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Abstract
Bilingual lexicon induction (BLI) is the task
of inducing word translations with a learned
mapping function that aligns monolingual word
embedding spaces in two different languages.
However, most previous methods treat word
embeddings as isolated entities and fail to
jointly consider both the intra-space and inter-
space topological relations between words.
This limitation makes it challenging to align
words from embedding spaces with distinct
topological structures, especially when the as-
sumption of isomorphism may not hold. To this
end, we propose a novel approach called the
Structure-Aware Generative Adversarial Net-
work (SA-GAN) model to explicitly capture
multiple topological structure information to
achieve accurate BLI. Our model first incorpo-
rates two lightweight graph convolutional net-
works (GCNs) to leverage intra-space topologi-
cal correlations between words for generating
source and target embeddings. We then employ
a GAN model to explore inter-space topolog-
ical structures by learning a global mapping
function that initially maps the source embed-
dings to the target embedding space. To further
align the coarse-grained structures, we develop
a pairwise local mapping (PLM) strategy that
enables word-specific transformations in an un-
supervised manner. Extensive experiments con-
ducted on public datasets, including languages
with both distant and close etymological rela-
tionships, demonstrate the effectiveness of our
proposed SA-GAN model.1

1 Introduction

Bilingual lexicon induction (BLI) has emerged as a
crucial task in natural language processing (NLP),
focusing on the discovery of corresponding words
between two languages using monolingual corpora.
Due to its ability to facilitate the transfer of se-
mantic knowledge between languages, BLI has

∗Corresponding author.
1Our code is available on https://github.com/

scutBCH/SAGAN

been successfully applied in various NLP applica-
tions, including machine translation (Artetxe et al.,
2018c; Ren et al., 2020), cross-lingual sentiment
analysis (Singh and Lefever, 2020) and text classi-
fication (Dong and de Melo, 2019).

Most BLI methods aim to learn a mapping func-
tion that aligns word embeddings of two languages
into a shared embedding space, which allows lever-
aging independently trained monolingual embed-
dings and then utilizing the learned mapping to
generate bilingual lexicons (Mikolov et al., 2013;
Glavaš et al., 2019). Thereinto, Mikolov et al.
(2013) first observed that a linear orthogonal map-
ping proved to be empirically effective in trans-
forming the source embedding space to the tar-
get language’s space. This mapping was achieved
by minimizing the squared Euclidean distance be-
tween the translation pairs in a given parallel vocab-
ulary. They attribute the success of their method
to the isomorphic assumption that the two embed-
ding spaces exhibit similar geometric structures as
they found that the linear projection outperformed
its non-linear counterpart with multilayer neural
networks. Building upon this work, various BLI
methods have been proposed to improve the in-
ductive performance by enforcing an orthogonality
constraint (Lample et al., 2018), normalizing the
embeddings (Artetxe et al., 2018a), relaxing the
isomorphic assumption (Patra et al., 2019), leverag-
ing the clique-level information (Ren et al., 2020),
refining with Coherent Point Drift algorithm (Cao
and Zhao, 2018; Oprea et al., 2022), distinguishing
the relative orders (Tian et al., 2022), etc. From
them, it can be noticed that reliable mapping func-
tions can be learned even with weak supervision.

Furthermore, recent advancements have intro-
duced several unsupervised models through adver-
sarial training to learn mapping functions with-
out the need for parallel data (Lample et al.,
2018; Bai et al., 2019; Mohiuddin and Joty, 2019;
Xiong and Tao, 2021), offering a data-driven, scal-
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able, and language-independent approach to induce
cross-lingual representations from low-resource
languages. However, existing adversarial methods
focus on word-level alignment and treat the words
in the embedding space as isolated entities, ignor-
ing the underlying topological structures among
words. Therefore, the relationship between words
is not preserved and the topological structure of the
embedding spaces is not well exploited or involved
during training, leading to poor performance com-
pared with other non-adversarial methods (Artetxe
et al., 2018b; Ren et al., 2020).

In addition, conventional BLI methods typically
assume that the embedding spaces of different lan-
guages are nearly isomorphic, and they learn a
global linear mapping function shared by all words
based on this assumption. However, recent stud-
ies (Søgaard et al., 2018; Patra et al., 2019) have
found that the isomorphic assumption may not hold
strictly due to deviations in the distributions of
word embeddings for different languages. Conse-
quently, the performance of BLI methods might
be degraded, especially for the language pairs far
from isometry. In such a case, a globally-aligned
mapping function may not be an optimal solution.
There have been some approaches that attempted
to alleviate this problem by learning personalized
mapping functions for different words or employ-
ing supervised non-linear mapping in latent space
(Glavaš and Vulić, 2020; Tian et al., 2022; Mohiud-
din et al., 2020). However, the supervised signals
are all indispensable to their proposals and can-
not be applied to the unsupervised learning setting
without any labeled data.

To address these challenges, we propose a novel
unsupervised model called structure-aware gener-
ative adversarial network (SA-GAN) to explicitly
capture multiple topological structure information
for accurate BLI. Specifically, given a source lan-
guage and a target language, SA-GAN first views
the embedding space of each language as a graph
and utilizes two lightweight graph convolutional
networks (GCNs) to encode two embeddings for ex-
ploring the intra-space topological structures. With
the extracted structural information, we formulate
the learning of a mapping function in a fashion that
admits an adversarial game. SA-GAN employs
a GAN model to learn a linear mapping matrix,
allowing for the global mapping of the extracted
source embeddings into the target embedding space.
Unlike previous adversarial methods that usually

enforce an orthogonality constraint on the map-
ping function, SA-GAN removes this constraint
during adversarial training since the isomorphic
assumption may not hold true practically. The
learned mapping matrix facilitates the construction
of a seed dictionary. To further refine the coarse-
grained structures and enhance the seed dictionary,
SA-GAN introduces a pairwise local mapping al-
gorithm (PLM). This algorithm can learn word-
specific transformations for different words based
on their nearest neighbors within the seed dictio-
nary. By doing so, our method reduces reliance
on isometry and achieves improved BLI perfor-
mance in a fully unsupervised manner. To verify
the effectiveness of SA-GAN, we conduct exten-
sive experiments with sixteen different language
pairs, comprising both etymologically distant and
close languages to thoroughly test our model per-
formance with varying degrees of isomorphism
between monolingual spaces. Experimental results
show that our model can achieve comparable per-
formance to state-of-the-art unsupervised methods
in most cases and even surpass previous supervised
ones. Our main contributions can be summarized
as follows:

• We develop a novel adversarial framework SA-
GAN to explore both the intra-space and inter-
space topological information for unsuper-
vised BLI. It integrates two GCNs and a GAN
to learn a linear mapping function through
adversarial training without imposing an or-
thogonality constraint, providing greater flex-
ibility in aligning different languages where
the isomorphic assumption may not hold.

• We propose a pairwise local mapping (PLM)
algorithm, which enables the learning of word-
specific transformations. PLM utilizes topo-
logical information from the nearest neighbors
in the seed dictionary to refine the alignments
and alleviate the reliance on isometry.

• We conduct extensive experiments over popu-
lar benchmarks, and the results demonstrate
that our model outperforms existing unsuper-
vised methods and even outperforms super-
vised state-of-the-art methods.

2 Methdology

In this paper, we denote the source and target
language word embeddings as X ∈ Rd×n and
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Figure 1: An overview of our proposed SA-GAN framework.

Y ∈ Rd×m, where n and m are the numbers
of words in X and Y , respectively, and d stands
for the embedding size. Our proposed SA-GAN
method consists of three major components, includ-
ing structure extraction, adversarial training, and
pairwise local mapping, as shown in Figure 1. Each
module has its own role to play while targeting
different goals. By the strategy of splitting, each
module can focus more on its task and improve the
overall performance while reducing the complexity.
Specifically, given two monolingual embeddings
X and Y, we first capture the topological infor-
mation of each language via two lightweight GCN
modules. After that, a global mapping matrix is
learned via adversarial training, which transforms
the source word embeddings into the target em-
bedding space. Finally, SA-GAN designs a novel
PLM algorithm to learn word-specific transforma-
tion, which alleviates the reliance on isometry. We
will next formally introduce the model.

2.1 Structure Extraction

Recently, graph neural networks (GNNs) have been
widely utilized in various fields due to their pow-
erful ability to extract spatial information from
graphs. Inspired by this, we propose to incorporate
a GNN module prior to adversarial training to ex-
ploit the topological correlations in the embedding
spaces by viewing the entire embedding space as a
graph. In this graph, each word is represented as a
node and edges connect it to its k-nearest neighbors.
The graph can be denoted as G = (V,E,A), where
V = {v1, ..., vn} represents n nodes and n is the
total number of vocabulary words in one language;
E = {ei,j}ni,j=1 is a set of edges, where each edge
ei,j is associated with a weight Ai,j in adjacency

matrix A to describe the similarities between the
words vi and vj in the graph.

Ai,j =

{
− ln ∥xi − xj∥2, i ̸= j,

0, i = j.
(1)

where xi and xj are the word embeddings for node
vi and node vj , respectively.

The basic idea of a GNN is to learn node repre-
sentations in a graph by incorporating information
from neighboring nodes through iterative aggre-
gation and transformation processes. During the
aggregation process, the neighboring node features
are aggregated to generate a combined represen-
tation for each node. During the transformation
process, the combined representations undergo a
transformation to generate refined node represen-
tations using neural network layers for capturing
more complex topological relationships. A well-
known example of a traditional GNN is the Graph
Convolutional Network (GCN) (Kipf and Welling,
2017). GCN leverages convolutional layers on the
graph structure to perform neighborhood aggrega-
tion and transformation as follows.

X(l) = σ(ÂX(l−1)W (l)) (2)

Â = D− 1
2 (A+ I)D− 1

2 (3)

where X(l) and X(l−1) denote the embedding rep-
resentations after l and (l − 1) layers propagation
for all the n nodes and X(0) = X; Â is the nor-
malized and regularized adjacency matrix; I is an
identity matrix, which is added on A to include self-
connections; D is a diagonal node-degree matrix.
W (l) is the feature transformation matrix at the l-th
layer and σ(·) is an activation function. However,



the full gradient descent strategy is often used to
train GCN, suffering from high computational com-
plexity for large-scale datasets. Hence it is difficult
to fit in with subsequent adversarial training, where
mini-batch stochastic gradient descent (SGD) is
used for each update. Some researchers (Hamilton
et al., 2017) have proposed mini-batch SGD for
GCN to alleviate the problem, but the overheads of
these methods are still large.

Motivated by He et al. (2020), we propose a
simplified GCN by removing the activation func-
tion σ(·) and the feature transformation matrices
{W}Ll=1, defined as follows:

X(l) = ÂX(l−1) (4)

Â = D−1(A+ I) (5)

Furthermore, to reduce the computation time, we
construct a Kg-nearest graph to preserve the edge
connections of the top Kg nearest neighbors for
each node and keep the adjacency matrix A as a
sparse matrix. Lastly, we combine the embeddings
obtained at each layer to produce the final embed-
ding matrix:

X̂ = α0X
(0) + α1X

(1) + ...+ αLX
(L) (6)

where {αl}Ll=0 are the tradeoff coefficients.
It is worth noting that there are no trainable pa-

rameters of the designed GCN module. In other
words, rather than training the propagation process
at each iteration, the final embedding matrix only
needs to be precomputed once and can be stored as
a constant, which greatly decreases the computa-
tional cost and memory resource requirements.

Two GCN modules are respectively applied to
the source language X and the target languages Y
to form the new embedding representations X̂ with
n nodes and Ŷ with m nodes, which contain the
topological structure information of the source and
target embedding spaces.

2.2 Adversarial Training

With the extracted embedding representations, our
goal is to match them for inducing a seed dictionary.
Recent studies have demonstrated the effectiveness
of adversarial training in aligning two distributions
(Lample et al., 2018; Xiong and Tao, 2021). Build-
ing upon this concept, we employ adversarial train-
ing through a GAN in our work to learn a mapping
function in a fully unsupervised manner.

Specifically, we train a generator G to learn a
linear mapping matrix W to deceive a discrimi-
nator D. The generator G aims to map the word
embeddings from the source language to the target
language through G(x̂i) = Wx̂i. G can be trained
with the loss function as follows:

LG|D = − 1

n

∑
x̂i∈X̂

log(D(Wx̂i)) (7)

The discriminator D is trained to distinguish
between the mapped source embeddings WX̂ =
{Wx̂1, ...,W x̂n} and the target embeddings Ŷ =
{ŷ1, ..., ŷm} using the cross-entropy loss:

LD|G = − 1

m

∑
ŷi∈Ŷ

logD(ŷi)

− 1

n

∑
x̂i∈X̂

log(1−D(Wx̂i))

(8)

At each iteration, we optimize the generator loss
(Equation (7)) and the discriminator loss (Equation
(8)) alternately with stochastic gradient updates.
Through adversarial training, we can obtain an ini-
tial solution of W . Following other GAN-based
methods (Lample et al., 2018; Bai et al., 2019;
Xiong and Tao, 2021), we further refine the learned
mapping W via a self-learning strategy in (Artetxe
et al., 2018b) by iteratively solving the Procrustes
problem and applying a dictionary induction step.
In our self-learning, we run five iterations of this
process.

Although the word embeddings X̂ and Ŷ
contain the structure information using GCNs,
they also introduce a challenge known as over-
smoothing (Li et al., 2018). This issue arises
when the words become indistinguishable from
each other, especially those words lying in dense
areas, leading to poorer performance when induc-
ing the bilingual lexicon. To address this concern,
we utilize X̂ and Ŷ for finding the initial solution
W . Subsequently, we discard X̂ and Ŷ, and the re-
maining processes, including self-learning and the
PLM algorithm (Section 2.3), are executed using
the original embeddings X and Y. This decision
is made to mitigate the over-smoothing problem
and ensure that subsequent steps operate on the
unaltered embeddings, thus potentially improving
the performance of bilingual lexicon induction.

2.3 Pairwise Local Mapping Algorithm
With structure extraction and adversarial training,
we can capture valuable structural information and



learn a mapping function that is shared globally by
all words under the isomorphic assumption. How-
ever, several studies (Ruder et al., 2019; Patra et al.,
2019) have found that this assumption is not strictly
applicable, and it may lead to poor performance
in BLI, particularly for language pairs that devi-
ate significantly from isometry. In this situation,
a global-shared mapping function may not be the
optimal solution. To further refine the alignments,
we introduce a novel PLM algorithm to recompute
and upgrade the embedding representations for dif-
ferent words based on the learned seed dictionary
and improve the BLI performance.

Our PLM algorithm consists of two steps: gen-
erating a seed dictionary D(ZD,YD) and then uti-
lizing the word pairs in this synthetic dictionary to
perform a local mapping for each word. Firstly, we
induce a seed dictionary utilizing the learned map-
ping matrix W to map the source word embeddings
to the target embedding space as follows:

Z = WX (9)

where Z is the mapped source word representations.
With Z and Y , we can retrieve the translation pairs
and build the seed dictionary D(ZD,YD) accord-
ing to the cross-domain similarity local scaling
(CSLS) measurement (Lample et al., 2018). Specif-
ically, given a mapped source word z, we treat the
nearest word in the target embedding space as the
translation results as

CSLS(z,y) = 2 cos(z,y)− rT (z)− rS(y) (10)

where rT (z) is the average cosine similarity be-
tween z and its k-nearest neighbors in Y ; rS(y)
is the average cosine similarity between y and its
k-nearest neighbors in Z. To refine the quality of
the dictionary, we filter out word pairs in the gener-
ated dictionary that are not the Km most frequency
words in each language which are usually of low
quality and induce word pairs from both directions
in the seed dictionary D(ZD,YD).

Secondly, we use the word pairs in this synthetic
dictionary to improve the mapped embedding and
get a pair-wise local mapping for each word. Given
a mapped source word zi, we first obtain its top
Ka-nearest neighbor words zD1 , ..., z

D
Ka

from ZD

as anchors, denoted as Ni with a coefficient for
each anchor point:

eij = cos(zi, z
D
j ) (11)

that indicates the importance of anchor word zDj
in Ni to the given source word zi. The closer an
anchor is to zi, the larger the importance coefficient
it gets. However, since the cosine similarity ranges
from 0 and 1, we observe that even the anchors
that are too far to give a useful guideline still get
a high coefficient, ie. 0.4, which will introduce
potential noises to the pairwise mapping. To avoid
the influence, we scale the importance using the
softmax function with temperature τ :

aij = softmaxj(eij) =
exp(eij/τ)∑

k∈Ni
exp(eik/τ)

(12)
which increases the influence of the nearest neigh-
bor anchors even further and decreases for the dis-
tant ones. We then compute the new embedding
representation of zi with the guidelines of gener-
ated dictionary, as follows:

PLM(zi) = zi + p ·
∑
k∈Ni

aik · (yD
k − zDk ) (13)

where p is the rate for updating the word embed-
dings.

The above steps can be iteratively done for both
directions and at each iteration, we regenerate the
dictionary D with the updated embedding represen-
tation in the previous iteration to further improve
the quality of the synthetic dictionary.

2.4 Training Paradigm
In summary, the proposed approach first extracts
the structure information using GCNs and learns a
global mapping function in an adversarial manner
to map the embeddings of two languages into the
same space. In order to alleviate reliance on isom-
etry, we further apply the PLM algorithm to learn
pairwise mapping functions for different words
based on the learned seed dictionary. The whole
training process of the proposed approach is unsu-
pervised and described in Algorithm 1.

3 Experiment

3.1 Experimental Settings
Following the common practice of BLI, we eval-
uate the performance of induced language pairs
with the Precision at 1 (Precision@1) metric, which
measures the word translation accuracy in compar-
ison to a gold standard.

Dataset To demonstrate the effectiveness of our
SA-GAN model, we leverage the widely used



Algorithm 1: Training procedure of model
Data: Normalized monolingual word embeddings X

for source language and Y for target language
1 Build adjacency matrix A according to Eq.1;
2 Extract structural information following Eq.4 and get

new embedding representation X̂ and Ŷ;
/* Learn global shared transformation */

3 for n_epochs do
4 for n_iterations do
5 for k steps do
6 Sample a batch from X̂ and Ŷ ;
7 Update discriminator with Eq.8;
8 end
9 Sample a batch from X̂ and Ŷ ;

10 Update generator W on adversarial loss to
fool discriminator with Eq.7;

11 end
12 Use validation criterion to save the best model;
13 end
14 Refine the learned mapping W via self-learning

process;
15 Map the source embeddings x to the target

embeddings space: Z←WX;
/* Learn word-specific transformation */

16 for m_iterations do
17 Build a synthetic dictionary between Z and Y ;
18 Calculate new embedding representation for each

word in Z according to Eq.13;
19 Build a synthetic dictionary between Z and Y ;
20 Calculate new embedding representation for each

word in Y according to Eq.13;
21 end

MUSE dataset (Lample et al., 2018). The Muse
dataset consists of monolingual fastText (Bo-
janowski et al., 2017) embeddings of 300 dimen-
sions trained on Wikipedia monolingual corpus
and dictionaries for 110 language pairs. According
to (Patra et al., 2019), etymologically close lan-
guage pairs have lower Gromov Hausdorff (GH)
distance compared to etymologically distant lan-
guages. Therefore, we evaluate English (En)
from/to 4 etymologically close languages with low
GH distance: Spanish (Es), French (Fr), Italian (It),
and German (De); and 4 etymologically distant
languages: Russian (Ru), Chinese (Zh), Hungar-
ian (Hu), and Danish (Da) with high GH distance.
Comparing both etymologically close and distant
language pairs, we can thoroughly test our model
performance with varying degrees of isomorphism
between monolingual spaces.

Baselines We compare our proposed SA-
GAN with several SOTA BLI baselines, includ-
ing supervised/semi-supervised methods (Lample
et al., 2018; Artetxe et al., 2018a; Jawanpuria et al.,
2019; Glavaš and Vulić, 2020; Mohiuddin et al.,
2020; Ganesan et al., 2021; Tian et al., 2022),

and unsupervised methods (Lample et al., 2018;
Artetxe et al., 2018b; Bai et al., 2019; Mohiuddin
and Joty, 2019; Ren et al., 2020; Xiong and Tao,
2021). Please refer to Appendix A for the details.
For each baseline model, we report the results in
the original papers and conduct experiments with
the publicly available code if necessary.

Implementation details Following previous
work, vocabularies of each language are trimmed to
the most frequent 200k word embeddings for eval-
uation, same for the graph generation in section
2.1. The adversarial model uses 75k most frequent
words in each language to feed the discriminator.
The original word embeddings are normalized fol-
lowing (Artetxe et al., 2018b), including length
normalization, center normalization and length nor-
malization again to ensure the word embeddings
have a unit length. The generator G is a single
linear layer. The discriminator is a multilayer per-
ceptron with two hidden layers of size 2048 and
Leaky-ReLU activation functions. We train our
models using stochastic gradient descent (SGD),
with a batch size of 32, and a learning rate of 0.1.
A smoothing coefficient s = 0.1 is added to the dis-
criminator predictions. We train the discriminator
more frequently (5 times) than the generator. For
the PLM algorithm, the temperature τ is set to 0.1;
the updating rate p is set to 0.02; the vocabulary
most frequency Km is set to 20,000 in the synthetic
dictionary; the number of neighbor words as an-
chors Ka is set to 150; the number of iterations is
10.

3.2 Experimental Results

We report the BLI performance over four etymolog-
ically close language pairs(en-es, en-fr, en-it, and
en-de) and four etymologically distant pairs (en-
ru, en-da, en-hu, en-zh) from the MUSE dataset.
The results are presented in Table 1. For our ap-
proach, we map the embedding representations of
the source language (English) into target embed-
ding space (other languages) and evaluate the per-
formance of our model in both directions with the
corresponding test datasets. It should be noted that
all results reported in the paper are an average of 5
runs. The ’NA’ indicates the authors did not report
the number or their code is not publicly available,
and ’*’ indicates that the methods fail to converge.

Table 1 shows the Gromov-Hausdorff (GH) dis-
tance of the selected language pairs. From the
measurements, we can see that etymologically



En-Es En-Fr En-It En-De En-Ru En-Da En-Hu En-Zh
→ ← → ← → ← → ← → ← → ← → ← → ←

GH Distance 0.31 0.24 0.35 0.29 0.40 0.44 0.40 0.83
Sup/Semi-supervised

(Lample et al., 2018) 81.4 83.2 81.1 82.4 77.3 77 73.7 72.6 51.7 63.7 56.3 67.3 53.3 64.8 42.7 36.7
(Artetxe et al., 2018a) 81.9 83.4 82.1 82.4 77.4 77.9 73.5 73.5 50.5 67.3 64.1 69 56.1 67.7 32.3 43.4
(Jawanpuria et al., 2019) 81.9 85.5 82.1 84.2 77.8 80.9 74.9 76.7 52.8 67.6 63.1 72.6 57 69.5 49.1 45.3
(Glavaš and Vulić, 2020) 82.4 86.3 84.5 84.9 80.2 81.9 76.5 77.5 57 67.1 59.4 70 55.2 70.1 47.9 47.2
(Mohiuddin et al., 2020) 82.9 86.4 82.7 84.2 78.1 81.4 75.5 75.9 52.3 67.8 60.9 70.5 57.5 66.9 42.9 42.0
(Ganesan et al., 2021) 83.1 83.3 83.7 82.9 78.6 76.1 76.1 74.7 55.8 68.7 NA NA NA NA NA NA
(Tian et al., 2022) 84.1 86.1 83.5 84.3 79.3 81.9 76.5 72.9 58.1 68 59.3 69.1 57.5 65.9 51.7 45.9

Unsupervised
(Lample et al., 2018) 81.7 83.3 82.3 81.1 77.4 76.1 74 72.2 44 59.1 57.5 * 53.5 63.7 32.5 31.4
(Artetxe et al., 2018b) 82.3 84.7 82.3 83.6 78.8 79.5 74.9 74.1 49.1 65.5 64.5 67.9 56.4 67 37.5 37.8
(Bai et al., 2019) 82.3 84.3 82.5 83.7 78.4 77.9 74.9 73.5 49 65.8 57.7 64.6 52.5 63 43.4 36.7
(Mohiuddin and Joty, 2019) 82.7 84.7 82.8 83.7 79 79.6 75.4 74.3 46.9 64.7 64.5 66.8 56.1 * * *
(Xiong and Tao, 2021) 82.8 83.9 82.5 82.3 78.6 77.9 75.3 77.9 47 63.2 58.3 64.6 52.3 63.1 37.8 35
(Ren et al., 2020) 82.9 85.3 82.9 83.9 79.1 79.9 75.3 76.1 49.7 64.7 NA NA NA NA 38.9 35.9
(Oprea et al., 2022) 83.3 85.4 83.4 84.1 NA NA 75.8 75.8 49.5 64.0 NA NA NA NA NA NA
SA-GAN without PLM 83.1 85.3 82.9 84 80.2 79.9 76.9 74.7 49.7 64.9 67 70.6 59.8 70.1 41.5 40
SA-GAN 84.2 85.4 83.1 84.4 81.4 80.4 77.5 76.1 50.9 66.2 69.1 71.9 60.5 71.4 41.6 42.1

Table 1: Word translation accuracy (Precision@1) on MUSE dataset. For each metric, underline marks the highest
accuracy among all approaches; bold marks the best performance across all unsupervised methods; ’NA’ indicates
the authors did not report the number or their code is not available; ’*’ indicates that the methods fail to converge.

close language pairs have lower GH distances com-
pared to etymologically distant ones. We com-
pare SA-GAN with both existing unsupervised and
semi/supervised approaches. From Table 1, one can
clearly see that our proposed method significantly
outperforms previous unsupervised methods over
most language pairs, and also obtain comparable
performance on the rest. Compared with state-of-
the-art unsupervised methods, SA-GAN performs
better on 14 of 16 language pairs, especially on en-
it and en-de with the absolute improvements of 2%
to 2.3%, and on etymologically distant language
pairs like en-hu and en-da, with absolute improve-
ments of 4.1% to 4.6% over the best baseline.

Furthermore, compared with the supervised
methods, SA-GAN can still achieve competi-
tive results and even outperform existing state-
of-the-art supervised methods on some language
pairs. The performance of our approach on en-
it is 81.4%, compared to 80.2% with the best-
supervised method. On en-hu, our SA-GAN ob-
tains 60.5%, which is 3% better than the super-
vised method. Such performance gains demon-
strate the superiority of SA-GAN. From table 1, we
also find that leveraging the unsupervised pairwise
local mapping (PLM) contributes to bilingual lexi-
con induction, with a gain of 0.7% on average on
etymologically close language pairs and 1.2% on
distant language pairs, which is remarkable.

From the results, we note that SA-GAN achieves
more improvements in etymologically distant lan-
guages, where other unsupervised baselines per-

form poorly or even fail to converge. This is rea-
sonable as we capture much richer semantics by
extracting the structure of embedding space with
the GNN module, which helps learn a better map-
ping function compared with other methods. More-
over, since the distributions of different languages
deviate and the isomorphic assumption may not
be strictly held (Patra et al., 2019; Søgaard et al.,
2018), a global-share mapping is not the optimal
solution (Tian et al., 2022). In this situation, an un-
supervised PLM algorithm is applied to every word
to get personalized mappings, which improves the
performance further.

Methods
En-Fi En-He En-Ro Avg
→ ← → ← → ←

MUSE 43.7 53.7 38 fail 58.0 66.0 43.2
VECMAP 49.9 63.5 44.6 57.7 64.2 71.8 58.6
Adv-M 49.8 65.5 46.1 58.6 62.6 71.9 59.1
Adv-O 49.9 65.5 46.6 59.1 65.4 74.3 60.1
w/o PLM 52.3 64.9 47.1 57.5 66.2 72.3 60.1
SA-GAN 52.7 66.0 48.0 59.7 66.4 72.7 60.9

Table 2: Word translation accuracy (Precision@1) of
morphologically rich languages on MUSE dataset. Bold
marks the best performance across all methods.

3.3 Results of Morphologically Rich
Languages

To better explore our model’s robustness, we fur-
ther evaluate our method on "difficult" morphologi-
cally rich languages, where unsupervised bilingual
dictionary induction performs much worse (Sø-
gaard et al., 2018). Following Oprea et al. (2022),



we evaluate English (En) from/to 3 morphologi-
cally rich languages like Finnish(Fi), Hebrew(He),
and Romanian(Ro), a mixture of isolating or ex-
clusively concatenating languages from a morpho-
logical point of view (Søgaard et al., 2018). Since
Lample et al. (2018); Artetxe et al. (2018c); Mohi-
uddin and Joty (2019); Oprea et al. (2022) consis-
tently perform well, they are selected as baselines
for the remaining experiments, denoted as MUSE,
VECMAP, Adv-M and Adv-O respectively. The
results are shown in Table 2. From the measure-
ments, we can see that our approach outperforms
existing methods on 5 of 6 tasks on morphologi-
cally rich language pairs, with a gain up to 2.8% on
en-fi and 0.8% on average of all languages, which
further shows the robustness and effectiveness of
our framework.

3.4 Ablation Study

To further analyze our approach, we perform abla-
tion studies and measure the contribution of each
novel component that is proposed in this work. We
conduct extensive ablation on 8 translation tasks
from 4 language pairs from the MUSE dataset, con-
sisting of 2 etymologically close and 2 etymologi-
cally distant languages.

Strcture extraction and adversarial training
Here we study the impact of the structure extrac-
tion (GNN) module and orthogonality constraint.
To avoid the influence of PLM, ablation studies are
investigated in the setting without the PLM mod-
ule, as shown in table 3. One can see that model
performance will consistently drop in all language
pairs and even fail to converge in distance language
pairs if we further remove the GNN module. After
enforcing an orthogonality constraint, the perfor-
mance pairs drop (eg. en-ru) and fail to converge
(eg. en-zh) in the distant language pairs that are far
from isometry. We can get the following conclu-
sions: 1) the GNN module can capture much richer
semantics by extracting structure information of
embedding space, which contributes to learning a
better mapping function and stable the BLI perfor-
mance; 2) a strict orthogonality constraint limits
the performance of language pairs that are etymo-
logically distant and far from isometry.

Pair-wise local mapping Here we aim to study
the importance of the designed PLM algorithm,
and the influence of updating rate p, coefficient
scaling, dictionary frequency cutoff, and bidirec-
tional forwarding components to the PLM module.

Setting
en-it en-de en-ru en-zh

→ ← → ← → ← → ←
SA-GAN 80.2 79.9 76.9 74.7 49.7 64.9 41.5 40
w/o GNN 80.0 79.5 76.5 74.4 fail fail fail fail
constraint 80.3 79.7 76.7 74.4 47.1 63.3 fail fail

Table 3: Ablation study on adversarial training.

Setting
en-it en-de en-ru en-zh

→ ← → ← → ← → ←
baseline 80.2 79.9 76.9 74.7 49.7 64.9 41.5 40
SA-GAN 81.4 80.4 77.5 76.1 50.9 66.2 41.6 42.1
w/o Scale 80.4 80.1 76.6 75.2 49.6 65 40.8 40.5
w/o Cutoff 80.2 79.3 76.5 74.9 49.2 64.1 41.1 40.3
w/o Bi 80.9 80.1 77.0 75.8 49.7 65.7 41.3 41.8
w/o p 68.2 63.6 65.6 56.6 31.8 39.9 28.7 32.2

Table 4: Ablation study on the pairwise local mapping.
Bi: bidirectional forwarding; p: updating rate (set to 1
when removed).

The obtained results are presented in Table 4. The
baseline in the table is a variant of our approach
without using PLM. From the table, we can find
that the performance declines over all tasks after
removing PLM, revealing the importance of per-
sonalized local mappings. As for the different PLM
components, we observe that coefficient scaling is
necessary to avoid the potential noise introduced
by anchor words. The dictionary frequency-based
cutoff also has a positive influence on our model,
with a 1.2% gain in en-it and 1.3% gain in en-ru. At
the same time, the updating rate plays a critical role
in the systems. Without updating rate (p = 1), the
model performance declines sharply due to overly
drastic updates of embeddings. Bidirectional for-
warding is also beneficial, which provides an op-
timal solution by mapping the source and target
languages together to a latent space, rather than
fixing one of them. In summary, every component
of PLM is indispensable to achieving better perfor-
mance.

3.5 Parameter Sensitivity Analysis

We further analyze the performance of PLM with
respect to two core hyper-parameters: (1) the vo-
cabulary cutoff with the most frequency Km for
synthetic dictionary, and (2) the scaling temper-
ature τ in Formula 12. The sensitivity analysis
is conducted on the en→it language pair on the
MUSE dataset.

Frequency-based vocabulary cutoff The hyper-
parameter Km denotes the number of most frequent
words in each language considered when inducing
the synthetic dictionary. As shown in Figure 2(a),
On the one hand, when Km is too small, the syn-
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Figure 2: Paramesensitivity analysis.

thetic dictionary can’t obtain enough information
to guide the local mapping; On the other hand,
when Km is too large, much noise will be intro-
duced, which reduces the quality of the dictionary
and declines the performance.

Temperature of scaling Figure 2(b) illustrates
how the performance varies with different values
for scaling temperature τ . We can find that a small
τ helps to increase the influence of the nearest an-
chors in the dictionary and decrease for the distant
ones, which scales the importance coefficients fur-
ther to provide useful guidelines and reduce the
potential noise in the dictionary.

4 Conclusion

In this paper, we proposed a novel unsupervised
framework SA-GAN for bilingual lexicon induc-
tion. Different from previous works that generally
treat words in the embedding space as isolated en-
tities, SA-GAN considers each embedding space
as a graph and utilizes a GCN module to learn the
topological information between words. Addition-
ally, SA-GAN employs a GAN to learn a linear
mapping matrix without imposing an orthogonal-
ity constraint, thereby transforming both languages
into the same embedding space. To further im-
prove the performance, especially for the language
pairs where the isomorphic assumption may not
hold exactly, we propose a pairwise local mapping
algorithm to learn word-specific transformations
instead of only applying a shared global mapping
to all words. Extensive experiments conducted on
the MUSE dataset demonstrate the superior perfor-
mance of our model. SA-GAN outperforms exist-
ing unsupervised alternatives and even surpasses
state-of-the-art supervised methods, especially for
etymologically distant language pairs.

Limitations

Although our approach can achieve impressive per-
formance, there are still some limitations to be
resolved in the future.

• SA-GAN requires tuning more hyper-
parameters compared to previous methods,
which is time-consuming.

• SA-GAN matches source and target languages
by mapping the source embeddings into the
target embedding space, rather than mapping
them into a common latent space. While the
performance relies on the target word embed-
ding space, the mapping function might be
sub-optimal.

• Additionally, SA-GAN focuses on aligning
single-word embeddings, making it unsuit-
able for directly applying to the alignment
of multi-word expressions that encompass in-
tricate semantic concepts.

Acknowledgements

This work was supported by the National Nat-
ural Science Foundation of China under Grant
62276101 and the National Key R&D Pro-
gram of China under Grant 2019YFC1510400,
2022YFC3006405.

References
David Alvarez-Melis and Tommi Jaakkola. 2018.

Gromov-Wasserstein alignment of word embedding
spaces. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1881–1890, Brussels, Belgium. Association
for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018a.
Generalizing and improving bilingual word embed-
ding mappings with a multi-step framework of linear
transformations. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018b.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 789–798, Melbourne, Australia. As-
sociation for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018c. Unsupervised neural ma-
chine translation. In International Conference on
Learning Representations.

https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/D18-1214
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://openreview.net/forum?id=Sy2ogebAW
https://openreview.net/forum?id=Sy2ogebAW


Xuefeng Bai, Hailong Cao, Kehai Chen, and Tiejun
Zhao. 2019. A bilingual adversarial autoen-
coder for unsupervised bilingual lexicon induction.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 27(10):1639–1648.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Hailong Cao and Tiejun Zhao. 2018. Point set reg-
istration for unsupervised bilingual lexicon induc-
tion. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI’18, page
3991–3997. AAAI Press.

Xilun Chen and Claire Cardie. 2018. Unsupervised
multilingual word embeddings. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 261–270, Brussels,
Belgium. Association for Computational Linguistics.

Xin Dong and Gerard de Melo. 2019. A robust self-
learning framework for cross-lingual text classifi-
cation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6306–6310, Hong Kong, China. Association for Com-
putational Linguistics.

Ashwinkumar Ganesan, Francis Ferraro, and Tim Oates.
2021. Learning a reversible embedding mapping us-
ing bi-directional manifold alignment. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3132–3139, Online. Association
for Computational Linguistics.

Goran Glavaš, Robert Litschko, Sebastian Ruder, and
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A Related Work

The basic idea for Bilingual lexicon induction (BLI)
is to learn cross-lingual mappings which trans-
form word embeddings of different languages to
the same embedding space, and then induce Bilin-
gual lexicons from the learned cross-lingual embed-
dings. Based on the availability of a seed dictionary,
we divide related work into the following two cat-
egories: supervised/semi-supervised methods and
unsupervised methods.

A.1 Supervised/Semi-supervised Methods
Mikolov et al. (2013) first observe that the word
embedding space of one language can be trans-
formed into another using linear mapping, based on
the isomorphic assumption that monolingual word
embeddings exhibit similar geometric properties
across languages. Artetxe et al. (2018a) propose
a multi-step framework that generalizes a substan-
tial body of previous work. The core steps include
normalization, whitening, orthogonal mapping, re-
weighting, de-whitening, and dimensionality reduc-
tion. Joulin et al. (2018) use a supervised method
RCSLS which optimizes the CSLS distance in an
end-to-end manner for the supervised matching
pairs. Jawanpuria et al. (2019) propose to map
both the source and target word embeddings to the
common latent space via two orthogonal transfor-
mations.

Previously methods learned global-shared linear
transformations based on the isomorphic assump-
tion. However, several researchers have found that
the isomorphic assumption may not hold all the
time, especially for distant language (Søgaard et al.,
2018). Patra et al. (2019) observe that the language
pairs with high Gromov-Hausdorff (GH) distance
cannot be aligned well using orthogonal transfor-
mation and proposed semi framework which re-
laxed isomorphic assumption by jointly optimizing
a weak orthogonality constraint in the form of a
back-translation loss. Mohiuddin et al. (2020) de-
sign a semi-supervised model that uses non-linear
mapping in the latent space to learn cross-lingual
word embeddings, which is also independent of the
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isomorphic assumption. Glavaš and Vulić (2020)
propose a supervised word-specific transformation
after learning a single global rotation matrix, thus
the final mapping function is globally non-linear
which performs well in distant language pairs. The
PLM algorithm in this paper is inspired by the
literature, but differs in that, in comparison with
this work, we propose a different transformation
framework that can be applied to the unsupervised
approach without any labeled data. Sachidananda
et al. (2021) align embeddings to isomorphic vec-
tor spaces, using pairwise inner products. Li et al.
(2022) improve word translation via two-stage con-
trastive learning. Tian et al. (2022) propose a
ranking-based bilingual lexicon induction model
which provides sufficient discriminative capacity
to rank the candidates.

Nevertheless, all these methods still require su-
pervised signals and cannot be applied to the unsu-
pervised learning setting without any labeled dic-
tionary.

A.2 Unsupervised Methods

Recently fully unsupervised methods have been
proposed to induce a bilingual dictionary by align-
ing monolingual word embedding spaces. A typ-
ical research line is based on adversarial training.
Miceli Barone (2016) proposes an adversarial au-
toencoder framework to map the source language
word embeddings to the target language, where an
encoder aims to make the transformed embeddings
not only indistinguishable by the discriminator but
also recoverable after a reversed mapping by the
decoder. Although promising, the reported per-
formance is not satisfying. Lample et al. (2018)
are the first to show very impressive results for
unsupervised word translation where a rough ro-
tation matrix is first learned using the adversarial
framework and further refined with a self-learning
process. Based on the previous work (Lample et al.,
2018), Chen and Cardie (2018) propose an adver-
sarial training framework in the multilingual setting
which not only considers one pair of languages at a
time but explicitly exploits the relations between all
language pairs. Mohiuddin and Joty (2019) revisit
the adversarial autoencoder for unsupervised word
translation and includes cycle consistency and in-
put reconstruction constraints to guide the mapping.
Xiong and Tao (2021) propose an unsupervised ap-
proach via bidirectional feature mappings based
on cycle-GAN and hybrid training. In contrast to

other frameworks which focus on direct or bidi-
rectional mappings between the source language
and target language, Bai et al. (2019) train two au-
toencoders jointly to transform the source and the
target monolingual word embeddings into a shared
embedding space to capture the cross-lingual fea-
tures of word embeddings. Li et al. (2021) observe
that low-frequency words tend to be densely clus-
tered in the embedding space, to overcome this
issue, they introduced a noise function to disperse
dense word embeddings and a Wasserstein critic
network to preserve the semantics of the source
word embeddings.

On the other hand, non-adversarial approaches
have also been proposed for unsupervised cross-
lingual word alignment. Hoshen and Wolf (2018)
use the principal component of monolingual word
embeddings to build initial alignment and then it-
eratively refined the alignment using a variation
of the e Iterative Closest Point (ICP) method used
in computer vision. Artetxe et al. (2018b) explore
the similarity of the embeddings to learn an initial
dictionary in an unsupervised way and improve
it with a robust self-learning approach. Alvarez-
Melis and Jaakkola (2018) cast the problem as an
optimal transport problem and measure the sim-
ilarity between pairs of words across languages
using Gromov-Wasserstein distance. Cao and Zhao
(2018) propose to use the Coherent Point Drift
(CPD) algorithm to map the whole source embed-
dings to the target embedding space. Inspired by
Cao and Zhao (2018), Oprea et al. (2022) employ
the CPD algorithm to perform an iterative two-step
refinement on the initial global mapping trained by
CycleGAN. However, both of them focus on global
mapping under the isomorphic assumption. Ren
et al. (2020) leverage the Bron-Kerbosch (BK) al-
gorithm to extract clique-level information, which
is not only semantically richer than what a single
word provides but also reduces the bad effect of the
noise in the pre-trained embeddings.

B Supplementary Experiments

B.1 Case Study

To better demonstrate the effectiveness of our
model on bilingual lexicon induction, we give
some examples of the dictionary inferred with our
method, comparing with that inferred by two adver-
sarial methods Mohiuddin and Joty, 2019 and Bai
et al., 2019, denoted as Adv-M and Adv-B respec-
tively. We choose the language pair English-Danish



as examples, as shown in Table 5.

Query Adv-M Adv-B Ours Gold
accuracy nøjagtighed nøjagtighed nøjagtighed nøjagtighed
thermal termiske varmeledning termiske termiske
raiders raiders panthers raiders raiders
smoke flammer røg røg røg
kitchen køkkenhaven køkkenet køkkenet køkkenet

Table 5: Word translation examples for English-Danish.

In the first example, both approaches find the cor-
rect translations. In the following four examples,
our approach SA-GAN successfully induces the
correct translations with similar meanings, while
Adv-M and Adv-B fail to find all correct trans-
lations for the given queries, even having signifi-
cantly different meanings for their induced words
compared with the gold translations. From these
examples, we find that our method produces bilin-
gual lexicons with higher quality. This is because
our approach can effectively utilize the topological
structure of the embedding spaces, and pair-wise
mapping is learned for every different word to alle-
viate the reliance on isometry, which improves the
BLI performance even further.

B.2 Downstream Tasks
To better test our model’s robustness and effec-
tiveness, we include more downstream tasks, i.e.,
Semantic Word Similarity and Sentence Transla-
tion Retrieval tasks as in the lample2018word and
oprea-etal-2022-multi.

Semantic word similarity We evaluate the qual-
ity of cross-lingual embeddings with the task of
Semantic Word Similarity, which aims at eval-
uating how well the cosine similarity between
words of different languages correlates with human-
annotated word similarity scores. As shown in
Table 6(a), our proposed SA-GAN has a better
Pearson’s correlation to human-annotated scores
across languages on the en-de and de-en language
pairs and achieves comparable performance on en-
es and es-en, indicating that our model provides
good alignment across languages.

Sentence translation retrieval This task goes from
word to sentence level and studies sentence trans-
lation retrieval. Following (Lample et al., 2018),
the sentences are represented as a bag of words,
and the IDF-weighted average of word embeddings
of the sentence is used as its sentence embedding.
The closest sentence from the target language is
returned as its translation of the given source sen-

tence. Table 6(b) shows sentence translation re-
trieval results on the Europarl corpus. On the en-fr
language pairs, our model obtains the best score
with up to 3.5% improvements. Besides, our pro-
posed method performs the best on the averaged
accuracy, which depicts that SA-GAN provides
better performance in sentence translation retrieval
tasks.

Methods
En-De En-Es Avg
→ ← → ←

(Lample et al., 2018) 70.8 71.3 71.2 71.1 71.1
(Artetxe et al., 2018b) 71.9 71.9 72.1 72.1 72.0
(Mohiuddin and Joty, 2019) fail 72.0 72.4 71.8 72.1
(Oprea et al., 2022) 72.6 72.5 73.0 72.8 72.7
SA-GAN 72.6 72.6 72.5 72.5 72.6

(a)

Methods
En-Fr En-Es Avg
→ ← → ←

(Lample et al., 2018) 69.1 69.9 75.1 73.9 72.0
(Artetxe et al., 2018b) 69.6 69.3 74.7 74.4 72.0
(Mohiuddin and Joty, 2019) 68.0 71.0 75.0 75.7 72.4
(Oprea et al., 2022) 70.2 70.9 76.7 76.3 73.5
SA-GAN 73.7 74.4 75.4 76.0 74.9

(b)

Table 6: Performance for (a) Pearson’s correlation
score(%) for word similarity task, and (b) sentence trans-
lation retrieval accuracy.


