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Abstract
Large language models (LLMs) have demon-
strated remarkable capabilities in problem-
solving. However, their proficiency in solving
mathematical problems remains inadequate. We
propose MathScale, a simple and scalable method
to create high-quality mathematical reasoning
data using frontier LLMs (e.g., GPT-3.5). In-
spired by the cognitive mechanism in human
mathematical learning, it first extracts topics and
knowledge points from seed math questions and
then build a concept graph, which is subsequently
used to generate new math questions. MathScale
exhibits effective scalability along the size axis of
the math dataset that we generate. As a result, we
create a mathematical reasoning dataset (Math-
ScaleQA) containing two million math question-
answer pairs. To evaluate mathematical reasoning
abilities of LLMs comprehensively, we construct
MWPBENCH, a benchmark of Math Word Prob-
lems, which is a collection of 9 datasets (includ-
ing GSM8K and MATH) covering K-12, college,
and competition level math problems. We ap-
ply MathScaleQA to fine-tune open-source LLMs
(e.g., LLaMA-2 and Mistral), resulting in signifi-
cantly improved capabilities in mathematical rea-
soning. Evaluated on MWPBENCH, MathScale-
7B achieves state-of-the-art performance across
all datasets, surpassing its best peers of equiva-
lent size by 42.8% in micro average accuracy and
43.6% in macro average accuracy, respectively.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities in problem-solving. However, their pro-
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ficiency in solving mathematical problems remains inade-
quate, potentially due to the inherent necessity for multi-step
complex reasoning in mathematical problem-solving. In-
struction Tuning (Wei et al., 2021) is an effective approach
to unlock certain capabilities in LLMs. Unfortunately, this
approach is constrained by the limited size of the currently
available datasets on mathematical reasoning. For example,
the most popular math datasets, GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021b), each only contains
around 7.5K training examples.

An effective method to tackle this challenge is to augment
existing high-quality math datasets using frontier LLMs
such as GPT-3.5 and GPT-4. For instance, WizardMath
(Luo et al., 2023) introduces an array of operations for
GPT-3.5 to generate math questions with increased com-
plexity. MetaMath (Yu et al., 2023) bootstraps questions in
GSM8K and MATH through answer augmentation, ques-
tion rephrasing, self-verification and FOBAR questions. The
newly generated examples by these methods exhibit sub-
stantial similarity to the original examples contained within
the training set, which limits their power in generating large
scale math datasets.

We therefore propose a conceptually simple and scalable
method MathScale, which is less dependent on original
training examples. Specifically, we first prompt GPT-3.5
to extract high level concepts (i.e., topics and knowledge
points) from existing seed math questions. In this step, we
convert concrete math questions to extractions and the de-
pendency to original questions is largely removed. Given
these extractions, we then build a concept graph, which is
used to estimate the connections between different concepts.
Finally, we can instruct GPT-3.5 to generate new math
questions based on randomly sampled concepts from the
graph. Intuitively, we can generate significantly more ex-
amples using different combination of concepts than using
augmentation-based methods, since the resulting number
of new examples is bounded by the number of augmenta-
tion operations. MathScale also bears resemblance to the
cognitive mechanisms underlying the process of mathemat-
ical learning in humans (Tall, 2013). Tall (2013) argues
that the learning process of human involves two distinct
steps called concept compression and connection forging.
Concept compression mirrors the process of high level con-
cept extraction, while connection forging is similar to our
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concept graph construction.

Mathematical capability evaluation is another issue arising
from the lack of high-quality mathematical datasets. Re-
cently, most LLMs employ GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021b) for evaluation. How-
ever, GSM8K focuses on elementary-level problems, while
MATH offers competition-level challenges. There is a clear
gap between the two kinds of capabilities measured. There-
fore, we introduce MWPBENCH, a comprehensive and uni-
fied benchmark to measure mathematical reasoning capabil-
ities. MWPBENCH is composed of 9 different math word
problem datasets (including GSM8K and MATH) and it
covers math word problems from elementary school to col-
lege level with different difficulty levels. Moreover, MWP-
BENCH standardizes evaluations across all datasets with a
unified protocol, promoting consistent and fair model com-
parisons.

MathScale exhibits effective scalability along the size axis
of the math dataset that we generate. As a result, we create a
mathematical reasoning dataset (MathScaleQA) containing
two million math question-answer pairs. We apply Math-
ScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2
and Mistral), resulting in significantly improved capabili-
ties in mathematical reasoning. Evaluated on MWPBENCH,
MathScale-7B achieves 35.2% in micro average accuracy
and 38.2% in macro accuracy, outperforming its best peers
of equivalent size by 42.8% and 43.6%, respectively.

2. MWPBENCH Evaluation Framework
2.1. MWPBENCH

Existing Datasets Our first endeavor is to collate estab-
lished datasets, including GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021b), TAL-SCQ (TAL, 2023),
Math23k (Wang et al., 2017), Ape210k (Zhao et al.,
2020), GaokaoBench-Math (Zhang et al., 2023), and
AGIEval (Zhong et al., 2023) series (see Table 1). Types
of problems of these datasets are different. For example,
most datasets contain math word problems, while TAL-SCQ
comprises multi-choice questions. Intuitively, multi-choice
questions are simpler because LLMs only need to figure out
which choice leads to a higher probability. Therefore, we
convert all multi-choice questions to math word problems
(detailed in Appendix A.1). Secondly, some of the datasets
(e.g., Math23k, Ape210k) are not in English and we translate
them to English to expand existing math datasets (detailed
in Appendix A.2). Note that we translated part of their
training sets and full test sets into English. We also noticed
another dataset, Lila (Mishra et al., 2022), which includes
math question with code solutions as well as code questions
from MBPP (Austin et al., 2021) and APPs (Hendrycks
et al., 2021a), focusing differently from ours.

CollegeMath Existing datasets does not cover college-level
mathematics which requires diverse skills such as analytical
thinking, logical reasoning, and quantitative analysis. We
therefore propose CollegeMath to bridge this gap.

We curated a collection of nine college mathematics text-
books, each addressing a distinct topic (see Table 2 for more
details). These textbooks encompass seven critical mathe-
matical disciplines: algebra, pre-calculus, calculus, vector
calculus, probability, linear algebra, and differential equa-
tions. These textbooks are originally in PDF format and we
convert them to text format using the Mathpix API1, where
equations are transformed to LaTeX format. Once converted
a textbook to text format, we are ready to extract exercises
and their solutions. For each book, we first manually seg-
ment the book into chapter and identify pages with exercises
and their solutions. Then we extract questions in exercises
and their associated short answers (see more details of our
prompts in Appendix A.3). In total, this dataset contains
1281 examples for training and 2818 examples for test.

2.2. Unified Evaluation Protocol

One of the challenges in benchmarking LLMs for mathemat-
ical reasoning is the inconsistency across evaluation metrics
and protocols used in different work (Touvron et al., 2023;
Luo et al., 2023; Yue et al., 2023).

MWPBENCH
3 aims to evaluate the mathematical reasoning

abilities of instruction tuned LLMs using a unified evalua-
tion protocol. We employ zero-shot setting for evaluation
and use the accuracy metric. The reason behind that is we
believe fine-tuned LLMs should be able to answer questions
directly without demonstrations, while in few-shot setting
the final results may change with different set of demon-
strations. For prompt template, we choose the Alpaca tem-
plate (Taori et al., 2023) as default, which is the most widely
used for instruction tuning (Taori et al., 2023; Luo et al.,
2023; Yu et al., 2023). However, we support customized
template just in case that LLMs are trained with a different
instruction template (e.g., OpenAI ChatGPT template). For
decoding, we choose greedy decoding to eliminate random-
ness in comparisons, selecting the top-1 completion as the
solution. To further standardize the evaluation, we care-
fully implemented the answer extraction and verification
processes (with high precision fuzzy match).

1https://docs.mathpix.com/#process-a-pdf
2Copyright (c) by Michael J. Evans and Jeffrey S. Rosenthal.

It may be copied and distributed without restriction, provided it
is not altered, appropriate attribution is given and no money is
charged.

3MWPBENCH is available at https://github.com/
microsoft/unilm/tree/master/mathscale
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Dataset Level Difficulty Question Type Language #Train #Test

GSM8K Elementary Easy Word En 7473 1319
MATH Competition ExHard Word En 7498 5000
TAL-SCQ K12 Math Medium MC→Word En 2638 1496
Math23k Elementary Easy Word Zh→En 1000 949
Ape210k Elementary Easy Word Zh→En 967 4874
GaokaoBench-Math High School Hard MC→Word Zh→En 0 508
AGIEval-Gaokao-Math High School Hard MC→Word Zh→En 0 404
AGIEval-SAT-Math High School Hard MC→Word En 0 102
CollegeMath College ExHard Word En 1281 2818

Total – – – – 20857 17470

Table 1. Statistics in MWPBENCH. In the “Question Type” column, “Word” stands for math word problem and “MC” stands for multiple-
choice problem. In the “Difficulty” column, “ExHard” stands for extremely hard.

Topic Book License #Train #Test

Algebra Beginning and Intermediate Algebra (Wallace, 2010) CC BY 3.0 1171 1000
Precalculus PRECALCULUS (Stitz & Zeager, 2013) CC 80 500
Calculus Calculus (Guichard, 2009) CC BY-NC-SA 30 500
VectorCalculus CORRAL’s VECTOR CALCULUS (Corral, 2008) GFDL 0 110
Probability Introduction to Probability (Grinstead & Snell, 2006) GFDL 0 38

Probability Probability and Statistics:
The Science of Uncertainty (Evans & Rosenthal, 2004) Custom2 0 101

LinearAlgebra Matrix Theory and LINEAR ALGEBRA (Selinger, 2018) CC BY 0 123
LinearAlgebra A First Course in LINEAR ALGEBRA (Kuttler & Farah, 2017) CC BY 0 137
DifferentialEquations ELEMENTARY DIFFERENTIAL EQUATIONS (Trench, 2001) CC BY-NC-SA 3.0 0 309

Table 2. Details of permissively licensed books we use to construct the CollegeMath dataset.

3. MathScale: Scaling Instruction Tuning for
Mathematical Reasoning

We present details of MathScale in this section. MathScale
aims to generate large scale Mathematical Reasoning dataset
by prompting ChatGPT and it contains four steps.

3.1. Concept Extraction

As shown in Figure 1, MathScale takes seed math questions
as input and we use the training set of MWPBENCH (around
20K math questions). In the first step, we extract high level
concepts (i.e., topics and knowledge points) from these seed
questions with prompt engineering of GPT-3.5. We aim to
extract meta information needed to solve a particular math
question. We believe “topics” and “knowledge points” are
important meta information for questions. A “topic” refers
to the mathematical subject name or the topic name of math
book chapter such as “Money and finance” and “Arithmetic
operations”. While “knowledge points” refers to more fine
grained math concepts (e.g., theorems, skills) in problem
solving. Typical examples are “Definition and properties of
dot product” or “Converting fractions to whole numbers”.
We instruct GPT-3.5 to act as a Math teacher and extract
1 or 2 topics and 1 to 5 knowledge points from a given seed
question (see the prompt template in Table 3).

To ensure the diversity of the extracted topics and knowl-

Act as a Math Teacher and analyze the provided question.
Start by identifying 1 or 2 general topics that a student is
being assessed on. Next, highlight 1 to 5 specific knowledge
points that the question evaluates.

Provided question: {seed question}

Analysis:

Table 3. Prompt template for Concept Extraction.

edge points, we use the training set of MWPBENCH, which
includes questions from different sources. We also remove
topics and knowlege points that appear only one time to re-
duce noise. In total, we extracted around 2K topics and 8K
knowledge points. The above process mirrors the concept
compression described in (Tall, 2013).

3.2. Concept Graph Construction

Concept Graph Given the topics and knowledge points ex-
tracted from the previous step, we move on to construct
a concept graph C, whose nodes are the extracted top-
ics T = {t1, t2, . . . , t∣T∣} and knowledge points (KPs)
K = {k1,k2, . . . ,k∣K∣}. As shown in Figure 2, we have
three types of edges in this graph (i.e., topic to topic edge,
topic to KP edge and KP to KP edge), which results to three
sub-graphs (topic graph, topic-KP graph, KP graph). When
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Figure 1. Overview of MathScale. MathScale starts from seed math questions and there are three steps in this pipeline (i.e., concept
extract, concept graph construction and mathematical reasoning data generation). After these three steps, we obtain the MathScaleQA
dataset, which is subsequently used to train open LLMs. Finally, we obtain MathScale models.

a topic (or KP) u is co-occurred with another topic (or KP)
v, we build an edge between them and the edge weight is re-
lated to their co-occurrence statistics. Define co-occurrence
as u and v have been extracted from the seed question.

Formally, let E = {(u,v)∣fco(u,v) > 0} denote edges
in C and fco(u,v) is the edge weight between u and v.
Intuitively, two KPs (or topics) are more likely to be reason-
able composition when they have been frequently used to
solve the same seed questions. Let wuv denote the raw co-
occurrence count between node u and node v. The adjusted
weight fco(u,v) is defined as follows:

fco(u,v) = log(wuv + ε) (1)

where ε is a small constant introduced to maintain non-zero
counts and prevent computational issues.

Concept Composition Given the graph C, we are ready to
sample topics and KPs from it and the sampled topics and
KPs are subsequently used to generate new math questions.
We use a graph random walk algorithm to create concept
compositions.

We start from a uniformly random sampling from the ∣T∣
topics we have extracted. Note that in implementation, we
simply enumerate all extracted topics for multiple epochs.

In the second step, we do a random walk for one to two
steps in the topic sub-graph to search for related topics. The
probability distribution for the graph random walk is not
uniform and defined as follows:

puv =
exp(fco(u,v))

∑v′
∈N (u) exp(fco(u,v′)) (2)

where N (u) denotes the set of nodes adjacent to u in the
topic sub-graph.

In the third step, we continue to randomly walk in the hy-
brid topic-KP graph for a single step with the probability
distribution calculated as in Equation (2) on the topic-KP
graph. So that we now have one sampled KP.

In the last step, we continue to expand to more KPs by ran-
domly walking on the KP graph for zero to four steps again
with the probability distribution computed as in Equation (2)
on KP graph. We finally obtained a set of sampled topics T̂
and KPs K̂.

The whole process above is an analogy of the connection
forging described in (Tall, 2013).

3.3. Mathematical Reasoning Data Generation

Act as a Math Teacher and create a new question and its solution
based on the provided topics and knowledge points. Ensure that
the created questions:

1. Adhere to the provided topics.
2. Necessitate the combined use of the associated knowledge
points.

{few shot examples}

Topics:
{topics}

Knowledge Points:
{knowledge points}

Structure your response as:
FORMAT INSTRUCTIONS OF THE NEW QA-PAIR ...

Table 4. Prompt template for Mathematical Reasoning Data Gen-
eration.
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Figure 2. Running Examples of the concept graph construction process in the MathScale pipeline.

With the novel compositions of topics T̂ and KPs K̂ at hand,
we query GPT-3.5 to generate corresponding question-
answer pairs. Inspired by how math teachers design ques-
tions from existing exercises, we opt to include few-shot ex-
amples to guide GPT-3.5 in question formulation. These
examples are chosen from the seed questions, based on
the Jaccard distance of their knowledge points set. We ask
GPT-3.5 to adhere to T̂ and encourage combine use of
KPs K̂. We present the template for prompts in Table 4.

Furthermore, we apply a decontamination process, where all
math questions in the test set of MWPBENCH are removed.

3.4. Validation

We observe that sometimes in the newly generated QA pairs,
the solution is incorrect. We therefore also tried to add an
additional validation process as follows. We first instruction
GPT-4 to generate a reference solution for the question
and then ask GPT-4 again to validate the GPT-4 solution
against the solution generated in the previous step. We
assume GPT-4 is more accurate than GPT-3.5. If GPT-4
believe the orignal solution is incorrect, we replace it with
the new GPT-4 solution. Small scale experiments (Table
7) show the step does not improve the results. Perhaps
because essentially we are trying to distill GPT-3.5 using
open source LLMs. Although some solutions are incorrect,
they are still help open source LLMs to learn the model
distributions of GPT-3.5. Therefore, in our final pipeline,
we remove this validation step.

4. Experiments
4.1. Implementation

Data Generation In concept extraction (Section 3.1), we
use the MWPBENCH training set, comprising around 20K
questions, as the seed questions for our MathScale pipeline
and we employ GPT-3.5-Turbo-0613 for the extrac-
tion. In total, we obtain 2,018 topics and 8,892 knowl-
edge points. We then construct graphs to establish rela-
tionships among these concepts (Section 3.2). The edge
weight in the graph is smoothed using Equation (1) and
we set ε = 1e − 5. In the concept composition pro-
cess, treating the iteration through all topic nodes as one
epoch, we repeat this process for approximately 1K epochs,
resulting 2 million unique concept compositions. Then
we instruct GPT-3.5-Turbo-0613 to create 2 million
question-answer pairs with these compositions. We also
decontaminate the generated datasets by excluding all math
questions in the test set of MWPBENCH. To leverage the
precious high quality math reasoning data, we addition-
ally combine the generated data with the training set of
MWPBENCH. We call the resulting dataset MathScaleQA.
The validation step (Section 3.4) is excluded from the final
pipeline, because we find that the validation step does not
improve results (see details in Section 5.3). We provide
concrete examples of concept extraction and MathScaleQA
in Appendix A.4.

Model Training The questions in MathScaleQA are for-
matted using the Alpaca prompt (Taori et al., 2023) as fol-
lows.
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Below is an instruction that describes
a task. Write a response that
appropriately completes the request.

### Instruction:
{question}

### Response:

Our training pipeline is adapted from the open-instruct
(Wang et al., 2023) toolkit. We utilize the LLaMA-2 7B and
13B models (Touvron et al., 2023) as well as the Mistral 7B
model (Jiang et al., 2023) as our backbone models. We use
a batch size of 128 and train on the MathScaleQA dataset
for 3 epochs using a learning rate of 2e-5. We call the
resulting models MathScale-7B, MathScale-13B and Math-
Scale-Mistral-7B. We leave exploration of the LLaMA-2
70B model in future work.

4.2. Models in Comparison

Close-Source Models We include the most capable
GPT models developed by OpenAI, which are the light-
weighted GPT-3.5-Turbo-0613 and the powerful
GPT-4-0314. These models are known to be good at
mathematical reasoning and serves as the upper bounds.

Open-Source Models: We also compare our model against
open-source math models. Specially, we compare with Wiz-
ardMath (Luo et al., 2023), GAIR-Abel (Chern et al., 2023),
MetaMath (Yu et al., 2023), and MAmmoTH (Yue et al.,
2023). WizardMath (Luo et al., 2023) is based on evol-
instruct (Xu et al., 2023) and reinforcement learning. Meta-
Math (Yu et al., 2023) is trained on a dataset by augmenting
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021b) using answer or question side paraphrasing. The
dataset used to train MAmmoTH (Yue et al., 2023) com-
prises a collection of 13 existing math datasets with GPT-4
CoT (Wei et al., 2022) and/or PoT (Gao et al., 2023; Chen
et al., 2022) annotations. We evaluate all models using
CoT natural language style math solutions. We noticed that
some of the models (e.g., GPT-4 and MAmmoTH) can pro-
duce code solution of math problems in addition to natural
language solutions. For fair comparison, we refrain from
comparing using code-interpreter style solutions, because all
models above can produce code-interpreter style solutions
if the solutions in their training data are replace by GPT an-
notated code solutions. Also note that WizardMath v1.1 is a
Mistral based math model and we do not know how its train-
ing data are constructed (the authors did not release any de-
tail of the training data of WizardMath v1.1). We evaluate all
models on MWPBENCH, which contains 9 datasets on math-
ematical reasoning. We report accuracies of the 9 datasets as
well as their micro-average and macro-average. We prompt
all models using the Alpaca template (see Section 4.1). (Luo

et al., 2023) recommended an improved prompt for during
inference (i.e., adding Let’s think step by step
after the standard Alpaca template). However, we observe
mixed results on MWPBENCH for some models in compari-
son. For example, we observe improved results on GSM8K,
but decreased results on MATH. We therefore do not use
this optimization for all models in comparison.

4.3. Main Results

As shown in Table 5, MathScale obtains best micro av-
erage and macro average scores on MWPBENCH com-
pared to other models based on LLaMA-2 7B, LLaMA-2
13B or Mistral 7B. Specifically, On average, MathScale-
7B achieves a 35.2% (micro) and 38.2% (macro) ac-
curacy across MWPBENCH, surpassing its best counter-
parts of equivalent size by 42.8% and 43.6%, respectively.
The trends are similar for MathScale-13B and MathScale-
Mistral. This also confirms the effectiveness of our Math-
ScaleQA dataset regardless of the backbone model. Note
that in GaokaoBench-Math, AGIEval-Gaokao-MATH, and
AGIEval-SAT-MATH, there is no training set. Even on these
out-of-domain test sets, MathScale-7B wildly outperforms
other open-source models in comparison. When compared
to frontier LLMs, MathScale-Mistral demonstrates perfor-
mance parity in both micro and macro averages relative
to GPT-3.5-Turbo (see the first block in Table 5). We
further compare with WizardMath and MetaMath under the
same training size (see Figure 3 and detailed results in Ap-
pendix A.6), and that MathScale-7B consistently achieves
better results on most datasets as well as both macro and
micro accuracies. Results of different subsets on MATH
and CollegeMath are in Appendix A.7.

5. Analysis and Discussions
5.1. Scaling Property of MathScale

As described in Section 3, given a fixed set of math concepts,
iterating over concept graphs allows us to generate different
compositions of mathematical concepts, thereby synthesiz-
ing large amount of new math data. We use LLaMA-2 7B as
our base model to study the scaling property of MathScale.
When scaling the size of the MathScaleQA dataset, we ob-
serve a nearly logarithmic growth in the performance of the
MathScale-7b model across all datasets within MWPBENCH,
as depicted in Figure 3. We draw the scaling curve up to two
million examples (size of the full MathScaleQA). We also
compare MathScale against WizardMath and MetaMath at
their respective training sizes. MathScale outperforms both
models across all datasets (except for GSM8K) when using
an equivalent amount of training data. Given the scaling
curves in Figure 3, we anticipate that the performance of
MathScale may continue to improve with even more syn-
thetic training examples. Due to resource constraints, we
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Models GSM8K MATH College
Math TAL Math23k Ape210k

Gaokao
Bench
Math

AGIE
Gaokao
Math

AGIE
SAT
Math

Micro
Average

Macro
Average

Closed-source Models
GPT-4 92.9 51.8 24.4 51.8 76.5 61.5 35.4 28.2 68.6 52.0 54.5
GPT-3.5-Turbo 74.1 37.8 21.6 42.9 62.5 44.0 23.2 15.3 55.8 39.9 41.9

Models based on LLaMA-2 13B
LLaMA-2 13B 7.1 3.5 1.2 6.3 9.5 7.9 0.7 0.4 6.8 4.5 4.8
WizardMath 62.0 14.3 7.8 18.7 38.3 25.2 8.2 3.4 29.4 20.4 23.0
MAmmoTH-CoT 56.5 12.6 6.5 17.3 39.5 28.1 5.9 4.9 20.5 19.3 21.3
GAIR-Abel 66.4 16.6 7.9 21.1 42.2 27.8 7.0 4.9 30.3 22.5 24.9
MetaMath 70.8 22.8 10.1 25.4 48.6 31.6 9.6 5.6 38.2 27.0 29.1
MathScale 13B 71.3 33.8 20.4 38.1 61.1 43.7 20.0 12.3 55.8 37.2 39.6

Models based on LLaMA-2 7B
LLaMA-2 7B 4.5 4.2 2.3 7.6 6.8 7.3 2.1 2.9 2.9 4.6 4.5
WizardMath 52.8 10.3 6.8 14.0 32.5 19.2 5.9 6.1 22.5 16.3 18.9
MAmmoTH-CoT 50.0 9.5 6.2 13.3 34.6 21.4 3.9 2.7 19.6 15.8 17.9
GAIR-Abel 57.6 12.7 6.6 18.3 35.4 24.5 4.3 4.4 23.5 18.7 20.8
MetaMath 66.2 20.6 9.4 22.5 44.0 29.9 5.9 5.1 36.2 24.7 26.6
MathScale 7B 66.3 31.1 20.9 35.2 59.0 41.8 19.6 12.6 57.8 35.2 38.2

Models based on Mistral 7B
Mistral 7B 15.5 10.1 7.5 17.9 18.5 15.5 6.2 5.9 22.5 12.0 13.2
WizardMath v1.1 78.1 32.8 16.0 34.4 58.3 41.4 16.1 9.6 55.8 35.5 38.0
MetaMath Mistral 77.4 28.4 15.7 31.4 55.1 38.1 15.3 10.1 50.9 32.9 35.8
MathScale Mistral 74.8 35.2 21.8 39.9 64.4 46.0 21.4 14.3 57.8 39.1 41.7

Table 5. Performance metrics on MWPBENCH. All evaluations were conducted utilizing the driver provided by MWPBENCH, ensuring a
consistent and fair comparison. Within each section, the highest results are highlighted in bold font. “AGIE” stands for AGIEval.

leave the training set scaling beyond two million examples
to future work.

5.2. Ablation on Concept Extraction

In the concept extraction process (Section 3.1), we use all
the 20K seed questions. We attempt to answer the follow-
ing two questions. 1) Does the number of seed questions
matter? 2) Does the number of extracted concepts matter?
We control the size of resulting training examples to 25K
for fast experimentation. In all experiments, we use the
LLaMA-2 7B model as our backbone model.

Number of Seed Questions To assess the influence of
seed questions, we firstly randomly remove 50% of the seed
questions from the MWPBENCH training set (i.e., we use
only 10K seed questions). The results are shown in Table
6. We observe the macro average on MWPBENCH drops
by 2.9%. Further, when we limite the data source of seed
questions exclusively to the training sets of GSM8K and
MATH, there is a performance decrease of 3.5%. These
results above indicate that incorporating of a larger and
more diverse set of seed questions is beneficial.

Number of Math Concepts Additionally, we examine the
impact of extracted math concepts. As shown in Table 6, by
removing half of the topics or knowledge points, we observe
a notable decrease in the macro average on the MWPBENCH.
Particularly, removing knowledge points lead to a greater
decrease in performance (i.e., -8.6% with 50% knowledge
points v.s. -2.3% with 50% of topics). This highlights the
essential role that knowledge points play in enhancing the
effectiveness of MathScale.

Methods Macro
Average

Relative
Change

MathScale 14.5 -

Remove 50% Seed Questions 14.0 -2.9%
Restrict Data Source
to GSM8K and MATH only 13.9 -3.5%

Remove 50% Topics 14.1 -2.3%
Remove 50% Knowledge Points 13.2 -8.6%

Table 6. Ablation studies of concept extraction with a control train-
ing size of 25K on MWPBENCH.

5.3. On Validating Generated Data

The generated QA pairs in MathScaleQA might be incorrect.
Therefore, we introduce a separate validation step in Sec-
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Figure 3. Performance on MWPBENCH using different sizes of training dataset in MathScaleQA.

tion 3.4. In this section, we design controlled experiment
on 5K generated data from MathScaleQA and again using
LLaMA-2 7B as our base model.

GPT-4 v.s. GPT-3.5 Accuracy We manually annotate
100 randomly chosen generated data points and gener-
ate answers with GPT-3.5-Turbo and GPT-4. GPT-4
demonstrate an impressive accuracy of 87%, significantly
outperforming the accuracy of 69% by GPT-3.5-Turbo.
Therefore, we used GPT-4 to generate reference solutions
and validate our synthetic solutions, replacing any incorrect
solutions with the GPT-4 reference solutions.

Results Within the 5K examples, 26% of the solutions are
identified as incorrect by GPT-4 and are replaced. We have
another two settings with either all GPT-3.5 solutions and
GPT-4 solutions. The results are shown in Table 7 and we
observe that using original 3.5-Turbo solutions lead to a
similar results as using the validation step.

This observation is counter-intuitive. Maybe because train-
ing on synthetic data generated from GPT-3.5 is essential
distillation. Even if some solutions are incorrect, they may
still help to the open-source LLMs (e.g., LLaMA-2 or Mis-

tral) to mimic the distributions of GPT-3.5. We also notice
that in neural machine translation distillation, the step of val-
idating incorrect translations is also ignored (Kim & Rush,
2016). Considering the high cost of GPT-4 and similar re-
sults obtained, we opt to omit the validation and correction
step from the final MathScale pipeline4.

5.4. Performance on a Fresh Math Dataset

While MathScaleQA generated by GPT-3.5 is rigorously
decontaminated to prevent overlap with the MWPBENCH
test set, there may still be small chance that some of the test
sets have been leaked to GPT-3.5-Turbo or contained in
the training data of LLaMA-2. Because GPT-3.5-Turbo
uses human annotated queries submitted by users through
their APIs5. These queries may include test sets such as
GSM8K. The training set of LLaMA-2 is not released and
we are not sure if some examples in test sets of MWPBENCH
are included or not.

4We are not trying to draw the conclusion that if we replace
GPT-3.5 with GPT-4 in all steps of MathScale (see more details in
Appendix A.5).

5https://openai.com/research/instruction-following
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Methods Micro Average Macro Average

100% GPT-3.5 Solutions 10.6 11.5
74% GPT-3.5 Solutions and 26% GPT-4 Corrected Solutions 10.2 11.1
100% GPT-4 Solutions 9.8 10.9

Table 7. Ablation studies of validation step with a control training size of 5K on MWPBENCH.

To address this issue, we manually curate a new dataset
comprising the latest 30 math questions from latest Gaokao
Math exam, held in June for China National Higher Edu-
cation Entrance Examination. We term this dataset, Fresh-
GaokaoMath-2023, which we believe Fresh-GaokaoMath-
2023 is not likely to be included in the training data of
LLaMA-2 or GPT-3.5-Turbo. Because LLaMA-2 and
GPT-3.5-Turbo are released before Fresh-GaokaoMath-
2023 is created.

We compare our LLaMA-2 7B based model MathScale-
7B against two other LLaMA-2 7B based models
(i.e., WizardMath-7B and MetaMath-7B) as well as
GPT-3.5-Turbo and GPT-4. Results are in Table 8.
MathScale consistently surpasses WizardMath and Meta-
Math, which aligns with the main results shown in Table
5. It demonstrates the robustness and adaptability of Math-
Scale in handling fresh math questions.

Model Fresh-GaokaoMath-2023

GPT-4 43.3
GPT-3.5-Turbo 40.0
WizardMath-7B 13.3
MetaMath-7B 16.6
MathScale-7B 30.0

Table 8. Performance metrics on Fresh-GaokaoMath-2023.

6. Related Work
ChatGPT-based Instruction Tuning A pivotal aspect driv-
ing advancements in math instruction tuning is the use of
ChatGPT for data synthesis. For instance, WizardMath (Luo
et al., 2023) introduced reinforced evol-instruct which inte-
grates five operations: adding constraints, deepening, con-
cretizing, increasing reasoning steps, and complicating in-
put, thereby facilitating comprehensive evolution. Similarly,
MetaMath (Yu et al., 2023) employs a bootstrapping strategy
for questions, incorporating answer augmentation, rephras-
ing, self-verification, and FOBAR. While these methods are
effective, the breath space is inherently confined to manually
designed operations. Our approach seeks to enable Chat-
GPT to emulate cognitive processes in human mathematical
learning, thus overcoming the limitations faced by previous
methodologies.

Tool-Integration Instruction Tuning Recent studies have
also explored integrating tools into ChatGPT-based instruc-
tion tuning for mathematics. ToRA (Gou et al., 2023) com-

bines natural language reasoning with program-based tool
usage to synthesize trajectory data. Each trajectory itera-
tively concatenates reasoning, programming, and program
outputs until the final answer is reached. Our current focus
is solely on natural language reasoning. While tool integra-
tion within the MathScale pipeline is an intriguing prospect,
we reserve its exploration for future research.

7. Conclusions
We propose MathScale, a simple and scalable method to cre-
ate high-quality mathematical reasoning data using frontier
LLMs. We also construct MWPBENCH, a comprehensive
benchmark of Math Word Problems covering K-12, col-
lege, and competition level math problems. Evaluated on
MWPBENCH, MathScale-7B achieves state-of-the-art per-
formance across all datasets, surpassing its best peers of
equivalent size by 42.8% in micro average accuracy and
43.6% in macro average accuracy, respectively.
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A. Appendix
A.1. MWPBENCH: Transform Non-Word Problems into Word Problems

For datasets like TAL-SCQ (TAL, 2023), GaokaoBench-Math (Zhang et al., 2023), and AGIEval (Zhong et al., 2023), the
problems are presented in a multiple-choice format. To eliminate the influence of the problem type and concentrate on the
intrinsic ability of LLMs to address mathematical problems, we converted these non-word problems into word problems.

A.1.1. FILTERING QUESTIONS

Initially, we identified and filtered out questions that rely heavily on the multiple-choice format. This filtering was done
using specific keywords and phrases that are indicative of multiple-choice questions.

1 def is_bad_question(question):
2 question = question.lower()
3

4 keywords = [
5 "?",
6 "which of the following",
7 "which one",
8 "which is",
9 "the following",

10 "which statement"
11 ]
12

13 for keyword in keywords:
14 if keyword in question:
15 print(f"Filtered question: {question}")
16 return True
17 return False

Listing 1. Filtering questions

A.1.2. CREATING QUESTION-ANSWER PAIRS

After filtering out the aforementioned questions, the remaining questions were paired with their corresponding correct
answer choices. This transformation resulted in a format where each problem is presented as a word problem followed by its
solution.

A.2. MWPBENCH: Translation of Non-English Problems to English

For several datasets, namely Math23k (Wang et al., 2017), Ape210k (Zhao et al., 2020), GaokaoBench-Math (Zhang et al.,
2023), and AGIEval-Gaokao (Zhong et al., 2023), the problems are originally presented in Chinese. To ensure uniformity
and mitigate the effects of multilingual representations, we translated these Chinese problems into English. The translation
was facilitated by the GPT-3.5-Turbo API. Due to parsing errors encountered during the post-processing, a few examples
were excluded. The prompt template employed for the translation request is provided below:

I want you to act as a Math Translator. Your task is to translate Chinese math questions into English math

questions.

Make sure to keep the original question numbers.

Make sure to keep the math formula in Latex format.

The translations should be clear, accurate, and easily understandable for students who are native English speakers.

# Chinese Math Questions #:

<insert chinese questions>

# English Math Questions #:
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A.3. CollegeMath: Extraction from textbooks

To construct the CollegeMath dataset, we made use of the GPT-3.5-Turbo API to parse and extract questions and answers
from raw, segmented LaTeX exercises and their corresponding solutions.

A.3.1. EXTRACTING QUESTIONS FROM EXERCISES

The primary goal was to convert raw, potentially unstructured questions from math textbooks into well-formulated LaTeX-
formatted questions. Below is the prompt template we utilized for this extraction process:

I want you to act as a Math Parser. Your task is to convert raw messy questions from a math textbook into

well-structured LaTeX-formatted questions.

Please ensure to retain the original question numbers.

If needed, prepend the original instructions to the parsed questions to make them more comprehensible.

If needed, skip the broken questions.

<insert demo>

#Raw Questions#:

‘‘‘

<insert a chapter of practice>

‘‘‘

#Well-structured LaTeX-formatted Questions#:

A.3.2. EXTRACTING ANSWERS FROM SOLUTIONS

Similarly, for answers, our aim was to transform raw, messy answers from textbooks into clear, LaTeX-formatted answers.
Here’s the template for this task:

I want you to act as a Math Parser. Your task is to convert raw messy answers from a math textbook into

well-structured LaTeX-formatted answers.

Please ensure to retain the original answer numbers.

If needed, skip the broken answers.

<insert demo>

#Raw Answers#:

‘‘‘

<insert a chapter of answer>

‘‘‘

#Well-structured LaTeX-formatted Answers#:

By employing the aforementioned prompt templates, we were able to extract a comprehensive set of questions and answers,
thereby forming the foundation of the CollegeMath dataset.

A.4. MathScale: Concrete Examples

A.4.1. EXTRACTED TOPICS

A set of 30 topics, randomly chosen, is listed below to illustrate the variety:

"Arithmetic operations" "Word problem solving" "Mathematics" "Money and finance" "Problem-solving strategies"

"Arithmetic" "Multiplication" "Proportions" "Basic arithmetic operations" "Conversion of units" "Measurement and

weight" "Multiplication and addition" "Budgeting" "Basic arithmetic" "Wages and overtime" "Calculating earnings"

13
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"Arithmetic Sequences" "Exponential Growth" "Financial calculations" "Problem solving" "Algebraic expressions"

"Economics" "Time" "Business and finance" "Ratio and proportion" "Problem-solving" "Time calculations" "Addition"

"Distance" "Speed"

A.4.2. EXTRACTED KNOWLEDGE POINTS

Similarly, we provide a list of 30 knowledge points, chosen at random, to demonstrate the depth and breadth of content:

"Random selection of marbles" "Definition and properties of dot product" "Manipulation of complex numbers"

"Calculation of time required to complete a task" "How to apply the concept of a seven-day cycle" "Distinct numbers"

"Expectation of a function of a random variable" "Ability to calculate total time" "Combinations of numbers"

"Calculation of weekly income" "Relative motion" "Understanding the relationship between centimeters and kilometers"

"Diagonalizing a matrix" "Proportional relationships between two quantities" "Ergodic Markov chain" "Addition of

values" "Counting the number of cars" "Converting fractions to whole numbers" "Identifying relationships between

different variables" "Ability to set up and solve a proportion equation" "Addition and subtraction of matrices"

"Using logarithms to solve exponential equations" "Probability of rolling a specific number on a six-sided die"

"Divisibility of polynomials" "Application of multiplication to calculate total revenue" "Identifying the highest

and lowest scores" "Ability to calculate percentages." "Geometric interpretation of dot product" "Dividing complex

numbers" "Understanding weight units"

A.4.3. A TRAINING EXAMPLE OF MATHSCALEQA

We provide a concrete training example from MathScaleQA:
---------------------gpt-3.5 generated question wrapped in alpaca---------------------
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:

Given the matrix A =

⎛
⎜
⎝

1 2 3
2 5 2
3 1 4

⎞
⎟
⎠
, find the rank of A.

### Response:
---------------------gpt-3.5 generated answer---------------------
To find the rank of a matrix, we need to find the largest number of linearly independent rows (or columns). We can
use the row echelon form to help us determine this.

First, we perform the following row operations to obtain the row echelon form:
1. Subtract 2 times the first row from the second row.
2. Subtract 3 times the first row from the third row.

We obtain the matrix:

⎛
⎜
⎝

1 2 3
0 1 −4
0 −5 −5

⎞
⎟
⎠

Next, we perform the following row operations: 1. Add 5 times the second row to the third row.

We obtain the matrix:

⎛
⎜
⎝

1 2 3
0 1 −4
0 0 −15

⎞
⎟
⎠

Now, our matrix is in row echelon form, and we can see that there are 3 non-zero rows, which means there are 3

linearly independent rows. Therefore, the rank of A is 3.

The answer is 3.

A.5. Why Choose GPT-3.5?

We are not trying to draw the conclusion that if we replace GPT-3.5 with GPT-4 in all steps of MathScale, we will get worse
results. On the contrary, we strongly believe that upgrading GPT-3.5 to GPT-4 for the whole MathScale pipeline, the results
are highly likely to be better (with potentially better topic/KP extraction and better question generation). We use GPT-3.5 in
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our pipeline because 1) it is cheaper and therefore friendly to scaling experiments; 2) it is easier to compare with previous
work (e.g., MetaMath, WizardMath), which are also based on GPT-3.5.

Why GPT-4 based solutions lead to slightly worse results?

• the capability gap between LLaMA-2-7b and GPT-4 is larger than that between LLaMA-2-7b and GPT-3.5 (see Sec
5.3)

• we observed that the GPT-4 based solutions are 15% longer than GPT-3.5 based solutions on average, which might be
harder to learn.

A.6. Comparison under the Same Training Size

Models Train
Size GSM8K MATH College

Math TAL Math23k Ape210k
Gaokao
Bench
Math

AGIE
Gaokao
Math

AGIE
SAT
Math

Micro
Average

Macro
Average

WizardMath-7B 96.5K 52.8 10.3 6.8 14.0 32.5 19.2 5.9 6.1 22.5 16.3 18.9
MathScale-7b 96.5K 51.3 16.8 12.2 25.5 44.0 28.1 9.0 5.6 35.2 22.7 25.2

MetaMath-7b 395K 66.2 20.6 9.4 22.5 44.0 29.9 5.9 5.1 36.2 24.7 26.6
MathScale-7b 300K 59.5 21.8 14.9 27.9 49.4 32.7 10.0 7.6 45.0 27.1 29.8

Table 9. Comparison with WizardMath and MetaMath under the Same Training Size on MWPBENCH.

We show our final results with 2M examples in Table 5 to demonstrate how far our method can go by scaling up. For
comparison with other models with the same number of examples, please refer to Figure 3. The last two figures show our
method always obtain a better results compared to MetaMath and WizardMath on macro/micro average precisions with a
comparable sized training examples. The detailed results are shown the Table 9. Note that we do not have results of using
395K examples for MathScale-7b. Therefore, we use the results of 300k instead to compare with MetaMath-7b. Even if we
used fewer training examples, we still obtain better results on 8 out of 9 datasets.

A.7. Evaluation on Individual Topics

We examine the subset performances on MATH and CollegeMath, as shown in Table 10 and Table 11, respectively. It
is evident that MathScale consistently delivers exceptional results across diverse topics. For CollegeMath, despite the
MWPBENCH training set’s seed questions only encompassing algebra, precalculus, and calculus, MathScale demonstrates
robust performance in OOD’s test sets including vector calculus, probability, and linear algebra. However, an area of
challenge is differential equations, where all models show limited success.

We further provide an example of MathScale Mistral answering a question from MATH test set:

---------------------a MATH test question wrapped in alpaca---------------------

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:

Suppose that I have 6 different books, 2 of which are math books. In how many ways can I stack my 6 books on a

shelf if I do not want the math books to be next to each other?

Response:

---------------------MathScale-Mistral generated answer---------------------

Let’s first find the total number of ways to stack the 6 books on the shelf, which is simply 6!. Now, let’s count

the number of ways in which the math books are next to each other. We can treat the two math books as a single

block, which can be stacked in 5! ways. However, there are 2! ways to arrange the math books within the block, so

the total number of ways in which the math books are next to each other is 2! ⋅ 5!. Therefore, the number of ways in

which the math books are not next to each other is 6! − 2! ⋅ 5! = 480.

The answer is 480.
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Model MATH

Prealgebra Algebra Intermediate
Algebra Precalculus Probability Geometry Number

Theory

closed-source models
GPT-4 75.2 71.3 25.3 30.4 52.5 41.7 45.7
GPT-3.5 59.3 55.5 17.3 20.1 30.1 29.8 30.3

open-source models fine-tuned on LLaMA-2 13B
WizardMath 23.6 21.4 7.5 7.1 10.9 12.3 6.8
MAmmoTH-CoT 21.4 17.2 6.9 7.8 11.8 8.7 6.2
GAIR-Abel 28.3 23.3 8.1 9.1 13.0 15.0 9.4
MetaMath 39.3 32.1 11.9 10.2 18.5 17.7 15.3
MathScale 52.9 53.4 13.6 17.3 24.6 25.6 25.7

open-source models fine-tuned on LLaMA-2 7B
WizardMath 16.5 15.2 6.3 5.8 6.7 8.5 5.9
MAmmoTH-CoT 15.1 12.5 6.5 4.3 9.9 7.3 6.1
GAIR-Abel 21.4 17.6 7.7 6.9 10.1 9.8 7.4
MetaMath 34.0 29.6 8.7 9.8 17.5 15.4 17.5
MathScale 48.9 49.3 12.4 15.2 23.2 23.3 23.8

open-source models fine-tuned on Mistral 7B
WizardMath v1.1 51.4 50.7 13.9 19.9 25.5 24.4 22.4
MetaMath Mistral 47.1 41.4 13.2 12.6 23.4 23.7 19.8
MathScale Mistral 55.9 52.8 14.6 18.6 28.9 26.5 27.5

Table 10. Performance metrics across various topics on MATH. Within each section, the highest performing results are highlighted in bold
font.

Model CollegeMath

Algebra Precalculus Calculus Vector
Calculus Probability Linear

Algebra
Differential
Equation

closed-source models
GPT-4 41.1 21.2 20.6 29.0 11.5 6.5 1.2
GPT-3.5 37.7 16.6 17.8 32.7 10.0 3.0 1.2

open-source models fine-tuned on LLaMA-2 13B
WizardMath 12.0 7.4 8.2 14.5 2.8 0.3 0.3
MAmmoTH-CoT 11.2 4.2 7.0 8.1 2.8 1.5 0.0
GAIR-Abel 15.3 6.0 5.0 3.6 2.1 1.9 1.6
MetaMath 19.4 9.8 5.6 8.1 1.4 1.1 0.3
MathScale 35.0 17.8 15.8 24.5 7.9 5.0 1.9

open-source models fine-tuned on LLaMA-2 7B
WizardMath 9.7 5.2 10.2 11.8 1.4 1.1 0.3
MAmmoTH-CoT 9.5 4.8 7.0 10.0 2.1 3.4 0.0
GAIR-Abel 12.0 4.2 5.2 6.3 3.5 1.5 1.6
MetaMath 19.1 6.8 4.4 5.4 2.8 2.6 0.3
MathScale 34.2 19.6 18.8 27.2 7.9 5.0 0.6

open-source models fine-tuned on Mistral 7B
WizardMath v1.1 29.3 14.0 11.4 16.3 5.0 2.3 0.0
MetaMath Mistral 28.1 12.2 11.2 21.8 7.1 3.8 0.6
MathScale Mistral 37.1 18.0 19.4 27.2 8.6 3.8 1.6

Table 11. Performance metrics across various topics on CollegeMath. Within each section, the highest performing results are highlighted
in bold font.
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