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Abstract

Although Multimodal Large Language Mod-
els (MLLMs) have achieved remarkable per-
formance in various complex tasks, they still
face challenges in understanding Knowledge
Graphs (KGs), which are typical graphs with
structured semantics. In this paper, we conduct
a comprehensive evaluation to assess the capa-
bility of MLLMs in this aspect and investigate
key factors influencing their performance in
understanding and reasoning over KGs across
different dimensions, with a particular focus
on factors related to the triple recognition of
KGs. Our study yields several key findings
and insights that contribute to advancing this
research domain. We find that MLLMs indeed
have limitations in understanding complicated
KGs, which is primarily attributed to the poor
recognition ability of textual triples in KGs, par-
ticularly for graphs with special layouts or high
density. On this basis, we propose a fine-tuning
method to enhance the understanding capabili-
ties of MLLMs on KGs, achieving an accuracy
increase of 7.3% compared to baseline model.

1 Introduction

Recently, MLLMs have demonstrated remarkable
capabilities in handling a wide range of complex
tasks across multiple modalities (Bai et al., 2024;
Fu et al., 2024), including visual question answer-
ing (He et al., 2024b), image captioning (Agarwal
and Verma, 2024) and multimodal reasoning (Yan
et al., 2024). Knowledge graphs, as an important
form of structured data, not only store and repre-
sent complex relationships between entities but also
contain extensive factual knowledge. Due to the
inherent reasoning capabilities of the graph struc-
ture, visualized KGs are often easier for humans
to understand, arousing our spatial and visual rea-
soning abilities. For MLLMs, recent work such
as GITA (Wei et al., 2024) has shown that vision-
only models can outperform LLM-based models
in certain tasks without fine-tuning, underscoring
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Figure 1: Examplle of knowledge graph understanding.
The incorrect responses are marked as red.

the significant potential of MLLMs in addressing
graph-related problems and promoting the general-
ization of traditional models.

However, unlike pixel-based image data well
handled by MLLMs, the visualization of graphs em-
phasizes the relationships between nodes and edges
associated with semantics, revealing the limited
ability of MLLMs in graph understanding. (Rah-
manzadehgervi et al., 2024). As shown in Figure 1,
for the reasoning task on the triples of a KG, the
generated answer is incorrect. It is derived from
common knowledge rather than aligning with the
edges in the graph. Therefore, at this critical junc-
tion in the development of MLLMs, we raise a
significant research question: Can MLLMS really
understand and reason over KGs?

In the meantime, some studies evaluate LLMs’
capabilities in structural and semantic-related graph
understanding tasks (Li et al., 2024b; Wang et al.,
2023; Dai et al., 2024; Guo et al., 2023), and find
that LLMs exhibit a preference for linearized triples
over natural language texts (Dai et al., 2024). How-
ever, both formats require transforming the original
graphs, which fail to fully leveraging the multi-
modal capabilites of MLLMs. To pursue a more
intuitive and natural interaction, several emerging



studies have begun exploring the use of MLLMs
to process graph images with the assistance of tex-
tual instruction prompts (Wei et al., 2024; Li et al.,
2024e; Zhao et al., 2025), which mainly address
graph reasoning tasks rooted in graph theory, with-
out dealing with semantic information. On the
other hand, (Ai et al., 2024; Zhang et al., 2024)
construct datasets covering a wide range of graph-
related tasks in daily scenarios for preliminary eval-
uation of semantic understanding, but they do not
specifically aim at KGs with triple relationships,
nor do they provide a deep analysis of the internal
mechanisms of MLLMs to explain the evaluation
results. Returning to the example above, we ob-
serve that the error can be clearly traced to the
misrecognition of triples related to “harming chil-
dren”, as evidenced by the intermediate response.
This draws forth another critical question: Does
the recognition of triples primarily and directly
affects the reasoning of KGs, making it the bot-
tleneck of KG understanding task?

In this paper, we focus on a comprehensive eval-
uation of the current state-of-the-art MLLMs on
the task of KG understanding and reasoning. Our
goal is to highlight the strengths and weaknesses
of MLLMs in solving such tasks. Meanwhile, we
examine the impact of image presentation factors
in triple recognition, such as layout and density.
The evaluation is grounded on multi-dimension
datasets constructed via adapting and extending
existing ones, including generated graph images
and corresponding question-answer pairs for both
simple and complex reasoning tasks. Based on the
key findings from our evaluation, we fine-tune the
best-performing model Qwen2VL on triples-based
question-answer pairs using the dot layout, and
achieve improved performance across all layouts.

Key takeaways To the best of our knowledge,
this is the first study to thoroughly explore MLLMs’
capabilities on KG understanding tasks. The key
findings and insights are summarized as follows:

* The accuracy of triple recognition directly de-
termines the accuracy of KG understanding
and reasoning. (1) MLLMs indeed have lim-
itations in recognizing KG structures, partic-
ularly for complicated graph images, such as
those with unreadable layouts or higher edge
densities. (2) When textual triples are pro-
vided for reasoning, models with initially poor
recognition abilities, such as LLaVA, a greater
performance improvement. That implies the

triple recognition ability sets the lower limit
of KG understanding and reasoning.

* Layout plays a crucial role in the triple recog-
nition ability, and the easiest layout for recog-
nition is “dot” with a hierarchical structure.
(Section 4.3).

* As the number of triples and the density of
edges increase, the recognition ability de-
clines, highlighting the necessity to dynam-
ically adjust the layout to focus on complex
or peripheral parts (Section 4.4).

* After fine-tuning on the triple recognition data
of different layouts, the model’s reasoning
ability is enhanced. Among them, finetun-
ing on the triple recognition data using the
dot layout yields the best overall performance
across all layouts, achieving an accuracy in-
crease of 7.3% compared to zero-shot models
(Section 4.5).

2 Related Work

2.1 Multi-Modal Large Language Model

A typical MLLM comprises three modules: a
pre-trained modality encoder, a pre-trained LLM,
and a learnable projector connecting the modality
encoder and the LLM. Recently, the “ViT-MLP-
LLM” paradigm has been widely adopted in nu-
merous MLLM studies (Liu et al., 2024a; Chen
et al., 2024a,b; Zhu et al., 2023; Lu et al., 2024,
Wang et al., 2024a; Li et al., 2024a; Wang et al.,
2024b). The projector is trained to embed infor-
mation from non-language modalities into the text
semantic space that the LLM can understand. In
LLaVA (Liu et al., 2024b), a single linear layer
is used as a simple projector. To better extract in-
formation from non-language modalities, usually
images or videos, Vision Transformer (ViT) (Doso-
vitskiy, 2020) has been improved in various ways.
Qwen2VL (Wang et al., 2024a) can process images
of any resolution by modifying ViT, removing the
original absolute position embeddings, and intro-
ducing 2D-RoPE (Su et al., 2024; Heo et al., 2024)
to capture the two-dimensional positional informa-
tion of images. InternVL (Chen et al., 2024b) is
the first to align a large-scale vision encoder with
LLMs, scaling up the vision encoder to 6 billion
parameters, resulting in the InternViT-6B model.
With their enhanced capability to comprehend
visual inputs, contemporary MLLMs demonstrate



remarkable performance in various tasks, includ-
ing visual question answering (VQA) (He et al.,
2024b; Antol et al., 2015; Uppal et al., 2022), im-
age captioning (Vinyals et al., 2015; Agarwal and
Verma, 2024; Vaishnavi and Narmatha, 2024), and
multimodal reasoning (Wang et al., 2024c; Yan and
Lee, 2024; Yan et al., 2024). Despite these ad-
vancements, open-source MLLMs still lag behind
commercial models like GPT-40 (Achiam et al.,
2023) and Gemini-Pro (Team et al., 2024) in com-
plex reasoning tasks (Liu et al., 2024c¢).

2.2 Graph Understanding and Reasoning

LLMs on graph-related problems Large Lan-
guage Models (LLMs) have shown significant po-
tentials across various domains, leading to their
exploration in structured graph data. Researchers
(Li et al., 2024d) summarizes LLMs to assist graph-
related problems in three primary roles: enhancer,
predictor, and aligner. As predictors, LLMs di-
rectly generate predictions through prompts includ-
ing Flatten-based Prediction and GNN-based Pre-
diction (Li et al., 2024c). Flatten-based predic-
tion typically transform a graph structure into a se-
quence of nodes or tokens. GraphText(Zhao et al.,
2023) leverages graph-syntax trees to convert a
graph structure to a sequence of nodes. Instruct-
GLM (Ye et al., 2023) designs a series of scalable
prompts replacing traditional GNN predictors with
LLMs, and MR-MKG (Lee et al., 2024) leverages
multimodal knowledge graphs to enhance LLMs’
reasoning capabilities.

There are also some evaluation works on LLMs
in graph tasks. (Wang et al., 2023) shows that lan-
guage models demonstrate preliminary graph rea-
soning abilities. (Li et al., 2024b) emphasizes that
the capabilities of LLMs in handling structured
data are still under-explored and demonstrates the
effectiveness of LLM4Graph in enhancing LLMs’
proficiency in graph analysis. (Dai et al., 2024) re-
veals that linearized triples are more effective than
fluent natural language text in helping LLMs un-
derstand KG information and answer fact-intensive
questions.GPT4Graph(Guo et al., 2023) assesses
the proficiency of LLMs in comprehending graph
data by employing a diverse range of structural and
semantic-related tasks, indicating that there is still
a long way for an LLM to understand graph data.

MLLMs on graph-related problems As the ad-
vent of MLLMs, we can directly analyze and under-
stand representations of graph structures through

visualization. GITA (Wei et al., 2024) and Vision-
Graph (Li et al., 2024e¢) introduced frameworks that
leverage MLLMs for fundamental graph reasoning
tasks by converting graphs into image represen-
tations, highlighting the advantages of MLLMs’
visual intelligence, Beyond basic graph tasks, (El-
henawy et al., 2024) extended the use of MLLMs
to combinatorial problems, such as solving the
traveling salesman problem (TSP) using visual
and textual information. (Zhao et al., 2025) re-
veals that MLLMs can tackle graph-structured chal-
lenges from combinatorial problems to sequen-
tial decision-making without the need for complex
training or fine-tuning. For various graph-related
tasks in daily scenarios, (Ai et al., 2024) introduces
a benchmark for multimodal graph and leverage
VLMs to encode the graph images with varying
structures across different domains.

3 Methodology

The paper primarily focuses on knowledge graph
understanding and reasoning tasks. The graph
structure is denoted as G = {V, E}, where V
and F represent the sets of nodes and edges, re-
spectively. A graph visualizer is used to generate
visual representations of the structural graph. The
visual input I is given by I = V (G, A), where
A represents the customizable graph-related image
styles. The task requirement 7" includes specific
operations or questions related to the graph. We
also incorporate a prompt instruction P, resulting
in the question text Q% = (T, P).

Different task dimensions require different in-
structions. Qg includes two types of tasks: recog-
nition and reasoning. Recognition refers to identi-
fying the nodes, edges, and triples in the knowledge
graph image, while reasoning refers to answering
the reasoning questions constructed based on the
triples of a knowledge graph. Our evaluation covers
the following dimensions: step-by-step decompo-
sition of triplet recognition, as well as recognition
and reasoning performance under different layouts
and densities. We feed both the visual input Ig
and the textual input 7" into an MLLM to generate
the target text Y = (I, Q¢). The correctness of
the model’s output Y is compared with the ground
truth answer Y and calculating the accuracy.



Table 1: Statistics of datasets used in the evaluation

Dataset ExplaGraphs WebQSP-20 WebQSP-density
#Graphs 2766 4737 4737

Avg. #Nodes 5.17 32.55 8.34

Avg. #Edges 4.25 20 20

4 Experiment

4.1 Experiment setup

4.1.1 Dataset

We construct various datasets for evaluating knowl-
edge graphs in different dimensions, providing text
in triple format and generating knowledge graph
images. We use the open-source tool Graphviz
(Gansner and North, 2000) as the image formatting
tool'. It can automatically design the layouts of
visual graphs and is particularly suitable for build-
ing large-scale datasets. Table 1 summarizes the
statistics of these datasets. An example of each
dataset is presented in Appendix A.

ExplaGraphs A dataset for generative common-
sense reasoning (Saha et al., 2021). We visualize
the triplet-form data converted in (He et al., 2024a),
including adjustment of six different visual layouts.

WebQSP A large-scale multi-hop knowledge
graph QA dataset (Yih et al., 2016). We select the
first 20 triples (WebQSP-20) and the top 20 triples
with the highest density (WebQSP-density) from
each knowledge graph for visualization, in order to
assess the impact of triple count and density.

4.1.2 Models

The models we evaluate include both advanced
open-source and closed-source models as follows.

LLaVA uses language-only GPT-4 to generate
multimodal language-image instruction-following
data (Liu et al., 2024b), enabling the connection of
a vision encoder and a language model via a simple
linear layer for general-purpose applications.

LLaVA-OV inherits the minimalism design of
LLaVA series (Li et al., 2024a), whose primary
goals include effectively leveraging the pre-trained
capabilities of both the LLM and visual model. The
proposed Higher AnyRes strategy can serve as a
flexible visual representation framework, adaptable
for multi-image and video representations.

"https://graphviz.org/

Qwen2VL retains the Qwen-VL (Bai et al.,
2023) framework, which integrates vision encoders
and language models. To further enhance the
model’s ability of effectively perceiving and com-
prehending visual information in videos, it intro-
duces several key upgrades including naive dy-
namic resolution and Multimodal Rotary Position
Embedding (M-RoPE) (Wang et al., 2024a).

InternVL2 utilizes the same architecture as In-
ternVL 1.5 (Chen et al., 2024a), specifically the
ViT-MLP-LLM configuration referenced in various
existing studies. To enhance the scalability for high
resolution, a pixel shuffle (unshuffle) operation is
employed to reduce the number of visual tokens to
one-quarter of the original.

GPT-40 is a closed-source multimodal model
(Achiam et al., 2023), which can accept
text/audio/image/video inputs and generate
text/audio/image outputs. It represents a step
towards more natural human-computer interaction.

To ensure the consistency of parameter sizes
with this closed-source model, the 7B model is used
for LLaVA, LLaVA-OV, and Qwen2VL, while the
8B model is used for InternVL2.

4.1.3 Instruction Setting

For the recognition task, we directly ask the model
about the elements of the triples involved in the KG
in a zero-shot manner. For the reasoning task, our
method for constructing reasoning questions fol-
lows previous work (Ai et al., 2024), employing an
automatic annotation process generated by Gemini
(Anil et al., 2023), and posing two levels of reason-
ing tasks: Simple (1 hop) and Complex (2 or more
hops). For simple and one-hop questions, direct
judgment can be made, while for more complex
questions involving multiple triples, direct match-
ing is infeasible. Since Gemini is used to generate
the questions and its high accuracy in recognizing
triples has been certified (Ai et al., 2024), we first
use it to assess whether the answers provided for
complex questions are correct. Then, we perform
manual screening to determine the final accuracy.
All the instruction prompts used in this paper are
listed in Appendix B.

4.2 Evaluation with Task Decomposition

In order to thoroughly investigate the triple recog-
nition process, as demonstrated in Figure 3, we
decompose the recognition task for nodes, node
pairs without relation type, and complete triples in
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Figure 3: Decomposition of the recognition task

a sequential manner. The evaluation results in Fig-
ure 2(a) shows that the overall accuracy decreases
from node recognition to node pair recognition and
further to triple recognition, progressing from eas-
ier to harder tasks. That is intuitive and certifies
the validity of our evaluation.

Across different models, the Pearson correlation
coefficient between tasks “Triple” and “Simple”
reaches 0.99, and the correlation with “Complex’
is 0.96, which is the highest among all the triple
recognition factors. Therefore, there is a strong
positive correlation between the accuracy of
recognition tasks and the accuracy of reasoning
task. The closed-source model GPT-40 has shown
good performance in both recognition and reason-
ing. The three models, LLaVA-OV, Qwen2VL, and
InternVL2 exhibit consistent trends in recognizing
nodes, node pairs, and triples, while LLAVA ex-
periences a sharp performance drop in node pair
and triple recognition tasks. Overall, the model
performance is ranked as GPT-40 > Qwen2VL >
InternVL2 > LLaVA-OV > LLaVA, so Qwen2VL
is more suitable for processing images with graph
structures in open-source MLLMs.

B

To further analyze MLLMs’ performance on spe-

cific step of the KG recognition and focus on con-
crete problems within this step, we provide correct
information from previous steps and conduct ad-
hoc evaluations. Specifically, “Node pairs (given)”
refers to providing node names in the prompt and
then recognizing the node pairs, “triple (given)”
refers to providing both node and edge names and
then identifying the complete triples, and “Sim-
ple (given)” refers to answering simple reasoning
based on the provided set of triples. As shown
in Figure 2(b), after providing the basic structure
names, the accuracy for node pairs and triples im-
proves to some extent compared to direct recogni-
tion, but it is still relatively low for initially poor
models like LLaVA. This can be explained that dur-
ing the triple identification process, there are still
issues such as confusion between edge and node
names, missing triples, incorrect edges, nonexis-
tent relationship caused by hallucination, incorrect
recognition in the direction of directed edges and
so on. However, providing all textual triples signif-
icantly enhances the reasoning accuracy across all
models. When textual triples are provided for
reasoning, models with initially poor recognition
abilities, such as LLaVA, a greater performance
improvement. Therefore, compared to the recog-
nition of complete triples, node recognition and
node pair recognition are not crucial steps, so in
the following evaluation, we only pay attention to
the evaluation accuracy of triple recognition.

4.3 Evaluation of layout

Layout refers to various algorithms for projecting
abstract graphs into a space for visualization. Ac-
cording to the previous study (Wei et al., 2024),
layout variations of visual graphs play a crucial
role in mitigating the visual confusion caused by
the spatial arrangement within a visual graph. How-
ever, that paper lacks a separate analysis of each



Table 2: Evaluation of recognition and reasoning for different layouts

layout Triple Simple Simple(given)
LLaVA LLaVA-OV InternVL2 Qwen2VL GPT-40|LLaVA LLaVA-OV InternVL2 Qwen2VL GPT-40| Qwen2VL
dot | 5.61 51.33 57.11 84.47 93.33 | 22.87 55.34 65.52 72.10  95.00 74.08
circo | 1.09 19.35 41.26 76.70  90.00 | 7.62 42.38 58.08 7226 95.00 74.09
twopi | 1.25 541 9.03 11.38 29.27 | 15.09 41.01 51.62 58.99 89.31 72.41
neato | 1.67 11.18 13.80 22.09  31.25 | 19.36 48.32 59.98 60.92 9221 70.50
fdp | 1.10 12.62 15.54 28.48 2391 | 1845 40.55 55.52 60.37 86.67 70.88
sfdp | 0.17 15.0 31.15 53.44  68.25 | 3.20 37.35 64.32 7134 9412 73.47

layout. In this section, we evaluate the recognition
performance of different layouts, fixing other fac-
tors such as node shapes, node outline styles and
edge thickness. The characteristics of each layout
are summarized as follows:

* dot adopts a hierarchical structure, where
nodes are arranged by level, and edges are
arranged in the same direction (top to bottom,
or left to right) to avoid edge crossings.

* circo uses a circular structure, placing nodes
in a circle or ellipse, making it suitable for
displaying cyclic structures or graphs with
strong symmetry.

* twopi is a radial layout, arranging nodes
around a central node in concentric circles.
However, for non-radial structures, it may lead
to edge overlaps.

* neato is based on a force-directed algorithm,
using a spring-repulsion model (Kamada-
Kawai algorithm). Nodes are compactly dis-
tributed in steps, and edge lengths are kept as
consistent as possible. It performs well for
small to medium-sized graphs, but short edge
lengths may cause relationships to overlap.

* fdp is also force-directed, but with a simpler
spring model. Nodes are distributed more
loosely to cater for medium-sized graphs.

* sfdp is a multilevel and force-directed algo-
rithm that efficiently layouts large graphs. he
layout is more spread out with longer edges.

We use the ExplaGraphs dataset, altering the
layout style of each KG while keeping all other set-
tings fixed. At first, we perform manual filtering to
remove images unclear to humans, ensuring that no
characters are obstructed, and the triples for each
layout are consistent, with only the visual format
differing. Table 2 shows that there are significant
discrepancies in the recognition performance for

different layouts. For LLaVA-OV, InternVL2 and
Qwen2VL, the ranking is consistent: dot > circo
> sfdp > fdp > neato > twopi. As to GPT-4o,
which has strong recognition capabilities, has a
relatively low recognition accuracy on certain lay-
outs such as twopi, neato and fdp. LLaVA has low
triple recognition accuracy, with only about 1%
accuracy for layouts other than dot. Therefore, a
well-designed layout not only enhances readability
by reducing cognitive load, but also helps improve
the model’s ability to recognize and process struc-
tural and semantic relationships within the graph.

Based on the summary of the characteristics of
each layout, the dot layout’s highest recognition
accuracy suggests that all the models perform bet-
ter in recognizing hierarchically structured triples.
This may be attributed to the training dataset which
includes flowchart data employing hierarchical lay-
out, while lacks exposure to other layout formats.
An example of different answers to the same ques-
tion for different layouts is presented in Figure 4
and Appendix C. It can be observed that if the
triples involved in the question are recognized cor-
rectly, the reasoning problem can also be answered
correctly. To address this, we will further investi-
gate the impact of incorporating data from other
layouts for fine-tuning on recognition and reason-
ing tasks in Section 4. This aims to enhance the
models’ adaptability to diverse graph structures and
improve their overall reasoning capabilities.

According to the results on the “Simple (given)
task for the Qwen2VL model, it is found that all lay-
outs show improvements compared to the original
reasoning without providing any triples. Further-
more, the inference accuracy of each layout reaches
70%, with less difference among them. This again
emphasizes the role of triple recognition in the
whole reasoning task.

’

4.4 Evaluation of Density

Since the construction of real-world KGs is more
diverse and complex for the representation of dif-
ferent relationships, we also inspect the knowledge



Table 3: Triple recognition of complexity and density of knowledge graphs (Semantic: KG contains semantic
Information, Non-Semantic: KG does not contain semantic information)

Dataset ExplaGraphs WebQSP-20 WebQSP-density
Model Semantic  Non-Semantic | Semantic Non-Semantic | Semantic Non-Semantic
LLaVA-OV 51.33 70.83 0.0 6.68 0.0 6.90
InternVL2 57.11 65.89 11.83 16.01 0.82 7.19
Qwen2VL 84.89 96.30 22.27 25.26 13.06 21.67
GPT-40 93.33 95.68 20.25 34.31 13.26 38.33
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Figure 4: Example of different responses to the same
question caused by different layouts. We color the cor-
rect and wrong responses in and red.

graph with different edge densities. In order to bet-
ter reflect the differences, we exclude the LLaVA
model here, which performs poorly even on simple
graphs. For the dataset, we use WebQSP, which ex-
pands the number of triples to 20 compared to the
average value of 4.25 for the ExplaGraphs dataset.
In addition, we create a variant named WebQSP-
density, in which the number of triples is kept fixed,
and the nodes with the highest sum of in-degree
and out-degree in the graph are selected, sorting the
top 20 edges in descending order. The results in Ta-
ble 3 show that as the number of triples and the
density increase, the recognition rate of triples
decreases for all models. Interestingly, for high-
density KGs, the LLaVA-OV model responds that
the graph is a complex network diagram with vari-

ous nodes and edges, making it almost impossible
to recognize.

Moreover, to avoid obstruction caused by com-
plex semantics in node and edge names in high-
density triple images, we replaced the nodes and
edges with simple characters for recognition. The
issues encountered in complex graph recognition
by Intern2VL and QwenVL2 include ignoring
triples that are located far from the center of the im-
age, and incorrectly identifying non-existent edges.
This indicates that the visual encoders perform less
effectively in handling edges in non-central regions
when the graph’s complexity is high.

4.5 Fine-tuning

In previous section, we demonstrate that graph
recognition significantly affects reasoning capabil-
ities. We aim to further utilize this finding to im-
prove the model’s performance in reasoning tasks
by strengthening its recognition ability.

Data Preparation we constructed a dataset fo-
cusing on enhancing the recognition of graph
triples, which contains six different layout types
and 16.5k samples. Each layout consists of over
2.7k recognition samples. We created the instruc-
tion training set by using the prompt “Identify and
list all the triples in the image” and pairing it with
the triple recognition results from ExplaGraphs
dataset, which isillustrated in Figure 5. For the fine-
tuning baseline, we selected the Qwen2VL model,
which performed the best in earlier evaluations.
The training set for fine-tuning was constructed us-
ing the recognition-enhanced dataset, while the test
set consists of simple reasoning problems.

Training Details The base model for fine-tuning
is Qwen2-VL-7B-Instruct and the model was
trained for 3 epochs with a LoRA rank of 8. Fol-
lowing the Stage 3 SFT setting in Qwen2VL, we
locked the ViT parameters and performed exclusive
fine-tuning of the LLM. The effective batch size
was set to 8.



Table 4: Fine-tuned reasoning results with different fine-tuning strategies

Qwen2VL_sft_all Qwen2VL_sft_dot

Qwen2VL  Qwen2VL_sft_self
dot 71.19 76.62
circo 72.26 72.66
twopi 58.99 65.57
neato 60.92 71.13
fdp 60.37 69.22
sfdp 71.34 75.09

74.79 76.62
72.85 77.73
63.68 69.02
66.56 70.81
65.73 67.48
71.08 76.21

Recognition Dataset Construction

{

"conversations": [
{

“from": "human",

"value": "<image>Identify and list all
the triples in the image."
¥
5

{

“from": "gpt",

“value": "The triples in the image are as
follows: (cannabis; is a; harmful drug)
(harmful drug; not desires; legal) (harmful
drug; causes; addiction)."
¢
}

“imaées“: ["graph_example.png"]
3

Figure 5: An example from the graph recognition en-
hancement dataset.

Graph Recognition Enhancement To fully
leverage the constructed dataset and explore the
fine-tuned model performance on each layout
dataset, we implemented two distinct training
strategies: layout-specific training and layout-
mixed training.

1. Layout-specific training: The model is
fine-tuned on each layout’s specific recog-
nition dataset respectively.  Specifically,
“Qwen2VL_sft_self” refers to fine-tuning
on the same layout with test data, while
“Qwen2VL_sft_dot” refers to fine-tuning on
the layout of dot.

2. Layout-mixed training: The model is fine-
tuned using a combination of all layout
datasets, named as “Qwen2VL_sft_all”.

As shown in Table 4, the results indicate that
fine-tuning using the dot method across all layouts
consistently yields even better performance than
fine-tuning with the combined datasets. Even when
the test data comes from other layouts (circo, twopi,
or sfdp), the model fine-tuned with the dot layout
still achieves optimal performance. This suggests
that the hierarchical features of the dot layout are
generalizable and can be transferred to other lay-
outs. For some layouts, using the dot to fine-tune
even outperforms directly providing the triples for
reasoning. A case study of different fine-tune strate-
gies is presented in the Appendix D. Additionally,

fine-tuning the model on its own layout’s dedicated
dataset results in the highest performance for neato
and fdp layout. This approach ensures that the
model can adapt more specifically to the character-
istics of each layout, enhancing its ability to recog-
nize graph triples effectively in diverse scenarios.
In contrast, fine-tuning with all layouts data does
not achieve the best results on any single layout.
The interference effect of mixed training, caused by
feature dilution and conflicts, forces the model to
learn visual patterns from multiple layouts simul-
taneously. The significant structural differences
between layouts, such as the hierarchy of dot, the
circular structure of circo, and the force-directed
nature of neato, make it difficult for the model to
focus on core semantics. For KGs in real-world
scenarios, there may exist different layout features
that cannot be mapped to a standardized layout.
Therefore, the use of layout-specific dot is suitable
and can achieve optimal results in open scenarios.

5 Conclusion

In this work, we analyze the ability of MLLMs to
understand KG data in multiple dimensions. Our
findings indicate that the current MLLMs have lim-
itations in graph understanding, strongly attributed
to their poor recognition ability, and the layout
and density of the images play a crucial role in
recognition. Through fine-tuning experiments, we
confirm that fine-tuning on triple question-answer
pairs with different layouts can improve their rea-
soning performance. In the future work, we will
advance this work from the following two direc-
tions: (1) Designing layouts that are more easily
to understand by MLLMs for large-scale and com-
plex graphs, or designing dedicated image encoders
to capture the pixels related to nodes; (2) Explor-
ing how to incorporate internal knowledge within
the model to reduce hallucinations and erroneous
information based on graph understanding. By im-
proving the recognition ability of MLLMSs, there
will be greater potential for advancements in graph
understanding in the future.



6 Limitation

MLLMs that we evaluate are not complete In
our experiments, we focus on evaluating the graph
understanding abilities of the following models:
LLaVA, LLaVA-OV, InternVL2, Qwen2VL, and
GPT-40. These models are selected based on their
advanced capabilities in multimodal tasks and their
potential to handle graph-based data. However,
we acknowledge that there are several other open-
source MLLMs that could also contribute valuable
insights into graph understanding. We leave it to
future work on evaluating the graph reasoning abil-
ities of other models.

Methods for improving graph reasoning abilities
In this paper, we only provide a fine-tuning solution
for the layout, which works on easy graph reason-
ing problems. However, there is still much room
for improvement when it comes to more complex
graph models and reasoning tasks, where adjust-
ments to the visual encoder could be made.
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A Dataset Example

ExplaGraphs (Figure 6) is used in Section 4.2, We-
bQSP and its variations (Figure 7, 8, 9, 10) are used
in Section 4.4.

synonym of

Figure 6: An example of ExplaGraphs

Figure 7: An example of WebQSP-20

Figure 10: An example of WebQSP-density without
Semantic
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B Prompt List

All the prompt inputs used in this paper are listed

in the Table 5.

Table 5: Prompt input for different tasks

Task Evaluation | Example prompt
node Please analyze the image and list all the entities (nodes) repre-
Step-by-step sented in the diagram.
o . node pairs Please list the triples without edges based on the knowledge graph
Recognition Evaluation . . .
structure in the picture, in the format (nodel, node2),(node3,
node4). Ignore the edge relationships.
node The nodes in the picture is cannabis,legal,marijuana,good
pairs(given) | thing,marijuana,more available,good thing,legal. Please list the
node pairs without edges based on the knowledge graph structure
in the picture, in the format (nodel, node2) (node3, node4). Ignore
the edge relationships.
triple Identify and extract all nodes and edges from the image in the
form of triples (nodel; relation; node2).
triple(given) | The nodes in the picture are cannabis,legal,marijuana,good
thing,marijuana,more available,good thing,legal,the relations in
the picture are synonym of, causes, capable of, desires. Please
output all triples from the image based on the provided nodes and
relations in the format (nodel; relation; node2).
simple What property does cannabis have?
Reasoning complex What is the relationship between cannabis and medicinal pur-
poses?
simple(given) | The triples in the image is:(cannabis; synonym of; mari-

juana)(legal; causes; more available)(marijuana; capable of; good
thing)(good thing; desires; legal),Please answer the questions
based on the triples:What is a synonym of cannabis?
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C Layout Example

Different layouts provide different answers
to the same question, "What action does
everyone receive?" As shown in the Fig-
ure 4(a),4(b),11,12,13,14, we demonstrate how var-
ious layouts perform in terms of triple recogni-
tion and reasoning. Green highlights the correct
triple and Red highlights the wrong triple.

and Bold represents the target triplet. It can be
observed that if a layout correctly recognizes the
triples involved in the question, it also provides an
accurate answer. However, layouts of neato fail to
recognize all triples while fdp incorrectly identi-
fies the triples related to the question, leading to
erroneous responses.

circo o dosied

triples:

(everyone; receives action; has the right) (has the right;
desires; choose) (choose; has subevent; what to smoke)
(what to smoke; not desires; ban)(use of marijuana; is a; what
to smoke)

question: What action does everyone receive?
answer: has the right \/

Figure 11: An example of circo layout

twopi

not desires )
triples:

(use of marijuana; is a; what to smoke)
(what to smoke; has subevent; choose)
(choose; desires; has the right)

(has the right; receives action; everyone)
(everyone; not desires; ban)

has subevent

use of marijuana @

question: What action does everyone receive?

receives actiol answer: has the right

everyone

Figure 12: An example of twopi layout

D Case Study

This is an example of a graph image of neato lay-
out. All fine-tuned models can correctly identify
the triples. According to the response, sft_all and

not desire i@
what to smoke

receives action,

everyone

neato

triples:

(ban; is a; use of marijuana)

(use of marijuana; has subevent; what to
smoke)

(what to smoke; desires; choose)
(choose; has the right; receives action)
(receives action; everyone)

question: What action does everyone
receive?
answer: ban 3¢

Figure 13: An example of neato layout

sfdp

triples:

desires; ban)

answer: has the right /"

(everyone; receives action; has the right) (has the right;
desires; choose) (choose; has subevent; what to smoke)
(what to smoke; is a; use of marijuana) (what to smoke; not

question: What action does everyone receive?

Figure 14: An example of sfdp layout

at locati

targeted killing

allowed

eceives action

neato

Question: What property does targeted killing have?
Qwen2VL: The property of targeted killing is \"has property\"

Qwen2VL_sft_all: has property.

Qwen2VL_sft_neato: has property.

sft_neato models confuse the edges and nodes, lead-
Qwen2VL_sft_dot: advantages.

ing to incorrect results. On the other hand, the
sft_dot model has a better understanding of the re-
lationships within the triples and provides correct
answers.

Figure 15: A case study of fine-tune model
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