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Abstract

Advances in self-supervised learning have drawn atten-
tion to developing techniques to extract effective visual rep-
resentations from unlabeled images. Contrastive learning
(CL) trains a model to extract consistent features by gen-
erating different views. Recent success of Masked Autoen-
coders (MAE) highlights the benefit of generative modeling
in self-supervised learning. The generative approaches en-
code the input into a compact embedding and empower the
model’s ability of recovering the original input. However,
in our experiments, we found vanilla MAE mainly recovers
coarse high level semantic information and is inadequate
in recovering detailed low level information. We show that
in dense downstream prediction tasks like multi-organ seg-
mentation, directly applying MAE is not ideal. Here, we
propose RepRec, a hybrid visual representation learning
framework for self-supervised pre-training on large-scale
unlabelled medical datasets, which takes advantage of both
contrastive and generative modeling. To solve the afore-
mentioned dilemma that MAE encounters, a convolutional
encoder is pre-trained to provide low-level feature informa-
tion, in a contrastive way; and a transformer encoder is
pre-trained to produce high level semantic dependency, in
a generative way – by recovering masked representations
from the convolutional encoder. Extensive experiments on
three multi-organ segmentation datasets demonstrate that
our method outperforms current state-of-the-art methods.

1. Introduction
Organ segmentation is an essential step used in many ap-

plications, such as diagnostic interventions, treatment plan-
ning and delivery. Usually, these image analyses are carried
out by experienced doctors. However, it is time-consuming
and labor-intensive, since a 3D CT volume can contain up
to hundreds of 2D slices. Therefore, developing robust and
accurate organ segmentation tools is a fundamental need in
medical image analysis. There is a vast volume of work

on organ segmentation using computed tomography (CT)
[41, 27, 56, 55] or magnetic resonance (MR) [54, 31, 32]
images. Traditional segmentation methods are mostly atlas-
based. These methods rely on a set of accurate image tem-
plates with manual segmentation, and then use image reg-
istration to align the new image to the templates. However,
these methods may not adequately account for the anatom-
ical variance due to variations in organ shapes, removal of
tissues, growth of tumor and differences in image acquisi-
tion.

Deep learning-based methods provide an alternative so-
lution with substantial accuracy improvement and speedup,
which has been shown effective in many applications,
such as detection[40], segmentation [41, 22], registration
[42, 24, 23], pose estimation [28, 13, 29], etc. With recent
advances in deep learning, automatic segmentation using
computer vision algorithms has shown great promise. Var-
ious applications have been deployed in clinical practice.
However, to train deep learning-based organ segmentation
models, large amount of densely annotated images are typ-
ically required yet preparing large-scale labeled datasets is
expensive and time-consuming. This request becomes even
more urgent with the raise of Transformers[17, 1, 34, 33].

A promising solution to the aforementioned issue is self-
supervised representation learning, which has shown great
success in the field of natural language processing and com-
puter vision, arguably due to its potentials of extracting gen-
eral and transferable features that apply to various down-
stream tasks. Compared to supervised learning where man-
ual annotations are naturally used as learning objectives, the
key of self-supervised learning is to design some type of
pretext tasks so that extracted features satisfy annotation-
free constraints. [45]

In computer vision, current self-supervised learning
methods can be broadly divided into two main categories,
generative modeling and discriminative modeling. In ear-
lier times, discriminative self-supervised pretext tasks are
designed as rotation prediction [19], jigsaw solving [37],
and relative patch location prediction [16], etc. Recently,
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contrastive learning, which belongs to the discriminative
branch, achieves great success in self-supervised visual rep-
resentation learning. The core idea of contrastive learning
is to attract different augmented views of the same image
and repulse augmented views of different images. Based on
this core idea, MoCo [52] and SimCLR [52] are proposed,
which greatly shrink the gap between self-supervised learn-
ing and fully-supervised learning. The success of MoCo
[26] and SimCLR [5] highlights the benefits of contrastive
learning. More advanced techniques have emerged recently
[8, 12, 6, 21, 35, 57, 58]. However, the aforementioned
pre-training strategy are mainly designed for image classifi-
cation and object detection tasks. To close the gap between
self-supervised pre-training and dense prediction tasks such
as semantic segmentation and instance segmentation, Wang
et al. [48] present dense contrastive learning (DenseCL),
which implements self-supervised learning by optimizing
a pairwise contrastive (dis)similarity loss at the pixel level
between two views of input images. In [4], Chaitanya et al.
propose domain-specific contrastive loss - a local version
of the contrastive loss to learn distinctive representations of
local regions that are useful for per-pixel segmentation.

Generative modeling also provides a feasible way for
self-supervised pre-training [60, 39, 59]. Recently, He et al.
propose MAE [52] and yield a nontrivial and meaningful
generative self-supervisory task, by masking a high propor-
tion of the input image. Transfer learning performance in
downstream tasks outperforms supervised pre-training and
shows promising scaling behavior. Influenced by the idea
of MAE, Wei et al. propose MaskFeat [49], which regresses
histograms of oriented gradients (HOG), a hand-crafted fea-
ture descriptor, of the masked content rather than raw pixels.
Compared to pixel color targets, HOG come with less am-
biguity in the experimental results. Normalizing gradients
handles the color ambiguity and spatial binning of gradients
texture ambiguity [49]. SaGe [45] combines both discrim-
ination and generation approaches together by using an en-
coder to extract visual features into a compact vector, and a
decoder to recover the original image based on the compact
vector. However, in both [49] and our experimental results,
regressing features instead of directly recovering raw pixels
provides better representation on the down-stream tasks.

Inspired by the above discussion, we propose RepRec,
a hybrid visual representation learning framework for self-
supervised pre-training on large scale unlabelled medical
datasets, which takes advantages of a contrastive stage to
remedy MAE’s shortage at fine level information learning.
In our method, a convolutional encoder is pre-trained to pro-
vide fine level feature extraction, in a contrastive way. Af-
terwards, a transformer encoder is pre-trained to produce
global level semantic dependency, in a generative way – by
recovering masked feature maps from the convolutional en-
coder. Our major contributions are summarized as follows.

• We are the first to leverage both generative and dis-
criminative modeling in large-scale self-supervised
learning on medical image segmentation tasks.

• We propose RepRec, a novel generative mechanism
for pre-training transformer encoder, by recovering
representations from a parameterized network rather
than raw images or hand-crafted feature descriptors.

• We conduct extensive experiments on three multi-
organ segmentation benchmarks, and demonstrate su-
perior performance of RepRec compared to current
self-supervised pre-training approaches.

2. Related Work

Self-supervised pre-training approaches can be divided
into two main categories: self-supervised discriminative
learning and self-supervised generative learning.

2.1. Self-supervised Discriminative Learning

In earlier times, discriminative self-supervised pretext
tasks such as rotation prediction [20], Jigsaw solving [38],
and relative patch location prediction [15], are designed to
learn high-level semantic features.

Recently, contrastive learning as a subcategory of self-
supervised discriminative learning has shown its great
promise to the community. Wu et al.[51] propose Inst-
Disc and memory bank for large scale contrastive learn-
ing. The main idea is to use a contrastive loss to pull
a query image and its similar samples (positive keys) to-
gether and push different ones (negative keys) away. How-
ever, in the InstDisc paper, features in memory bank are
mostly inconsistent with each other due to the asynchroni-
sation update of model weights and memory bank, which
hurts the contrastive learning process [26]. An end-to-end
contrastive learning framework was proposed by SimCLR
[5], which solves the inconsistency among different key fea-
tures. However, due to the end-to-end design of SimCLR
and GPU memory limit, the model is not able to learn from a
large number of negative samples in a single update, which
also hurts the contrastive learning process [26]. He et al.
[26] propose MoCo to use a queue structure to maintain the
feature maps and use a momentum encoder to slowly up-
date the key encoder, which largely remits the inconsistency
among different key features, meanwhile the model can
also learn from numerous negative keys in the queue. Ap-
proaches with new techniques, such as projectors[6, 8] are
proposed in the following work. Researchers also propose
contrastive learning without negative samples [21, 9, 2],
with multi-modality [46] and multi-view [44], with ViT [17]
and towards stable and larger scale representation learning
[12, 3].
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   (a) Original                          (b) mask 75%                                        (c) mask 85%                                        (d) mask 95%           

Figure 1. Recovered raw images by vanilla MAE, with 75%, 85%, 95% mask ratio respectively. We show that even given very few ratio
(25%, 15%, and even 5%) of patches in the original image, MAE is capable of recovering high level semantic information such as the
bounding contour of the abdomen, the location and a rough contour of the kidney, spleen, spinal cord, etc. However, when transfer to dense
prediction tasks like multi-organ segmentation, such abundant high level information brings marginal benefits. This motivates us to make
up the gap between pre-training and downstream tasks.

2.2. Self-supervised Generative Learning

In earlier times, generative pretext tasks like image
inpainting[39] and image colorization[59] are proposed to
train an auto-encoder for feature extraction. As BERT
getting more popular in the domain of NLP, researchers
extend the idea of BERT to the field of computer vision
[1]. Recently, He et al.propose MAE [25] and yield a
nontrivial and meaningful generative self-supervisory task,
by masking a high proportion of the input image. Xie et
al. propose SimMIM[53], which also use a similar self-
supervisory task. Influenced by the idea of MAE, Wei et
al.propose MaskFeat [49], which regresses histograms of
oriented gradients (HOG), a hand-crafted feature descrip-
tor, of the masked content rather than raw pixels. A series
of work are proposed based on the general idea of MAE
[7, 18]. However, these former work all perform the mask-
ing operation on either raw images or hand crafted features,
e.g. histograms of oriented gradients (HOG). We show that
the aforementioned approaches recover few detailed infor-
mation, which is essential for on dense downstream tasks
like multi-organ segmentation.

3. Motivation

To examine vanilla MAE’s transfer-ability to multi-
organ segmentation tasks, we pre-train it on a large scale
abdomen dataset Abdomen-1K [36] with the original set-
tings from [25]. Following the protocol in [25] with 75%,
85%, 95% masking ratio, Fig.1 shows the recovered raw
images by vanilla MAE, respectively. We found that even
given very few ratio (25%, 15%, and even 5%) of patches
in the original image, MAE is capable of recovering high
level semantic information such as the bounding contour of

the whole abdomen region, the location and a rough con-
tour of the kidney, spleen, spinal cord, etc. Although such
abundant high level information brings benefits after trans-
ferring to downstream classification and detection tasks in
the original paper [25], marginal benefit is provided when
we evaluate it on downstream dense prediction tasks like
multi-organ segmentation. See table 1. This motivates us
to make up this gap between pre-training and dense down-
stream tasks.

4. Methodology
Figure 2 sketches the pipeline of RepRec, which includes

three stages, contrastive pre-training stage, generative pre-
training stage and the fine-tuning stage. We now elaborate
the details of each stage in the following subsections.

4.1. Contrastive Pre-training Stage

In the contrastive pre-training stage, we follow the con-
trastive protocol in [26]. In one batch, an image xq is ran-
domly chosen from B images as a query sample, and the
rest images xn ∈ {x1,x2, ...,xB} are considered as nega-
tive key samples, where n ̸= q. To formulate a positive key
sample xp, elastic transforms are performed on the query
sample xq . Afterwards, three sets of feature maps fq , fp, fn
are extracted by a convolutional encoder Ec from xq , xp, xn

correspondingly. With similarity measured by dot product,
a form of a contrastive loss function, called InfoNCE [47]
is considered:

Lc = − log
exp (fq · fp/τ)∑B
i=1 exp (fq · fi/τ)

,

where τ is a temperature hyper-parameter per [50].
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Figure 2. Overview of the RepRec framework. Three stages are included: the contrastive pre-training stage, the generative pre-training
stage and the fine-tuning stage. In the contrastive pre-training stage, the weights of a CNN encoder is initialized to provide dense spacial
latent information. Then these latent feature maps are split into patches, randomly sampled and forwarded to a ViT encoder. The output
of the ViT encoder will be remapped to the original position in the feature map and forwarded to a ViT decoder. After pre-training, we
finetune the full model on a small dataset with limited ground truth masks (bottom right) and evaluate the DSC score.

The contrastive pre-training stage is designed for two
main purposes. One is to provide learnable feature maps,
which will be utilized as inputs in the later generative pre-
training stage. The other is to generate different levels of
feature maps, which follows the common design of the U-
Net [41] model family. These feature maps will be used
through skip connections to provide alternative paths for the
gradient in the later fine-tuning stage.

4.2. Generative Pre-training Stage

Unlike former work to perform generative pre-training
by predicting masked raw images [25] or hand-crafted fea-
ture descriptors [49], RepRec directly recovers learnable
representation extracted from the convolutional encoder Ec.

Compared to MAE [25], instead of dividing an image
into patches, we divide feature maps into patches. Then
we randomly sample a subset of patches from the query
embedding fq , following a uniform distribution and mask
the remaining ones to form the masked query embedding
fqM . In order to formulate a non-trivial pre-training task,
we perform random sample with a high masking ratio, i.e.,
over 75%, to eliminate redundancy. The remaining masked
patches are then embed by a ViT encoder Et, which in-
cludes Nt Transformer blocks. Afterwards, the encoded
visible patches and mask tokens are regrouped and decoded
by a ViT decoder Dt to output the recovered embedding fpR.
Each mask token [14] is a shared, learned vector that indi-

cates the presence of a missing patch to be predicted. The
ViT decoder is only used in the generative pre-training stage
to perform the image reconstruction task (only the encoders
will be used to produce image representations for further
segmentation task). The loss function in this stage Lg com-
putes the mean squared error (MSE) between the recovered
representation fq and original representation fqR.

The RepRec mechanism follows the design of MAE,
which means masked patches are removed and no mask to-
kens are used. Compared to [1], it allows us to train large
encoders with only a fraction of compute and memory. Fur-
thermore, instead of directly recovering the masked raw im-
ages, RepRec recovers the feature maps which takes a even
lower usage of compute and memory.

4.3. Fine-tuning Stage

In the former pre-training stages, an convolutional en-
coder Ec and a ViT encoder Et are pre-trained with a large
number of unlabelled images. In the fine-tuning stage, we
only fine-tune the model with a limited number of labelled
images xt ∈ {x1,x2, ...,xT }, where T is the size of the
fine-tuning target dataset. Besides Ec and Et, a randomly
initialized convolutional decoder Dc is added to predict seg-
mentation masks from the recovered representation. Differ-
ent levels of feature maps from Ec are concatenated with
corresponding layers of Dc through skip connections, to
provide alternative paths for the gradient. Dice loss

2688



Ldice =

C∑
c

N∑
i

picgic

picgic + (1− pic)gic + pic(1− gic)

is applied as in usual multi-organ segmentation tasks. N
is the total number of pixel in each mini-batch and i is the
index of each individual pixel. C denotes the total number
of classes. pic is the predicted probability that i-th pixel is
class c and gic is 1 if i-th pixel is class c and 0 otherwise.
The entire model is trained in an end-to-end fashion.

5. Experiments

5.1. Setup

5.1.1 Pre-training Dataset

During both contrastive and generative pre-training stages,
we pre-train the encoders on the Abdomen-1K [36] dataset.
It contains over 1,112 CT scans, which contains over 240K
2D slices. The CT scans are from 12 medical centers, in-
cluding multi-phase, multi-vendor, and multi-disease cases.
Although segmentation masks for liver, kidney, spleen, and
pancreas are provided in this dataset, we ignore these la-
bels during pre-training, since we are following the self-
supervised protocol.

5.1.2 Fine-tuning Dataset

During the fine-tuning stage, we perform extensive exper-
iments on three datasets with respect to different regions
of human body, to evaluate the transfer-ability of the pre-
trained models.

ABD-110 is an abdomen dataset from [43] that contains
110 CT scans from patients with various abdomen tumors
and these CT scans were taken during the treatment plan-
ning stage. We report the average DSC on 11 abdomen
organs (large bowel, duodenum, spinal cord, liver, spleen,
small bowel, pancreas, left kidney, right kidney, stomach
and gallbladder), with a random split of 1, 10, 50 training
cases and 25 test cases.

Thorax-85 is a thorax dataset from [10] that contains 85
thorax CT scans. We report the average DSC on 6 thorax
organs (eso, trachea, spinal cord, left lung, right lung, and
heart), with a random split of 1, 10, 50 training cases and
25 test cases.

HaN is from [11] and contains 120 CT scans covering
the the region of head and neck. We report the average DSC
on 28 head and neck organs (brachial plexus, brainstem,
constrictor naris, left ear, right ear, left eye, right eye, hy-
pophysis, larynx, left lens, right lens, mandible, optical chi-
asm, left optical nerve, right optical nerve, oral cavity, left
parotid, right parotid, left submandibular gland, right sub-
mandibular gland, spinal cord, sublingual gland, left tempo-
ral lobe, right temporal lobe, thyroid, left TMJ, right TMJ

and trachea), also with a random split of 1, 10, 50 training
cases and 25 test cases.

5.1.3 Evaluation metric

We use the same evaluation metric Sørensen–Dice coeffi-
cient (DSC) as in previous work [41]. DSC measures the
overlap of the prediction mask mp and ground truth mask
mg and is defined as

DSC(mp,mg) =
2|mp ∪mg|
|mp|+ |mg|

.
5.1.4 Implementation Details

All images are re-sampled to have spacing of 2.5mm ×
1.0mm × 1.0mm, with respect to the depth, height, and
width of the 3D volume.

In the contrastive pre-training stage, we apply random
resized crop with size of 224 and scale between 0.2 and 1.0;
color jittering with brightness of 0.4, contrast of 0.4, satura-
tion of 0.4 and hue of 0.4; and random horizontal flip to for-
mulate positive samples. All data augmentation techniques
are available in PyTorch’s torchvision package. We use the
SGD optimizer with momentum of 0.9 and weight decay of
10−4 to train a U-Net [41] encoder Ec for 200 epochs.

In the generative pre-training stage, we use the AdamW
[30] optimizer with β1 = 0.9 and β2 = 0.95 to train Et with
12 ViT-base [17] and Dt with 4 ViT-base for 1600 epochs.
Note that we are able to train such a large number of epochs
due to two reasons. The first is that we take advantage of the
strategy in [25], which mask out most part of the input and
only perform training on the rest parts. The second is that
due to the efficient design of RepRec, we only recovers fea-
ture maps from a limited latent space rather than from raw
pixels space, which reduces both training time and memory
space. In the fine-tuning stage, we use the Adam optimizer
with momentum of 0.9 and weight decay of 10−4 to train
the whole framework end to end.

5.2. Quantitative Results

5.2.1 Results on ABD-110

Table 1 shows the performance comparison of RepRec
with previous work on ABD-110. We ran the following
contrastive self-supervised pre-training algorithms: MoCo
[26], DenseCL [48], Domain-Specific [4]; generative self-
supervised pre-training algorithms: MAE [25], MaskFeat
[49]; and combination of both contrastive and generative
pre-training: SaGe [45]. We also compare with random ini-
tialization and ImageNet pre-trained (fully supervised) ini-
tialization.

By comparing the DSC scores on ABD-110 dataset, we
demonstrate RepRec’s scalability over 3 different training
set sizes, |T | = 1, 10, and 50. RepRec provides Dice score
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ABD-110 Thorax-85 HaN
Method |T |=1 |T |=10 |T |=50 |T |=1 |T |=10 |T |=50 |T |=1 |T |=10 |T |=50

Baseline
Random init. 47.08 74.32 79.64 50.75 84.73 87.66 37.16 55.94 75.45

ImageNet 50.03 80.47 83.39 53.77 85.74 89.47 40.74 69.56 76.84
Contrastive loss pre-training

He et al. [26] 50.02 81.25 83.20 52.90 86.34 89.42 40.25 67.07 76.68
Wang et al. [48] 49.23 81.03 83.86 52.46 86.41 89.12 40.92 59.94 75.12

Chaitanya et al. [4] 49.60 81.43 84.23 53.04 87.04 89.61 41.12 65.24 76.75
Generative loss pre-training

He et al. [25] 47.84 77.61 80.70 50.91 84.87 88.78 37.54 64.10 75.04
Wei et al. [49] 47.17 76.34 80.94 51.63 84.83 88.99 37.15 67.82 75.70

Combination of contrastive and generative methods
Tian et al. [45] 49.90 81.45 84.16 52.22 86.86 89.74 40.78 70.24 77.92

Ours 50.31 81.89 84.67 53.97 87.01 90.37 41.99 71.71 77.31

Table 1. Comparison of the proposed method with other pre-training methods including the contrastive ones, the generative ones and the
combination of the two. After extensive experiments on three datasets for different parts of human body, among different sizes of target
training size |T |, we show that RepRec presents its effectiveness compared to other methods.

of 50.31%, 81.89%, and 84.67% on the ABD-110 dataset.
Comparing MAE with random initialization, marginal ben-
efit is gained after pre-training: only 0.76% improvement
when only given 1 labelled CT scan, 3.29% improvement
when only given 10 labelled CT scans, and 1.06% improve-
ment when only given 50 labelled CT scans. This supports
our arguments in the Motivation section. Our RepRec ap-
proach gains 3.23%, 7.57%, 4.52% improvement with dif-
ferent fine-tuning set size of 1, 10, 50 respectively. Com-
pared to ImageNet pre-training, which is fully-supervised,
RepRec provides 0.28%, 1.42%, and 1.28% improvement
respectively.

5.2.2 Results on Thorax-85

Comparing the DSC scores on Thorax-85 dataset with other
SOTA pre-training algorithms, we demonstrate RepRec’s
superior performance, while |T | = 1, 10, and 50. RepRec
provides Dice score of 53.97%, 87.01%, and 90.37% on the
ABD-110 dataset. Comparing MAE with random initial-
ization, marginal benefit is gained after pre-training: only
0.16% improvement when only given 1 labelled CT scan,
1.61% improvement when only given 10 labelled CT scans,
and 1.12% improvement when only given 50 labelled CT
scans. This supports our arguments in the Motivation sec-
tion again. Our RepRec approach gains 3.22%, 2.28%,
2.71% improvement with different fine-tuning set size of
1, 10, 50 respectively. Comparing with Chaitanya et al.[4],
our method outperforms theirs 0.93% when |T | = 1 and
0.76% when |T | = 50, while |T | = 10, the DSC score of
[4] is only 0.03% higher than ours. Compared to ImageNet
pre-training, which is fully-supervised, RepRec provides
0.20%, 1.27%, and 0.9% improvement respectively. Ex-

periments on Thorax-85 shows that even though RepRec is
pre-trained on abdomen dataset, its highly flexible transfer-
ability allows it to compete with other SOTA approaches.

5.2.3 Results on HaN

By fine-tuning on HaN dataset, RepRec provides Dice score
of 41.99%, 71.71%, and 77.92% when |T | = 1, 10, and 50.
Comparing MAE with random initialization, marginal ben-
efit is gained after pre-training: only 3.09% improvement
when only given 1 labelled CT scan, 11.13% improvement
when only given 10 labelled CT scans, and 1.23% improve-
ment when only given 50 labelled CT scans. This supports
our arguments in the Motivation section once again. Our
RepRec approach gains 4.83%, 15.77%, 1.86% improve-
ment with different fine-tuning set size of 1, 10, 50 respec-
tively. Comparing with Tian et al.[45], our method outper-
forms theirs 0.93% when |T | = 1 and 1.47% when |T | =
10, while |T | = 50, the DSC score of [45] is only 0.61%
higher than ours. Compared to ImageNet pre-training,
which is fully-supervised, RepRec provides 1.25%, 2.15%,
and 0.47% improvement respectively. Experiments on both
HaN and Thorax-85 verifies that even though RepRec is
pre-trained on abdomen dataset, it can be transferred to
datasets of other locations on human body.

5.3. Qualitative Results

In Figure 3, we present visualized segmentation results
on ABD-110 (row 1 and row 4), Thorax-85 (row 2 and row
5) and HaN (row 3 and row 6) datasets respectively. All
the results are provided by the models trained with target
dataset size |T | = 10. Thanks to the representation recov-
ering mechanism, RepRec presents its effectiveness com-
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(a) Ground Truth               (b) Random                   (c) ImageNet                     (d) MoCo           

(e) Domain-Specific               (f) SaGe                         (g) MAE                          (h) Ours          

Figure 3. Qualitative results provided by different models on ABD-110 (row 1 and row 4), Thorax-85 (row 2 and row 5) and HaN (row
3 and row 6) datasets. All the results are provided by the models trained with target dataset size |T | =10. Thanks to the representation
recovering mechanism, RepRec presents its effectiveness compared to other methods (better view in color).

pared to other methods.

5.4. Ablation Study

For example, in our example of ABD-110 dataset, Ima-
geNet, Domain-Specific [4], SaGe [45] and [25] pretrained
models make false prediction masks for Small Bowel ■. In
SaGe [45], liver ■ is covered by Small Bowel ■. MoCo
[26] is making additional false predictions on the left kid-

ney ■.
On Thorax-85, every model predicts reasonable masks

for left lung ■, right lung ■, spinal cord ■ and eso ■. Ran-
dom initialized, ImageNet, MoCo, Domain-Specific, SaGe
and RepRec pretrained models all make false prediction on
heart ■. However, in terms of the area of false positive, our
approach produces the smallest error.

On HaN, every model predicts reasonable masks for
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Methods Random MoCo [26] SaGe [45] Ours
Ec + Dc 74.32 81.25 81.45 N/A
Ec + Et+ Dc 75.46 81.29 81.57 81.89

Table 2. DSC scores provided by RepRec with different decoder on ABD-110 dataset. All the results are provided by the models trained
with target dataset size |T | =10. We compare our method with previous SOTA methods under the same setting of parameter numbers. We
show that with the same number of additional parameters from the ViT decoder Dt, RepRec still achieves the state of the art results.

Methods 4×ViT + 1×Conv PUP [61] U-Net (w.o. skip connections) U-Net
Random 73.59 73.78 73.99 75.46
RepRec 77.97 79.03 80.07 81.89

Table 3. DSC scores of different methods with the same number of additional parameters from the ViT decoder Dt, on ABD-110 dataset.
All the results are provided by the models trained with target dataset size |T | =10. We show that increasing scales of decoder Dc, the
fine-tuning results can be improved clearly, which is not the case argued in the MAE paper. This is because of the special dense prediction
property for multi-organ segmentation tasks compared to natural image classification and detection tasks.

brain stem ■ and mandible ■. However, random initialized
model and MoCo [26] make large false positive mask pre-
dictions. ImageNet and SaGe [45] pretrained models make
false positive masks for parotid ■.

5.4.1 Effect of additional parameters in ViT encoder
Et

In table 2, we pre-train our whole model (including con-
volutional encoder Ec, vision transformer encoder Et and
convolutional decoder Dc) in an end to end fashion, using
MoCo [26] and SaGe [45] pre-training strategy. With an
additional vision transformer encoder Et, MoCo [26] and
SaGe [45] only benefit 0.04% and 0.12% from it. We com-
pare our method with previous SOTA methods under the
same setting of parameter numbers. We show that with
the same number of additional parameters from the ViT de-
coder Dt, RepRec still achieves the state of the art results.
We verify the superiority of RepRec is from the way it pro-
cess the global and local contextual information by utiliz-
ing both contrastive and generative learning rather than by
adding additional parameters.

5.4.2 Choices of decoder Dc

In table 3, we show that with increasing scales of decoder
Dc, the fine-tuning results can be improved clearly. By
comparing U-Net decoder and PUP decoder mentioned in
[61] with a simple 4 x ViT + 1 x Conv decoder, RepRec
gains 2.1% and 1.06% improvement on downstream seg-
mentation tasks. This is not the case in MAE [25]. This
shows for dense down-stream tasks like multi-organ seg-
mentation, decoder still plays an important role compared
to classification and object detection tasks.

By adding skip connections in U-Net [41] from convolu-
tional encoder Ec to convolutional decoder Dc, DSC score
of both random initialized method and our RepRec get im-
provements by 1.47% and 1.82% respectively. This shows

skip connections from encoder to decoder are also essen-
tial in segmentation tasks. However, no such structure can
be applied to pure transformer based model such as MAE
[25], which hurts the performance of MAE on multi-organ
segmentation tasks.

5.4.3 Limitations of Vanilla MAE

We demonstrate the recovering results with different mask
ratio by a vanilla MAE model in figure 1. The vanilla MAE
model provides reasonable recovering results given differ-
ent mask ratio. However, in the fine-tuning stage, the exper-
imental results in table 1 shows that vanilla MAE doesn’t
provide potential transferable capability for dense model-
ing tasks such as multi-organ segmentation, even though the
model is able to recover the original image with reasonable
quality.

6. Conclusion
In this paper, we propose RepRec, a hybrid visual

representation learning framework for self-supervised pre-
training on large scale unlabelled medical datasets. RepRec
utilizes the advantage of both contrastive and generative
modeling. Both quantitative and qualitative studies, validate
the favorable ability of RepRec in down-stream multi-organ
segmentation tasks compared to former state of the art mod-
els. Overall, we believe that the proposed RepRec algorithm
is a feasible way of unifying existing self-supervised gener-
ative approaches and discriminative approaches. We hope
that RepRec inspire future study and will be incorporated
with other pre-training strategies as well.

Beyond the currently proposed framework, it is possi-
ble to merge the contrastive branch and the discriminative
branch in a more unified way, and train the whole frame
work in an end-to-end fashion, which we will study in the
future.
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