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Abstract

Although Multimodal Large Language Mod-001
els (MLLMs) have achieved remarkable per-002
formance in various complex tasks, they still003
face challenges in understanding Knowledge004
Graphs (KGs), which are typical graphs with005
structured semantics. In this paper, we conduct006
a comprehensive evaluation to assess the capa-007
bility of MLLMs in this aspect and investigate008
key factors influencing their performance in009
understanding and reasoning over KGs across010
different dimensions, with a particular focus011
on factors related to the triple recognition of012
KGs. Our study yields several key findings013
and insights that contribute to advancing this014
research domain. We find that MLLMs indeed015
have limitations in understanding complicated016
KGs, which is primarily attributed to the poor017
recognition ability of textual triples in KGs, par-018
ticularly for graphs with special layouts or high019
density. On this basis, we propose a fine-tuning020
method to enhance the understanding capabili-021
ties of MLLMs on KGs, achieving an accuracy022
increase of 7.3% compared to baseline model.023

1 Introduction024

Recently, MLLMs have demonstrated remarkable025

capabilities in handling a wide range of complex026

tasks across multiple modalities (Bai et al., 2024;027

Fu et al., 2024), including visual question answer-028

ing (He et al., 2024b), image captioning (Agarwal029

and Verma, 2024) and multimodal reasoning (Yan030

et al., 2024). Knowledge graphs, as an important031

form of structured data, not only store and repre-032

sent complex relationships between entities but also033

contain extensive factual knowledge. Due to the034

inherent reasoning capabilities of the graph struc-035

ture, visualized KGs are often easier for humans036

to understand, arousing our spatial and visual rea-037

soning abilities. For MLLMs, recent work such038

as GITA (Wei et al., 2024) has shown that vision-039

only models can outperform LLM-based models040

in certain tasks without fine-tuning, underscoring041

MLLM
triples answer:

(abusive foster care, capable of, danger), 
(propagated abuse, part of, abusive foster care), 
(lack of oversight, has context, harm children),
(harm children, capable of, danger)

reasoning answer:
One factor is the lack of a stable home, and the 
other is the lack of a supportive family.

Question: What are factors that contribute to 
harming children, as depicted in the graph?

MLLM

Figure 1: Examplle of knowledge graph understanding.
The incorrect responses are marked as red.

the significant potential of MLLMs in addressing 042

graph-related problems and promoting the general- 043

ization of traditional models. 044

However, unlike pixel-based image data well 045

handled by MLLMs, the visualization of graphs em- 046

phasizes the relationships between nodes and edges 047

associated with semantics, revealing the limited 048

ability of MLLMs in graph understanding. (Rah- 049

manzadehgervi et al., 2024). As shown in Figure 1, 050

for the reasoning task on the triples of a KG, the 051

generated answer is incorrect. It is derived from 052

common knowledge rather than aligning with the 053

edges in the graph. Therefore, at this critical junc- 054

tion in the development of MLLMs, we raise a 055

significant research question: Can MLLMs really 056

understand and reason over KGs? 057

In the meantime, some studies evaluate LLMs’ 058

capabilities in structural and semantic-related graph 059

understanding tasks (Li et al., 2024b; Wang et al., 060

2023; Dai et al., 2024; Guo et al., 2023), and find 061

that LLMs exhibit a preference for linearized triples 062

over natural language texts (Dai et al., 2024). How- 063

ever, both formats require transforming the original 064

graphs, which fail to fully leveraging the multi- 065

modal capabilites of MLLMs. To pursue a more 066

intuitive and natural interaction, several emerging 067
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studies have begun exploring the use of MLLMs068

to process graph images with the assistance of tex-069

tual instruction prompts (Wei et al., 2024; Li et al.,070

2024e; Zhao et al., 2025), which mainly address071

graph reasoning tasks rooted in graph theory, with-072

out dealing with semantic information. On the073

other hand, (Ai et al., 2024; Zhang et al., 2024)074

construct datasets covering a wide range of graph-075

related tasks in daily scenarios for preliminary eval-076

uation of semantic understanding, but they do not077

specifically aim at KGs with triple relationships,078

nor do they provide a deep analysis of the internal079

mechanisms of MLLMs to explain the evaluation080

results. Returning to the example above, we ob-081

serve that the error can be clearly traced to the082

misrecognition of triples related to “harming chil-083

dren”, as evidenced by the intermediate response.084

This draws forth another critical question: Does085

the recognition of triples primarily and directly086

affects the reasoning of KGs, making it the bot-087

tleneck of KG understanding task?088

In this paper, we focus on a comprehensive eval-089

uation of the current state-of-the-art MLLMs on090

the task of KG understanding and reasoning. Our091

goal is to highlight the strengths and weaknesses092

of MLLMs in solving such tasks. Meanwhile, we093

examine the impact of image presentation factors094

in triple recognition, such as layout and density.095

The evaluation is grounded on multi-dimension096

datasets constructed via adapting and extending097

existing ones, including generated graph images098

and corresponding question-answer pairs for both099

simple and complex reasoning tasks. Based on the100

key findings from our evaluation, we fine-tune the101

best-performing model Qwen2VL on triples-based102

question-answer pairs using the dot layout, and103

achieve improved performance across all layouts.104

Key takeaways To the best of our knowledge,105

this is the first study to thoroughly explore MLLMs’106

capabilities on KG understanding tasks. The key107

findings and insights are summarized as follows:108

• The accuracy of triple recognition directly de-109

termines the accuracy of KG understanding110

and reasoning. (1) MLLMs indeed have lim-111

itations in recognizing KG structures, partic-112

ularly for complicated graph images, such as113

those with unreadable layouts or higher edge114

densities. (2) When textual triples are pro-115

vided for reasoning, models with initially poor116

recognition abilities, such as LLaVA, a greater117

performance improvement. That implies the118

triple recognition ability sets the lower limit 119

of KG understanding and reasoning. 120

• Layout plays a crucial role in the triple recog- 121

nition ability, and the easiest layout for recog- 122

nition is “dot” with a hierarchical structure. 123

(Section 4.3). 124

• As the number of triples and the density of 125

edges increase, the recognition ability de- 126

clines, highlighting the necessity to dynam- 127

ically adjust the layout to focus on complex 128

or peripheral parts (Section 4.4). 129

• After fine-tuning on the triple recognition data 130

of different layouts, the model’s reasoning 131

ability is enhanced. Among them, finetun- 132

ing on the triple recognition data using the 133

dot layout yields the best overall performance 134

across all layouts, achieving an accuracy in- 135

crease of 7.3% compared to zero-shot models 136

(Section 4.5). 137

2 Related Work 138

2.1 Multi-Modal Large Language Model 139

A typical MLLM comprises three modules: a 140

pre-trained modality encoder, a pre-trained LLM, 141

and a learnable projector connecting the modality 142

encoder and the LLM. Recently, the “ViT-MLP- 143

LLM” paradigm has been widely adopted in nu- 144

merous MLLM studies (Liu et al., 2024a; Chen 145

et al., 2024a,b; Zhu et al., 2023; Lu et al., 2024; 146

Wang et al., 2024a; Li et al., 2024a; Wang et al., 147

2024b). The projector is trained to embed infor- 148

mation from non-language modalities into the text 149

semantic space that the LLM can understand. In 150

LLaVA (Liu et al., 2024b), a single linear layer 151

is used as a simple projector. To better extract in- 152

formation from non-language modalities, usually 153

images or videos, Vision Transformer (ViT) (Doso- 154

vitskiy, 2020) has been improved in various ways. 155

Qwen2VL (Wang et al., 2024a) can process images 156

of any resolution by modifying ViT, removing the 157

original absolute position embeddings, and intro- 158

ducing 2D-RoPE (Su et al., 2024; Heo et al., 2024) 159

to capture the two-dimensional positional informa- 160

tion of images. InternVL (Chen et al., 2024b) is 161

the first to align a large-scale vision encoder with 162

LLMs, scaling up the vision encoder to 6 billion 163

parameters, resulting in the InternViT-6B model. 164

With their enhanced capability to comprehend 165

visual inputs, contemporary MLLMs demonstrate 166
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remarkable performance in various tasks, includ-167

ing visual question answering (VQA) (He et al.,168

2024b; Antol et al., 2015; Uppal et al., 2022), im-169

age captioning (Vinyals et al., 2015; Agarwal and170

Verma, 2024; Vaishnavi and Narmatha, 2024), and171

multimodal reasoning (Wang et al., 2024c; Yan and172

Lee, 2024; Yan et al., 2024). Despite these ad-173

vancements, open-source MLLMs still lag behind174

commercial models like GPT-4o (Achiam et al.,175

2023) and Gemini-Pro (Team et al., 2024) in com-176

plex reasoning tasks (Liu et al., 2024c).177

2.2 Graph Understanding and Reasoning178

LLMs on graph-related problems Large Lan-179

guage Models (LLMs) have shown significant po-180

tentials across various domains, leading to their181

exploration in structured graph data. Researchers182

(Li et al., 2024d) summarizes LLMs to assist graph-183

related problems in three primary roles: enhancer,184

predictor, and aligner. As predictors, LLMs di-185

rectly generate predictions through prompts includ-186

ing Flatten-based Prediction and GNN-based Pre-187

diction (Li et al., 2024c). Flatten-based predic-188

tion typically transform a graph structure into a se-189

quence of nodes or tokens. GraphText(Zhao et al.,190

2023) leverages graph-syntax trees to convert a191

graph structure to a sequence of nodes. Instruct-192

GLM (Ye et al., 2023) designs a series of scalable193

prompts replacing traditional GNN predictors with194

LLMs, and MR-MKG (Lee et al., 2024) leverages195

multimodal knowledge graphs to enhance LLMs’196

reasoning capabilities.197

There are also some evaluation works on LLMs198

in graph tasks. (Wang et al., 2023) shows that lan-199

guage models demonstrate preliminary graph rea-200

soning abilities. (Li et al., 2024b) emphasizes that201

the capabilities of LLMs in handling structured202

data are still under-explored and demonstrates the203

effectiveness of LLM4Graph in enhancing LLMs’204

proficiency in graph analysis. (Dai et al., 2024) re-205

veals that linearized triples are more effective than206

fluent natural language text in helping LLMs un-207

derstand KG information and answer fact-intensive208

questions.GPT4Graph(Guo et al., 2023) assesses209

the proficiency of LLMs in comprehending graph210

data by employing a diverse range of structural and211

semantic-related tasks, indicating that there is still212

a long way for an LLM to understand graph data.213

MLLMs on graph-related problems As the ad-214

vent of MLLMs, we can directly analyze and under-215

stand representations of graph structures through216

visualization. GITA (Wei et al., 2024) and Vision- 217

Graph (Li et al., 2024e) introduced frameworks that 218

leverage MLLMs for fundamental graph reasoning 219

tasks by converting graphs into image represen- 220

tations, highlighting the advantages of MLLMs’ 221

visual intelligence, Beyond basic graph tasks, (El- 222

henawy et al., 2024) extended the use of MLLMs 223

to combinatorial problems, such as solving the 224

traveling salesman problem (TSP) using visual 225

and textual information. (Zhao et al., 2025) re- 226

veals that MLLMs can tackle graph-structured chal- 227

lenges from combinatorial problems to sequen- 228

tial decision-making without the need for complex 229

training or fine-tuning. For various graph-related 230

tasks in daily scenarios, (Ai et al., 2024) introduces 231

a benchmark for multimodal graph and leverage 232

VLMs to encode the graph images with varying 233

structures across different domains. 234

3 Methodology 235

The paper primarily focuses on knowledge graph 236

understanding and reasoning tasks. The graph 237

structure is denoted as G = {V,E}, where V 238

and E represent the sets of nodes and edges, re- 239

spectively. A graph visualizer is used to generate 240

visual representations of the structural graph. The 241

visual input IG is given by IG = V (G,∆), where 242

∆ represents the customizable graph-related image 243

styles. The task requirement T includes specific 244

operations or questions related to the graph. We 245

also incorporate a prompt instruction P , resulting 246

in the question text QT
G = (T, P ). 247

Different task dimensions require different in- 248

structions. QT
G includes two types of tasks: recog- 249

nition and reasoning. Recognition refers to identi- 250

fying the nodes, edges, and triples in the knowledge 251

graph image, while reasoning refers to answering 252

the reasoning questions constructed based on the 253

triples of a knowledge graph. Our evaluation covers 254

the following dimensions: step-by-step decompo- 255

sition of triplet recognition, as well as recognition 256

and reasoning performance under different layouts 257

and densities. We feed both the visual input IG 258

and the textual input T into an MLLM to generate 259

the target text Y = f(IG, QG). The correctness of 260

the model’s output Y is compared with the ground 261

truth answer Ȳ and calculating the accuracy. 262
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Table 1: Statistics of datasets used in the evaluation

Dataset ExplaGraphs WebQSP-20 WebQSP-density
#Graphs 2766 4737 4737
Avg. #Nodes 5.17 32.55 8.34
Avg. #Edges 4.25 20 20

4 Experiment263

4.1 Experiment setup264

4.1.1 Dataset265

We construct various datasets for evaluating knowl-266

edge graphs in different dimensions, providing text267

in triple format and generating knowledge graph268

images. We use the open-source tool Graphviz269

(Gansner and North, 2000) as the image formatting270

tool1. It can automatically design the layouts of271

visual graphs and is particularly suitable for build-272

ing large-scale datasets. Table 1 summarizes the273

statistics of these datasets. An example of each274

dataset is presented in Appendix A.275

ExplaGraphs A dataset for generative common-276

sense reasoning (Saha et al., 2021). We visualize277

the triplet-form data converted in (He et al., 2024a),278

including adjustment of six different visual layouts.279

WebQSP A large-scale multi-hop knowledge280

graph QA dataset (Yih et al., 2016). We select the281

first 20 triples (WebQSP-20) and the top 20 triples282

with the highest density (WebQSP-density) from283

each knowledge graph for visualization, in order to284

assess the impact of triple count and density.285

4.1.2 Models286

The models we evaluate include both advanced287

open-source and closed-source models as follows.288

LLaVA uses language-only GPT-4 to generate289

multimodal language-image instruction-following290

data (Liu et al., 2024b), enabling the connection of291

a vision encoder and a language model via a simple292

linear layer for general-purpose applications.293

LLaVA-OV inherits the minimalism design of294

LLaVA series (Li et al., 2024a), whose primary295

goals include effectively leveraging the pre-trained296

capabilities of both the LLM and visual model. The297

proposed Higher AnyRes strategy can serve as a298

flexible visual representation framework, adaptable299

for multi-image and video representations.300

1https://graphviz.org/

Qwen2VL retains the Qwen-VL (Bai et al., 301

2023) framework, which integrates vision encoders 302

and language models. To further enhance the 303

model’s ability of effectively perceiving and com- 304

prehending visual information in videos, it intro- 305

duces several key upgrades including naive dy- 306

namic resolution and Multimodal Rotary Position 307

Embedding (M-RoPE) (Wang et al., 2024a). 308

InternVL2 utilizes the same architecture as In- 309

ternVL 1.5 (Chen et al., 2024a), specifically the 310

ViT-MLP-LLM configuration referenced in various 311

existing studies. To enhance the scalability for high 312

resolution, a pixel shuffle (unshuffle) operation is 313

employed to reduce the number of visual tokens to 314

one-quarter of the original. 315

GPT-4o is a closed-source multimodal model 316

(Achiam et al., 2023), which can accept 317

text/audio/image/video inputs and generate 318

text/audio/image outputs. It represents a step 319

towards more natural human-computer interaction. 320

To ensure the consistency of parameter sizes 321

with this closed-source model, the 7B model is used 322

for LLaVA, LLaVA-OV, and Qwen2VL, while the 323

8B model is used for InternVL2. 324

4.1.3 Instruction Setting 325

For the recognition task, we directly ask the model 326

about the elements of the triples involved in the KG 327

in a zero-shot manner. For the reasoning task, our 328

method for constructing reasoning questions fol- 329

lows previous work (Ai et al., 2024), employing an 330

automatic annotation process generated by Gemini 331

(Anil et al., 2023), and posing two levels of reason- 332

ing tasks: Simple (1 hop) and Complex (2 or more 333

hops). For simple and one-hop questions, direct 334

judgment can be made, while for more complex 335

questions involving multiple triples, direct match- 336

ing is infeasible. Since Gemini is used to generate 337

the questions and its high accuracy in recognizing 338

triples has been certified (Ai et al., 2024), we first 339

use it to assess whether the answers provided for 340

complex questions are correct. Then, we perform 341

manual screening to determine the final accuracy. 342

All the instruction prompts used in this paper are 343

listed in Appendix B. 344

4.2 Evaluation with Task Decomposition 345

In order to thoroughly investigate the triple recog- 346

nition process, as demonstrated in Figure 3, we 347

decompose the recognition task for nodes, node 348

pairs without relation type, and complete triples in 349

4



(a) Step-by-step Evaluation. (b) Recognition and reasoning based on given nodes
and edges.

Figure 2: Evaluation with task decomposition.

Node
abusive foster care

danger
propagated abuse
lack of oversight

harm children

Node pairs

(abusive foster care,danger)
(propagated abuse,danger)

(propagated abuse,harm children)
(lack of oversight,harm children)

Triple

(abusive foster care, capable of, danger)
(propagated abuse, part of, danger)

(propagated abuse, has context, harm children)
(lack of oversight, capable of, harm children)

Figure 3: Decomposition of the recognition task

a sequential manner. The evaluation results in Fig-350

ure 2(a) shows that the overall accuracy decreases351

from node recognition to node pair recognition and352

further to triple recognition, progressing from eas-353

ier to harder tasks. That is intuitive and certifies354

the validity of our evaluation.355

Across different models, the Pearson correlation356

coefficient between tasks “Triple” and “Simple”357

reaches 0.99, and the correlation with “Complex”358

is 0.96, which is the highest among all the triple359

recognition factors. Therefore, there is a strong360

positive correlation between the accuracy of361

recognition tasks and the accuracy of reasoning362

task. The closed-source model GPT-4o has shown363

good performance in both recognition and reason-364

ing. The three models, LLaVA-OV, Qwen2VL, and365

InternVL2 exhibit consistent trends in recognizing366

nodes, node pairs, and triples, while LLAVA ex-367

periences a sharp performance drop in node pair368

and triple recognition tasks. Overall, the model369

performance is ranked as GPT-4o > Qwen2VL >370

InternVL2 > LLaVA-OV > LLaVA, so Qwen2VL371

is more suitable for processing images with graph372

structures in open-source MLLMs.373

To further analyze MLLMs’ performance on spe-374

cific step of the KG recognition and focus on con- 375

crete problems within this step, we provide correct 376

information from previous steps and conduct ad- 377

hoc evaluations. Specifically, “Node pairs (given)” 378

refers to providing node names in the prompt and 379

then recognizing the node pairs, “triple (given)” 380

refers to providing both node and edge names and 381

then identifying the complete triples, and “Sim- 382

ple (given)” refers to answering simple reasoning 383

based on the provided set of triples. As shown 384

in Figure 2(b), after providing the basic structure 385

names, the accuracy for node pairs and triples im- 386

proves to some extent compared to direct recogni- 387

tion, but it is still relatively low for initially poor 388

models like LLaVA. This can be explained that dur- 389

ing the triple identification process, there are still 390

issues such as confusion between edge and node 391

names, missing triples, incorrect edges, nonexis- 392

tent relationship caused by hallucination, incorrect 393

recognition in the direction of directed edges and 394

so on. However, providing all textual triples signif- 395

icantly enhances the reasoning accuracy across all 396

models. When textual triples are provided for 397

reasoning, models with initially poor recognition 398

abilities, such as LLaVA, a greater performance 399

improvement. Therefore, compared to the recog- 400

nition of complete triples, node recognition and 401

node pair recognition are not crucial steps, so in 402

the following evaluation, we only pay attention to 403

the evaluation accuracy of triple recognition. 404

4.3 Evaluation of layout 405

Layout refers to various algorithms for projecting 406

abstract graphs into a space for visualization. Ac- 407

cording to the previous study (Wei et al., 2024), 408

layout variations of visual graphs play a crucial 409

role in mitigating the visual confusion caused by 410

the spatial arrangement within a visual graph. How- 411

ever, that paper lacks a separate analysis of each 412
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Table 2: Evaluation of recognition and reasoning for different layouts

layout Triple Simple Simple(given)
LLaVA LLaVA-OV InternVL2 Qwen2VL GPT-4o LLaVA LLaVA-OV InternVL2 Qwen2VL GPT-4o Qwen2VL

dot 5.61 51.33 57.11 84.47 93.33 22.87 55.34 65.52 72.10 95.00 74.08
circo 1.09 19.35 41.26 76.70 90.00 7.62 42.38 58.08 72.26 95.00 74.09
twopi 1.25 5.41 9.03 11.38 29.27 15.09 41.01 51.62 58.99 89.31 72.41
neato 1.67 11.18 13.80 22.09 31.25 19.36 48.32 59.98 60.92 92.21 70.50
fdp 1.10 12.62 15.54 28.48 23.91 18.45 40.55 55.52 60.37 86.67 70.88
sfdp 0.17 15.0 31.15 53.44 68.25 3.20 37.35 64.32 71.34 94.12 73.47

layout. In this section, we evaluate the recognition413

performance of different layouts, fixing other fac-414

tors such as node shapes, node outline styles and415

edge thickness. The characteristics of each layout416

are summarized as follows:417

• dot adopts a hierarchical structure, where418

nodes are arranged by level, and edges are419

arranged in the same direction (top to bottom,420

or left to right) to avoid edge crossings.421

• circo uses a circular structure, placing nodes422

in a circle or ellipse, making it suitable for423

displaying cyclic structures or graphs with424

strong symmetry.425

• twopi is a radial layout, arranging nodes426

around a central node in concentric circles.427

However, for non-radial structures, it may lead428

to edge overlaps.429

• neato is based on a force-directed algorithm,430

using a spring-repulsion model (Kamada-431

Kawai algorithm). Nodes are compactly dis-432

tributed in steps, and edge lengths are kept as433

consistent as possible. It performs well for434

small to medium-sized graphs, but short edge435

lengths may cause relationships to overlap.436

• fdp is also force-directed, but with a simpler437

spring model. Nodes are distributed more438

loosely to cater for medium-sized graphs.439

• sfdp is a multilevel and force-directed algo-440

rithm that efficiently layouts large graphs. he441

layout is more spread out with longer edges.442

We use the ExplaGraphs dataset, altering the443

layout style of each KG while keeping all other set-444

tings fixed. At first, we perform manual filtering to445

remove images unclear to humans, ensuring that no446

characters are obstructed, and the triples for each447

layout are consistent, with only the visual format448

differing. Table 2 shows that there are significant449

discrepancies in the recognition performance for450

different layouts. For LLaVA-OV, InternVL2 and 451

Qwen2VL, the ranking is consistent: dot > circo 452

> sfdp > fdp > neato > twopi. As to GPT-4o, 453

which has strong recognition capabilities, has a 454

relatively low recognition accuracy on certain lay- 455

outs such as twopi, neato and fdp. LLaVA has low 456

triple recognition accuracy, with only about 1% 457

accuracy for layouts other than dot. Therefore, a 458

well-designed layout not only enhances readability 459

by reducing cognitive load, but also helps improve 460

the model’s ability to recognize and process struc- 461

tural and semantic relationships within the graph. 462

Based on the summary of the characteristics of 463

each layout, the dot layout’s highest recognition 464

accuracy suggests that all the models perform bet- 465

ter in recognizing hierarchically structured triples. 466

This may be attributed to the training dataset which 467

includes flowchart data employing hierarchical lay- 468

out, while lacks exposure to other layout formats. 469

An example of different answers to the same ques- 470

tion for different layouts is presented in Figure 4 471

and Appendix C. It can be observed that if the 472

triples involved in the question are recognized cor- 473

rectly, the reasoning problem can also be answered 474

correctly. To address this, we will further investi- 475

gate the impact of incorporating data from other 476

layouts for fine-tuning on recognition and reason- 477

ing tasks in Section 4. This aims to enhance the 478

models’ adaptability to diverse graph structures and 479

improve their overall reasoning capabilities. 480

According to the results on the “Simple (given)” 481

task for the Qwen2VL model, it is found that all lay- 482

outs show improvements compared to the original 483

reasoning without providing any triples. Further- 484

more, the inference accuracy of each layout reaches 485

70%, with less difference among them. This again 486

emphasizes the role of triple recognition in the 487

whole reasoning task. 488

4.4 Evaluation of Density 489

Since the construction of real-world KGs is more 490

diverse and complex for the representation of dif- 491

ferent relationships, we also inspect the knowledge 492
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Table 3: Triple recognition of complexity and density of knowledge graphs (Semantic: KG contains semantic
Information, Non-Semantic: KG does not contain semantic information)

Dataset ExplaGraphs WebQSP-20 WebQSP-density
Model Semantic Non-Semantic Semantic Non-Semantic Semantic Non-Semantic
LLaVA-OV 51.33 70.83 0.0 6.68 0.0 6.90
InternVL2 57.11 65.89 11.83 16.01 0.82 7.19
Qwen2VL 84.89 96.30 22.27 25.26 13.06 21.67
GPT-4o 93.33 95.68 20.25 34.31 13.26 38.33

triples:
(everyone; receives action; has the right) 
(has the right; desires; choose)  
(choose; has subevent; what to smoke)  
(what to smoke; is a; use of marijuana) 
(use of marijuana; not desires; ban)

question: What action does everyone receive? 
answer: has the right 

dot

(a) Layout of dot

triples:
(ban; not desires; use of marijuana)
(use of marijuana; is a; what to smoke)
(what to smoke; has subevent; choose) 
(choose; desires; has the right)
(has the right; receives action; everyone)

question: What action does everyone 
receive? 
answer: ban

fdp

(b) Layout of fdp

Figure 4: Example of different responses to the same
question caused by different layouts. We color the cor-
rect and wrong responses in green and red.

graph with different edge densities. In order to bet-493

ter reflect the differences, we exclude the LLaVA494

model here, which performs poorly even on simple495

graphs. For the dataset, we use WebQSP, which ex-496

pands the number of triples to 20 compared to the497

average value of 4.25 for the ExplaGraphs dataset.498

In addition, we create a variant named WebQSP-499

density, in which the number of triples is kept fixed,500

and the nodes with the highest sum of in-degree501

and out-degree in the graph are selected, sorting the502

top 20 edges in descending order. The results in Ta-503

ble 3 show that as the number of triples and the504

density increase, the recognition rate of triples505

decreases for all models. Interestingly, for high-506

density KGs, the LLaVA-OV model responds that507

the graph is a complex network diagram with vari-508

ous nodes and edges, making it almost impossible 509

to recognize. 510

Moreover, to avoid obstruction caused by com- 511

plex semantics in node and edge names in high- 512

density triple images, we replaced the nodes and 513

edges with simple characters for recognition. The 514

issues encountered in complex graph recognition 515

by Intern2VL and QwenVL2 include ignoring 516

triples that are located far from the center of the im- 517

age, and incorrectly identifying non-existent edges. 518

This indicates that the visual encoders perform less 519

effectively in handling edges in non-central regions 520

when the graph’s complexity is high. 521

4.5 Fine-tuning 522

In previous section, we demonstrate that graph 523

recognition significantly affects reasoning capabil- 524

ities. We aim to further utilize this finding to im- 525

prove the model’s performance in reasoning tasks 526

by strengthening its recognition ability. 527

Data Preparation we constructed a dataset fo- 528

cusing on enhancing the recognition of graph 529

triples, which contains six different layout types 530

and 16.5k samples. Each layout consists of over 531

2.7k recognition samples. We created the instruc- 532

tion training set by using the prompt “Identify and 533

list all the triples in the image” and pairing it with 534

the triple recognition results from ExplaGraphs 535

dataset, which isillustrated in Figure 5. For the fine- 536

tuning baseline, we selected the Qwen2VL model, 537

which performed the best in earlier evaluations. 538

The training set for fine-tuning was constructed us- 539

ing the recognition-enhanced dataset, while the test 540

set consists of simple reasoning problems. 541

Training Details The base model for fine-tuning 542

is Qwen2-VL-7B-Instruct and the model was 543

trained for 3 epochs with a LoRA rank of 8. Fol- 544

lowing the Stage 3 SFT setting in Qwen2VL, we 545

locked the ViT parameters and performed exclusive 546

fine-tuning of the LLM. The effective batch size 547

was set to 8. 548
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Table 4: Fine-tuned reasoning results with different fine-tuning strategies

Qwen2VL Qwen2VL_sft_self Qwen2VL_sft_all Qwen2VL_sft_dot
dot 71.19 76.62 74.79 76.62
circo 72.26 72.66 72.85 77.73
twopi 58.99 65.57 63.68 69.02
neato 60.92 71.13 66.56 70.81
fdp 60.37 69.22 65.73 67.48
sfdp 71.34 75.09 71.08 76.21

{
   "conversations": [

{
  "from": "human",
  "value": "<image>Identify and list all 
the triples in the image."
},
{
  "from": "gpt",
  "value": "The triples in the image are as 
follows: (cannabis; is a; harmful drug) 
(harmful drug; not desires; legal)(harmful 
drug; causes; addiction)."
}
],

  "images": ["graph_example.png"]
}

Recognition Dataset Construction

Figure 5: An example from the graph recognition en-
hancement dataset.

Graph Recognition Enhancement To fully549

leverage the constructed dataset and explore the550

fine-tuned model performance on each layout551

dataset, we implemented two distinct training552

strategies: layout-specific training and layout-553

mixed training.554

1. Layout-specific training: The model is555

fine-tuned on each layout’s specific recog-556

nition dataset respectively. Specifically,557

“Qwen2VL_sft_self” refers to fine-tuning558

on the same layout with test data, while559

“Qwen2VL_sft_dot” refers to fine-tuning on560

the layout of dot.561

2. Layout-mixed training: The model is fine-562

tuned using a combination of all layout563

datasets, named as “Qwen2VL_sft_all”.564

As shown in Table 4, the results indicate that565

fine-tuning using the dot method across all layouts566

consistently yields even better performance than567

fine-tuning with the combined datasets. Even when568

the test data comes from other layouts (circo, twopi,569

or sfdp), the model fine-tuned with the dot layout570

still achieves optimal performance. This suggests571

that the hierarchical features of the dot layout are572

generalizable and can be transferred to other lay-573

outs. For some layouts, using the dot to fine-tune574

even outperforms directly providing the triples for575

reasoning. A case study of different fine-tune strate-576

gies is presented in the Appendix D. Additionally,577

fine-tuning the model on its own layout’s dedicated 578

dataset results in the highest performance for neato 579

and fdp layout. This approach ensures that the 580

model can adapt more specifically to the character- 581

istics of each layout, enhancing its ability to recog- 582

nize graph triples effectively in diverse scenarios. 583

In contrast, fine-tuning with all layouts data does 584

not achieve the best results on any single layout. 585

The interference effect of mixed training, caused by 586

feature dilution and conflicts, forces the model to 587

learn visual patterns from multiple layouts simul- 588

taneously. The significant structural differences 589

between layouts, such as the hierarchy of dot, the 590

circular structure of circo, and the force-directed 591

nature of neato, make it difficult for the model to 592

focus on core semantics. For KGs in real-world 593

scenarios, there may exist different layout features 594

that cannot be mapped to a standardized layout. 595

Therefore, the use of layout-specific dot is suitable 596

and can achieve optimal results in open scenarios. 597

5 Conclusion 598

In this work, we analyze the ability of MLLMs to 599

understand KG data in multiple dimensions. Our 600

findings indicate that the current MLLMs have lim- 601

itations in graph understanding, strongly attributed 602

to their poor recognition ability, and the layout 603

and density of the images play a crucial role in 604

recognition. Through fine-tuning experiments, we 605

confirm that fine-tuning on triple question-answer 606

pairs with different layouts can improve their rea- 607

soning performance. In the future work, we will 608

advance this work from the following two direc- 609

tions: (1) Designing layouts that are more easily 610

to understand by MLLMs for large-scale and com- 611

plex graphs, or designing dedicated image encoders 612

to capture the pixels related to nodes; (2) Explor- 613

ing how to incorporate internal knowledge within 614

the model to reduce hallucinations and erroneous 615

information based on graph understanding. By im- 616

proving the recognition ability of MLLMs, there 617

will be greater potential for advancements in graph 618

understanding in the future. 619
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6 Limitation620

MLLMs that we evaluate are not complete In621

our experiments, we focus on evaluating the graph622

understanding abilities of the following models:623

LLaVA, LLaVA-OV, InternVL2, Qwen2VL, and624

GPT-4o. These models are selected based on their625

advanced capabilities in multimodal tasks and their626

potential to handle graph-based data. However,627

we acknowledge that there are several other open-628

source MLLMs that could also contribute valuable629

insights into graph understanding. We leave it to630

future work on evaluating the graph reasoning abil-631

ities of other models.632

Methods for improving graph reasoning abilities633

In this paper, we only provide a fine-tuning solution634

for the layout, which works on easy graph reason-635

ing problems. However, there is still much room636

for improvement when it comes to more complex637

graph models and reasoning tasks, where adjust-638

ments to the visual encoder could be made.639
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A Dataset Example928

ExplaGraphs (Figure 6) is used in Section 4.2, We-929

bQSP and its variations (Figure 7, 8, 9, 10) are used930

in Section 4.4.

Figure 6: An example of ExplaGraphs

931

Figure 7: An example of WebQSP-20

Figure 8: An example of WebQSP-20 without Semantic

Figure 9: An example of WebQSP-density

Figure 10: An example of WebQSP-density without
Semantic
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B Prompt List932

All the prompt inputs used in this paper are listed933

in the Table 5.

Table 5: Prompt input for different tasks

Task Evaluation Example prompt

Step-by-step
Recognition Evaluation

node Please analyze the image and list all the entities (nodes) repre-
sented in the diagram.

node pairs Please list the triples without edges based on the knowledge graph
structure in the picture, in the format (node1, node2),(node3,
node4). Ignore the edge relationships.

node
pairs(given)

The nodes in the picture is cannabis,legal,marijuana,good
thing,marijuana,more available,good thing,legal. Please list the
node pairs without edges based on the knowledge graph structure
in the picture, in the format (node1, node2) (node3, node4). Ignore
the edge relationships.

triple Identify and extract all nodes and edges from the image in the
form of triples (node1; relation; node2).

triple(given) The nodes in the picture are cannabis,legal,marijuana,good
thing,marijuana,more available,good thing,legal,the relations in
the picture are synonym of, causes, capable of, desires. Please
output all triples from the image based on the provided nodes and
relations in the format (node1; relation; node2).

Reasoning
simple What property does cannabis have?
complex What is the relationship between cannabis and medicinal pur-

poses?
simple(given) The triples in the image is:(cannabis; synonym of; mari-

juana)(legal; causes; more available)(marijuana; capable of; good
thing)(good thing; desires; legal),Please answer the questions
based on the triples:What is a synonym of cannabis?

934
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C Layout Example935

Different layouts provide different answers936

to the same question, "What action does937

everyone receive?" As shown in the Fig-938

ure 4(a),4(b),11,12,13,14, we demonstrate how var-939

ious layouts perform in terms of triple recogni-940

tion and reasoning. Green highlights the correct941

triple and Red highlights the wrong triple. Gray942

and Bold represents the target triplet. It can be943

observed that if a layout correctly recognizes the944

triples involved in the question, it also provides an945

accurate answer. However, layouts of neato fail to946

recognize all triples while fdp incorrectly identi-947

fies the triples related to the question, leading to948

erroneous responses.949

triples:
(everyone; receives action; has the right) (has the right; 
desires; choose)  (choose; has subevent; what to smoke) 
(what to smoke; not desires; ban)(use of marijuana; is a; what 
to smoke)

question: What action does everyone receive? 
answer: has the right 

circo

Figure 11: An example of circo layout

triples:
(use of marijuana; is a; what to smoke)
(what to smoke; has subevent; choose)
(choose; desires; has the right)
(has the right; receives action; everyone) 
(everyone; not desires; ban)

question: What action does everyone receive? 
answer: has the right 

twopi

Figure 12: An example of twopi layout

D Case Study950

This is an example of a graph image of neato lay-951

out. All fine-tuned models can correctly identify952

the triples. According to the response, sft_all and953

sft_neato models confuse the edges and nodes, lead-954

ing to incorrect results. On the other hand, the955

sft_dot model has a better understanding of the re-956

lationships within the triples and provides correct957

answers.958

triples:
(ban; is a; use of marijuana)
(use of marijuana; has subevent; what to 
smoke)
(what to smoke; desires; choose)
(choose; has the right; receives action) 
(receives action; everyone)

question: What action does everyone 
receive? 
answer: ban

neato

Figure 13: An example of neato layout

triples:
(everyone; receives action; has the right) (has the right; 
desires; choose)  (choose; has subevent; what to smoke)  
(what to smoke; is a; use of marijuana) (what to smoke; not 
desires; ban)

question: What action does everyone receive? 
answer: has the right

sfdp

Figure 14: An example of sfdp layout

Question: What property does targeted killing have?
Qwen2VL: The property of targeted killing is \"has property\"
Qwen2VL_sft_all:  has property.
Qwen2VL_sft_neato:  has property.  
Qwen2VL_sft_dot:  advantages.

neato

Figure 15: A case study of fine-tune model
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