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ABSTRACT

We present Wildflare GuardRail, a guardrail pipeline designed to enhance the
safety and reliability of Large Language Model (LLM) inferences. Wildflare
GuardRail integrates four key functional modules, including SAFETY DETEC-
TOR, GROUNDING, CUSTOMIZER, and REPAIRER, and addresses safety chal-
lenges across multiple dimensions of LLM inferences. Wildflare GuardRail incor-
porates an unsafe content detection model that identifies issues such as toxicity,
bias, and prompt injection, a hallucination detection model that identifies hallu-
cinated LLM outputs and simultaneously provides explanations for the hallucina-
tions, and a fixing model that corrects LLM outputs based on these explanations.
Additionally, Wildflare GuardRail employs GROUNDING to enrich user queries
with relevant context, and utilizes CUSTOMIZERto allow users to define flexible
protocols for handling specific safety requirements. Our experiments demonstrate
that Wildflare GuardRail enhances safety and robustness in LLM inferences, of-
fering adaptable and scalable solutions for LLM inferences.

1 INTRODUCTION

Large Language Models (LLMs) inference guardrail is critical in real-world applications. Safety
risks may exist in the user prompts as well as LLM responses during the users’ interactions with
LLMs. Malicious users may exploit the vulnerabilities of LLMs by interacting with them with
crafted prompts, e.g., prompt injections Liu et al. (2023); Kumar et al. (2023); Zhu et al. (2023);
Chu et al. (2024); Tedeschi et al. (2024); Zhao et al. (2024). The outputs generated by LLMs can
also be offensive, discriminatory, nonsensical, factually incorrect (e.g. hallucinations), etc Zhang
et al. (2023; 2024a); Wang et al. (2023); Fan et al. (2023); Huang et al. (2023a); Xu et al. (2024b),
as the models are often trained on publicly available data that have uncontrolled sources and may
include unsafe contents, which can propagate through the model’s responses and produce harmful
or inappropriate outputs.

Safeguarding LLMs is crucial and cannot be overstated. Unsafe inputs can not only manipulate
the LLM outputs but also reveal sensitive information, bypass system instructions, or even execute
harmful commands Russinovich et al. (2024); Xu et al. (2024a); Chang et al. (2024); Liu et al.
(2023); Kumar et al. (2023); Zhu et al. (2023); Chu et al. (2024); Tedeschi et al. (2024); Zhao
et al. (2024). Problematic LLM outputs can also confuse users, perpetuate negative stereotypes, and
undermine public trust in LLM applications. This is particularly problematic in use cases where the
accurate response is critical, such as healthcare, finance, and legal systems.

Addressing the safety issues associated with LLM inference is complex, as safety risks can arise at
any point when processing a user prompt and often necessitate coordination of different methods.
To safeguard LLM inference from unsafe or problematic outputs, standalone approaches deploy ML
models to detect different types of safety risks in the LLM outputs (Hanu & Unitary team, 2020;
Lees et al., 2022; Markov et al., 2023). However, while these models can identify safety issues,
they are not able to fix errors in the outputs. This gap can be partially bridged by employing a
separate model designed specifically for fixing detected errors. Nevertheless, this approach still fails
to address certain challenges, such as hallucinations, which often stem from insufficient, inaccurate,
or outdated source information (Xu et al., 2024b; Zhang et al., 2023; Huang et al., 2023a). In
light of this, we can employ retrieval-augmented generation (RAG) Lewis et al. (2020); Chen et al.
(2024); Gao et al. (2023), which mitigates hallucinations by enriching the user query with additional
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contextual information from external data sources, thus effectively enhancing the LLM’s responses
in more factual content. However, these approaches fail to support quick customization of user needs
and cannot handle rapidly changing contexts and system settings, e.g. newly recognized offensive
terms related to society or politics that require to be filtered out in the content generated by LLMs. In
such cases, a simpler, code-based rule approach, denoted as “wrappers”, can be more effective and
flexible Mohiuddin (2024). As an example, consider a scenario where users want to add some texts
at the beginning of the LLM outputs to warn if there are any phishing URLs in the texts. To achieve
this goal, we can utilize crafted regex patterns to obtain URLs in the LLM outputs, and call APIs,
such as Google Safe Browsing Google (2005), to find out unsafe URLs. Such a method does not
require model training or additional supplementary data sources and can be easily deployed in the
LLM system, thus is more flexible to be quickly adapted to new safety challenges as they emerge.

Enhancing the overall safety of LLM inference requires a comprehensive pipeline that orches-
trates different functional components, such as ML models, RAG, and wrappers, while ensuring
these components work collaboratively and harmoniously. As a result, developing a comprehensive
guardrail pipeline for LLM inference becomes essential. A guardrail pipeline for LLM inference
integrates various functional modules, which manages and mitigates potential safety risks from a
global perspective while enabling users to customize workflows and wrappers to achieve high effi-
ciency and flexibility.

This paper proposes Wildflare GuardRail, a guardrail pipeline that enhances LLM inference safety.
Wildflare GuardRail systematically manages safety challenges in LLM applications comprehen-
sively, thus advancing a safe and scalable deployment of LLM applications. It also adapts to new
safety challenges with high flexibility, thus is suitable for changing user requirements and system
environments. Wildflare GuardRail orchestrates several key components with different specializa-
tions, including 1) SAFETY DETECTOR that identifies safety risks in user inputs and LLM outputs,
2) GROUNDING that utilizes vector databases to contextualize user queries, 3) CUSTOMIZER that
leverages lightweight wrappers to edit LLM outputs according to user needs, and 4) REPAIRER that
correct errors detected in the LLM outputs, especially hallucinations.

Our contributions are summarized as follows:

i) Comprehensive safety pipeline. We propose Wildflare GuardRail, a comprehensive pipeline
for safeguarding LLM inferences. Wildflare GuardRail incorporates multiple modules, including
SAFETY DETECTOR, GROUNDING, CUSTOMIZER, and REPAIRER, to comprehensively address
safety challenges, rather than treating each safety issue in isolation.

ii) Specialized fine-tuned models. We utilized our pretrained LLM1 as the base model and fine-
tuned three models: i) an unsafe content detection model that identifies issues such as toxicity,
bias, prompt injection, etc (§4.1); ii) a hallucination detection model that simultaneously detects
hallucinated content and provides explanations for the hallucinations (§4.2); and iii) a fixing model
that corrects problematic LLM outputs based on the explanations provided by the hallucination
detection model (§7). Our models are light-weighted and can be deployed on edge devices.

iii) Multifaceted hallucination handling. We address the hallucination issue through a multi-
faceted approach. We first detect hallucination as well as generates the explanations of hallucination
with SAFETY DETECTOR(§4.2), then utilize REPAIRER to correct the problematic content based on
the reason of hallucination (§7).

iv) Effective grounding. We propose two indexing methods that assist retrieving knowledge from
vector data storage in GROUNDING, and compare their effectiveness in Exp 3 (§5).

v) Flexible User-defined safety protocols. Our pipeline allows users to define protocols for editing
LLM outputs or addressing emerging safety challenges through CUSTOMIZER. This approach is
adaptable to evolving user requirements and supports real-time solutions for addressing safety issues
in LLM deployments, without the need for pretraining or fine-tuning to meet new requirements (§6).

Takeaways: i) A single method is insufficient to address the wide range of potential risks in LLM
inference. Different functional modules with specialized capabilities are necessary to handle various
aspects of safety. ii) The term “AI safety” is too narrow for the current AI landscape and should be

1Details of the model will be added later to meet anonymity requirements.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

expanded to “AI quality assurance” to capture broader challenges and possibilities, including safety,
accuracy, reliability, and robustness, in the rapidly evolving AI environment.

2 RELATED WORK

Moderation-based harmfulness mitigation approaches leverage rule-based methods, ML classifiers,
and human interfaces to monitor, evaluate, and manage the outputs produced by LLMs to ensure
the outputs generated by LLMs are safe, appropriate, and free from harmful content (Markov et al.,
2023; Rebedea et al., 2023; Lees et al., 2022; Hanu & Unitary team, 2020; Mohiuddin, 2024).

Close-sourced solutions. OpenAI Moderation API (Markov et al., 2023) and Perspective
API (Lees et al., 2022) utilize ML classifiers to detect undesired contents. These approaches pro-
vide scores for pre-defined categories of harmful content, such as toxicity, identity attacks, insults,
threats, etc. These tools are widely used in content moderation to filter out harmful content and has
been incorporated into various online platforms to protect user interactions (team, 2008). However,
they are less adaptable to emerging safety risks as they are not open-sourced and cannot be finetuned.

Opensourced solutions. LlamaGuard (Inan et al., 2023) leverages the zero/few-shot abilities of
the Llama2-7B architecture (Touvron et al., 2023) and can adapt to different taxonomies and sets of
guidelines for different applications and users. Despite its adaptability, LlamaGuard’s reliability de-
pends on the LLM’s understanding of the categories and the model’s predictive accuracy. However,
deploying LlamaGuard on edge devices is challenging due to its large number of parameters, which
typically exceed the computing resources available on edge devices. Detoxify (Hanu & Unitary
team, 2020) offers open-source models designed to detect toxic comments. These models, based on
BERT (Devlin et al., 2018) and RoBERTac (Liu et al., 2019) architectures, are trained on the Jigsaw
datasets (JIGSAW, 2019; 2018; 2020). Detoxify provides pre-trained models that can be easily in-
tegrated into other systems to identify toxic content. Also, the models are able to recognize subtle
nuances in language that might indicate harmful content, making them effective for moderation.

Customizable solutions. Guardrails (Mohiuddin, 2024) and Nvidia NeMo Guardrails (Rebedea
et al., 2023) employ customizable workflows to enhance LLM safety. Guardrails (Mohiuddin, 2024)
define flexible components, called “rails”, to enable users to add wrappers at any stage of inference,
which enables users to add structure, type, and quality guarantees to LLMs outputs. Such rails can be
code-based or using ML models. However, it does not have self-developed model and miss a unified
solution for general cases. Nvidia NeMo Guardrails (Rebedea et al., 2023) functions as an interme-
diary layer that enhances the control and safety of LLMs. This framework includes pre-implemented
moderation dedicated to fact-checking, hallucination prevention, and content moderation, which of-
fers a robust solution for enhancing LLM safety.

We compare our approaches with the existing approaches in Table 1.

Table 1: Comparison of moderation-based harmfulness mitigation approaches
Feature Perspective API Open AI Nvidia NeMo GuardRails Detoxify Llama Guard Ours

Open-sourced ✗ ✗ ✓ ✓ ✓ ✓ ✓
Self-developed model ✓ ✓ ✗ ✗ ✓ ✓ ✓
Deployable on edge devices ✓ ✓ - - ✓ ✗ ✓
Zero-shot generalization ✓ ✓ - - ✓ ✓ ✓
Explainable results ✗ ✗ ✗ ✗ ✗ ✗ ✓
Flexible workflow ✗ ✗ ✓ ✓ ✗ ✗ ✓

3 WILDFLARE GUARDRAIL OVERVIEW

Wildflare GuardRail enhances safety of LLM inputs and outputs while improving their quality.
Specifically, it achieves two goals, 1) all user inputs are safe, contextually grounded, and effec-
tively processed, such that the inputs to the LLMs are of high-quality and informative; and 2) the
output generated by the LLMs are evaluated and enhanced, such that the outputs passed to users can
be both relevant and of high quality. The pipeline can be partitioned into two parts, including 1)
processing before LLM inference that enhances user queries, and 2) processing after LLM inference
that detects undesired content and handle them properly. We overview our pipeline in Figure 1.
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Figure 1: Overview.

1. Pre-inference processing. Before sending user queries to LLMs, Wildflare GuardRail detects
if there are any safety issues in the queries with SAFETY DETECTOR and ground the queries with
context knowledge with GROUNDING. SAFETY DETECTOR monitors user inputs to identify and
reject queries that might be unsafe. The monitoring includes typical safety checks, including toxic-
ity, stereotypes, threats, obscenities, prompt injection attacks, etc. Any form of unsafe content will
lead to the queries being rejected. Inputs that pass this initial safety check are grounded with context
with GROUNDING, where the user query is contextualized and enhanced with relevant knowledge
retrieved from the vector data storage. By equipping the query with some context knowledge, the
LLM can do inference with enriched information, thus can reduce hallucinations when generating
responses. The details of SAFETY DETECTOR and GROUNDING will be introduced in §4 and §5,
respectively.

2. Post-inference processing. Upon LLM finishing inference, SAFETY DETECTOR detects safety
issues in the LLM outputs, specifically, hallucinations. This is because LLM applications typically
leverages well-developed LLMs or APIs, such as LLaMA (Touvron et al., 2023) and ChatGPT
API (Markov et al., 2023), which are generally safe and less likely to generate toxic or other unsafe
content, while hallucinations occur frequently. The SAFETY DETECTOR identifies hallucinations
and provides reasons for the hallucinations, such that Wildflare GuardRail can utilize the reasoning
for later refinement of the LLM outputs. To achieve goal, Wildflare GuardRail employs a text
generation model to generate explainable results, and adjusts the loss function during training to
ensure the model to produce classification results. After SAFETY DETECTOR finishes detection,
REPAIRER fixes the problematic content or aligns the outputs with some rule-based wrappers to
meet user expectations. If the outputs are difficult to fix, such as those containing hallucinations,
REPAIRER will call a fixing model to fix the answers. Details about REPAIRER can be found in §7.

Table 2: Training data for unsafe content detection in SAFETY DETECTOR

Dataset Train Validation Test

HEx-PHI (Qi et al., 2024) 330 0 0
OpenAI (Markov et al., 2023) 160 1,500 0
Hotpot QA (Yang et al., 2018) 3,000 2,500 500
Truthful QA (Lin et al., 2021) 500 100 100
Awesome ChatGPT Prompts (Akın, 2023) 0 150 0
Jigsaw Unintended-Bias Data (JIGSAW, 2019) 100,000 2,000 300
GPT-Jailbreak (Romero, 2023) 0 78 0
Jailbreak Hao (2023) 400 0 70
Personalization Prompt (Siah, 2024) 1,000 800 200
QA Chat Prompts (Testing, 2024) 0 200 0
ChatGPT Prompts (Rashad, 2023) 350 0 0
10k Prompts Ranked (Community, 2024a) 500 500 200
Iterative Prompt (Community, 2024b) 500 500 200
Instruction Following (Kojohnjaratkul, 2023) 200 340 0

4 WILDFLARE GUARDRAIL SAFETY DETECTOR

SAFETY DETECTOR addresses unsafe inputs and inappropriate LLM responses to ensure that both
the user queries provided to the models and the LLM outputs are safe and free from misinformation.
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Algorithm 1: Training data processing for hallucination detection.
Inputs: D: a training dataset that contains “context”, “inputs”, “llm_answer”, and “labels” for
hallucination; prompt_template: for formulating the hallucination detection data, see Figure 2;
GPT_reasoning_template: for generating prompts for GPT API, see Figure 2.

Outputs: Dt: the training dataset.
1 Function process_data(D) begin
2 Dt ← ϕ
3 for d ∈ D do
4 if is_hallucination(d) then
5 halu_reason ← GPT_API (GPT_reasoning_template(d[“question”],

d[“context”], d[“llm_answer”]))
6 response ← “Yes, ” + halu_reason
7 d′ ←prompt_template(d[“question”], d[“context”], d[“llm_answer”], response)

else
8 d′ ←prompt_template(d[“question”], d[“context”], d[“llm_answer”], “No.”)
9 Dt← d′

10 return Dt

4.1 UNSAFE INPUT DETECTION

We developed a model to detect unsafe contents in user queries before they are processed by LLMs
for inference. While existing approaches categorize unsafe content into various types (e.g., toxicity,
prompt injection, stereotypes, harassment, threats, identity attacks, and violence) (Markov et al.,
2023; Wang et al., 2023; Hanu & Unitary team, 2020), our method employs a unified, binary classi-
fication model finetuned based on our opensourced LLM (Anonymous, 202X), classifying content
as safe or unsafe.

This strategy offers several key advantages, as follows: i) By fine-tuning our base model, which has
been trained on vast amounts of data, the classification model can leverage pre-existing knowledge
relevant to safety detection. ii) A binary classification of “safe” and “unsafe” is both efficient and
sufficient for LLM services, as any unsafe query should be rejected, regardless of the specific risk.
iii) This approach avoids the complexities and potential inaccuracies of categorizing overlapping or
ambiguous types of unsafe content in some publicly available datasets. For example, toxicity toward
minority groups could also be classified as bias, but current datasets may inadequately capture such
nuances. iv) Using straightforward code logic, we can transform public datasets for safety detection
into clear safe/unsafe labels, minimizing ambiguity and ensuring high-quality training data.

The biggest challenge in training such model is the discrepancy between the training data and real-
world user query distributions, where using traditional datasets alone can result in poor performance
due to their divergence from actual user queries (Markov et al., 2023). To mitigate these issues, we
integrated data of various domains and contexts to better simulate the variety of unsafe queries that
users might submit. We crafted a training dataset by combining samples randomly selected from 15
public datasets, as summarized in Table 2. Such a dataset captures diverse contents in user inputs in
practice, thus can be more representative on potential real-world inputs.

4.2 OUTPUT HALLUCINATION DETECTION AND REASONING

Hallucinations occur when the LLM generates responses that is inaccurate, fabricated, or irrele-
vant (Filippova, 2020; Maynez et al., 2020; Huang et al., 2023b; Rawte et al., 2023). Despite appear-
ing coherent and plausible, hallucinated LLM responses are unreliable, often containing fabricated,
misleading information that is divergent from the user input, thus fail to meet users’ expectations
and severely undermine the trustworthiness and utility of the LLM applications. While grounding
can mitigate hallucinations by contextualizing user inputs and enriching the informativeness of user
queries, it cannot eliminate hallucinations entirely. This is because hallucinations stem from nearly
every aspects of LLM training and inference, such as low-quality training data (Lin et al., 2021;
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<s>[INST] <<SYS>> You are a helpful assistant. 
<</SYS>> 

According to the Question and the Contexts, is there 
any hallucination in the LLM Answer? 

Question: The anti-war song "Highwire" appears on 
a 1991 live album by a group formed in what year? 

Context: "Highwire" is an anti-war song by The 
Rolling Stones featured on their 1991 live album 
"Flashpoint".The Rolling Stones are an English rock band 
formed in London in 1962. 

LLM response: "Highwire" appears on a 1991 live 
album by a group formed in 1988. 
[/INST] Yes, the hallucination in the LLM response occurs 
because the model incorrectly states that the group formed 
in 1988, when in fact The Rolling Stones formed in 1962.

<s>[INST] <<SYS>> You are a helpful assistant. 
<</SYS>> According to the Question and the Contexts, is 
there any hallucination in the LLM Answer? 

Question: The anti-war song "Highwire" appears on 
a 1991 live album by a group formed in what year? 

Context: "Highwire" is an anti-war song by The 
Rolling Stones featured on their 1991 live album 
"Flashpoint".The Rolling Stones are an English rock band 
formed in London in 1962. 

LLM response: 1962. 
[/INST] No. 

<s>[INST] <<SYS>> You are a helpful assistant. 
<</SYS>> According to the Question and the Context, 
is there any hallucination in the Answer? 

Question: {question}; 
Context: {context}; 
LLM response: {llm_answer}. 

[/INST] {response}. 

Explain why there is hallucination in the LLM answer. 
Question: {question}; Context: {context}; 
LLM response: {llm_answer}.

GPT hallucination reasoning prompt

Training data example: with hallucinationTraining data example: without hallucination

<s>[INST] <<SYS>> You are a helpful assistant. 
<</SYS>>  According to the Question and the 
Contexts, is there any hallucination in the LLM 
Answer? 
Question: {question}; Context: {context}; 
LLM response: {llm_answer}. [/INST]

Inference - prompt template

Training - prompt template

Figure 2: Prompt templates and sample training data for hallucination detection and reasoning.

Algorithm 2: Inference with hallucination detection model.
Inputs:M: hallucination detection model; tokenizer : tokenizer forM; q : a query submitted
by users; context : the context to answer the question; retrieved from vector data storage; a:
the answer returned by an LLM for the question; inference_prompt_template: see Figure 2.

1 Function inference(M, q , context , a, k) begin
2 prompt ←inference_prompt_template(q , context , a)
3 tokenized_prompt ← tokenizer (prompt)
4 halu_res ←M.generate(tokenized_prompt)
5 first_word_logits ← halu_res .logits[0],
6 results ← softmax (first_word_logits)
7 top_k_probs , top_k_indices ← top(results , k)
8 Phalu(a)← compute_halu_prob(top_k_probs, top_k_indices) // See Definition 10
9 if Phalu(a) ≥ 0.5 then return True;

10 return False

Kang & Choi, 2023) and randomness of sampling strategies (Chuang et al., 2023), and moreover,
the very nature probabilistic properties of LLMs.

Effectively handling hallucinations in LLM responses is both crucial and challenging for produc-
ing high-quality LLM responses. Existing works that detect presence of hallucinations are insuffi-
cient (Manakul et al., 2023; Liu et al., 2021). To provide high-quality responses to users, we should
handle the detected hallucinations properly, i.e., obtaining the explanations for the hallucinations in
the LLM responses and further, fixing the hallucinated responses if possible.

To this end, we propose utilizing our own LLM as base model (Anonymous, 202X) to finetune a
hallucination detection model for detecting hallucinated content and providing explanations, and
further, facilitating the subsequent REPAIRER in §7. The design of the model has the following
advantages: i) classification: it identifies the presence of hallucinations in the LLM output; and ii)
reasoning: it generates explanations for the hallucinated contents, offering insights for the subse-
quent correction in REPAIRER; iii) simultaneous classification and reasoning: it process i) and ii)
at the same time, which saves computation cost and improves efficiency; and iv) vast pre-training
data: it leverages pre-existing knowledge on hallucination in the base model, which may potentially
benefit hallucination detection and reasoning.

Training. We fed our base model with hallucination dataset to train a model for both detecting
and reasoning for the hallucination. However, public available datasets for hallucinated LLM re-
sponses are mainly classification datasets with texts and labels, e.g., HaluEval (Li et al., 2023a). To
address this, we utilize the GPT4 API (Markov et al., 2023) to generate explanations for halluci-
nated contents, and define a prompt template to create structured prompts based on the classification
data to make it suitable for classification and reasoning simultaneously. We demonstrate the prompt
templates and sample training data in Figure 2, and summarize data processing in Algorithm 1.
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Inference. We expect the LLM to directly output results whether the LLM response contains
hallucinations, i.e., the first token of outputs to be “Yes” or “No” as detection results, according to the
formatted data sample in Figure 2. However, the first token of the LLM response is probabilistic due
to the self-autoregressive nature of decoder-based text generation LLMs. To obtain desired outputs,
we formulate the text-generation outputs by utilizing the top-k first tokens (and their possibilities)
of the outputs to generate classification results. By default, k is 10.
Definition 1 (Probability of hallucination). Let a be an LLM answer, let {t1, ..., tk} be the top-k
potential first token, and let {p1, ..., pk} be their top-k probabilities. Let T be a tokenization function,
and let T ("Yes") and T ("No") be the tokens corresponding to “Yes” and “No”, respectively. The

probability of hallucination in a is Phalu(a) =
∑k

i=1 P (ti|ti∈T ("Yes"))∑k
i=1 P (ti|ti∈T ("Yes"))+

∑k
i=1 P (ti|ti∈T ("No"))

Detection results with Phalu(∗) ≥ 0.5 indicate the content is classified as “hallucinated”; otherwise,
the content is “safe”. The detailed procedure of inference is described in Algorithm 2.

5 WILDFLARE GUARDRAIL GROUNDING

Wildflare GuardRail GROUNDING enhances the contextual richness and informativeness of user
queries by leveraging external knowledge stored in vector database. Thus, LLMs can utilize such
contextual knowledge to generate high-quality outputs, particularly by grounding user queries before
they are passed to the LLMs for inference.

To support similarity search over the knowledge data, Wildflare GuardRail creates vector indexes by
vectorizing plaintext knowledge. This involves vectorizing entire knowledge entries to create vec-
tor indexes. Wildflare GuardRail employs two primary methods for indexing: i) Whole Knowledge
Index that creates indexes based on each entire data entry in the datasets; and ii) Key Information
Index that indexes only the key information in each data entry, i.e., questions in QA datasets. Whole
Knowledge Index reflects the data distribution and ensurers that the indexed data captures the con-
textual variety and complexity found in real-world queries, while Key Information Index focuses
on the core information of each data entry, thus facilitates efficient retrieval of relevant data. We
evaluate the effectiveness of indexes with callback, i.e., the probability of successfully retrieving
the original records from a dataset using Top-k queries. We experimentally evaluate the indexing
methods in §8.
Definition 2 (Callback). Let Dv be a vector data storage that contains n records, let Q be a plaintext
user query set, and let I(Q) be the vector index created based on Q. For each query q ∈ Q, let
Iq be the vector index created based on q, and let Dv(Iq) denote the set of Top-k records returned
by querying Dv with I(q), and let rq denote the most relevant record of q in Dv . The callback for
Top-k queries on the query set Q is defined as:

Ck(Q) =
1

|Q|
∑
q∈Q

[rq ∈ Dv(Iq)]

where [·] is Iverson Bracket Notation (Iverson, 1962), equal to 1 if the condition inside is true, and
0 otherwise.

To ensure effective and informative grounding, the distribution of the index should closely align
with query patterns, i.e., query distributions. By grounding user queries with knowledge retrieved
with a proper index, the LLMs can generate contextually appropriate responses, and further, reduce
hallucinations and improve the quality of the responses.

6 WILDFLARE GUARDRAIL CUSTOMIZER

Wildflare GuardRail CUSTOMIZER utilizes lightweight wrappers to flexibly edit or customize LLM
outputs to fix some small errors or enhancing the format of the answer. The wrappers integrate code-
based rules, APIs, web searches, and small models to efficiently handle editing and customization
tasks according to user-defined protocols. Wildflare GuardRail CUSTOMIZER offers several key ad-
vantages. It facilitates rapid development and deployment of user-defined protocols, which crucial
in production environments where real-time adjustments are necessary. In scenarios where training
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<s>[INST] <<SYS>> You are a helpful assistant. <</SYS>> 
The anti-war song "Highwire" appears on a 1991 live album by 
a group formed in what year? Here is the knowledge you can 
use: "Highwire" is an anti-war song by The Rolling Stones 
featured on their 1991 live album "Flashpoint".The Rolling 
Stones are an English rock band formed in London in 1962.  
[/INST] "Highwire" appears on a 1991 live album by a group 
formed in 1988. 
[INST] There is hallucination in the answer, here is the reason: 
The hallucination in the LLM response occurs because the 
model incorrectly states that the group formed in 1988, when in 
fact The Rolling Stones formed in 1962. Please fix your 
answer.  [/INST] 1962

<s>[INST] <<SYS>> You are a helpful assistant. <</SYS>> 
{question} Here is the knowledge you can use: {context} 
[/INST] {llm_hallucinated_answer}. 
[INST] There is hallucination in the answer, here is the 
reason: {hallucination_reason}. Please fix your answer. 
[/INST] {llm_correct_answer}

<s>[INST] <<SYS>> You are a helpful assistant. <</SYS>> 
{question} Here is the knowledge you can use: {context} 
[/INST] {llm_hallucinated_answer}. 
[INST] There is hallucination in the answer, here is the 
reason: {hallucination_reason}. Please fix your answer. 
[/INST] 

Inference - prompt template

Training - prompt template

Training data example

Figure 3: Prompt templates and sample training data for REPAIRER.

or fine-tuning LLMs is unfeasible due to time or resource constraints, this method provides an alter-
native for immediate output customization. Moreover, the wrappers enable flexible incorporation of
various tools and data sources, which enhances the applicability of Wildflare GuardRail and reduces
resource-intensive LLM calls.

Example 1 (Warning URLs). The objective was to detect if LLM outputs contain URLs and prepend
a warning message of the unsafe URLs at the beginning of the LLM outputs. CUSTOMIZER should
check the safety of the URLs founded, i.e., whether they are malicious or unreachable, and includes
such information in the warning if they were unsafe. CUSTOMIZER utilizes a regular expression
pattern to identify URLs within the text. Upon URLs founded, CUSTOMIZER calls APIs for detecting
phishing URLs, such as Google SafeBrowsing (Google, 2005), and assess the accessibility of the
benign URL by issuing web requests. Malicious URLs, as well as unreachable URLs that return
status codes of 4XX, are added in the warning at the beginning of the LLM outputs.

Note that the task in Example 1 cannot be achieved through prompt engineering when querying
LLMs, as the warning must appear at the beginning, and LLMs generate content token by token,
making later content unpredictable. We use an example to show this feature in Appendix A and
experimentally evaluate the efficiency of CUSTOMIZER wrappers in Exp 4 in §8.

7 WILDFLARE GUARDRAIL REPAIRER

Wildflare GuardRail REPAIRER addresses errors in the LLM outputs that are challenging to resolve
through editing with wrappers in CUSTOMIZER, particularly, hallucinated content. REPAIRER an-
alyzes and corrects the hallucinated output based on the reason for the hallucinations generated by
the hallucination detection model.

Wildflare GuardRail REPAIRER takes several key inputs, including the user’s original query, the
context retrieved with GROUNDING, the hallucinated responses generated by the LLM, as well as
the reason for hallucination. Given these inputs, REPAIRER corrects the flawed output according
to the hallucination reason. To enable REPAIRER to handle hallucinations effectively, we leverage
the same hallucination detection dataset as SAFETY DETECTOR, i.e., HaluEval (Li et al., 2023a),
that contains user questions, contexts, hallucinated LLM answers, and correct answers. We also de-
signed a customized data template that incorporates the information. The data templates for training,
inference, as well as an example for the training data, are demonstrated in 3.

8 EXPERIMENTS

Experimental Setting. We use our self-developed model as our base model for finetuning safety
detection models. SAFETY DETECTOR model is trained with 15 datasets, as descriobed in Table 2.
Hallucination detection model is trained with HaluEval dataset (Li et al., 2023a). GROUNDING ex-
periments are conducted on the following datasets: E-Commerce Tian (2023), ChatDoctor Li et al.
(2023b), PatientDoctor Dey (2023a). The information of all datasets for experiments is summarized

8
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in Table 4 in Appendix §B. Evaluations and model training experiments are conducted on a server
with 8 NVIDIA H100 GPUs.

Exp 1. Unsafe user inputs detection in SAFETY DETECTOR. The datasets and the number of
records involved in training, validation, and test phases are summarized in Table 2. We compare our
approach with Detoxify-Roberta (Hanu & Unitary team, 2020), Detoxify-BERT (Hanu & Unitary
team, 2020), Nvidia NeMo GuardRail (Rebedea et al., 2023), OpenAI Moderate (Markov et al.,
2023), and PerspectiveAPI (Lees et al., 2022) in Figure 4. Results show that our model achieves
comparable performance with OpenAI API. Overall, our model demonstrates robust performance
across key metrics, indicates its effectiveness and reliability in real-world applications.

Figure 4: Safety detection Figure 5: Whole index Figure 6: Key index

Exp 2. Hallucination detection in LLM outputs in SAFETY DETECTOR. We fine-tuned our
hallucination detection model using the HaluEval dataset Li et al. (2023a). For each subset, we uti-
lized 8,000 data samples for training, 1,500 for validation, and 500 for testing. Our model achieved
an accuracy of 0.78 on the testing dataset.

Exp 3. Evaluation of different indexing methods in GROUNDING. We leveraged callback to
evaluate the effectiveness of the two indexing methods in GROUNDING. We utilized datasets that
contain important knowledge for evaluation, where inaccurate retrieval can cause financial losses
or harmful medical advice. We selected three QA datasets, including E-Commerce dataset Tian
(2023) that contains customer service interactions on an online platform, and two healthcare datasets,
PatientDoctor dataset Dey (2023a) and the ChatDoctor dataset Li et al. (2023b), which contain QA
pairs between doctors and patients. To comprehensively evaluate retrieval performance and simulate
user queries real-world applications, we used two types of queries, including i) original queries
that match original questions in the datasets (“O” in Figure 1 and Figure 6), and ii) rephrased
queries generated with language models (i.e., TinyLlama (Zhang et al., 2024b) or a summarization
model (Falconsai, 2023)) based on the original questions to simulate variability in user questions
(“R” in Figure 1 and Figure 6). For each evaluation, we randomly selected 50 questions from
the dataset to form a question set Q, and processed Top-k queries to compute a callback Ck(Q),
where k is set to 1, 3, 5, and 10. We recorded the callbacks for Whole Knowledge Index and Key
Information Index in Figure 5 and Figure 6, respectively. The results indicate that Key Information
Indexing outperformed Whole Knowledge Indexing, as key information indexes reflects the user
queries better. Also, both original queries and rephrased queries achieved high callback rates, which
demonstrates the effectiveness of vector retrieval when handling varied user inputs.

Table 3: URL Detection Task
Metrics Ours TinyLLama Mistral-7B LLama2-7B LLama3-8B Falcon-40B

Avg. Time (s) 1.06 13.17 10.93 9.10 20.10 34.67
Detection Acc. 100.00% ✗ (Fail) 91.67% 83.33% 37.50% ✗ (Fail)
Validation Acc. 83.33% ✗ (Fail) 45.83% 54.17% 37.50% ✗ Fail

Exp 4. Efficiency of wrappers in CUSTOMIZER. We evaluated the efficiency of CUSTOMIZER in
with the URL detection and validation task in Example 1 in §6. We randomly selected 15 records
from the each of the E-Commerce dataset (Tian, 2023) and the RedditSYACURL Dataset (Dey,
2023b), combined each record to construct texts that contained URLs, and set 20% probability of

9
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inserting some malicious URLs into the text. In implementation, we leveraged Regex pattern for de-
tecting URLs, Google SafeBrowsing (Google, 2005) for detecting malicious URLs, and sent HTTP
requests to the safe URLs to verify their reachability. We compared CUSTOMIZER with several mod-
els, including TinyLLama (Zhang et al., 2024b), Mistral-7B (Jiang et al., 2023), LLama2-7B (Tou-
vron et al., 2023), and Falcon-40B (Almazrouei et al., 2023). The results are shown in Table 3.
We record average time to process one query, the success rate of detecting URLs (Detection Acc.),
and the accuracy of identifying unsafe URLs (Validation Acc.). The results show that Wildflare
GuardRail CUSTOMIZER takes much less time (1.06s per query) and significantly outperforms call-
ing the models for editing LLM outputs. Also, TinyLLama and Falcon-40B failed to detect any
URLs in the contents. Though Mistral is able to detect URLs with a high accuracy of 91.67%, the
accuracy of identifying unsafe URLs is only 45.83%.

Exp 5. Effectiveness of fixing hallucinations in REPAIRER. We fine-tuned our fixing model
using the HaluEval dataset Li et al. (2023a). We selected the QA and dialogue subsets. For each
subset, we utilized 8,000 data samples for training, 1,000 for validation, and 1000 for testing. We
utilize Vectara hallucination detection model (Vectara, 2023) for evaluating the consistency between
the LLM outputs and the information provided in the original data, including the user questions, the
contexts, and the correct answers. We utilized the 100 records in the test dataset of the HaluEval-QA
dataset for evaluation. Results show that our fixing model improves the quality of the LLM outputs
by a lot. Moreover, 80.7% of the hallucinated data were fixed using REPAIRER.

9 CONCLUSION

This paper introduces Wildflare GuardRail, a pipeline designed to enhance the safety and reliabil-
ity of LLM inferences. By integrating several key components, including SAFETY DETECTOR,
GROUNDING, and CUSTOMIZER, and REPAIRER, we addressed critical challenges such as unsafe
inputs, hallucination, contextually grounding, output customization. We believe that our work can
serve as a stepping stone to contribute to the advancement of the field of LLM safety.
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A EXAMPLE OF AN ERRONEOUS RESPONSE

We use an example to demonstrate that some tasks cannot be achieved through prompt engineering
when querying LLMs, as LLMs generate content token by token, making it impossible to predict
subsequent tokens at the beginning of generation. We use the following prompt to ask GPT4:

Write an English poem about a rabbit; please include
information at the beginning of the poem about how
many times the word “rabbit” appears in the poem.

Below is the response, which claims the word “rabbit” appears 4 times. However, “rabbit” appears
5 times in total. This showcases the necessity of including post-inference wrappers to fix simple
errors in the LLM outputs.

(The word “rabbit” appears 4 times in this poem.)

In a field where soft grasses sway and dip, A rabbit
hopped beneath the moon’s silver whip. With ears like
twin sails in the cool night air, Each twitch and turn
done with utmost care.
This rabbit, cloaked in twilight’s gentle hug, Nestled
in shadows, a cozy, earthen snug. Dreams of dandelion
fields in sunny sprawl, Where no shadows loom, nor
fears enthrall.
With a nose that twitches at secrets untold, And paws
that dance over leaves of gold, The rabbit finds joy
in the simplest of things-- The warmth of the sun, the
freedom of springs.
But as dawn breaks and stars bid goodbye, Back to the
burrow, this rabbit must fly. For the world is wide
and wolves roam free, Yet in his burrow, safe as can
be, this rabbit shall be.

B SUMMARY OF DATASETS

We describe the dataset we utilized in experiments in Table 4.
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Table 4: Dataset Descriptions

Task Dataset Data size Description

Unsafe
Content
Detection

HEx-PHI (Qi et al., 2024) 330 This dataset contains 330 harmful instructions (30 examples
x 11 prohibited categories) for LLM harmfulness evaluation.

OpenAI (Markov et al.,
2023)

1680 OpenAI moderation dataset that contains prompts that are an-
notated with their own taxonomy.

Hotpot QA (Yang et al.,
2018)

113k QA pairs based on Wikipedia knowledge.

Truthful QA (Lin et al.,
2021)

827 A QA dataset that contains 817 questions spanning 38 cate-
gories, including health, law, finance, and politics.

Awesome GPT
Prompts (Akın, 2023)

153 Awesome prompt examples to be used with ChatGPT.

Jigsaw Unintended-Bias
Data (JIGSAW, 2019)

2M Comment data that contains labels for unsafe content.

GPT-Jailbreak (Romero,
2023)

79 ChatGPT jailbreak prompts.

Jailbreak (Hao, 2023) 1.3k A dataset that contains jailbreak prompts and benign prompts.

Personalization
Prompt (Siah, 2024)

10.4k Prompt-response pairs for personalized interactions with
LLMs.

QA-Chat Prompts (Test-
ing, 2024)

200 A QA dataset.

ChatGPT
Prompts (Rashad, 2023)

360 A dataset that contains human prompts and ChatGPT re-
sponses.

10k-Prompts
Ranked (Community,
2024a)

10.3k A dataset of prompts with quality rankings created by 314
members of the open-source ML community using Argilla,
an open-source tool to label data.

Iterative Prompt (Commu-
nity, 2024b)

20k A dataset of user prompts.

Instruction Follow-
ing (Kojohnjaratkul,
2023)

514 An instruction dataset.

ToxicChat (Lin et al.,
2023)

10165 [Evaluation data in Exp1] A dataset for toxicity detection.

Hallucination De-
tection

HaluEval (Li et al., 2023a) 10k A dataset for evaluating hallucinations. We utilize the “qa”
subset that contains dialogue histories, contexts (knowledge),
right responses, and hallucinated responses.

Vector
Retrieval
Evaluation

E-Commerce (Tian, 2023) 65 We use the “faq” subset that contains QA pairs between users
and service agents.

PatientDoctor (Dey,
2023a)

379k Dialogue data between doctors and patients.

ChatDoctor dataset (Li
et al., 2023b)

119.4 Dialogue data between doctors and patients.

Repairere
Wrapper
Evaluation

E-Commerce
dataset (Tian, 2023)

1.89k We use the "faq" subset (as described above) and the "prod-
uct" subset that contains descriptions of products.

RedditSYACURL
Dataset (Dey, 2023b)

8.61k A dataset that contains titles, summaries, and links of articles.
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