
Evaluating Logical Generalization in Graph Neural Networks

Koustuv Sinha 1 2 3 Shagun Sodhani 1 Joelle Pineau 1 2 3 William L. Hamilton 2 3

Abstract

Recent research has highlighted the role of rela-
tional inductive biases in building learning agents
that can generalize and reason in a compositional
manner. However, while relational learning al-
gorithms such as graph neural networks (GNNs)
show promise, we do not understand how effec-
tively these approaches can adapt to new tasks. In
this work, we study the task of logical general-
ization using GNNs by designing a benchmark
suite grounded in first-order logic. Our bench-
mark suite, GraphLog, requires that learning al-
gorithms perform rule induction in different syn-
thetic logics, represented as knowledge graphs.
GraphLog consists of relation prediction tasks on
57 distinct logical domains. We use GraphLog to
evaluate GNNs in three different setups: single-
task supervised learning, multi-task pretraining,
and continual learning. Unlike previous bench-
marks, our approach allows us to precisely control
the logical relationship between the different tasks.
We find that the ability for models to generalize
and adapt is strongly determined by the diversity
of the logical rules they encounter during training,
and our results highlight new challenges for the
design of GNN models.

1. Introduction
Graph neural networks (GNNs) have emerged as a domi-
nant computational paradigm within the growing area of
relational reasoning (Scarselli et al., 2008; Hamilton et al.,
2017a; Gilmer et al., 2017; Schlichtkrull et al., 2018; Du
et al., 2019). However, we currently lack an understanding
of how effectively these models can adapt and generalize
across distinct tasks. In this work, we study the task of
logical generalization, in the context of relational reasoning
using GNNs. In particular, we study how GNNs can induce

1Facebook AI Research, Montreal, Canada 2School of Com-
puter Science, McGill University, Montreal, Canada 3Montreal
Institute of Learning Algorithms (Mila). Correspondence to: Kous-
tuv Sinha <koustuv.sinha@mail.mcgill.ca>.

…

r2 ∧ r3 ⟹ r1

…
…

W1

r4 ∧ r2 ⟹ r3

…
…

W2

r1 ∧ r2 ⟹ r5

…

Wn

r2 ∧ r3 ⟹ r1

r4 ∧ r5 ⟹ r7

r1 ∧ r2 ⟹ r5

…
…

…
…

g1
i

g2
i

gn
i

r4 ∧ r2 ⟹ r3

r4 ∧ r5 ⟹ r7

r1 ∧ r4 ⟹ r6

Rules

Figure 1: GraphLog setup: A set of rules (grounded in propo-
sitional logic) is partitioned into overlapping subsets, and used
to define the unique worlds, Wk. Within each world Wk, sev-
eral knowledge graphs gki (governed by the rule set of Wk) are
generated.

logical rules and generalize by combining these rules in
novel ways after training.

We propose a benchmark suite, GraphLog, that is grounded
in first-order logic. Figure 1 shows the setup of the bench-
mark. Given a set of logical rules, we create a diverse set of
logical worlds with different subset of rules. For each world
(say Wk), we sample multiple knowledge graphs (say gki ).
The learning agent should learn to induce the logical rules
for predicting the missing facts in these knowledge graphs.

GraphLog leverages first-order logic to generate multiple
worlds, allowing us to test generalization over Supervised,
Multi-task and Continual Learning scenarios in graph modal-
ity, with precise diagnostic ability to define task bound-
aries. We compare related benchmarks for evaluating com-
positional generalization in Table 1, and we highlight that
GraphLog is the only dataset specifically designed to
test logical generalization capabilities on graph data.

In this work, we also analyze how various GNN architec-
tures perform in the multi-task and the continual learning
scenarios of GraphLog where they have to learn over a set
of logical worlds with different underlying logics. Our anal-
ysis provides following insights about logical generalization
capabilities of GNNs:



Evaluating Logical Generalization in Graph Neural Networks

Dataset IR D CG M S Me Mu CL
CLEVR (Johnson et al., 2017) 3 7 7 Vision 3 7 7 7
CoGenT (Johnson et al., 2017) 3 7 3 Vision 3 7 7 7
CLUTRR (Sinha et al., 2019) 3 7 3 Text 3 7 7 7
SCAN (Lake and Baroni, 2017) 3 7 3 Text 3 3 7 7
SQoOP (Bahdanau et al., 2018) 3 7 3 Vision 3 7 7 7
TextWorld (Côté et al., 2018) 7 3 3 Text 3 3 3 3
GraphLog (Proposed) 3 3 3 Graph 3 3 3 3

Table 1: Features of related datasets that: 1) test compositional
generalization and reasoning, and 2) are procedurally gnerated. We
compare the datasets along the following axis: Inspectable Rules
(IR), Diversity, Compositional Generalization (CG), Modality
and if the following training setups are supported: Supervised,
Meta-learning, Multitask & Continual learning (CL).

• Two architecture choices for GNNs have a strong pos-
itive impact on generalization: 1) incorporating multi-
relational edge features using attention, and 2) explicitly
modularising the GNN architecture to include a paramet-
ric representation function, which learns representations
for the relations based on the knowledge graph structure.

• In the multi-task setting, training a model on a more
diverse set of logical worlds improves generalization and
adaptation performance.

• All the evaluated models are unlikely to learn transfer-
able representations and compositions—highlighting the
challenge of lifelong learning in the context of logical
generalization and GNNs.

2. GraphLog
Background and Terminology. A graph G = (VG, EG)
is a collection of a set of nodes VG and a set of edges EG

between the nodes. We assume that each pair of nodes have
at most one edge between them. A relational graph is a
graph where each edge between two nodes (say u and v) is
assigned a label, denoted r. The labeled edge (or relation)
is denoted as r(u, v) ∈ EG. A relation set R is a set of
relations {r1, r2, ... rK}. A rule set R is a set of rules
in first order logic, restricted to dyadic definite Datalog
clauses (Muggleton et al., 2015; Evans and Grefenstette,
2017), which can be written as Horn clauses (Tärnlund,
1977) of the form:

∀Z ∈ VG : rk(u, v)← ri(u, Z), rj(Z, v) (1)

where Z denotes a variable that can be bound to any entity
and← denotes logical implication. The relations ri, rj form
the body while the relation rk forms the head of the rule.
Path-based Horn clauses of this form represent a limited
and well-defined subset of first-order logic. However, they
encompass the types of logical rules learned by state-of-the-
art rule induction systems for knowledge graph completion
(Das et al., 2017; Evans and Grefenstette, 2017; Meilicke
et al., 2018; Sadeghian et al., 2019; Teru et al., 2019; Yang

et al., 2017; Zhang et al., 2019) and are thus a useful syn-
thetic test-bed.

We use pu,vG to denote a path from node u to v in a graph
G. We construct graphs according to rules of the form in
Equation 1 so that a path between two nodes will always
imply a specific relation between these two nodes. In other
words, we will always have that

∃ri ∈ R : pu,vG ← ri(u, v). (2)

By following the path between two nodes, and applying
the propositional rules along the edges of the path, we can
resolve the relationship between the nodes. Hence, we refer
to the paths as resolution paths. The edges of the resolution
path are concatenated together to obtain a descriptor. A
collection of graphs, along with its rule set, is denoted as
a world. The rules in rule set R used for quantifying the
similarity between different worlds, with a higher overlap
between the rules implying a greater similarity between two
worlds.

Problem Setup. We formulate the task as predicting rela-
tions between the nodes in a relational graph. Given a query
(G, u, v) where u, v ∈ VG, the learner has to predict the
relation r? ∈ R for the edge r?(u, v). Unlike the previous
work on knowledge graph completion, we emphasize an
inductive problem setup, where the graph G in each query is
unique. Rather than reasoning on a single static knowledge
graph during training and testing, we consider the setting
where the model must learn to generalize to unseen graphs
during evaluation.

2.1. Dataset Generation

We want our proposed benchmark to provide four key
desiderata: (i) interpretable rules, (ii) diversity, (iii) compo-
sitional generalization and (iv) large number of tasks. We
describe how our dataset generation process ensures all four
aspects.

Rule generation. We create a set R of K relations and use
it to sample a rule setR. We impose two constraints onR:
(i) No two rules inR can have the same body, to ensure con-
sistency between the rules. (ii) Rules cannot have common
relations among the head and body, ensuring the absence of
cyclic dependencies in rules (Hamilton et al., 2018). Gener-
ating the dataset using a consistent and well-defined rule set
ensures interpretability in the resulting dataset. The full al-
gorithm for rule generation is given in Appendix (Algorithm
1).

Graph generation. The graph generation process has two
steps: In the first step, we sample overlapping subsets of
RW ∈ R to create individual worlds (as shown in Figure 1).
In each world, we recursively sample and use rules inRW

to generate a relational graph called the WorldGraph. This



Evaluating Logical Generalization in Graph Neural Networks

sampling procedure creates a diverse set of WorldGraphs
by considering only certain subsets (ofR). By controlling
the extent of overlap between the subsets ofR (in terms of
the number of common rules), we can precisely control the
similarity between the different worlds. The full algorithm
for generating the WorldGraph and controlling the similarity
between the worlds is given in Appendix (Algorithm 3 and
Section B.2).

In the second step, the WorldGraph GW in each world is
used to sample a set of graphs GS

W = (g1, · · · gN ) for that
specific world (shown as Step (a) in Figure 6). A graph
gi is sampled from GW by sampling a pair of nodes (u, v)
from GW and then by sampling a resolution path pu,vGW

. The
edge ri(u, v) between the source and sink node of the path
provides the target relation for the learning model to predict.
To increase the complexity of the sampled gi graphs (beyond
being simple paths), we also add nodes to gi by sampling
neighbors of the nodes on pu,vGW

, such that no other shortest
path exists between u and v. Algorithm 4 (in the Appendix)
details our graph sampling approach.

GraphLog Dataset Suite. We use the above data genera-
tion process to instantiate a dataset suite with 57 distinct
logical worlds and 5000 graphs per world (Figure 1). Each
world consists of 20 rules after the sampling process, which
builds up to maximum and minimum lengths of resolution
path to be 10 and 2 in the entire dataset. Average number
of descriptors end up to 522, with a large variation across
worlds based on the procedurally sampled rules. The dataset
is divided into the sets of train, validation, and test worlds.
The graphs within each world are also split into train, vali-
dation, and test sets having 5k,1k and 1k graphs. Though
we instantiate 57 worlds, the GraphLog generator can be
used to instantiate an arbitrary number of worlds.

3. Representation and Composition
To perform well on GraphLog, a model should learn rep-
resentations that are useful for tasks in the current world
while being general enough to transfer to the new worlds.
To this end, we structure the GNN models around two key
modules:

• Representation module is represented as a function
fr : GW ×R→ Rd, that maps logical relations within a
particular world W to d-dimensional vector representa-
tions. Intuitively, this function should learn how to encode
the semantics of the various relations within a logical
world. We compare among using a (i) single learned pa-
rameter for learning relation embeddings, named Param
module; and (ii) two graph convolution based modules,
GCN (Gilmer et al., 2017) and GAT (Veličković et al.,
2017) which operate on the world graph GW as input.

S D
fr fc Accuracy Accuracy
GAT E-GAT 0.534 ±0.11 0.534 ±0.09
GAT RGCN 0.474 ±0.11 0.502 ±0.09
GCN E-GAT 0.522 ±0.1 0.533 ±0.09
GCN RGCN 0.448 ±0.09 0.476 ±0.09
Param E-GAT 0.507 ±0.09 0.5 ±0.09
Param RGCN 0.416 ±0.07 0.449 ±0.07

Table 2: Multitask evaluation performance when trained on dif-
ferent data distributions (categorized based on their similarity of
rules: Similar (S) containing similar worlds and a mix of similar
and dissimilar worlds (D))

• Composition module is a function fc : G× VG × VG ×
Rd×|R| → R, that learns to compose the relation rep-
resentations learned by fr and answer queries over a
knowledge graph. These models take as input the query
(gi, u, v) and the relation embedding ri ∈ Rd to predict
the relations. We consider two graph convolution based
architectures, RGCN (Schlichtkrull et al., 2018) and a
modified version of GAT (Veličković et al., 2017) which
attends over edge representations, EGAT.

Detailed discussion of these two modules are in Appendix
C. Note that though we break down the process into two
steps, in practice, the learner does not have access to the
correct representations of relations (R). The learner has
to rely only on the target labels to solve the reasoning task.
We hypothesize that this separation of concerns between a
representation function and a composition function (Dijkstra,
1982) could provide a useful inductive bias for the model.

We predict the relation for query (gi, u, v) in Composition
module by concatenating the final-layer query node em-
beddings and applying a feedforward network. The en-
tire model (i.e., representation and composition models) is
trained end-to-end. Since we have no node features, we
randomly initialize all the node embeddings in the GNNs.

4. Experiments
We aim to quantify the performance of the different GNN
models on the task of logical relation reasoning, in two
contexts (i) Multi-Task Training and (ii) Continual Learning
setup. Our experiments use the GraphLog benchmark with
distinct 57 worlds (Section 2) and 6 different GNN models
(Section 3). In the main paper, we highlight the key results
and provide the full results in Appendix.

4.1. Multi-Task Training

Basic multi-task training. First, we evaluate a how chang-
ing the similarity among the training worlds affects the
test performance in the multi-task setup, where a model is



Evaluating Logical Generalization in Graph Neural Networks

10 15 20 25 30 35 40 45 50
Number of worlds

0.40

0.45

0.50

0.55

0.60
Ac

cu
ra

cy

GAT-E-GAT
Param-E-GAT

GCN-E-GAT
GAT-RGCN

Param-RGCN
GCN-RGCN

Figure 2: We run multitask experiments over an increasing num-
ber of worlds to stress the capacity of the models. We report the
average of test set performance across the worlds that the model
has trained on so far. All the models reach their optimal perfor-
mance at 20 worlds, beyond which their performance starts to
degrade.

0.0

0.2

0.4

0.6

Ac
cu
ra
cy

GAT-E-GAT Param-E-GAT GCN-E-GAT

Zero Conv
K-Shot

0.0

0.2

0.4

0.6

Ac
cu
ra
cy

GAT-RGCN

Zero Conv
K-Shot

Param-RGCN

Zero Conv
K-Shot

GCN-RGCN 100%
0%

Figure 3: We evaluate the effect of changing similarity between
training and evaluation datasets. The colors of the bars depicts how
similar the two distributions are while the y-axis shows the mean
accuracy of the model on the test split of the evaluation world. We
report both the zero-shot adaptation performance and performance
after convergence.

trained jointly on eight and tested on three distinct worlds.
In Table 2, we observe that considering a mix of similar
and dissimilar worlds improves the generalization capa-
bilities of all the models when evaluated on the test split.
Another important observation is that mimicking the super-
vised learning setup, the GAT-EGAT model consistently
performs either as good as or better than other models. The
models using EGAT for the composition function perform
better than the ones using the RGCN model. Figure 2 shows
how the performance of the various models changes when
we perform multi-task training on an increasingly large set
of worlds. Interestingly, we see that model performance
improves as the number of worlds is increased from 10 to
20 but then begins to decline, indicating model capacity
saturation in the presence of too many diverse worlds.

Multi-task pre-training. In this setup, we pre-train the
model on multiple worlds and adapt on a heldout world. We
study how the models’ adaption capabilities vary as the sim-
ilarity between the training and the evaluation distributions

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GAT-E-GAT Param-E-GAT

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 20 40
Worlds

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Param-RGCN

0 20 40
Worlds

GCN-RGCN

Current Accuracy
Mean past accuracy

Figure 4: Evaluation of models in continual learning setup. The
blue curve shows the accuracy on the current world and the orange
curve shows the mean accuracy on all the previously seen worlds.
As the model trains on new worlds, its performance on the past
worlds degrades rapidly. (catastrophic forgetting).

changes. Figure 3 considers the case of zero-shot adapta-
tion and adaptation till convergence. As we move along the
x-axis, the zero-shot performance (shown with solid colors)
decreases in all the setups. This is expected as the similarity
between the training and the evaluation distributions also
decreases. An interesting trend is that the model’s perfor-
mance, after adaptation, increases as the similarity between
the two distributions decreases. This suggests that training
over a diverse set of distributions improves adaptation capa-
bility. The results for adaptation with 5, 10, ... 30 steps are
provided in the Appendix (Figure 7).

4.2. Continual Learning Setup

GraphLog provides access to a large number of worlds, en-
abling us to evaluate the logical generalization capability
of models in continual learning setup. We train the models
on a sequence of worlds (arranged by similarity). After
converging on each world, we report the model’s average



Evaluating Logical Generalization in Graph Neural Networks

performance on all previous worlds. In Figure 4, as the
model is trained on more worlds, its performance on the
previous worlds degrades rapidly. This highlights the lim-
itation of current reasoning models for continual learning.
Further experiments on the effect of different modules and
curriculum learning setup are provided in Appendix F.

5. Discussion & Conclusion
We propose GraphLog, a benchmark suite for evaluating
the logical generalization capabilities of GNNs. GraphLog
is grounded in first-order logic and provides access to a
large number of diverse tasks that require compositional
generalization to solve, including single task supervised
learning, multi-task learning, and continual learning. Our
results highlight the importance of attention mechanisms
and modularity to achieve logical generalization, while also
highlighting open challenges related to multi-task and con-
tinual learning in the context of GNNs. A natural direc-
tion for future work is leveraging GraphLog for studies of
fast adaptation and meta-learning in the context of logical
reasoning (e.g., via gradient-based meta learning), as well
as integrating state-of-the-art methods (e.g., regularization
techniques) to combat catastrophic forgetting in the context
of GNNs.

References
Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch,

Thien Huu Nguyen, Harm de Vries, and Aaron Courville.
Systematic generalization: what is required and can it be
learned? arXiv preprint arXiv:1811.12889, 2018.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez,
Juan Reutter, and Juan Pablo Silva. The logical expres-
siveness of graph neural networks. In International Con-
ference on Learning Representations, 2019.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine
learning, pages 41–48, 2009.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. Translating em-
beddings for modeling multi-relational data. In Advances
in neural information processing systems, pages 2787–
2795, 2013.

Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph
neural nets necessary? a dissection on graph classification.
arXiv preprint arXiv:1905.04579, 2019.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud Adada,

et al. Textworld: A learning environment for text-based
games. In Workshop on Computer Games, pages 41–75.
Springer, 2018.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke
Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex
Smola, and Andrew McCallum. Go for a walk and arrive
at the answer: Reasoning over paths in knowledge bases
with reinforcement learning. In NIPS-17 Workshop on
Automatic Knowledge-Base Construction, 2017.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. Continual learning: A comparative
study on how to defy forgetting in classification tasks.
arXiv preprint arXiv:1909.08383, 2019.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neu-
ral information processing systems, pages 3844–3852,
2016.

Edsger W Dijkstra. On the role of scientific thought. In
Selected writings on computing: a personal perspective,
pages 60–66. Springer, 1982.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barn-
abas Poczos, Ruosong Wang, and Keyulu Xu. Graph
neural tangent kernel: Fusing graph neural networks with
graph kernels. In Advances in Neural Information Pro-
cessing Systems, pages 5724–5734, 2019.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre,
Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik,
and Ryan P Adams. Convolutional networks on graphs
for learning molecular fingerprints. In Advances in neural
information processing systems, pages 2224–2232, 2015.

Richard Evans and Edward Grefenstette. Learning Explana-
tory Rules from Noisy Data. November 2017.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70,
pages 1263–1272. JMLR. org, 2017.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung,
and Li Fei-Fei. Dynamic task prioritization for multitask
learning. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 270–287, 2018.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo.
Jointly embedding knowledge graphs and logical rules.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 192–
202, 2016.



Evaluating Logical Generalization in Graph Neural Networks

W. Hamilton, R. Ying, and J. Leskovec. Representation
learning on graphs: Methods and applications. IEEE
Data Engineering Bulletin, 2017a.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In Advances in
neural information processing systems, pages 1024–1034,
2017b.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Juraf-
sky, and Jure Leskovec. Embedding logical queries on
knowledge graphs. In Advances in Neural Information
Processing Systems 31, pages 2026–2037. 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich,
Edwin Lewis-Kelham, Gerard De Melo, and Gerhard
Weikum. Yago2: exploring and querying world knowl-
edge in time, space, context, and many languages. In
Proceedings of the 20th international conference com-
panion on World wide web, pages 229–232, 2011.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr:
A diagnostic dataset for compositional language and el-
ementary visual reasoning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2901–2910, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Brenden M Lake and Marco Baroni. Generalization
without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. arXiv preprint
arXiv:1711.00350, 2017.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M
Suchanek. Yago3: A knowledge base from multilingual
wikipedias. 2013.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel
Ruffinelli, Rainer Gemulla, and Heiner Stuckenschmidt.
Fine-grained evaluation of rule-and embedding-based sys-
tems for knowledge graph completion. In International
Semantic Web Conference, pages 3–20. Springer, 2018.

George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995.

Tom Mitchell and E Fredkin. Never ending language learn-
ing. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 1–1, 2014.

C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J. Lenssen,
G. Rattan, and M. Grohe. Weisfeiler and Leman go neural:
Higher-order graph neural networks. In AAAI, 2019.

Stephen H Muggleton, Dianhuan Lin, and Alireza
Tamaddoni-Nezhad. Meta-interpretive learning of higher-
order dyadic datalog: Predicate invention revisited. Ma-
chine Learning, 100(1):49–73, 2015.

German I Parisi, Ronald Kemker, Jose L Part, Christopher
Kanan, and Stefan Wermter. Continual lifelong learning
with neural networks: A review. Neural Networks, 2019.

Heiko Paulheim. Knowledge graph refinement: A survey of
approaches and evaluation methods. Semantic web, 8(3):
489–508, 2017.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding,
and Daisy Zhe Wang. Drum: End-to-end differentiable
rule mining on knowledge graphs. In Advances in Neural
Information Processing Systems, pages 15321–15331,
2019.

Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae,
Mike Chrzanowski, Theophane Weber, Daan Wierstra,
Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap.
Relational recurrent neural networks. In Advances in
neural information processing systems, pages 7299–7310,
2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2008.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa
Jojic, Jürgen Schmidhuber, and Jianfeng Gao. Enhancing
the transformer with explicit relational encoding for math
problem solving. arXiv preprint arXiv:1910.06611, 2019.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Ri-
anne Van Den Berg, Ivan Titov, and Max Welling. Mod-
eling relational data with graph convolutional networks.
In European Semantic Web Conference, pages 593–607.
Springer, 2018.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau,
and William L Hamilton. Clutrr: A diagnostic bench-
mark for inductive reasoning from text. arXiv preprint
arXiv:1908.06177, 2019.

Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. On
training recurrent neural networks for lifelong learning.
2019.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum.
Yago: a core of semantic knowledge. In Proceedings of
the 16th international conference on World Wide Web,
pages 697–706, 2007.



Evaluating Logical Generalization in Graph Neural Networks

Sten-Åke Tärnlund. Horn clause computability. BIT Numer-
ical Mathematics, 17(2):215–226, 1977.

Komal K Teru, Etienne Denis, and William L Hamilton. In-
ductive relation prediction by subgraph reasoning. arXiv,
pages arXiv–1911, 2019.

Sebastian Thrun and Lorien Pratt. Learning to learn.
Springer Science & Business Media, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008,
2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua
Sun, Rahul Gupta, and Dekang Lin. Knowledge base
completion via search-based question answering. In Pro-
ceedings of the 23rd international conference on World
wide web, pages 515–526, 2014.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Fan Yang, Zhilin Yang, and William W Cohen. Differen-
tiable learning of logical rules for knowledge base rea-
soning. In Advances in Neural Information Processing
Systems, pages 2319–2328, 2017.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik,
and Jure Leskovec. Gnnexplainer: Generating explana-
tions for graph neural networks. In Advances in Neural
Information Processing Systems, pages 9240–9251, 2019.

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai
Zhu, Wei Zhang, Abraham Bernstein, and Huajun Chen.
Iteratively learning embeddings and rules for knowledge
graph reasoning. In The World Wide Web Conference,
pages 2366–2377, 2019.



Evaluating Logical Generalization in Graph Neural Networks

A. Related Work
GNNs. Several GNN architectures have been proposed to
learn representations of the graph inputs (Scarselli et al.,
2008; Duvenaud et al., 2015; Defferrard et al., 2016; Kipf
and Welling, 2016; Gilmer et al., 2017; Veličković et al.,
2017; Hamilton et al., 2017b; Schlichtkrull et al., 2018).
Previous works have focused on evaluating GNNs in terms
of their expressive power (Barceló et al., 2019; Morris et al.,
2019; Xu et al., 2018), usefulness of features (Chen et al.,
2019), and explaining their predictions (Ying et al., 2019).
Complementing these works, we evaluate GNN models on
the task of logical generalization.

Knowledge graph completion. Many knowledge graph
datasets are available for relation prediction task (also
known as knowledge base completion). Prominent exam-
ples include Freebase15K (Bordes et al., 2013), WordNet
(Miller, 1995), NELL (Mitchell and Fredkin, 2014), and
YAGO (Suchanek et al., 2007; Hoffart et al., 2011; Mahdis-
oltani et al., 2013). Since these datasets are derived from
real-world knowledge graphs, they are generally noisy and
incomplete, and many facts are not available in the under-
lying knowledge bases (West et al., 2014; Paulheim, 2017).
Moreover, the underlying logical rules are often opaque
and implicit (Guo et al., 2016), thus reducing the utility of
these datasets for understanding the logical generalization
capability of neural networks.

Our GraphLog benchmark serves as a synthetic comple-
ment to the real-world datasets. Instead of sampling from
a real-world knowledge base, we create synthetic knowl-
edge graphs that are governed by a known and inspectable
set of logical rules. Moreover, the relations do not require
any common-sense knowledge, thus making the tasks self-
contained.

Procedurally generated datasets for reasoning. We posit
that a benchmark for evaluating compositional generaliza-
tion should support human interpretable rules for gener-
ating a large number of diverse datasets. Several proce-
durally generated benchmarks have been proposed to study
the relational reasoning and compositional generalization
properties of neural networks. Some recent and prominent
examples are listed in Table 1. These datasets provide a con-
trolled testbed for evaluating the compositional reasoning
capabilities of neural networks in isolation. Based on these
works (and their insightful observations), we enumerate
the four key desiderata that, we believe, such a benchmark
should provide:

1. Human interpretable rules should be used to generate
the dataset.

2. The datasets should be diverse, and the compositional
rules used to solve different tasks should be distinct, so
that adaptation on a new task is not trivial. The degree

of similarity across the tasks should be configurable to
evaluate the role of diversity in generalization.

3. The benchmark should test for compositional general-
ization

4. The benchmark should support creating a large number
of tasks and enable a more fine-grained inspection of
the generalization capabilities of the model in different
setups, e.g., supervised learning, multitask learning, and
continual learning.

As shown in Table 1, GraphLog is unique in satisfying all
of these desiderata. We highlight that GraphLog is the only
dataset specifically designed to test logical generalization
capabilities on graph data, whereas previous works have
largely focused on the image and text modalities.

B. GraphLog
B.1. Extended Terminology

In this section, we extend the terminology introduced in
Section 2. A set of relations is said to be Invertible if

∀ri ∈ R,∃rj ∈ R | {∀u, v ∈ VG : ri(u, v)← rj(v, u)}.
(3)

i.e. for all relations inR, there exists a relation inR such that
for all node pairs (u, v) in the graph, if there exists an edge
ri(u, v) then there exists another edge rj(v, u). Invertible
relations are useful in determining the inverse of a clause,
where the directionality of the clause is flipped along with
the ordering of the elements in the conjunctive clause. For
example, the inverse of Equation 1 will be of the form:

∃z ∈ VG : r̂k(v, u)← r̂j(v, z), r̂i(z, u) (4)

Inverse rules are not considered as cyclic rules in our setup,
as we treat them separately. In preliminary studies we found
that adding the inverse rules and complex cycles makes the
supervised learning task extremely hard. In a followup work
we will explore more about the effects of cyclic resolution
paths.

B.2. Dataset Generation

This section follows up on the discussion in Section 2.1.
We describe all the steps involved in the dataset generation
process.

Rule Generation. In Algorithm 1, we describe the com-
plete process of generating rules in GraphLog . We require
the set of K relations, which we use to sample the rule set
R. We mark some rules as being Invertible Rules (Section
B.1). Then, we iterate through all possible combinations of
relations in DataLog format to sample possible candidate



Evaluating Logical Generalization in Graph Neural Networks

Number of relations 20
Total number of WorldGraphs 57
Total number of unique rules 76
Training Graphs per WorldGraph 5000
Validation Graphs per WorldGraph 1000
Testing Graphs per WorldGraph 1000
Number of rules per WorldGraph 20
Average number of descriptors 522
Maximum length of resolution path 10
Minimum length of resolution path 2

Table 3: Aggregate statistics of the worlds used in GraphLog.
Statistics for each individual world are in the Appendix.

rules. We impose two constraints on the candidate rule: (i)
No two rules in R can have the same body. This ensures
consistency between the rules. (ii) Candidate rules cannot
have common relations among the head and body. This
ensures absence of cycles. We also add the inverse rule of
our sampled candidate rule and check the same consisten-
cies again. We employ two types of unary Horn clauses to
perform the closure of the available rules and to check the
consistency of the different rules inR. Using this process,
we ensure that all generated rules are sound and consistent
with respect toR.

World Sampling. From the set of rules inR, we partition
rules into buckets for different worlds (Algorithm 2). We use
a simple policy of bucketing via a sliding window of width
w with stride s, to classify rules pertaining to each world.
For example, two such consecutive worlds can be generated
as Rt = [Ri . . .Ri+w] and Rt+1 = [Ri+s . . .Ri+w+s].
(Algorithm 2) We randomly permute R before bucketing
in-order.

Graph Generation. This is a two-step process where first
we sample a world graph (Algorithm 3) and then we sam-
ple individual graphs from the world graph (Algorithm 4).
Given a set of rules RS , in the first step, we recursively
sample and apply rules inRS to generate a relation graph
called world graph. This sampling procedure enables us
to create a diverse set of world graphs by considering only
certain subsets (ofR) during sampling. By controlling the
extent of overlap between the subsets ofR (in terms of the
number of rules that are common across the subsets), we
can precisely control the similarity between the different
world graphs. By selecting subsets which have higher dis-
similarity between each other, we introduce more diversity
in terms of logical rules.

In the second step (Algorithm 4), the world graph is used to
sample a set of graphs GS

W = {g1, · · · gN}. A graph gi is
sampled from GW by sampling a pair of nodes (u, v) from
GW and then by sampling a resolution path pu,vGW

. The edge
ri(u, v) provides the target relation that the learning model
has to predict. Since the relation for the edge ri(u, v) can
be resolved by composing the relations along the resolution

Algorithm 1 Rule Generator

Input: Set of K relations {ri}K ,K > 0
Define an empty rule setR
Populate Invertible Rules, ri =⇒ r̂i, add toR
for all ri ∈ {ri}K do

for all rj ∈ {ri}K do
for all rk ∈ {ri}K do

Define candidate rule t : [ri, rj ] =⇒ rk
if Cyclical rule, i.e. ri == rk OR rj == rk
then

Reject rule
end if
if t[body] 6∈ R then

Add t toR
Define inverse rule tinv : [r̂j , r̂i] =⇒ r̂k
if tinv[body] 6∈ R then

Add tinv toR
else

Remove rule having body tinv[body] from
R

end if
end if

end for
end for

end for
Check and remove any further cyclical rules.

path, the relation prediction task tests for the compositional
generalization abilities of the models. We first sample all
possible resolution paths and get their individual descriptors
Di, which we split in training, validation and test splits. We
then construct the training, validation and testing graphs
by first adding all edges of an individual Di to the cor-
responding graph gi, and then sampling neighbors of pgi .
Concretely, we use Breadth First Search (BFS) to sample the
neighboring subgraph of each node u ∈ pgi with a decaying
selection probability γ. This allows us to create diverse
input graphs while having precise control over its resolution
by its descriptor Di. Splitting dataset over these descriptor
paths ensures inductive generalization.

Algorithm 2 Partition rules into overlapping sets

Require: Rule SetRS
Require: Number of worlds nw > 0
Require: Number of rules per world w > 0
Require: Overlapping increment stride s > 0

for i = 0; i < |RS | − w; do
Ri = RS [i; i+ w]
i = i+ s

end for



Evaluating Logical Generalization in Graph Neural Networks

Algorithm 3 World Graph Generator

Require: Set of relations {ri}K ,K > 0
Require: Set of rules derived from {ri}K , |R| > 0
Require: Set rule selection probability gamma γ = 0.8

Set rule selection probability P [R[i]] = 1,∀i ∈ |R|
Require: Maximum number of expansions s ≥ 2
Require: Set of available nodes N , s.t. |N | ≥ 0
Require: Number of cycles of generation c ≥ 0

Set WorldGraph set of edges Gm = ∅
while |N | > 0 or c > 0 do

Randomly choose an expansion number for this cycle:
steps = rand(2, s)
Set added edges for this cycle Ec = ∅
for all step in steps do

if step = 0 then
With uniform probability, either:
Sample rt fromRS [head] and sample u, v ∈ N
without replacement, OR
Sample an edge (u, rt, v) from Gm

Add (u, rt, v) to Ec and Gm

else
Sample an edge (u, rt, v) from Ec

end if
Sample a rule R[i] from R following P s.t.
[ri, rj ] =⇒ rt
P [R[i]] = P [R[i]] ∗ γ
Sample a new node y ∈ N without replacement
Add edge (u, ri, y) to Ec and Gm

Add edge (y, rj , v) t Ec and Gm

end for
if All rules inR is used atleast once then

Increment c by 1
Reset rule selection probability P [R[i]] = 1,∀i ∈
|R|

end if
end while

B.3. Computing Similarity

GraphLog provides precise control for categorizing the sim-
ilarity between different worlds by computing the overlap
of the underlying rules. Concretely, the similarity between
two worlds W i and W j is defined as Sim(W i,W j) =
|Ri ∩ Rj |, where Wi and Wj are the graph worlds and
Ri andRj are the set of rules associated with them. Thus
GraphLog enables various training scenarios - training on
highly similar worlds or training on a mix of similar and dis-
similar worlds. This fine grained control allows GraphLog
to mimic both in-distribution and out-of-distribution sce-
narios - during training and testing. It also enables us to
precisely categorize the effect of multi-task pre-training
when the model needs to adapt to novel worlds.

Algorithm 4 Graph Sampler

Require: Rule SetRS
Require: World Graph Gm = (Vm, Em)
Require: Maximum Expansion length e > 2

Set Descriptor set S = ∅
for all u, v ∈ Em do

Get all walks Y(u,v) ∈ Gm such that |Y(u,v)| ≤ e
Get all descriptors DY(u,v)

for all walks Y(u,v)
Add DY(u,v)

to S
end for
Set train graph set Gtrain = ∅
Set test graph set Gtest = ∅
Split descriptors in train and test split, Strain and Stest

for all Di ∈ Strain or Stest do
Set source node us = Di[0] and sink node vs =
Di[−1]
Set prediction target t = Em[us][vs]
Set graph edges gi = ∅
Add all edges from Di to gi
for all u, v ∈ Di do

Sample Breadth First Search connected nodes from
u and v with decaying probability γ
Add the sampled edges to gi

end for
Remove edges in gi which create shorter paths between
us and vs
Add (gi, us, vs, t) to either Gtrain or Gtest

end for

B.4. Computing difficulty

Recent research in multitask learning has shown evidence
that models prioritize selection of difficult tasks over easy
tasks while learning to boost the overall performance (Guo
et al., 2018). Thus, GraphLog also provides a method to
examine how pretraining on tasks of different difficulty level
affects the adaptation performance. Due to the stochastic
effect of partitioning of the rules, GraphLog consists of
datasets with varying range of difficulty. We use the su-
pervised learning scores (Table 6) as a proxy to determine
the the relative difficulty of different datasets. We cluster
the datasets such that tasks with prediction accuracy greater
than or above 70% are labeled as easy difficulty, 50-70%
are labeled as medium difficulty and below 50% are labeled
as hard difficulty dataset. We find that the labels obtained
by this criteria are consistent across the different models
(Figure 5).

Graph properties affecting difficulty. While we compute
difficulty based on the proxy of supervised learning scores,
we observe that the relative difficulty of the tasks are highly
correlated with the number of descriptors (Section B.1)
available for each task. This is due to the fact that will
less available descriptors with respect to the budget of data



Evaluating Logical Generalization in Graph Neural Networks

Easy World Medium World Hard World
World difficulty

0.4

0.5

0.6

0.7

0.8
Te

st
 A

cc
ur

ac
y

GAT-E-GAT
GCN-E-GAT
Param-E-GAT
GAT-RGCN
GCN-RGCN
Param-RGCN

Figure 5: We categorize the datasets in terms of their relative diffi-
culty. We observe that the models using E-GAT as the composition
function consistently work well.

samples, our generation module samples the same set of
descriptors while adding variable noise. Thus, datasets
with low descriptor count ends up with more relative noise.
This shows that for a learner, a dataset with enough variety
among the resolution paths of the graphs with less noise is
relatively easier to learn compared to the datasets which has
less variation and more noise.

B.5. Setups supported in GraphLog

Supervised learning. A model is trained (and evaluated)
on the train (and test split) of a world. The number of
rules grows exponentially with the number of relations K,
making it impossible to train on all possible combinations
of the relations. We expect that a perfectly systematic model
inductively generalizes to unseen combinations of relations
by training only on a subset of combinations.

Multi-task learning. GraphLog provides multiple logi-
cal worlds, with their training and evaluation splits. The
model is trained on (and evaluated on) the train (and test)
splits of several worlds (W1, · · · ,WM ). GraphLog enables
us to control the complexity of each world and similarity
between the worlds to evaluate how model performance
varies when the model is trained on similar vs. dissimilar
worlds. GraphLog is designed to study the effect of pre-
training on adaptation. In this setup, the model is first pre-
trained on the train split of multiple worlds (W1, · · · ,WM )
and then fine-tuned on the train split of the unseen heldout
worlds (WM+1, · · · ,WN ). The model is evaluated on the
test split of the novel worlds. GraphLog enables mimicking
in-distribution and out-of-distribution training and testing
scenarios and quantify the effect of multi-task pre-training
for adaptation performance.

Continual learning. The model is trained on a sequence of
worlds. Before training on a new world, the model is evalu-
ated on all the worlds that the model has trained on so far.

Given the several challenges involved in continual learning
(Thrun and Pratt, 2012; Parisi et al., 2019; De Lange et al.,
2019; Sodhani et al., 2019), we do not expect the models to
perform well on all the tasks. Nonetheless, given that we
are evaluating the models for relational reasoning and that
our datasets share relations, we would expect the models to
retain some knowledge of how to solve the previous tasks.
We use the performance on the previous tasks to infer if the
models learn to solve the relational reasoning tasks or just
fit to the current dataset distribution.

C. Representation and Composition
Functions

In this section, we dive deeper into the specifics of Repre-
sentation and Composition modules used in experiments on
GraphLog defined in Section 3.

C.1. Representation modules

First, we describe the different approaches for learning the
representation ri ∈ Rd for the relations. These representa-
tions will be provided as input to the composition function.

Direct parameterization. The simplest approach to learn
the representation module is to train unique embeddings for
each relation ri. This approach is predominantly used in the
previous work on GNNs (Gilmer et al., 2017; Veličković
et al., 2017), and we term this approach as the Param
representation module. A major limitation of this approach
is that the relation representations are optimized specifically
for each logical world, and there is no inductive bias towards
learning representations that can generalize.

Learning representations from the graph structure. In
order to define a more powerful and expressive representa-
tion function, we consider an approach that learns relation
representations as a function of the WorldGraph underly-
ing a logical world. To do so, we consider an “extended”
form of the WorldGraph, ĜW , which introduces new nodes
(called edge-nodes) corresponding to each edge in the orig-
inal WorldGraph GW . For an edge r(u, v) ∈ EG, the
corresponding edge-node (u− r − v) is connected to only
those nodes that were incident to it in the original graph (i.e.
nodes u and v; see Figure 6, Step (b)). This new graph ĜW

only has one type of edge and comprises of nodes from both
the original graph and from the set of edge-nodes. We learn
the relation representations by training a GNN model on
the expanded WorldGraph and by averaging the edge-node
embeddings corresponding to each relation type ri ∈ R.
(Step (c) in Figure 6). For the GNN model, we consider
the Graph Convolutional Network (GCN) (Kipf and Welling,
2016) and the Graph Attention Network (GAT) architectures.
Since the nodes do not have any features or attributes, we
randomly initialize the embeddings in these GNN message



Evaluating Logical Generalization in Graph Neural Networks

GW

→
̂GW

(a)

(b) (e)

g1
…

GS
W{ {gn

(c)

(d)
(gi , u, v)

r

( f )

fr

fc

Figure 6: Overview of the training process: (a): Sampling multiple graphs from GW . (b): Converting the relational graph into extended
graph ĜW . Note that edges of different color (denoting different types of relations) are replaced by a node of same type in ĜW . (c):
Learning representations of the relations (r) using fr with the extended graph as the input. In case of Param models, the relation
representations are parameterized via an embedding layer and the extended graph is not created. (d, e): The composition function takes as
input the query gi, u, v and the relational representation r. (f): The composition function predicts the relation between the nodes u and v.

passing layers. The intuition behind creating the extended-
graph is that the representation GNN function can learn the
relation embeddings based on the structure of the complete
relational graph GW . We expect this to provide an inductive
bias that can generalize more effectively than the simple
Param approach.

C.2. Composition modules

We now describe the GNNs used for the composition mod-
ules. These models take as input the query (gi, u, v) and the
relation embedding ri ∈ Rd (Step (d) and (e) in Figure 6).

Relational Graph Convolutional Network (RGCN).
Given that the input to the composition module is a rela-
tional graph, the RGCN model (Schlichtkrull et al., 2018) is
a natural choice for a baseline architecture. In this approach,
we iterate a series of message passing operations:

h(t)
u = ReLU

∑
ri∈R

∑
v∈Nri

(u)

ri ×1 T ×3 h
(t−1)
v

 ,

where h
(t)
u ∈ Rd denotes representation of a node u at the

tth layer of the model, T ∈ Rdr×d×d is a learnable tensor,
r ∈ Rd is relation representation, and Nri(u) denotes the
neighbors of u (related byri). ×i denotes multiplication
across one mode of the tensor. RGCNmodel learns a relation-
specific propagation matrix, specified by the interaction
between relation embedding ri and shared tensor T .

Edge-based Graph Attention Network (Edge-GAT). In
addition to the RGCN model, we also explore an extension
of the Graph Attention Network (GAT) model (Veličković
et al., 2017) to handle edge types. Many recent works have
highlighted the importance of the attention mechanism, es-
pecially in the context of relational reasoning (Vaswani et al.,

2017; Santoro et al., 2018; Schlag et al., 2019). Motivated by
this observation, we investigate an extended version of the
GAT, where we incorporate gating via an LSTM (Hochreiter
and Schmidhuber, 1997) and where the attention is condi-
tioned on both the incoming message (from the other nodes)
and the relation embedding (of the other nodes):

mN (u) =
∑
ri∈R

∑
v∈Nri

(u)

α
(
h(t−1)
u ,h(t−1)

v , r
)
,

h(t)
u = LSTM(mN (u),h

(t−1)
u )

Following the original GAT model, the attention function α
is defined using an dense neural network on the concatena-
tion of the input vectors. We refer to this model as the Edge
GAT (E-GAT) model.

Query and node representations. We predict the relation
for query (gi, u, v) by concatenating h

(K)
u ,h

(K)
v (final-layer

query node embeddings) and applying a feedforward net-
work (Step (f) in Figure 6). The entire model (i.e., represen-
tation and composition models) is trained end-to-end. Since
we have no node features, we randomly initialize all the
node embeddings in the GNNs.

D. Supervised learning on GraphLog
We train and evaluate all of the models on all the 57 worlds,
one model-world pair at a time. Previous works considered
only a handful of datasets when evaluating the different
models and it is possible that the model exploits dataset-
specific biases. With GraphLog it is difficult for one model
to outperform the other models on all the 57 datasets by
exploiting some dataset-specific bias, thereby making the
conclusions more robust. In Figure 5, we present the re-
sults for the different models. We categorize the worlds in



Evaluating Logical Generalization in Graph Neural Networks

three categories of difficulty—easy, moderate and difficult—
based on the relative test performance of the models on each
world. (A complimentary formulation of difficulty is ex-
plained in Section B.4). Table 6 contains the results for the
different models on all individual worlds. We observe that
the models using E-GAT as the composition functions al-
ways outperform their counterparts using the RGCN models.
This confirms our hypothesis about leveraging attention to
improve the performance on relational reasoning tasks. In-
terestingly, the relative ordering among the worlds, in terms
of the test accuracy of the different models, is consistent
irrespective of the model we use, highlighting the intrinsic
difficulty of the different worlds in GraphLog.

E. Multitask Learning
E.1. Multitask Learning on different data splits by

difficulty

Easy Medium Difficult
fr fc Accuracy Accuracy Accuracy
GAT E-GAT 0.729 ±0.05 0.586 ±0.05 0.414 ±0.07
Param E-GAT 0.728 ±0.05 0.574 ±0.06 0.379 ±0.06
GCN E-GAT 0.713 ±0.05 0.55 ±0.06 0.396 ±0.05
GAT RGCN 0.695 ±0.04 0.53 ±0.03 0.421 ±0.06
Param RGCN 0.551 ±0.08 0.457 ±0.05 0.362 ±0.05
GCN RGCN 0.673 ±0.05 0.514 ±0.04 0.396 ±0.06

Table 4: Inductive performance on data splits marked by difficulty

In Section B.4 we introduced the notion of difficulty among
the tasks available in GraphLog . Here, we consider a set
of experiments where we perform multitask training and
inductive testing on the worlds bucketized by their relative
difficulty (Table 4). We sample equal number of worlds
from each difficulty bucket, and separately perform multi-
task training and testing. We evaluate the average prediction
accuracy on the datasets within each bucket. We observe
that the average multitask performance also mimics the rela-
tive task difficulty distribution. We find GAT-E-GATmodel
outperforms other baselines in Easy and Medium setup, but
is outperformed by GAT-RGCN model in the Difficult setup.
For each model, we used the same architecture and hyperpa-
rameter settings across the buckets. Optimizing individually
for each bucket may improve the relative performance.

E.2. Multitask Pre-training by task similarity

In the main paper (Section 4.1) we introduce the setup of
performing multitask pre-training on GraphLog datasets
and adaptation on the datasets based on relative similarity.
Here, we perform fine-grained analysis of few-shot adapata-
tion capabilities of the models. We analyze the adaptation
performance in two settings - when the adaptation dataset
has complete overlap of rules with the training datasets

0 5 10 15 20
Gradient updates

0.2

0.4

Ac
cu

ra
cy

group = 0.0

0 5 10 15 20
Gradient updates

group = 1.0

GAT_E-GAT
GAT_RGCN

GCN_E-GAT
GCN_RGCN

Param_E-GAT
Param_RGCN

Figure 7: We perform fine-grained analysis of few shot adaptation
capabilities in Multitask setting. Group 0.0 and 1.0 corresponds to
0% and 100% similarity respectively.

Easy Medium Difficult
fr fc Accuracy Accuracy Accuracy
GAT E-GAT 0.531 ±0.03 0.569 ±0.01 0.555 ±0.04
Param E-GAT 0.520 ±0.02 0.548 ±0.01 0.540 ±0.01
GCN E-GAT 0.555 ±0.01 0.561 ±0.02 0.558 ±0.01
GAT RGCN 0.502 ±0.02 0.532 ±0.01 0.532 ±0.01
Param RGCN 0.535 ±0.01 0.506 ±0.04 0.539 ±0.04
GCN RGCN 0.481 ±0.02 0.516 ±0.02 0.520 ±0.01

Mean 0.521 0.540 0.539

Table 5: Convergence performance on 3 held out datasets when
pre-trained on easy, medium and hard training datasets

(group=1.0) and when the adaptation dataset has zero over-
lap with the training datasets (group=0.0). We find RGCN
family of models with a graph based representation func-
tion has faster adaptation on the dissimilar dataset, with
GCN-RGCN showing the fastest improvement. However
on the similar dataset the models follow the ranking of the
supervised learning experiments, with GAT-EGAT model
adapting comparitively better.

E.3. Multitask Pre-training by task difficulty

Using the notion of difficulty introduced in Section B.4, we
perform the suite of experiments to evaluate the effect of
pre-training on Easy, Medium and Difficult datasets. Inter-
estingly, we find the performance on convergence is better
on Medium and Hard datasets on pre-training, compared
to the Easy dataset (Table 5). This behaviour is also mir-
rored in k-shot adaptation performance (Figure 8), where
pre-training on Hard dataset provides faster adaptation per-
formance on 4/6 models.

F. Continual Learning
Curriculum Learning. A natural question arises following
our continual learning experiments in Section 4.2 : does the
order of difficulty of the worlds matter? Thus, we perform
an experiment following Curriculum Learning (Bengio et al.,



Evaluating Logical Generalization in Graph Neural Networks

0.1

0.2

0.3

0.4

0.5
Ac

cu
ra

cy
GAT-E-GAT Param-E-GAT

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 10 20 30 40
Gradient updates

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Param-RGCN

0 10 20 30 40
Gradient updates

GCN-RGCN

train_world easy medium hard

Figure 8: We evaluate the effect of k-shot adaptation on held
out datasets when pre-trained on easy, medium and hard training
datasets, among the different model architectures. Here, k ranges
from 0 to 40.

2009) setup, where the order of the worlds being trained is
determined by their relative difficulty (which is determined
by the performance of models in supervised learning setup,
Table 6, i.e., we order the worlds from easier worlds to
harder worlds). We observe that while the current task
accuracy follows the trend of the difficulty of the worlds
(Figure 10), the mean of past accuracy is significantly worse.
This suggests that a curriculum learning strategy might not
be optimal to learn graph representations in a continual
learning setting.

The role of the representation function. We also investi-
gate the model’s performance in a continual learning setup
where the model learns only a world-specific representa-
tion function or a world-specific composition function, and
where the other module is shared across the worlds. In Fig-
ure 9, we observe that sharing the representation function
reduces the effect of catastrophic forgetting, but sharing the
composition function does not have the same effect. This

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

GAT-E-GAT Param-E-GAT

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 20 40
Worlds

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Param-RGCN

0 20 40
Worlds

GCN-RGCN

Shared Composition and Representation
Shared Representation Unique Composition
Shared Composition Unique Representation

Figure 9: Evaluation of models in continual learning setup, where
we investigate the role of representation and composition modules.
Here, we observe that sharing the representation function reduces
the effect of catastrophic forgetting as compared to sharing only
the composition function (or sharing both).

suggests that the representation function learns representa-
tions that are useful across the worlds. We also performed
the same experiment with sharing only the composition and
representation functions (Figure 11), and observe similar
trends where sharing the representation function reduces the
effect of catastrophic forgetting.

G. Hyperparameters and Experimental Setup
In this section, we provide detailed hyperparameter settings
for both models and dataset generation for the purposes
of reproducibility. The codebase and dataset used in the
experiments are attached with the Supplementary materials,
and will be made public on acceptance.

G.1. Dataset Hyperparams

We generate GraphLog with 20 relations or classes (K),
which results in 76 rules inRS after consistency checks. For



Evaluating Logical Generalization in Graph Neural Networks

World ID NC ND Split ARL AN AE D M1 M2 M3 M4 M5 M6

rule 0 17 286 train 4.49 15.487 19.295 Hard 0.481 0.500 0.494 0.486 0.462 0.462
rule 1 15 239 train 4.10 11.565 13.615 Hard 0.432 0.411 0.428 0.406 0.400 0.408
rule 2 17 157 train 3.21 9.809 11.165 Hard 0.412 0.357 0.373 0.347 0.347 0.319
rule 3 16 189 train 3.63 11.137 13.273 Hard 0.429 0.404 0.473 0.373 0.401 0.451
rule 4 16 189 train 3.94 12.622 15.501 Medium 0.624 0.606 0.619 0.475 0.481 0.595
rule 5 14 275 train 4.41 14.545 18.872 Hard 0.526 0.539 0.548 0.429 0.461 0.455
rule 6 16 249 train 5.06 16.257 20.164 Hard 0.528 0.514 0.536 0.498 0.495 0.476
rule 7 17 288 train 4.47 13.161 16.333 Medium 0.613 0.558 0.598 0.487 0.486 0.537
rule 8 15 404 train 5.43 15.997 19.134 Medium 0.627 0.643 0.629 0.523 0.563 0.569
rule 9 19 1011 train 7.22 24.151 32.668 Easy 0.758 0.744 0.739 0.683 0.651 0.623
rule 10 18 524 train 5.87 18.011 22.202 Medium 0.656 0.654 0.663 0.596 0.563 0.605
rule 11 17 194 train 4.29 11.459 13.037 Medium 0.552 0.525 0.533 0.445 0.456 0.419
rule 12 15 306 train 4.14 11.238 12.919 Easy 0.771 0.726 0.603 0.511 0.561 0.523
rule 13 16 149 train 3.58 11.238 13.549 Hard 0.453 0.402 0.419 0.347 0.298 0.344
rule 14 16 224 train 4.14 11.371 13.403 Hard 0.448 0.457 0.401 0.314 0.318 0.332
rule 15 14 224 train 3.82 12.661 15.105 Hard 0.494 0.423 0.501 0.402 0.397 0.435
rule 16 16 205 train 3.59 11.345 13.293 Hard 0.318 0.332 0.292 0.328 0.306 0.291
rule 17 17 147 train 3.16 8.163 8.894 Hard 0.347 0.308 0.274 0.164 0.161 0.181
rule 18 18 923 train 6.63 25.035 33.080 Easy 0.700 0.680 0.713 0.650 0.641 0.618
rule 19 16 416 train 6.10 17.180 20.818 Easy 0.790 0.774 0.777 0.731 0.729 0.702
rule 20 20 2024 train 8.63 34.059 45.985 Easy 0.830 0.799 0.854 0.756 0.741 0.750
rule 21 13 272 train 4.58 10.559 11.754 Medium 0.621 0.610 0.632 0.531 0.516 0.580
rule 22 17 422 train 5.21 16.540 20.681 Medium 0.586 0.593 0.628 0.530 0.506 0.573
rule 23 15 383 train 4.97 17.067 21.111 Hard 0.508 0.522 0.493 0.455 0.473 0.476
rule 24 18 879 train 6.33 21.402 26.152 Easy 0.706 0.704 0.743 0.656 0.641 0.638
rule 25 15 278 train 3.84 11.093 12.775 Hard 0.424 0.419 0.382 0.358 0.345 0.412
rule 26 15 352 train 4.71 14.157 17.115 Medium 0.565 0.534 0.532 0.466 0.461 0.499
rule 27 16 393 train 4.98 14.296 16.499 Easy 0.713 0.714 0.722 0.632 0.604 0.647
rule 28 16 391 train 4.82 17.551 21.897 Medium 0.575 0.564 0.571 0.503 0.499 0.552
rule 29 16 144 train 3.87 10.193 11.774 Hard 0.468 0.445 0.475 0.325 0.336 0.389
rule 30 17 177 train 3.51 10.270 11.764 Hard 0.381 0.426 0.382 0.357 0.316 0.336
rule 31 19 916 train 5.90 20.147 26.562 Easy 0.788 0.789 0.770 0.669 0.674 0.641
rule 32 16 287 train 4.66 16.270 20.929 Medium 0.674 0.671 0.700 0.621 0.594 0.615
rule 33 18 312 train 4.50 14.738 18.266 Medium 0.695 0.660 0.709 0.710 0.679 0.668
rule 34 18 504 train 5.00 15.345 18.614 Easy 0.908 0.888 0.906 0.768 0.762 0.811
rule 35 19 979 train 6.23 21.867 28.266 Easy 0.831 0.750 0.782 0.680 0.700 0.662
rule 36 19 252 train 4.66 13.900 16.613 Easy 0.742 0.698 0.698 0.659 0.627 0.651
rule 37 17 260 train 4.00 11.956 14.010 Easy 0.843 0.826 0.826 0.673 0.698 0.716
rule 38 17 568 train 5.21 15.305 20.075 Easy 0.748 0.762 0.733 0.644 0.630 0.719
rule 39 15 182 train 3.98 12.552 14.800 Easy 0.737 0.642 0.635 0.592 0.603 0.587
rule 40 17 181 train 3.69 11.556 14.437 Medium 0.552 0.584 0.575 0.525 0.472 0.479
rule 41 15 113 train 3.58 10.162 11.553 Medium 0.619 0.601 0.626 0.490 0.468 0.470
rule 42 14 95 train 2.96 8.939 9.751 Hard 0.511 0.472 0.483 0.386 0.393 0.395
rule 43 16 162 train 3.36 11.077 13.337 Medium 0.622 0.567 0.579 0.473 0.482 0.437
rule 44 18 705 train 4.75 15.310 18.172 Hard 0.538 0.561 0.603 0.498 0.519 0.450
rule 45 15 151 train 3.39 9.127 10.001 Medium 0.569 0.580 0.592 0.535 0.524 0.524
rule 46 19 2704 train 7.94 31.458 43.489 Easy 0.850 0.820 0.828 0.773 0.762 0.749
rule 47 18 647 train 6.66 22.139 27.789 Easy 0.723 0.667 0.708 0.620 0.649 0.611
rule 48 16 978 train 6.15 17.802 21.674 Easy 0.812 0.798 0.812 0.772 0.763 0.753
rule 49 14 169 train 3.41 9.983 11.177 Easy 0.714 0.734 0.700 0.511 0.491 0.615
rule 50 16 286 train 3.99 12.274 16.117 Medium 0.651 0.653 0.656 0.555 0.583 0.570
rule 51 16 332 valid 4.44 16.384 21.817 Easy 0.746 0.742 0.738 0.667 0.657 0.689
rule 52 17 351 valid 4.81 16.231 20.613 Medium 0.697 0.716 0.754 0.653 0.655 0.670
rule 53 15 165 valid 3.65 10.838 12.378 Hard 0.458 0.464 0.525 0.334 0.364 0.373
rule 54 13 303 test 5.25 13.503 15.567 Medium 0.638 0.623 0.603 0.587 0.586 0.555
rule 55 16 293 test 4.83 16.444 20.944 Medium 0.625 0.582 0.578 0.561 0.528 0.571
rule 56 15 241 test 4.40 14.010 16.702 Medium 0.653 0.681 0.692 0.522 0.513 0.550

AGG 16.33 428.94 4.70 14.89 18.37 0.618 / 26 0.603 / 10 0.611 / 20 0.530 / 1 0.526 / 0 0.539 / 0

Table 6: Results on Single-task supervised setup for all datasets in GraphLog. Abbreviations: NC: Number of Classes, ND: Number of
Descriptors, ARL: Average Resolution Length, AN: Average number of nodes, AE: Average number of edges

, D: Difficulty, AGG: Aggregate Statistics. List of models considered : M1: GAT-EGAT, M2: GCN-E-GAT, M3:
Param-E-GAT, M4: GAT-RGCN, M5: GCN-RGCN and M6: Param-RGCN. Difficulty is calculated by taking the scores of
the model (M1) and partitioning the worlds according to their accuracy (≥ 0.7 = Easy, ≥ 0.54 and < 0.7 = Medium, and
< 0.54 = Hard). We provide both the mean of the raw accuracy scores for all models, as well as the number of times the

model is ranked first in all the tasks.



Evaluating Logical Generalization in Graph Neural Networks

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GAT-E-GAT Param-E-GAT

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 20 40
Worlds

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Param-RGCN

0 20 40
Worlds

GCN-RGCN

Current Accuracy
Mean past accuracy

Figure 10: Curriculum Learning strategy in Continual Learning
setup of GraphLog. The current task accuracy (blue) and mean of
all previous task accuracy (orange).

unary rules, we specify half of the relations to be symmetric
and other half to have their invertible relations. To split the
rules for individual worlds, we choose the number of rules
for each world w = 20 and stride s = 1, and end up with 57
worlds R0 . . .R56. For each world Ri, we generate 5000
training, 1000 testing and 1000 validation graphs.

G.2. Model Hyperparams

For all models, we perform hyper-parameter sweep (grid
search) to find the optimal values based on the validation
accuracy. For all models, we use the relation embedding and
node embedding to be 200 dimensions. We train all models
with Adam optimizer with learning rate 0.001 and weight
decay of 0.0001. For supervised setting, we train all models
for 500 epochs, and we add a scheduler for learning rate
to decay it by 0.8 whenever the validation loss is stagnant
for 10 epochs. In multitask setting, we sample a new task
every epoch from the list of available tasks. Here, we run

0.2

0.4

0.6

Ac
cu

ra
cy

GAT-E-GAT Param-E-GAT

0.2

0.4

0.6

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 20 40
Worlds

0.2

0.4

0.6

Ac
cu

ra
cy

Param-RGCN

0 20 40
Worlds

GCN-RGCN

Shared Composition and Representation
Shared Representation Unique Composition
Shared Composition Unique Representation

Figure 11: Curriculum Learning strategy in Continual Learning
setup of GraphLog, where we investigate the role of representation
and composition modules. We observe the mean of previous task
accuracy when either the composition function or the representa-
tion function is shared for all worlds.

all models for 2000 epochs when we have the number of
tasks ≤ 10. For larger number of tasks (Figure 2), we
train by proportionally increasing the number of epochs
compared to the number of tasks. (2k epochs for 10 tasks,
4k epochs for 20 tasks, 6k epochs for 30 tasks, 8k epochs
for 40 tasks and 10k epochs for 50 tasks). For continual
learning experiment, we train each task for 100 epochs for
all models. No learning rate scheduling is used for either
multitask or continual learning experiments. Individual
model hyper-parameters are as follows:

• Representation functions :

– GAT : Number of layers = 2, Number of attention
heads = 2, Dropout = 0.4

– GCN : Number of layers = 2, with symmetric nor-
malization and bias, no dropout

• Composition functions:



Evaluating Logical Generalization in Graph Neural Networks

– E-GAT: Number of layers = 6, Number of atten-
tion heads = 2, Dropout = 0.4

– RGCN: Number of layers = 2, no dropout, with
bias.


	Introduction
	GraphLog
	Dataset Generation

	Representation and Composition
	Experiments
	Multi-Task Training
	Continual Learning Setup

	Discussion & Conclusion
	Related Work
	GraphLog
	Extended Terminology
	Dataset Generation
	Computing Similarity
	Computing difficulty
	Setups supported in GraphLog

	Representation and Composition Functions
	Representation modules
	Composition modules

	Supervised learning on GraphLog
	Multitask Learning
	Multitask Learning on different data splits by difficulty
	Multitask Pre-training by task similarity
	Multitask Pre-training by task difficulty

	Continual Learning
	Hyperparameters and Experimental Setup
	Dataset Hyperparams
	Model Hyperparams


