootstrapping the seed set is dependent only on 161

either the inside string or the outside string, and 162

the corresponding classifier built from this boot- 163

strapped seed set returns a probability p(b | x, i, j). 164

2

Once a classifier is learned using the bootstrapping165

seed set, the classifier is applied on the training set,166

and the seed set is added to more examples where167

the classifier is confident of the label b. This is168

also known as self-training (McClosky et al., 2006,169

2008).170

In the next three sections, we present three learn-171

ing algorithms of increasing complexity in their172

use of inside and outside strings.173

3.1 Modeling Using Inside Strings174

The inside model min which is modeled at a sen-175

tence level, computes an inside score sin(i, j) from176

the inside vector representation hin(i, j) of each177

span in the unlabeled input training sentence U.178

To compute hin(i, j), we fine-tune the sequence179

classification model that encodes a fixed-vector180

representation for each token in the dataset. This181

captures the phrase information of the inner content182

in the span. In order to prepare the features for the183

inside model, we make use of a seed bootstrapping184

technique (Section 4.2.1). Once we build the inside185

model min, we get the most confidently-classified186

inside strings from U based on a set threshold187

τ = (τmin, τmax). Here, τmin and τmax, form the188

confidence bounds to select distituents and con-189

stituents respectively. We select a random sample190

of c constituents and d distituents with appropri-191

ate labels from these most confident inside strings192

comprising the labeled inside set I.193

3.2 Modeling Using Inside and Outside194

Strings195

To perform the iterative self-training procedure, we196

follow the steps as detailed in Figure 2. While197

building the outside model, we extract the tokens198

at the span boundaries of the pair of outside strings,199

which is of the form consisting of the triple (xi−1,200

[MASK], xj+1). The outside model computes an201

outside score sout(i, j) from the outside vector rep-202

resentation hout(i, j) of each span, which models203

the contextual information of the span. To com-204

pute hout(i, j), we extract the triple for every span205

(i, j) in the dataset and fine-tune another sequence206

classification model that encodes a fixed-vector rep-207

resentation for each triple.208

3.3 An Iterative Co-training Algorithm209

Co-training (Blum and Mitchell, 1998) is a classic210

multi-view training method, which trains a clas-211

sifier by exploiting two (or more) views of the212

training instances. Our final learning algorithm213

Inputs: I represents the labeled inside set; U is a set of
Unlabeled training sentences;

Algorithm:
• Loop for K iterations:

1. Learn the inside classifier min based on hin(i, j)
derived from I

2. Use min to label U to get the predicted inside
strings ŷin

3. If ŷin > τmax, extract c constituents randomly and
add it to the set of pseudo-constituents Xc

4. If ŷin < τmin, extract d distituents randomly and
add it to the set of pseudo-distituents Xd

5. I = Xc ∪ Xd

• Get outside strings for each I; Assign to the set of la-
beled output sentences O

• Learn outside model mout based on hout(i, j) derived
from O

Output: inside model min, outside model mout

Figure 2: Our self-training algorithm.

is indeed inspired by it, where we consider the in- 214

side and the outside strings to be the two views. 215

Once we have the inside min and the outside classi- 216

fiers mout that are trained on their respective con- 217

ditionally independent inside hin(i, j) and outside 218

hout(i, j) feature sets, we can make use of an iter- 219

ative approach. At each iteration, only the inside 220

strings Î that are confident to be likely the insides 221

of constituents and distituents according to the out- 222

side model are moved to the labeled training set 223

of the inside model I. Thus, the outside model 224

(teacher) provides the labels to the inside strings 225

on which the inside model (student) is uncertain. 226

Similarly, only the outside strings Ô that are con- 227

fident to be the likely outsides of constituents and 228

distituents according to the inside model are moved 229

to the labeled training set of the outside model O. 230

Thus, the inside model provides the labels to the 231

outside strings on which the outside model is un- 232

certain. We describe the steps in Figure 3. Finally, 233

we combine the scores obtained by the inside and 234

the outside model to get the score s(i, j) for each 235

span: 236

s(i, j) = sin(i, j) · sout(i, j). 237

Co-training requires the two views to be indepen- 238

dent of each other conditioned on the label of the 239

training instance. This is the type of assumption 240

that, for example, PCFGs satisfy, when breaking a 241

tree into an outside and inside tree: the two trees 242

are conditionally independent given the nontermi- 243

nal that connects them. In our case, we satisfy this 244

3

Inputs: I is the set of labeled inside sentences; O is the set
of labeled outside sentences; U is a set of unlabeled sentences.

Algorithm: Loop for K iterations:
• Choose c pseudo-constituents and d pseudo-distituents

from the most confidently predicted outside strings ŷout
from U based on τ

• Extract the inside strings Î corresponding to the c
pseudo-constituents and d pseudo-distituents of outside

• I = I ∪ Î
• Train the inside model min based on hin(i, j) derived

from I
• Choose c pseudo-constituents and d pseudo-distituents

from the most confidently predicted inside strings ŷin
from U based on τ

• Extract the outside strings Ô corresponding to the c
pseudo-constituents and d pseudo-distituents of inside

• O = O ∪ Ô
• Train the outside modelmout based on hout(i, j) derived

from O

Output: Two models min, mout, that predict the inside and
outside scores for unlabeled sentences. We combine these pre-
dictions by multiplying together and optionally re-normalizing
their class probability scores.

Figure 3: Our co-training algorithm.

assumption by creating inside and outside string245

representations separately, as we see later in Sec-246

tion 4.247

4 Experimental Setup248

4.1 Data249

We evaluate our methodology on the Penn Tree-250

bank (PTB; Marcus et al. 1993) with the standard251

splits (2-21 for training, 22 for validation, 23 for252

test). For preprocessing, we keep all punctuation253

and remove any trailing punctuation. To maintain254

the unsupervised nature of our experiments, we255

avoid the common practice of using gold parses of256

the validation set for either early stopping (Shen257

et al., 2018, 2019; Drozdov et al., 2019) or hyper-258

parameter tuning (Kim et al., 2019a). Addition-259

ally, we experiment on Chinese with version 5.1260

of the Chinese Penn Treebank (CTB; Xue et al.261

2005) with the same splits as in Chen and Manning262

(2014), and the Japanese Keyaki Treebank (KTB;263

Butler et al. 2012). For KTB, we shuffle the corpus264

and use 80% of the sentences for training, 10% for265

validation, and 10% for testing.266

4.2 Multi-view Learning267

In this section, we devise the task of identifying268

constituents in a sentence by training two mod-269

els with different views of the data. Ideally, these270

views complement each other and help each model 271

improve the performance of the other. 272

4.2.1 Seed Bootstrapping 273

We treat identifying constituents from unlabeled 274

sentences as a sequence classification task. To 275

generate the constituent class, we take the com- 276

plete sentence (start:end), as a sentence in it- 277

self is a constituent, and also the largest among 278

all of its other constituents. To generate the 279

distituent class, we take (start:end-1), · · · , 280

(start:end-6) slices, where start and end de- 281

note the 0th and Nth position (sentence length) re- 282

spectively. We select the distituents in this manner 283

because the longer the sentence, there would be a 284

significantly unlikely chance that the span of the 285

constituents extends till the very end of the sen- 286

tence. Additionally, we make use of casing-specific 287

information by adding contiguous title-case words 288

while allowing only the apostrophe mark. Since 289

all of the sentences for the constituent class start 290

with capital letters, we identify the most common 291

first word and generate lower-case equivalents of 292

contiguous title-case words, which starts with it to 293

account for bias due to the casing of spans. While 294

we do use a fixed template to perform the seed 295

bootstrapping process, this is part of the inductive 296

bias of the algorithm, and is relatively easy to ac- 297

quire. In our analysis, we assume the language 298

is already known before and thereby its structure 299

(left/right-branching), a form of weak supervision. 300

For CTB, we follow the exact same process 301

as PTB for preparing the input data for the first- 302

level sequence classifier, but we do not rely on 303

case-specific information and perform no post- 304

processing. Meanwhile, since KTB is a treebank of 305

a strongly left-branching language, we design our 306

modeling approach slightly differently compared 307

to before, although along the same style. To pre- 308

pare the data for the sequence classifier, we choose 309

the slice (start:end) in the sentence to label the 310

constituent class, whereas, (start+1:end), · · · , 311

(start+4:end) slices are chosen to label the dis- 312

tituent class. We also split the sentences on “*” 313

mark and treat the resulting fragmented parts as 314

constituents too. Our training does not depend 315

on the development set with the gold-standard an- 316

notated trees since we base the necessary string 317

slicing decision on the feedback from the valida- 318

tion split after the bootstrapping procedure in an 319

iterative fashion (increment/decrement the value 320

of slice counter by 1) until we see a degradation 321

4

in performance (measured using F1 score) on the322

synthetic set of seed constituents and distituents.323

4.2.2 Inside Model324

We fine-tune the RoBERTa model with a sequence325

classification layer on top using a cross-entropy326

loss (see Section A.1 in Appendix for training327

and hyperparameter details). As we supply input328

data, the entire pre-trained RoBERTaBASE model329

and the additional untrained classification layer is330

trained on our specific downstream task. To com-331

pute hin(i, j), we run the RoBERTaBASE model and332

retrieve the [CLS] token representation for the333

span enclosed between the ith and the jth element.334

The inside model is evaluated on MCC (Matthews335

Correlation Coefficient) as well as F1 because the336

classes are imbalanced. After fine-tuning, our best337

inside model achieves 0.28 MCC and 0.42 F1 on338

the internal validation set. Finally, we fine-tune the339

inside model on the unlabeled training sentences340

that generates an inside score sin(i, j) for every341

span. Since our major focus was on PTB, we have342

listed a few heuristics that inject further bias into343

the algorithm acting as the another form of weak344

supervision. Moreover, incorporating such rules345

was not necessary for CTB and KTB as our models346

showed superior performance without them.347

Once we compute the inside score, sin(i, j), we348

use the following refinement strategies to prune349

out false constituents: We treat punctuation charac-350

ters to mark the boundaries of a span and penalize351

any span that crosses its demarcated punctuation352

region (indicated by a span) by assigning a negative353

penalty of 0.25. Additionally, we delete any con-354

stituent if it starts or ends with the most common355

word succeeding the comma punctuation. Next, we356

take the most common starting word and check if357

its accompanying word does not belong to either358

the stop word or is present in the top 20 most fre-359

quent tokens of the PTB training set. We assign360

the scores of these corresponding spans in the CYK361

chart cell to the maximum value. Intuitively, from362

the linguistic definition of constituents, we refrain363

from bracketing if we identify a contiguous group364

of rare words (tokens not in the top 1000 most365

frequent list). These heuristics only contribute to366

a certain extent in making the parser strong, and367

should be considered as a standard post-processing368

step. Overall, we observe 3.8 F1 improvements369

in the case of the inside model. We further note370

that the contribution due to additional heuristics is371

much less than the combined self-training and co-372

training gains since their effect becomes insignif- 373

icant after multiple iterations of the self-training 374

process due to the predictions approximately fol- 375

lowing the template rules. As described in Figure 2, 376

we perform self-training on the inside model for 377

three iterations.2 378

4.2.3 Outside Model 379

We extract the outside strings of spans having 380

the inside score satisfying a pre-determined cut- 381

off value. The Constituent-Context Model (Klein 382

and Manning, 2002) use a smoothing ratio of 1:5 383

(constituents to distituents) for the WSJ-10 sec- 384

tion to take into account the skewness of random 385

spans more likely to represent distituents. In the 386

same vein, the values of lower and upper bounds 387

of the threshold are chosen to ensure the distri- 388

bution of class labels is about 1:10 (with the dis- 389

tituent class being the majority) which is a crude 390

estimate considering much larger sentence lengths 391

in the WSJ-Full section. Moreover, from a linguis- 392

tic standpoint, we can be certain that the distituents 393

must necessarily outnumber the constituents. For 394

the self-training experiments, we set the thresholds, 395

τmin as 0.0005 and τmax as 0.995. We treat the out- 396

side strings satisfying the upper and lower bounds 397

of the threshold as gold-standard outside of con- 398

stituents and distituents respectively. To compute 399

hout(i, j), we run the RoBERTaBASE model on left- 400

outside, i.e., (i− 1)th element and right-outside, 401

i.e., (j + 1)th element, along with a [MASK] place- 402

holder token separating the two, and extract the 403

[CLS] token representation. As done previously, 404

we fine-tune the outside model on the unlabeled 405

training sentences that generates an outside score 406

sout(i, j) for every span. 407

4.2.4 Jointly learning with Inside and 408

Outside Models 409

Once we have the outside model, we run it on the 410

training sentences and choose the outside string 411

that the classifier is highly confident about. We 412

extract their inside strings again using the same 413

bounds of the threshold as done previously and re- 414

train the inside model on the old highly confident 415

inside strings along with the new inside strings 416

obtained from the highly confident outside strings. 417

Similarly, the same technique can be applied to the 418

2We only use the top 5K inside strings for self-training to
cover maximum possible iterations as it is representative of
the whole training set in terms of the average sentence length
and punctuation marks.

5

Model WSJ-Full WSJ-10
Mean Max Mean Max

Trivial Baselines:

Left Branching (LB) 8.7 17.4
Balanced 18.5
Right Branching (RB) 39.5 58.5

Unsupervised Parsing approaches:

PRPN† (Shen et al., 2018) 37.4 38.1 58.4 –
URNNG? (Kim et al., 2019b) – 45.4 – –
ON† (Shen et al., 2019) 47.7 49.4 63.9 –
Tree Transformer†? (Wang et al., 2019) 50.5 52.0 66.2 –
Neural PCFG† (Kim et al., 2019a) 50.8 52.6 64.6 –
DIORA? (Drozdov et al., 2019) – 58.9 60.5 –
Compound PCFG† (Kim et al., 2019a) 55.2 60.1 70.5 –
S-DIORA†? (Drozdov et al., 2020) 57.6 64.0 71.8 –
Constituency Test? (Cao et al., 2020) 62.8 65.9 68.1 –
Ours? (using inside) 55.9 57.2 64.2 –
Ours? (using inside w/ self-training) 61.4 64.2 66.9 –
Ours? (using inside and outside w/ co-training) 63.1 66.8 73.1 –

Oracle Binary Trees 84.3 82.1

Table 1: Unlabeled sentence-level F1 on the full as
well as sentences of length ≤ 10 of the PTB test set
without punctuation or unary chains. We evaluate each
model using the evaluation script provided by Kim et al.
(2019a) and take the baseline numbers of certain mod-
els from (Kim et al., 2019a; Cao et al., 2020). † denotes
models trained without punctuation and ? denotes mod-
els trained on additional data.

outside model to augment its input data too. We419

repeat this process twice (Figure 3).420

4.3 Evaluation421

We report the F1 score with reference to gold trees422

in the PTB test set (section 23). Following prior423

work (Kim et al., 2019a; Shen et al., 2018, 2019;424

Cao et al., 2020), we remove punctuation and col-425

lapse unary chains before evaluation, and calculate426

F1 ignoring trivial spans, i.e., single-word spans427

and whole-sentence spans, and we perform the av-428

eraging at sentence-level (macro average) rather429

than span-level (micro average), which means that430

we compute F1 for each sentence and later average431

over all sentences. We also mention the oracle up-432

per bound, which is the highest possible score with433

binarized trees since we compare them against non-434

binarized gold trees according to the convention,435

as most unsupervised parsing methods output fully436

binary trees. We additionally use the standard PAR-437

SEVAL metric computed by the evalb program.3438

Although evalb calculates the micro average F1439

score, it differs from our micro average metric in440

that it will count the whole sentence spans and441

duplicated spans are calculated and not removed.442

Following the recommendations put forth by previ-443

ous work that has done a comprehensive empirical444

3https://nlp.cs.nyu.edu/evalb

Model CTB
Mean Max

Trivial Baselines:

Left Branching (LB) 9.7
Random Trees 15.7 16.0
Right Branching (RB) 20.0

Unsupervised Parsing approaches:

PRPN (Shen et al., 2018) 30.4 31.5
ON (Shen et al., 2019) 25.4 25.7
Neural PCFG (Kim et al., 2019a) 25.7 29.5
Compound PCFG (Kim et al., 2019a) 36.0 39.8
Ours (using inside) 37.8 38.4
Ours (using inside w/ self-training) 40.6 41.7
Ours (using inside and outside w/ co-training) 41.8 43.3

Oracle Binary Trees 81.1

Table 2: Unlabeled sentence-level F1 on the CTB test
set. We evaluate each model using the evaluation script
provided by Kim et al. (2019a) and take the baseline
numbers also from Kim et al. (2019a).

evaluation on this topic (Li et al., 2020b), we report 445

results on both length ≤ 10 as well as all-length 446

test data. 447

5 Results and Discussion 448

Table 1 shows the unlabeled F1 scores for our 449

model compared to existing unsupervised parsers 450

on PTB. The vanilla inside model is in itself com- 451

petitive and is already in the range of previous best 452

models like DIORA (Drozdov et al., 2019), Com- 453

pound PCFG (Kim et al., 2019a).4 See Appendix 454

A.5 to assess our model’s performance on unsuper- 455

vised labeled parsing. 456

We further evaluate how our method works for 457

languages with different branching types – Chinese 458

(right-branching) and Japanese (left-branching). 459

We use Transformer models for the representations 460

of the spans for both Chinese and Japanese. See 461

Section A.1 in the Appendix for training details. Ta- 462

bles 2 and 3 shows the results for CTB and KTB 463

respectively. Moreover, we do not include a few 464

models chosen previously for PTB during our anal- 465

ysis, as extending those models for CTB or KTB 466

is non-trivial due to several reasons: such as lack 467

of domain-related datasets (as DIORA uses SNLI 468

and MultiNLI for training), and lack of linguistic 469

4We do not include the results of Shi et al. (2021) in our
analysis because their boost in the performance is contingent
on the nature of the supervision data (especially the QA-SRL
dataset) rather than on the actual learning process itself. Fur-
thermore, the authors mention that a vast amount of hyperlinks
match syntactic constituents, hence restricting the scope for
the actual algorithm to derive meaningful trees.

6

https://nlp.cs.nyu.edu/evalb

Model KTB-40 KTB-10
Mean Max Mean Max

Trivial Baselines:

Left Branching (LB) 29.4 51.6
Right Branching (RB) 9.8 22.9

Unsupervised Parsing approaches:

PRPN (Shen et al., 2018) 27.2 31.8 30.1 33.6
URNNG (Kim et al., 2019b) 10 10.2 22.7 22.7
DIORA (Drozdov et al., 2019) 24.9 26.0 42.3 43.3
DIORA-all (Hong et al., 2020) 36.4 40.0 47.1 48.9
Ours (using inside) 33.7 36.3 53.8 55.9
Ours (using inside w/ self-training) 37.6 39.8 55.5 58.2
Ours (using inside and outside w/ co-training) 39.2 41.1 56.7 59.1

Upper Bound 76.5 76.6

Table 3: Evalb F1 on the full (F1-all) and length ≤ 10
(F1-10) sentences of the KTB test set discarding punc-
tuation corresponding to KTB-40 and KTB-10, respec-
tively. We take the baseline numbers of models from Li
et al. (2020b). See Table 7 to view the hyperparameters
used for evalb.

knowledge expertise (not easily cross-lingual trans-470

ferable notion for designing constituency tests).471

Figure 7 in the Appendix shows step-wise quali-472

tative analysis for a sample sentence taken from the473

PTB training set. See Figures 8 and 9 in Appendix474

to see the visualization for an example tree at every475

stage of the pipeline for CTB and KTB respec-476

tively. As we can observe from all the example477

tree outputs, the parser using the inside and outside478

models after the co-training stage produces fewer479

crossing brackets than the vanilla inside model.480

5.1 Effect of Self-Training481

PLMs that possess rich contextualized textual rep-482

resentations can assist parsing when we have a483

large volume of unlabeled data. For this reason, we484

might expect that self-training in combination with485

pre-training adds no extra information to the fine-486

tuned parser. However, we find that self-training487

improves the performance of the parser by about488

9.8%, demonstrating that self-training provides ad-489

vantages complementary to the pre-trained contex-490

tualized embeddings (see Table 5 in Appendix for491

a more detailed analysis at different stages).492

5.2 Effect of Co-training493

The question of how to integrate multi-view infor-494

mation is important. One of the options would be495

to concatenate both the inside and outside vectors496

while performing training and inference. With this497

approach, we see negligible improvement. This498

corroborates the effectiveness of co-training com-499

pared with concatenation: the simple concatenation500

strategy cannot fully harvest the information corre-501

PRPN ON URNNG
Compound

PCFG
S-DIORA

Constituency
Test

Our Best
Parser

SBAR 50.0 51.2 74.8 56.1 59.2 66.1 81.7
NP 59.2 64.5 39.5 74.7 78.0 79.4 73.5
VP 46.7 41.0 76.6 41.7 78.9 68.2 70.4
PP 57.2 54.4 55.8 68.8 67.1 86.2 77.8
ADJP 44.3 38.1 33.9 40.4 49.1 62.6 40.9
ADVP 32.8 31.6 50.4 52.5 59.9 63.9 70.4

Table 4: Average recall per constituent category (i.e.
label recall) in (%). The results of PRPN, ON,
URNNG, and Compound PCFG are taken from Kim
et al. (2019a), S-DIORA from Drozdov et al. (2020),
and Constituency Test from Cao et al. (2020).

sponding to each view and indeed render the opti- 502

mization intractable. After co-training, the parser 503

achieves 63.1 F1 averaged over four runs, outper- 504

forming the previous best-published result (see Ta- 505

ble 6 in Appendix to view the improvement at each 506

step). Figure 5 in Appendix compares the perfor- 507

mance of different models over varying sentence 508

length (see Figure 4 in Appendix to understand the 509

extent to which bootstrapping helps compared to 510

the vanilla inside model). 511

5.3 Effect of Distituent Selection 512

To understand the extent to which the type of the 513

disitituent selection impacts the performance, we 514

assess two settings on the PTB – random and left- 515

branching bias. In the random setting, we select 516

distituents from the slice (start:r), where r is a 517

random number generated between start+1 and 518

end-1, both inclusive. This produces 19.3 F1 for 519

the inside model. Whereas, in the left-branching 520

bias setting, we prepare the seed bootstrapping pro- 521

cess as explained in the Section 4.2.1 similar to 522

KTB (a left-branching treebank). This results in 523

11.2 F1 score for the inside model. Hence, the man- 524

ner in which we perform the initial classification 525

has a strong impact on the final tree structures. 526

5.4 Linguistic Error Analysis 527

Table 4 shows that our model achieves strong ac- 528

curacy while predicting all the phrase types except 529

for the Adjective Phrase (ADJP). We list some of 530

the most common mistakes our parse makes and 531

suggest likely explanations for each: 532

Bracketing inner NP of a definite Noun 533

Phrase. When a definite article is linked with 534

a singular noun, the inner spans need to be shelved, 535

accommodating the larger span with the definite 536

article. E.g.: the [stock market] 537

Grouping NP too early overlooking broader 538

context. Due to the way it is trained, the parser ag- 539

7

gressively groups rare words in the corpus. Build-540

ing a better outside model can fix this type of error541

to a considerable extent. Eg: Shearson [Lehman542

Hutton] Inc.543

Omitting conjunction joining two phrases. It544

shows poor signs of understanding co-ordination545

cases in which conjunction is an adjacent sibling546

of the nodes being shifted, or is the leftmost or547

rightmost node being shifted. E.g.: Notable [&548

Quotable]549

Confusing contractions with Possessives. Due550

to the presence of a lot of contraction phrases like551

{they’re, it’s}, the parser confuses it with that of552

the Possessive NPs, causing unnecessary splitting.553

Expanding the contractions can be a good way to554

correct these systematic errors. E.g.: the company555

[’s $ 488 million in 1988]556

6 Related Work557

Our weakly-supervised parser is comparable in be-558

havior to a fully unsupervised parser as it does not559

rely on syntactic annotations.560

Learning from distant supervision: A related561

work to ours (Shi et al., 2021) uses answer frag-562

ments and webpage hyperlinks to mine syntactic563

constituents for parsing. Many previous studies564

depend on punctuation as a strong signal to detect565

constituent boundaries (Spitkovsky et al., 2013;566

Parikh et al., 2014).567

Incorporating bootstrapping techniques: Co-568

training (Yarowsky, 1995; Blum and Mitchell,569

1998) and self-training (McClosky et al., 2006;570

Steedman et al., 2003) are bootstrapping methods571

that attempt to convert a fully unsupervised learn-572

ing problem to a semi-supervised learning form.573

More recently, Mohananey et al. (2020); Shi et al.574

(2020); Steedman et al. (2003) have shown the ben-575

efits of using self-training as a standard post-hoc576

processing step for unsupervised parsing models.577

Using Inside-Outside representations con-578

structed with a latent tree chart parser: Drawing in-579

spiration from the inside-outside algorithm (Baker,580

1979), DIORA (Drozdov et al., 2019) optimizes an581

autoencoder objective and computes a vector repre-582

sentation for each node in a tree by combining child583

representations recursively. To recover from errors584

and make DIORA more robust to local errors when585

computing the best parse in the bottom-up chart586

parsing, an improved variant of DIORA, S-DIORA587

(Drozdov et al., 2020) achieves it.588

Inducing tree structure by introducing an induc-589

tive bias to recurrent neural networks: PRPN (Shen 590

et al., 2018) introduces a neural parsing network 591

that has the ability to make differentiable parsing 592

decisions using structured attention mechanism to 593

regulate skip connections in an RNN. ON-LSTM 594

(Shen et al., 2019) enables hidden neurons to learn 595

information by a combination of gating mechanism 596

as well as activation function. In URNNG, Kim 597

et al. (2019b) employs parameterized function over 598

latent trees to handle intractable marginalization 599

and inject strong inductive biases for the unsuper- 600

vised learning of the recurrent neural network gram- 601

mar (RNNG) (Dyer et al., 2016). Peng et al. (2019) 602

introduces PaLM that acts as an attention compo- 603

nent on top of RNN. 604

Enhancing PCFGs: Compound PCFG (Kim 605

et al., 2019a) which consists of a Variational Au- 606

toencoder (VAE) with a PCFG decoder, found the 607

original PCFG is fully capable of inducing trees if 608

it uses a neural parameterization. Jin et al. (2019) 609

show that the flow-based PCFG induction model 610

is capable of using morphological and semantic 611

information in context embeddings for grammar 612

induction. Zhu et al. (2020) proposes neural L- 613

PCFGs to simultaneously induce both constituents 614

and dependencies. 615

Concerning PLMs: Tree Transformer (Wang 616

et al., 2019) adds locality constraints to the Trans- 617

former encoder’s self-attention such that the atten- 618

tion heads resemble a tree structure. More recently, 619

Kim et al. (2020) extract trees from pre-trained 620

transformers. 621

Refining based on constituency tests: With the 622

help of transformations and RoBERTa model to 623

make grammaticality decisions, (Cao et al., 2020) 624

were able to achieve strong performance for unsu- 625

pervised parsing. 626

7 Conclusion 627

We propose a simple yet effective method which 628

is the first of its kind in achieving performance 629

comparable to the supervised binary tree RNNG 630

model and setting a new SOTA for unsupervised 631

parsing using weak supervision. Our model gen- 632

eralizes to multiple languages of known treebanks. 633

We have done comprehensive linguistic error anal- 634

ysis showing a step-by-step breakdown of the F1 635

performance for the inside model versus the inside- 636

outside model with a co-training-based approach. 637

The effectiveness of our multi-view learning strat- 638

egy is clearly evident in our experiments. 639

8

References640

J. K. Baker. 1979. Trainable grammars for speech641
recognition. In Speech communication papers pre-642
sented at th 97th Meeting of the Acoustical Society643
of America, pages 547–550, Boston, MA.644

Avrim Blum and Tom Mitchell. 1998. Combining645
labeled and unlabeled data with co-training. In646
Proceedings of the Eleventh Annual Conference on647
Computational Learning Theory, COLT’ 98, page648
92–100, New York, NY, USA. Association for Com-649
puting Machinery.650

Rens Bod. 2006. An all-subtrees approach to unsuper-651
vised parsing. In Proceedings of the 21st Interna-652
tional Conference on Computational Linguistics and653
44th Annual Meeting of the Association for Compu-654
tational Linguistics, pages 865–872, Sydney, Aus-655
tralia. Association for Computational Linguistics.656

Alastair Butler, Tomoko Hotta, Ruriko Otomo, Kei657
Yoshimoto, Zhen Zhou, and Hong Zhu. 2012.658
Keyaki treebank: phrase structure with functional in-659
formation for japanese. In Proceedings of Text Anno-660
tation Workshop.661

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-662
pervised parsing via constituency tests. In Proceed-663
ings of the 2020 Conference on Empirical Methods664
in Natural Language Processing (EMNLP), pages665
4798–4808, Online. Association for Computational666
Linguistics.667

Danqi Chen and Christopher Manning. 2014. A fast668
and accurate dependency parser using neural net-669
works. In Proceedings of the 2014 Conference on670
Empirical Methods in Natural Language Processing671
(EMNLP), pages 740–750, Doha, Qatar. Association672
for Computational Linguistics.673

Alexander Clark and Nathanaël Fijalkow. 2020. Con-674
sistent unsupervised estimators for anchored PCFGs.675
Transactions of the Association for Computational676
Linguistics, 8:409–422.677

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.678
Foster, and Lyle Ungar. 2012. Spectral learning679
of latent-variable PCFGs. In Proceedings of the680
50th Annual Meeting of the Association for Compu-681
tational Linguistics (Volume 1: Long Papers), pages682
223–231, Jeju Island, Korea. Association for Com-683
putational Linguistics.684

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.685
Foster, and Lyle Ungar. 2013. Experiments with686
spectral learning of latent-variable PCFGs. In Pro-687
ceedings of the 2013 Conference of the North Amer-688
ican Chapter of the Association for Computational689
Linguistics: Human Language Technologies, pages690
148–157, Atlanta, Georgia. Association for Compu-691
tational Linguistics.692

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.693
Foster, and Lyle Ungar. 2014. Spectral learning of694

latent-variable pcfgs: Algorithms and sample com- 695
plexity. Journal of Machine Learning Research, 696
15(69):2399–2449. 697

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, 698
Tim O’Gorman, Mohit Iyyer, and Andrew McCal- 699
lum. 2020. Unsupervised parsing with S-DIORA: 700
Single tree encoding for deep inside-outside recur- 701
sive autoencoders. In Proceedings of the 2020 Con- 702
ference on Empirical Methods in Natural Language 703
Processing (EMNLP), pages 4832–4845, Online. As- 704
sociation for Computational Linguistics. 705

Andrew Drozdov, Patrick Verga, Yi-Pei Chen, Mohit 706
Iyyer, and Andrew McCallum. 2019. Unsupervised 707
labeled parsing with deep inside-outside recursive 708
autoencoders. In Proceedings of the 2019 Confer- 709
ence on Empirical Methods in Natural Language 710
Processing and the 9th International Joint Confer- 711
ence on Natural Language Processing (EMNLP- 712
IJCNLP), pages 1507–1512, Hong Kong, China. As- 713
sociation for Computational Linguistics. 714

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, 715
and Noah A. Smith. 2016. Recurrent neural network 716
grammars. In Proceedings of the 2016 Conference 717
of the North American Chapter of the Association 718
for Computational Linguistics: Human Language 719
Technologies, pages 199–209, San Diego, California. 720
Association for Computational Linguistics. 721

Yoav Goldberg. 2019. Assessing bert’s syntactic abili- 722
ties. ArXiv, abs/1901.05287. 723

Joshua Goodman. 1996. Parsing algorithms and met- 724
rics. In 34th Annual Meeting of the Association for 725
Computational Linguistics, pages 177–183, Santa 726
Cruz, California, USA. Association for Computa- 727
tional Linguistics. 728

John Hewitt and Christopher D. Manning. 2019. A 729
structural probe for finding syntax in word repre- 730
sentations. In Proceedings of the 2019 Conference 731
of the North American Chapter of the Association 732
for Computational Linguistics: Human Language 733
Technologies, Volume 1 (Long and Short Papers), 734
pages 4129–4138, Minneapolis, Minnesota. Associ- 735
ation for Computational Linguistics. 736

Ruyue Hong, Jiong Cai, and Kewei Tu. 2020. Deep 737
inside-outside recursive autoencoder with all-span 738
objective. In Proceedings of the 28th Interna- 739
tional Conference on Computational Linguistics, 740
pages 3610–3615, Barcelona, Spain (Online). Inter- 741
national Committee on Computational Linguistics. 742

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 743
2019. What does BERT learn about the structure 744
of language? In Proceedings of the 57th Annual 745
Meeting of the Association for Computational Lin- 746
guistics, pages 3651–3657, Florence, Italy. Associa- 747
tion for Computational Linguistics. 748

Lifeng Jin, Finale Doshi-Velez, Timothy Miller, Lane 749
Schwartz, and William Schuler. 2019. Unsuper- 750
vised learning of PCFGs with normalizing flow. 751

9

https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/279943.279962
https://doi.org/10.3115/1220175.1220284
https://doi.org/10.3115/1220175.1220284
https://doi.org/10.3115/1220175.1220284
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.1162/tacl_a_00323
https://doi.org/10.1162/tacl_a_00323
https://doi.org/10.1162/tacl_a_00323
https://aclanthology.org/P12-1024
https://aclanthology.org/P12-1024
https://aclanthology.org/P12-1024
https://aclanthology.org/N13-1015
https://aclanthology.org/N13-1015
https://aclanthology.org/N13-1015
http://jmlr.org/papers/v15/cohen14a.html
http://jmlr.org/papers/v15/cohen14a.html
http://jmlr.org/papers/v15/cohen14a.html
http://jmlr.org/papers/v15/cohen14a.html
http://jmlr.org/papers/v15/cohen14a.html
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/D19-1161
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.3115/981863.981887
https://doi.org/10.3115/981863.981887
https://doi.org/10.3115/981863.981887
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.coling-main.322
https://doi.org/10.18653/v1/2020.coling-main.322
https://doi.org/10.18653/v1/2020.coling-main.322
https://doi.org/10.18653/v1/2020.coling-main.322
https://doi.org/10.18653/v1/2020.coling-main.322
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1234
https://doi.org/10.18653/v1/P19-1234
https://doi.org/10.18653/v1/P19-1234

In Proceedings of the 57th Annual Meeting of the752
Association for Computational Linguistics, pages753
2442–2452, Florence, Italy. Association for Compu-754
tational Linguistics.755

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang756
goo Lee. 2020. Are pre-trained language models757
aware of phrases? simple but strong baselines for758
grammar induction. In International Conference on759
Learning Representations.760

Yoon Kim, Chris Dyer, and Alexander Rush. 2019a.761
Compound probabilistic context-free grammars for762
grammar induction. In Proceedings of the 57th An-763
nual Meeting of the Association for Computational764
Linguistics, pages 2369–2385, Florence, Italy. Asso-765
ciation for Computational Linguistics.766

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kun-767
coro, Chris Dyer, and Gábor Melis. 2019b. Unsu-768
pervised recurrent neural network grammars. In Pro-769
ceedings of the 2019 Conference of the North Amer-770
ican Chapter of the Association for Computational771
Linguistics: Human Language Technologies, Vol-772
ume 1 (Long and Short Papers), pages 1105–1117,773
Minneapolis, Minnesota. Association for Computa-774
tional Linguistics.775

Dan Klein and Christopher D. Manning. 2002. A776
generative constituent-context model for improved777
grammar induction. In Proceedings of the 40th An-778
nual Meeting of the Association for Computational779
Linguistics, pages 128–135, Philadelphia, Pennsyl-780
vania, USA. Association for Computational Linguis-781
tics.782

Dan Klein and Christopher D. Manning. 2005. Nat-783
ural language grammar induction with a genera-784
tive constituent-context model. Pattern Recognit.,785
38:1407–1419.786

Bowen Li, Taeuk Kim, Reinald Kim Amplayo, and787
Frank Keller. 2020a. Heads-up! unsupervised con-788
stituency parsing via self-attention heads. In Pro-789
ceedings of the 1st Conference of the Asia-Pacific790
Chapter of the Association for Computational Lin-791
guistics and the 10th International Joint Conference792
on Natural Language Processing, pages 409–424,793
Suzhou, China. Association for Computational Lin-794
guistics.795

Jun Li, Yifan Cao, Jiong Cai, Yong Jiang, and Kewei796
Tu. 2020b. An empirical comparison of unsuper-797
vised constituency parsing methods. In Proceedings798
of the 58th Annual Meeting of the Association for799
Computational Linguistics, pages 3278–3283, On-800
line. Association for Computational Linguistics.801

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-802
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,803
Luke Zettlemoyer, and Veselin Stoyanov. 2019.804
Roberta: A robustly optimized BERT pretraining ap-805
proach. CoRR, abs/1907.11692.806

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 807
Marcinkiewicz. 1993. Building a large annotated 808
corpus of English: The Penn Treebank. Computa- 809
tional Linguistics, 19(2):313–330. 810

David McClosky, Eugene Charniak, and Mark Johnson. 811
2006. Effective self-training for parsing. In Pro- 812
ceedings of the Human Language Technology Con- 813
ference of the NAACL, Main Conference, pages 152– 814
159, New York City, USA. Association for Compu- 815
tational Linguistics. 816

David McClosky, Eugene Charniak, and Mark Johnson. 817
2008. When is self-training effective for parsing? 818
In Proceedings of the 22nd International Conference 819
on Computational Linguistics (Coling 2008), pages 820
561–568, Manchester, UK. Coling 2008 Organizing 821
Committee. 822

Anhad Mohananey, Katharina Kann, and Samuel R. 823
Bowman. 2020. Self-training for unsupervised pars- 824
ing with PRPN. In Proceedings of the 16th Interna- 825
tional Conference on Parsing Technologies and the 826
IWPT 2020 Shared Task on Parsing into Enhanced 827
Universal Dependencies, pages 105–110, Online. 828
Association for Computational Linguistics. 829

Ankur P. Parikh, Shay B. Cohen, and Eric P. Xing. 830
2014. Spectral unsupervised parsing with addi- 831
tive tree metrics. In Proceedings of the 52nd An- 832
nual Meeting of the Association for Computational 833
Linguistics (Volume 1: Long Papers), pages 1062– 834
1072, Baltimore, Maryland. Association for Compu- 835
tational Linguistics. 836

Hao Peng, Roy Schwartz, and Noah A. Smith. 2019. 837
PaLM: A hybrid parser and language model. In 838
Proceedings of the 2019 Conference on Empirical 839
Methods in Natural Language Processing and the 840
9th International Joint Conference on Natural Lan- 841
guage Processing (EMNLP-IJCNLP), pages 3644– 842
3651, Hong Kong, China. Association for Computa- 843
tional Linguistics. 844

Yikang Shen, Zhouhan Lin, Chin wei Huang, and 845
Aaron Courville. 2018. Neural language modeling 846
by jointly learning syntax and lexicon. In Interna- 847
tional Conference on Learning Representations. 848

Yikang Shen, Shawn Tan, Alessandro Sordoni, and 849
Aaron Courville. 2019. Ordered neurons: Integrat- 850
ing tree structures into recurrent neural networks. In 851
International Conference on Learning Representa- 852
tions. 853

Haoyue Shi, Karen Livescu, and Kevin Gimpel. 2020. 854
On the role of supervision in unsupervised con- 855
stituency parsing. In Proceedings of the 2020 Con- 856
ference on Empirical Methods in Natural Language 857
Processing (EMNLP), pages 7611–7621, Online. As- 858
sociation for Computational Linguistics. 859

Tianze Shi, Ozan İrsoy, Igor Malioutov, and Lillian Lee. 860
2021. Learning syntax from naturally-occurring 861

10

https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://aclanthology.org/2020.aacl-main.43
https://aclanthology.org/2020.aacl-main.43
https://aclanthology.org/2020.aacl-main.43
https://doi.org/10.18653/v1/2020.acl-main.300
https://doi.org/10.18653/v1/2020.acl-main.300
https://doi.org/10.18653/v1/2020.acl-main.300
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/N06-1020
https://aclanthology.org/C08-1071
https://doi.org/10.18653/v1/2020.iwpt-1.11
https://doi.org/10.18653/v1/2020.iwpt-1.11
https://doi.org/10.18653/v1/2020.iwpt-1.11
https://doi.org/10.3115/v1/P14-1100
https://doi.org/10.3115/v1/P14-1100
https://doi.org/10.3115/v1/P14-1100
https://doi.org/10.18653/v1/D19-1376
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
https://doi.org/10.18653/v1/2020.emnlp-main.614
https://doi.org/10.18653/v1/2020.emnlp-main.614
https://doi.org/10.18653/v1/2020.emnlp-main.614
https://doi.org/10.18653/v1/2021.naacl-main.234
https://doi.org/10.18653/v1/2021.naacl-main.234

bracketings. In Proceedings of the 2021 Confer-862
ence of the North American Chapter of the Associ-863
ation for Computational Linguistics: Human Lan-864
guage Technologies, pages 2941–2949, Online. As-865
sociation for Computational Linguistics.866

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-867
rafsky. 2013. Breaking out of local optima with868
count transforms and model recombination: A study869
in grammar induction. In Proceedings of the 2013870
Conference on Empirical Methods in Natural Lan-871
guage Processing, pages 1983–1995, Seattle, Wash-872
ington, USA. Association for Computational Lin-873
guistics.874

Mark Steedman, Miles Osborne, Anoop Sarkar,875
Stephen Clark, Rebecca Hwa, Julia Hockenmaier,876
Paul Ruhlen, Steven Baker, and Jeremiah Crim.877
2003. Bootstrapping statistical parsers from small878
datasets. In 10th Conference of the European Chap-879
ter of the Association for Computational Linguistics,880
Budapest, Hungary. Association for Computational881
Linguistics.882

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.883
2019. Tree transformer: Integrating tree structures884
into self-attention. In Proceedings of the 2019 Con-885
ference on Empirical Methods in Natural Language886
Processing and the 9th International Joint Confer-887
ence on Natural Language Processing (EMNLP-888
IJCNLP), pages 1061–1070, Hong Kong, China. As-889
sociation for Computational Linguistics.890

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha891
Palmer. 2005. The penn chinese treebank: Phrase892
structure annotation of a large corpus. Nat. Lang.893
Eng., 11(2):207–238.894

David Yarowsky. 1995. Unsupervised word sense dis-895
ambiguation rivaling supervised methods. In 33rd896
Annual Meeting of the Association for Computa-897
tional Linguistics, pages 189–196, Cambridge, Mas-898
sachusetts, USA. Association for Computational899
Linguistics.900

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.901
The return of lexical dependencies: Neural lexical-902
ized PCFGs. Transactions of the Association for903
Computational Linguistics, 8:647–661.904

905

11

https://doi.org/10.18653/v1/2021.naacl-main.234
https://aclanthology.org/D13-1204
https://aclanthology.org/D13-1204
https://aclanthology.org/D13-1204
https://aclanthology.org/D13-1204
https://aclanthology.org/D13-1204
https://aclanthology.org/E03-1008
https://aclanthology.org/E03-1008
https://aclanthology.org/E03-1008
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337

A Appendix906

A.1 Training Details907

We use the Adam optimizer and, on the boot-908

strapped dataset, fine-tune roberta-base con-909

sisting of default 125M trainable parameters with a910

learning rate 3e− 5, batch size 32, epochs 3, maxi-911

mum sequence length 128, for all our models. The912

values were chosen as default based on sequence913

classification tasks on the GLUE benchmark5 as914

mentioned in HuggingFace Transformers.6 We use915

a train/validation random split of 80/20 on the boot-916

strapped dataset which contains 100,000 sentences917

(50,152 for the distituent class and 49,848 for the918

constituent class) to monitor the validation loss919

and perform early stopping. The average sentence920

length is about 22 tokens. Note that the develop-921

ment set of PTB is kept untouched. We set the922

patience value at 3. Model checkpointing, as well923

as logging, is carried out after every 100 steps.924

We use a single GPU, Nvidia GeForce RTX925

2070 (8GB GDDR5 RAM) to conduct all our ex-926

periments. The estimated training time for the in-927

side model is about 0.2h, inside model with self-928

training (3 iterations) is about 36h, and inside-929

outside model with co-training (2 iterations) is930

about 45h. While the inference time for all the931

models is roughly 0.2h.932

For the Chinese monolingual experiment, we933

use bert-base-chinese which is trained934

on cased Chinese Simplified and Traditional935

text, and for Japanese monolingual experiment,936

we use cl-tohoku/bert-base-japanese937

which is trained on Japanese Wikipedia available938

at https://huggingface.co/models.939

Training Data We tried several strategies to aug-940

ment the distituent class for our models, but with-941

out concrete gains. Some of those include word942

deletion (randomly selects tokens in the sentence943

and replace them by a special token), span deletion944

(Same as word deletion, but puts more focus on945

deleting consecutive words), reordering (randomly946

sample several pairs of span and switch them pair-947

wise) and substitution (sample some words and948

replace them with synonyms).949

5https://gluebenchmark.com/
6https://huggingface.co/transformers/

v2.3.0/examples.html#glue

2-6 7-11 12-16 17-21 22-26 27-31 32-36 37-41 42-46 47-51 52-56 57-61
Sentence Length

0

20

40

60

80

100

F1

Using Inside
Using Inside w/ self-training
Using Inside and Outside w/ co-training

Figure 4: F1 grouped by sentence length on the PTB
test set for different strategies.

Model #ST-steps
0 1 2 3

Inside 55.9 57.7 59.5 61.4

Table 5: Unlabeled sentence-level F1 on the full PTB
test set after applying the iterative Self-Training algo-
rithm on the Inside model.

A.2 Effect of Bootstrapping 950

As shown in Figure 4, the final model with co- 951

training identifies constituents from shorter sen- 952

tences (WSJ-10) much more precisely compared 953

to the rest of the models. There is a lower perfor- 954

mance in F1 around sentence length of 50-55 zone, 955

but that improves for longer sentences.7 956

A.3 Stages of Self-Training 957

Self-training boosts the performance of the inside 958

model by 5.5 F1 points as shown in Table 5. As can 959

be seen, the effect of the initial set of candidate con- 960

stituents and distituents on the final performance is 961

55.9 F1 which is not insignificant.8 962

A.4 Stages of Co-Training 963

After co-training, the performance of the inside- 964

outside joint model increases by 1.7 F1 points as 965

shown in Table 6. Compared to using self-training, 966

one of the reasons the benefit is not significant 967

may be attributed to the fact that the inside vec- 968

tors (built upon Transformer architecture) inher- 969

7For evaluating PTB and CTB, we use Yoon
Kim’s script available at https://github.com/
harvardnlp/compound-pcfg. Whereas for evalu-
ating KTB, we use Jun Li’s script available at https:
//github.com/i-lijun/UnsupConstParseEval.

8For analysis purposes, we use the test set instead of the
standard validation set to avoid tuning on the test set based on
feedback received from the validation set to keep the nature
of our experiments purely unsupervised.

12

https://huggingface.co/models
https://gluebenchmark.com/
https://huggingface.co/transformers/v2.3.0/examples.html#glue
https://huggingface.co/transformers/v2.3.0/examples.html#glue
https://github.com/harvardnlp/compound-pcfg
https://github.com/harvardnlp/compound-pcfg
https://github.com/i-lijun/UnsupConstParseEval
https://github.com/i-lijun/UnsupConstParseEval

Model #CT-steps
0 1 2

Inside and
Outside 61.4 62.9 63.1

Table 6: Unlabeled sentence-level F1 on the full PTB
test set after applying the iterative Co-Training algo-
rithm on the joint Inside and Outside model.

ently possesses contextual knowledge due to being970

trained on a large corpus.971

A.5 Unsupervised Labeled Parsing972

We explore unsupervised labeled constituency pars-973

ing to identify meaningful constituent spans such974

as Noun Phrases (NP) and Verb Phrases (VP) to975

see if the parser can extract such labels. Labeled976

parsing is usually evaluated on whether a span977

has the correct label. We can effectively induce978

span labels using the clustering of the learned979

phrase vectors from the inside and outside strings.980

When labeling a gold bracket, our method achieves981

61.2 F1 on the full PTB test set and is compa-982

rable with the current best model, DIORA. See983

Figure 6 to view the visualization of induced and984

linguistic alignment. RoBERTa does not strictly985

output word-level vectors. Rather, the output are986

subword vectors which we aggregate with mean-987

pooling to achieve a word-level representation us-988

ing SentenceTransformers.9 We use 600989

codes while doing the clustering initially, such that990

we are left with about 25 clusters after the most991

common label assignment process, i.e., the number992

of distinct phrase types. The phrase clusters are993

assigned to {‘NP’: 7, ‘PP’: 5, ‘WHPP’: 3, ‘ADVP’: 3,994

‘ADJP’: 2, ‘S’: 2, ‘WHADVP’: 1, ‘UCP’: 1, ’VP’: 1,995

‘PRN’: 1, ‘QP’: 1, ‘SBAR’: 1, ‘WHNP’: 1, ‘CONJP’: 1}996

according to the majority gold labels in that cluster.997

These 14 assigned phrase types correspond with the998

14 most frequent labels. Table 8 lists the induced999

non-terminal grouped across different clusters and1000

also their correctness in identifying the gold labels.1001

The further course of action would be to have a1002

joint single model that is capable of achieving both1003

bracketing and labeling. Further, these induced1004

labels can function as features for the inside and1005

outside models to achieve even better predictive1006

ability. It also warrants a multi-lingual exploration1007

in this area.1008

9https://github.com/UKPLab/
sentence-transformers

2-6 7-11 12-16 17-21 22-26 27-31 32-36 37-41 42-46 47-51 52-56 57-61
Sentence Length

0

20

40

60

80

100

F 1

UP Models
PRPN
ON
Neural PCFG
Compound PCFG
Constituency Test
Ours

Baselines
Right Branching
Left Branching

Figure 5: F1 of different models grouped by sentence
length on PTB test set.

A.6 Non-Terminal Label Alignment 1009

Figure 6 shows the alignment between gold and 1010

induced labels. We observe that some of the in- 1011

duced non-terminals clearly align to linguistic non- 1012

terminals. For instance, S-2 non-terminal has a 1013

high resemblance with NP. Similarly, S-8 has a 1014

high resemblance with ADVP. 1015

DEBUG 0
MAX_ERROR 1
CUTOFF_LEN 10
LABELED 0
DELETE_LABEL_FOR_LENGTH -NONE-
EQ_LABEL ADVP PRT

Table 7: The hyperparameters used for evalb
.

13

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers

S SBAR NP VP PP ADJP ADVP OTHER accuracy

LABEL

S-1

S-2

S-3

S-4

S-5

S-6

S-7

S-8

S-9

S-10

S-11

S-12

S-13

S-14

C
LU

ST
ER

_I
D

0

20

40

60

80

100

Figure 6: Alignment between induced and gold labels of the top-performing clusters. We cluster the constituent
inside vectors derived from the ground truth parse (without labels) using the K-Means algorithm and assign each
constituent with the most common label within its cluster. Accuracy is the probability of correctly predicting the
most common label.

14

F1 = 0.56

S

S

S

S

S

S

S

S

S

S

S

concernchemicals

this

for

S

S

operationsS

materialsadvanced

world-wide

of

S

S

S

presidentvice

of

post

S

newthe

to

named

was

S

S

SmithC.

Denis

(a)

F1 = 0.68

S

S

S

S

S

S

S

S

concernchemicals

this

for

S

S

S

S

S

operationsmaterials

advanced

world-wide

of

S

S

S

presidentvice

of

S

S

postnew

the

to

named

was

S

S

SmithC.

Denis

(b)

(c)

S

VP

VP

PP-CLR

NP

PP

NP

PP

NP

concernchemicalsthis

for

PP

NP

operationsmaterialsadvancedworld-wide

of

NP

presidentvice

of

NP

postnewthe

to

named

was

NP-SBJ-1

SmithC.Denis

Correct bracket
Consistent bracket
Crossing bracket

Figure 7: Displays the parse tree output for a sample sentence: (a) Using Inside (b) Using Inside and Outside (c)
Gold Tree. After the co-training procedure (b), the parser correctly identifies constituents “the new post" and “of
world-wide advanced materials operations" which were earlier identified as distituents by the inside model (a). It
makes two errors due to crossing brackets - namely “of vice president”, “the new post of vice president", and “the
new post of vice president of world-wide advanced materials operations".

F1 = 0.32

S

S

S

S

S

元八亿多

增加

年

上

S

S

S

比S

元十四点四一亿

贷款

S

新增去年

(a) Using Inside

F1 = 0.63

S

S

S

元八亿多

增加

S

年S

上S

S

S

比S

元十四点四一亿

贷款

S

新增去年

(b) Using Inside and Outside
w/ co-training

(c) Gold

S

IP

VP

VP

QP-EXT

元八亿多

增加

PP

DP

年上

比

VP

VP

QP-EXT

元十四点四一亿

贷款新增

去年

Correct bracket
Consistent bracket
Crossing bracket

Figure 8: Example tree taken from the CTB training set. After the co-training procedure (b), the parser correctly
identifies constituents “十四点四一亿元", “新增贷款十四点四一亿元", and “去年新增贷款十四点四一亿元"
compared to the previous step using the inside model (a). It only makes 3 errors due to crossing brackets at “贷款
十四点四一亿元", “年增加八亿多元", and “上年增加八亿多元".

15

F1 = 0.13

S

ますS

いS

S

*が*S

がS

S

石工という

S

セリヌンティウスS

にS

市S

このよろしい

S

*pro*S

*S

ならばS

ないS

られS

信じS

*を*S

をS

私S

にS

そんな*hearer*(a) Using Inside

F1 = 0.45

S

S

ますS

いS

*が*S

がS

S

石工という

S

S

セリヌンティウスに

市

S

S

このよろしい

S

*pro*S

*S

ならばS

ないS

られS

信じS

S

*を*S

をS

S

私に

そんな

hearer

(b) Using Inside and Outside
w/ co-training

(c) Gold

IP

ますい*が*PP

がNP

石工PP

というセリヌンティウス

PP

にNP

市この

IP

よろしい*pro*

*PP

ならばIP

ないられ信じ*を*PP

を私

ADVP

にそんな

hearer

Correct bracket
Consistent bracket
Crossing bracket

Figure 9: Example tree taken from the KTB training set. After the co-training procedure (b), the parser correctly
identifies constituents “そんなに", “私を", “*hearer*そんなに私を *を*信じられないならば", “*pro*
よろしい", “この市", and “この市に", while incorrectly tagging “セリヌンティウスという石工が" as a
distituent compared to the previous step using the inside model (a).

16

Constituent Predicted Status
Cluster ID Label

0

NP the space shuttle Atlantis NP 3

NP Once the chief beneficiaries NP 3

PP in the offing NP 7

PP in the thrift NP 7

S the dollar was weak NP 7

SBAR If the new Cheer sells well NP 7

1
ADJP higher than most anticipated NP 7

NP more than one billion Canadian dollars 851 mil... NP 3

QP at least 600 to 700 NP 7

12

NP A. Boyd Simpson NP 3

NP Justice John Harlan NP 3

NP Robert D. Cardillo NP 3

NP James D. Awad NP 3

NP Clark S. Spalsbury Jr NP 3

NP L.J. Hooker NP 3

30
NP one ’s testimony NP 3

NP the stock market ’s plunge Friday NP 3

PP in the market ’s decline NP 7

75

ADVP two years ago ADVP 3

ADVP two weeks ago ADVP 3

PP just like two years ago ADVP 7

PP between now and two years ago ADVP 7

310

NP action on capital gains VP 7

NP the three airlines being dropped VP 7

NP news footage of the devastated South Bronx VP 7

NP the prospect of a fight with GEC for Ferranti VP 7

PP before declining again trapping more investors VP 7

S This small Dallas suburb ’s got trouble VP 7

S the earnings picture confuses VP 7

SBAR it acquired 5 % of the shares in Jaguar PLC VP 7

SBAR the market is going through another October ’87 VP 7

VP may be dubbed Eurodynamics VP 3

VP resuscitate the protagonist of his 1972 work A... VP 3

VP said after the 1987 crash VP 3

VP has a base of 100 set in 1983 VP 3

514

NP its two classes of preferred stock PP 7

NP Oil company refineries PP 7

PP to depository institutions PP 3

PP of Remic mortgage securities PP 3

PP of the preferred-share issue PP 3

PP in the patent-infringement proceedings PP 3

PP of mainframe computers PP 3

PP from mature conventional fields in western Canada PP 3

PP of its North American vehicle capacity PP 3

VP have big commodity-chemical operations PP 7

533

NP Bateman Eichler Hill Richards NP 3

NP KLM Royal Dutch Airlines NP 3

NP owners Anna and Morris Snezak NP 3

NP Mehta & Isaly NP 3

PP at Hambrecht & Quist in San Francisco NP 7

Table 8: Investigation of phrase clusters that shows several syntactic properties. Clearly, there are patterns sur-
rounding identification of people/organization names, time-related signals, quantities etc.

17

