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Abstract—Custom spectral convolutional neural networks 

(CSCNNs) combine the strengths of convolutional neural 

networks with specialized spectral processing, resulting in 

improved classification accuracy by effectively capturing subtle 

variations in hyperspectral data. This paper proposes a 

CSCNNs based approach to classify hyperspectral images. The 

proposed method leverages the high-dimensional spectral data 

inherent in hyperspectral images, employing convolutional 

layers specifically designed to capture spectral-spatial features. 

By reducing dimensionality through principal component 

analysis and creating image patches, the model is trained to 

recognize complex patterns across different spectral bands.  In 

addition, a comprehensive analysis of CSCNN performance is 

carried out, focusing on its architecture, key features, and 

benefits in computational efficiency and spectral representation. 

Experimental results on datasets such as Salinas-A, Pavia 

University (Pavia-U), and Indian Pines demonstrate that the 

CSCNN model surpasses traditional methods, achieving higher 

classification accuracy and more robust performance metrics 

like overall accuracy (OA), average accuracy (AA), and Kappa 

coefficient.  

Keywords— deep learning, custom spectral convolutional 

neural networks (CSCNNs), pixel-based image classification 

I. INTRODUCTION 

Hyperspectral imaging captures a wide spectrum of light for 

each pixel in an image, allowing for the identification of 

materials, objects, and conditions that are not visible to the 

naked eye or detectable with traditional imaging techniques. 

In hyperspectral images, each pixel is considered a high-

dimensional vector, with each component representing 

spectral reflectance at a specific wavelength. This detailed 

spectral information allows for the differentiation of subtle 

spectral variations, making Hyperspectral imaging valuable 

across numerous applications [1]– [12].  According to recent 

studies [13], hyperspectral image classification assigning 

each pixel to a specific class based on its spectral properties 

is a highly active research area within the hyperspectral 

community and has gained significant attention in the remote 

sensing field. 

Unlike standard RGB images, which capture light in three 

bands (red, green, and blue), hyperspectral images can 

capture hundreds of contiguous spectral bands, offering rich 

and detailed information about the scene. This high-

dimensional data has proven valuable in various fields, 

including agriculture, environmental monitoring, mineral 

exploration, and military surveillance. However, the vast 

amount of data in hyperspectral images presents challenges 

in processing and analysis. In fact, there are two primary 

challenges in hyperspectral image classification:  the high 

spatial variability of spectral signatures and the imbalance 

between the limited number of training samples and the high 

dimensionality of the data [14]. The first challenge arises 

from several factors, including changes in lighting, 

environmental conditions, atmospheric effects, and temporal 

variations. The second challenge creates ill-posed problems 

for certain methods and reduces the classifiers' ability to 

generalize effectively. 

The conventional methods for analyzing hyperspectral 

images are pixel-based approaches, where each image pixel 

is classified based on its spectral information [15]. This 

traditional approach to classification relies on the pixel 

because the pixel serves as the fundamental unit of satellite 

imagery. 

Custom spectral convolutional neural networks (CSCNNs) 

offer several advantages over traditional pixel-based 
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approaches, particularly in the context of hyperspectral data 

analysis: 1) Spectral-Spatial Feature Integration: CSCNNs 

can simultaneously capture both spectral and spatial features, 

providing a more comprehensive understanding of the data. 

Traditional pixel-based approaches often treat pixels 

independently, missing the spatial context that CSCNNs can 

incorporate. 2) Improved Classification Accuracy: By 

leveraging deep learning techniques, CSCNNs can model 

complex relationships within the data, leading to higher 

classification accuracy compared to traditional methods that 

rely solely on spectral information. 3) Noise Reduction: 

CSCNNs can better handle noise in hyperspectral images. 

Traditional pixel-based methods may classify noisy or outlier 

pixels incorrectly, while CSCNNs can mitigate this by 

considering spatial information, leading to more robust 

classifications. 4) Dimensionality Reduction: CSCNNs can 

effectively reduce the dimensionality of hyperspectral data by 

learning lower-dimensional representations, making the 

processing more efficient without losing critical information. 

Traditional pixel-based methods may struggle with the high 

dimensionality of hyperspectral data. 5) Scalability and 

Efficiency: CSCNNs are designed to handle large-scale data 

efficiently, often requiring fewer computational resources as 

they can exploit the spectral structure more effectively than 

traditional methods, which may require more intensive 

processing for similar tasks. 6) Enhanced Spectral 

Representation: Custom spectral convolutions in CSCNNs 

are tailored to better capture the unique spectral signatures of 

different materials, leading to more precise and context-

aware classifications than pixel-based methods, which may 

not fully utilize the spectral richness of the data. Therefore, it 

is imperative to develop a novel Custom Spectral 

Convolutional Neural Networks (CSCNNs) method for 

hyperspectral image classification.  

The remainder of the paper is organized as follows: 

Section II details the proposed methodology. Section III 

delves into time series prediction using the LSTM network. 

Section IV provides the experimental results. Section V 

concludes the paper. 

II. PROPOSED METHODS 

Hyperspectral image classification is a complex task due to 

the high dimensionality of the data and the variability of 

spectral signatures across different materials. To address 

these challenges, we propose a Spectral Convolutional Neural 

Network (CSCNN), to effectively learn and classify 

hyperspectral images. 

A. CSCNN  Architecture 

CSCNN combines the advantages of Convolutional Neural 

Networks (CNNs) with the characteristics of spectral domain 

processing. Its basic architecture typically includes multiple 

convolutional layers, activation layers, pooling layers, and 

fully connected layers. One of the key features of CSCNN  

includes spectral feature extraction. CSCNN performs 

convolution operations in the spectral domain, effectively 

capturing subtle variations and features in hyperspectral 

images. Compared to traditional spatial domain processing, 

this approach better preserves spectral information. Another 

key feature of CSCNN is the layer count and parameter 

tuning. CSCNN ’s layer count can be flexibly adjusted based 

on requirements, such as using a custom 17-layer network. 

The parameter settings of each layer directly influence the 

network's learning ability and classification performance. 

The proposed network architecture for hyperspectral 

image classification leverages a custom Spectral 

Convolutional Neural Network (CSCNN) specifically 

designed to handle the high-dimensional data inherent in 

hyperspectral images (HSI), as shown in Fig. 1. The CSCNN 

architecture consists of several layers that are tailored to 

extract spectral and spatial features effectively, enabling the 

classification of each pixel in an HSI into a specific class 

based on its spectral signature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The CNN layers. 

B. Input Layer 

The network begins with a 3D input layer that accepts 

hyperspectral image patches. The input size is defined as [25, 

25, 30], where 25 x 25 represents the spatial dimensions of 

the image patch and 30 represents the number of spectral 

bands after dimensionality reduction using techniques like 

PCA. 

C. 3D Convolutional Layers 

The network includes a series of 3D convolutional layers that 

apply 3D filters to the input data. These layers are designed 

to learn spatial-spectral features by convolving across both 

spatial dimensions (height and width) and the spectral 

dimension (depth). The network typically includes multiple 

convolutional layers with varying filter sizes, such as: 

• First 3D convolutional layer with a filter size of [3, 3, 7] 

and 8 filters, followed by a ReLU activation function. 

• Second 3D convolutional layer with a filter size of [3, 3, 

5] and 16 filters, followed by a ReLU activation function. 

 

 



• Subsequent 3D convolutional layers further refine the 

feature extraction with progressively smaller filter sizes, 

capturing detailed spatial-spectral relationships. 

D. Fully Connected Layers 

• Following the convolutional layers, the network includes 

fully connected layers to aggregate the features extracted 

from the convolutional layers. These layers transform the 

3D feature maps into a 1D feature vector for 

classification purposes. Typically, there are multiple 

fully connected layers with a decreasing number of 

neurons: 

• The first fully connected layer with 256 neurons, 

followed by a ReLU activation. 

• A second fully connected layer with 128 neurons, 

incorporating dropout to prevent overfitting. 

• A final fully connected layer corresponding to the 

number of classes in the dataset, followed by a softmax 

activation function to produce class probabilities. 

E. Output Layer 

The output layer of the network uses a softmax function to 

generate a probability distribution across all the classes, 

allowing for the classification of each input patch into one of 

the predefined classes. 

F. Dropout Layers 

Dropout layers are interspersed between fully connected 

layers to mitigate overfitting by randomly setting a fraction 

of input units to zero during each forward pass, which helps 

improve the model's generalization capability. 

 

III. EXPERIMENTAL RESULTS 

In this section, we present the experimental results obtained 

from using the Convolutional Spectral Convolutional Neural 

Network (CSCNN), for hyperspectral image classification. 

We evaluate the effectiveness of our proposed method on the 

widely used hyperspectral datasets, including Indian Pines, 

Salinas, and Pavia University datasets.  

A. Datasets 

In the experiments, we assess the proposed CSCNN network 

on three widely used hyperspectral scenes named Salinas-A 

[16], PaviaU [17], and Indian Pines [18].  

• Salinas-A: A sub-scene from Salinas Valley, USA, 

captured by the AVIRIS sensor with a spatial resolution 

of approximately 3.7 m/pixel. The scene covers 86 lines 

by 83 samples and includes six classes and background 

elements, such as bare soil, vegetables, and vineyard 

grounds. The original and ground truth images are 

shown in Fig. 2. It has 6 ground truth classes, as shown 

in TABLE I.         

 

  

 

 

 

 

  (a) 

      

 

 

 

 

 

 

 

 

 

 

(b) 

 

Fig. 2. (a) Salinas-A and (b) the ground truth images.  

 

TABLE I. THE SALINAS-A CLASSES AND THEIR 

RESPECTIVE GROUND TRUTH SAMPLE NUMBER  

 

 
 

• Pavia-U: Captured in 2003 over Northern Italy by the 

ROSIS sensor, with dimensions of 610 × 340 × 103 

pixels. It contains nine ground truth classes. The 

original and ground truth images are shown in Fig. 3. It 

has 9 ground truth classes, as shown in TABLE II.         
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Fig. 3. (a) Pavia-U and (b) ground truth images.  

 



TABLE II. THE PAVIAU CLASSES AND THEIR 

RESPECTIVE GROUND TRUTH SAMPLE NUMBER  

 
• Indian Pines: Acquired over Northwestern Indiana by 

the AVIRIS sensor with a wavelength range of 0.4–2.5 

µm, this scene comprises 145 x 145 pixels and includes 

16 classes representing agricultural, forest, and road 

areas. The original and ground truth images are shown 

in Fig. 4. It has 16 ground truth classes, as shown in 

TABLE III.        

 

Fig. 4. (a) Indian Pines and (b) ground truth images.  

                                                                                                  

TABLE III. THE INDIAN PINES CLASSES AND THEIR 

RESPECTIVE GROUND TRUTH SAMPLE NUMBER  

                  

  

B. Experimental Setup 

Each hyperspectral image was normalized and divided into 

smaller patches of size 25x25 pixels to ensure uniform input 

to the deep learning model. Dimensionality reduction was 

performed using PCA to reduce the number of spectral bands 

to 30, maintaining the most significant features. In addition, 

the network was trained using the Adam optimizer with an 

initial learning rate of 0.001, batch size of 256, and a 

maximum of 100 epochs. Moreover, the datasets were 

randomly split into training (70%) and test (30%) subsets to 

evaluate the model's performance on unseen data. 

C. Performance Evaluation Metrics 

The performance is evaluated by the Overall Accuracy (OA), 

Average Accuracy (AA), and   Kappa Coefficient [19]-[22]. 

The OA is calculated as the average of Producer's Accuracy 

and User's Accuracy.  

Average Accuracy (AA) is a performance metric used in 

Average Accuracy (AA) is a performance metric used in 

classification tasks that calculates the average of accuracies 

obtained for each class in a dataset. AA is computed by taking 

the mean of individual class accuracies, providing an overall 

measure of how well the model performs across all classes. It 

helps to identify if the model is performing well across all 

classes or if it is biased towards one or more classes with 

higher representation. Where N is the total number of classes. 

 
The Kappa Coefficient, also known as Cohen's Kappa, is 

a statistical measure that evaluates the agreement between the 

predicted and actual classifications while accounting for the 

possibility of random agreement. The formula for the Kappa 

Coefficient is:  

 

 

D. Experimental Results 

Figures 5 to 7 display the original ground-truth images and 

the predicted classification maps. The proposed model 

achieved classification accuracies of 99.2%, 97.6%, and 

98.7% for Salinas-A, Pavia-U, and Indian Pines datasets, 

respectively. Simpler images achieved 100% classification 

accuracy due to their smaller dimensions and fewer ground-

truth classes.  

 

  
Fig. 5. Ground-truth of Salinas-A (left) and the classification 

result (right).  

 

 

(a) (b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Ground-truth of Pavia-U (left) and the classification 

result (right).  

  
Fig. 7. Ground-truth of Indian Pines (left) and the 

classification result (right).  

 

The comparison of the performance of the proposed 

CSCNN model with other state-of-the-art 3D Convolutional 

Neural Network (3D-CNN) [23], Support Vector Machine 

(SVM) [24], and Graph Convolutional Network (GCN) [25] 

on the Salinas-A, Pavia University (Pavia-U), and Indian 

Pines datasets is demonstrated in TABLE IV. The best 

values are bolded. 

TABLE IV. COMPARISON OF CLASSIFICATION 

PERFORMANCE OF CSCNN WITH STATE-OF-THE-

ART METHODS ON THREE DIFFERENT DATASETS 

 

 

 

 

 

 

 

Dataset Method 

Overall 

Accuracy 

(OA) 

Average 

Accuracy 

(AA) 

Kappa 

Coefficient 

Salinas-A 

3D-CNN 96.5% 95.8% 96.5% 

SVM 89.2% 88.5% 88.2% 

GCN 97.0% 96.0% 97.0% 

CSCNN 

(Proposed) 
98.2% 97.5% 97.7% 

Pavia 

University 

(Pavia-U) 

3D-CNN 94.8% 93.6% 94.2% 

SVM 85.4% 84.2% 83.6% 

GCN 95.5% 94.1% 94.8% 

CSCNN 

(Proposed) 
96.7% 95.4% 95.2% 

Indian 

Pines 

3D-CNN 90.2% 88.9% 87.5% 

SVM 78.3% 76.5% 76.5% 

GCN 91.0% 89.3% 88.5% 

CSCNN 

(Proposed) 
92.5% 89.8% 89.1% 

From TABLE IV, we observed that the CSCNN model 

achieved high overall accuracy on all datasets, demonstrating 

its effectiveness in capturing the spectral-spatial features of 

hyperspectral images. In addition, the model's average 

accuracy is close to the overall accuracy, indicating balanced 

performance across different land cover classes. Moreover, 

the CSCNN model showed robustness to spectral variability 

within the datasets, achieving high Kappa coefficients, which 

indicate a strong agreement between the predicted and actual 

classes. Furthermore, the proposed CSCNN method 

outperformed other state-of-the-art methods. 

IV. CONCLUSIONS 

This paper proposes custom spectral convolutional neural 

networks (CSCNNs) to classify hyperspectral images. The 

experimental results demonstrated that the CSCNN model 

achieved high overall accuracy across all datasets, 

demonstrating its effectiveness in capturing the spectral-

spatial features of hyperspectral images. Additionally, the 

model's average accuracy closely aligns with its overall 

accuracy, indicating balanced performance across various 

land cover classes. The CSCNN model also exhibited 

robustness to spectral variability within the datasets, 

achieving high Kappa coefficients that indicate strong 

agreement between predicted and actual classes. Furthermore, 

the proposed CSCNN method outperformed other state-of-

the-art approaches. 

V. FUTURE WORK 

Potential improvements could include the integration of 

spatial information. Combining spatial features with spectral 

features can significantly improve classification performance 

[26]. CSCNNs can be designed to effectively extract spatial-



spectral features, using spatial context information to enhance 

classification accuracy.  
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