
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

METAFLOW: A META APPROACH OF TRAINING LLMS
INTO GENERALIZABLE WORKFLOW GENERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel across a wide range of tasks, yet their
instance-specific solutions often lack the structural consistency needed for reli-
able deployment. Workflows that encode recurring algorithmic patterns at the task
level provide a principled framework, offering robustness across instance varia-
tions, interpretable traces for debugging, and reusability across problem instances.
However, manually designing such workflows requires significant expertise and
effort, limiting their broader application. While automatic workflow generation
could address this bottleneck, existing methods either produce instance-specific
solutions without learning task-level patterns, or cannot generalize beyond their
training configurations. We present MetaFlow, which casts workflow generation
as a meta-learning problem: given a task and an operator set, the model learns
to compose solution strategies. MetaFlow trains in two stages—supervised fine-
tuning on synthetic workflow data, followed by reinforcement learning with ver-
ifiable rewards (RLVR) that uses execution feedback across problem instances in
the task to improve end-to-end success. The resulting model produces effective
workflows for trained tasks and exhibits strong generalization to untrained tasks
and novel operator sets. Across benchmarks in question answering, code genera-
tion, and mathematical reasoning, MetaFlow achieves performance comparable to
state-of-the-art baselines on in-domain tasks with single inference, while demon-
strating remarkable zero-shot generalization capabilities on out-of-domain tasks
and operator sets.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant performance across a wide range
of tasks, including code generation, question answering, and mathematical reasoning (Austin et al.,
2021; Chen et al., 2021; Yang et al., 2018; Dua et al., 2019; Ding et al., 2024; Jiang et al., 2025;
Cobbe et al., 2021; OpenAI, 2023; Zhu et al., 2024). However, because these models generate
instance-specific solutions, they lack the structural consistency and transparency needed for reliable
deployment, while also being difficult to adapt to similar tasks. Workflows that encode recurring al-
gorithmic patterns provide a principled alternative, decomposing complex challenges into structured,
manageable steps. However, manually designing such workflows requires significant expertise and
effort, limiting their broader application.

To address this challenge, recent effort have focused on the automatic workflow generation (Khattab
et al., 2023; Li et al., 2024; Song et al., 2024; Zhang et al., 2024a). Endowing LLMs with this
strategy planning capability means lowering the barrier for complex task automation from requiring
manual programming by experts to merely providing high-level task descriptions, thereby greatly
liberating productivity. Nevertheless, representing the workflow as static graph (Zhuge et al., 2024)
or neural network (Liu et al., 2024) in many of these methods limits the flexibility of generatable
workflows.

A promising direction emerges from works like ADAS (Hu et al., 2024), AFlow (Zhang et al.,
2024b), ScoreFlow (Wang et al., 2025) and FlowReasoner (Gao et al., 2025), which represent work-
flows as code (a structured combination of predefined operators), making the automatic generation
of workflows more flexible and expressive, where operator is an encapsulation of common agentic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

operations introduced by Zhang et al. (2024b). Within this code-based framework, current ap-
proaches adopt two different paradigms for workflow generation.

The first paradigm comprises task-level approaches, exemplified by ADAS (Hu et al., 2024) and
AFlow (Zhang et al., 2024b), which formulate workflow generation as a search problem within pre-
defined task-operator set combination. Both methods employ iterative search strategies, with ADAS
using evolutionary algorithms and AFlow using Monte Carlo Tree Search (MCTS), to discover high-
performing workflows through repeated refinement. However, this search-based paradigm inher-
ently constrains them to specific task and predetermined operator set. When encountering new tasks
or operators, these methods require complete re-optimization from scratch, incurring substantial
computational costs (Wang et al., 2025).

Conversely, the second paradigm consists of instance-level approaches, exemplified by Score-
Flow (Wang et al., 2025) and FlowReasoner (Gao et al., 2025), which generate workflows tailored
to individual problem instances in the task. Both methods dynamically construct workflows at infer-
ence time, with ScoreFlow leveraging gradient-based optimization to refine agentic workflows, and
FlowReasoner employing reasoning chains distilled from advanced models to design query-specific
multi-agent systems. While these instance-level methods excel at tailoring workflows to specific
problem instances, this granularity comes at the cost of reusability and deployment efficiency. They
cannot capture task-level patterns that recur across similar problem instances, leading to redundant
workflow generation for each query. In deployment scenarios, this approach foregoes the benefits of
having optimized, reusable workflow templates that could be consistently applied to entire task.

The limitations of existing paradigms underscore two fundamental challenges that must be addressed
to achieve truly general-purpose automatic workflow generation. (1) How can we overcome the re-
optimization requirement of task-level approaches when facing new domains (task-operator
set combinations)? (2) How can we learn generalizable patterns that avoid redundant instance-
level generation while adapting effectively to untrained domains?

To systematically overcome the challenges, we propose MetaFlow, which formulates workflow
generation as a meta-learning problem. Unlike search-based methods that require expensive re-
optimization for new task-operator set combinations, MetaFlow learns to directly synthesize work-
flows from task descriptions and operator set specifications, enabling zero-shot generation through
a single model inference.

To achieve robust zero-shot generalization, MetaFlow employs a two-stage training paradigm with
diverse task-operator pairs. Adopting the code-based workflow representation from prior works(Hu
et al., 2024; Zhang et al., 2024b; Wang et al., 2025; Gao et al., 2025), we first synthesize thou-
sands of workflows using Qwen-Max (Team, 2024) across four tasks and a single operator set to
finetune Qwen3-8B (Yang et al., 2025), establishing the foundation for understanding how tasks
and operators relate to workflow structures. Subsequently, we apply online reinforcement learning
with GRPO (Shao et al., 2024) across expanded domains, where execution feedback on problem
instances directly optimizes the generation policy. This training ensures the model learns general-
izable workflow construction principles rather than memorizing patterns. At inference, MetaFlow
zero-shot generates effective workflows for novel configurations with only a single forward pass.

Our main contributions are:

• Meta-learning Framework: We introduce MetaFlow, a novel approach that reformulates
workflow generation from discrete search within fixed configurations to continuous learn-
ing across diverse task-operator set combinations. By conditioning workflow generation
on task descriptions and operator specifications, our framework achieves strong zero-shot
generalization to unseen domains without any re-optimization, reducing computational cost
from thousands of API calls to a single model inference.

• Scalable Training Pipeline: We design a two-stage training framework combining su-
pervised learning with online reinforcement learning, utilizing diverse domains to ensure
robust generalization to untrained domains.

• Comprehensive Evaluation: Extensive experiments demonstrate that MetaFlow achieves
competitive performance on in-domain benchmarks while exhibiting remarkable zero-shot
generalization to out-of-domain task classes and operator sets, including solving program-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ming problems with novel operator combinations never seen during training and solving
question answering problem using the vector database search operator.

2 RELATED WORKS

2.1 AGENTIC WORKFLOW

Agentic workflows decompose complex tasks into structured steps through predefined operators and
dependencies (Zhang et al., 2024b; Wang et al., 2025; Gao et al., 2025). Unlike autonomous agents
that learn through environment interaction (Zhuge et al., 2024; Hong et al., 2024), workflows provide
interpretable and consistent execution patterns. Recent works adopt code-based representations for
superior expressiveness (Hu et al., 2024; Zhang et al., 2024b; Wang et al., 2025; Gao et al., 2025),
supporting applications in code generation, question answering, and mathematical reasoning (Austin
et al., 2021; Chen et al., 2021; Yang et al., 2018; Dua et al., 2019; Ding et al., 2024; Jiang et al., 2025;
Cobbe et al., 2021; OpenAI, 2023; Zhu et al., 2024). However, manual workflow design remains a
significant bottleneck requiring deep expertise.

2.2 AUTOMATIC WORKFLOW GENERATION

Recent advances have explored automating workflow generation to improve LLM perfor-
mance (Chen et al., 2023; Zhang et al., 2024b; Wang et al., 2025; Li et al., 2024; Song et al.,
2024). While some methods optimize prompts within fixed workflows (Guo et al., 2023; Khattab
et al., 2023), we focus on optimizing workflow structures directly.

Current structural optimization follows two paradigms. Task-level approaches like ADAS (Hu et al.,
2024) and AFlow (Zhang et al., 2024b) search for optimal workflows through evolutionary algo-
rithms or MCTS, but require complete re-optimization for new domains. Instance-level methods in-
cluding ScoreFlow (Wang et al., 2025) and FlowReasoner (Gao et al., 2025) generate query-specific
workflows but fail to extract reusable patterns.

Our Methods, MetaFlow reformulates workflow generation as meta-learning over diverse task-
operator combinations during training. Through two-stage optimization combining supervised
learning with reinforcement learning, it achieves true zero-shot generation—producing effective
workflows for novel domains via single model inference, eliminating both re-optimization and adap-
tation overhead.

3 PROBLEM DEFINITION

Existing works often formulate automatic workflow generation as optimization problems (Xu et al.,
2025; Li et al., 2025), requiring separate optimizations for each task. We elevate this perspective
by reformulating it as a Meta-learning problem (Finn et al., 2017; Franceschi et al., 2018). To
ground this formulation, we first define our core concepts: a PROBLEM INSTANCE p is a single,
concrete problem to be solved. A TASK C is a family of such instances with a shared structure. The
available operators are defined by an OPERATOR SET Ops, a collection of fundamental, reusable
operations (Zhang et al., 2024b). Together, the (TASK, OPERATOR SET) (C,Ops) constitutes a
complete domain.

Within this meta-learning framework, an LLM serves as the meta-learner (the planner, πθ). Its core
responsibility is to learn a meta-strategy that enables fast adaptation. Specifically, given any (C,Ops)
pair, the planner can rapidly generate an efficient and reusable WORKFLOW W. This workflow is
a task-level strategy, formalized as a structured sequence of operators from Ops. When applied to
any specific PROBLEM INSTANCE p within TASK C, this workflow guides the execution process to
produce a high-quality SOLUTION s.

Unlike traditional meta-learning approaches such as Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017), which rely on gradient updates for adaptation, our method achieves fast adaptation
through the synthesis of workflows without requiring any gradient-based fine-tuning.

The differences between our method and traditional approachs can be illustrated as 1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Three methods

As a meta-learning task, our goal is to optimize the meta-parameters θ of the planner LLM (πθ).
Specifically, we seek the optimal θ∗, such that the workflow W generated by πθ maximizes the
expected reward when applied to any domain (C,Ops) from the (task, operators set) distribution
D(C,Ops). We adopt the classic optimization strategy of meta-learning, namely the bi-level opti-
mization structure Franceschi et al. (2018), which can be rigorously formulated as:

θ∗ = argmax
θ

E(C,Ops)∼D(C,Ops)︸ ︷︷ ︸
Outer Loop (Meta-Optimization)

[EW∼πθ(·|C,Ops,O)[Ep∼P (p|C)[R(Exec(W, p))]]︸ ︷︷ ︸
Inner Loop (Task-Specific Adaptation & Evaluation)

]

Where

• (C,Ops) ∼ D(C,Ops): sampling a task from the (task, operators set) distribution D(C,Ops).

• W ∼ πθ(· | C,Ops,O): the planner πθ as the meta-learner, performing fast adaptation
under the given specific task description C, available operator set Ops, and optional con-
textual information O (such as system prompt), to generate a workflow W customized for
the task.

• p ∼ P (p | C): sampling a specific problem instance p from the instance distribution of task
C for evaluating the generated workflow.

• Exec(W, p) represents the process of applying the workflow W to solve the problem in-
stance p in the executor environment, producing the final solution.

• R(·) is a reward function used to evaluate the quality of the final solution (e.g., code test
pass rate, answer accuracy).

The outer loop optimizes not the performance on a single instance or single problem family, but
the average performance of workflows across the entire (task, operators set) distribution D(C,Ops),
which directly drives the meta-learner πθ to learn strategies with cross-domain generalization ca-
pabilities. In contrast, the optimization objectives of works such as ScoreFlow(Wang et al., 2025)
and ComfyUI-R1 (Xu et al., 2025) can be formalized as maximizing the expected reward on a
single problem instance p, i.e., argmaxEp∼P (p|C)[R(Exec(Wp, p))]. Our framework elevates the
optimization plane from the instance-level to the meta-level, thereby explicitly learning general
workflow strategies W ∼ πθ(· | C,Ops) that can generalize across entire task and operator combi-
nations (Zhang et al., 2024b; Li et al., 2025).

4 METHODOLOGY

Our MetaFlow framework aims to train a large language model through a two-stage learning process
to automatically generate efficient and reusable workflows for given problem families. This section
elaborates on our system architecture, and core training algorithm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 METAFLOW ARCHITECTURE

The core architecture of MetaFlow includes a planner LLM and an execution-evaluation environ-
ment.

Workflow Representation: A workflow is represented as a structured script based on the MetaGPT
framework (Hong et al., 2023), composed of a series of predefined operator calls. Following the
practices of AFlow and ScoreFlow, we design a set of general, semantically rich atomic opera-
tors, including Generate (for content generation), Summarize (for information compression),
Revise (for iterative improvement), and Ensemble (for result aggregation) (Zhang et al., 2024b;
Li et al., 2025). These operators form the basic building blocks of workflows.

Input-Output: Building on this, we further clarify the complete input-output structure of the model.
The MODEL INPUT consists of two parts: OPERATOR DESCRIPTIONS, which define the functions,
parameters, and input-output formats of each available operator (whether preset or user-defined);
TASK TYPE DESCRIPTION, which elucidates the domain characteristics of the target problem family
and the input-output formats of each belonging problem instance. The OUTPUT requires a structured
WORKFLOW aimed at efficiently solving all problem instances under the task type using the given
operator set. This design paradigm allows users to conveniently introduce new tools and new task
types through natural language or semi-structured descriptions during testing. At the same time, it
ensures that these new tools and tasks can be quickly understood and effectively generalized by the
model, achieving high flexibility and scalability.

Execution & Evaluation Environment: To achieve end-to-end optimization, we build an auto-
mated environment. This environment receives a candidate workflow Wi and a set of N problem
instances p1, . . . , pN from a specific problem family C as input. In the execution phase, the en-
vironment uses the metagpt framework to orchestrate the workflow (Hong et al., 2023). Each
operator in the workflow (such as Generate) completes its specific subtask by calling an external
lightweight language model API (qwen-turbo) and processes each problem instance. Upon comple-
tion, an automated evaluator module verifies the correctness of each execution result, for example,
by running unit tests or comparing outputs with standard answers. Based on the evaluation results,
the environment computes a quantified, verifiable reward score R(Wi) for the workflow Wi. This
score directly reflects the generalization capability of the workflow, calculated as the average success
rate over N instances:

R(Wi) =
1

N

N∑
j=1

I(is correct(Exec(Wi, pj)))

where I(·) is the indicator function. This reward score R(Wi) is then passed to the training algorithm
as the basis for policy updates.

4.2 TRAINING ALGORITHM

Our training process is divided into two stages: supervised learning-based initialization and re-
inforcement learning-based end-to-end optimization. This combination aims to fully leverage
the guiding role of supervised data while retaining the ability of reinforcement learning to explore
superior strategy spaces.

4.2.1 PHASE ONE: SFT INITIALIZATION

To address the cold start problem caused by the excessively large exploration space in reinforcement
learning from scratch, we first perform supervised fine-tuning on the base LLM. We construct a
high-quality dataset containing pairs of (problem family-operator group description, high-quality
workflow). Through standard autoregressive language model training on this dataset, the model
πθ learns the initial ability to generate syntactically correct and structurally reasonable workflows.
The goal of this phase is to inject prior knowledge about effective strategy patterns into the model,
providing the generated candidate workflows with a reasonable starting point, thereby significantly
narrowing the search space in the subsequent RL phase and accelerating convergence.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2.2 PHASE TWO: RLVR OPTIMIZATION

After SFT, we employ policy gradient algorithms to perform end-to-end self-improvement on the
planner πθ. The core of this phase is the RLVR (Reinforcement Learning with Verifiable Re-
ward) loop, with the specific process as follows:

1. Policy Sampling: For a problem family C sampled from the training set, the planner πθ generates
a batch of k candidate workflows W1,W2, . . . ,Wk.

2. Execution & Reward Calculation: Each candidate workflow Wi is tested in the execution and
evaluation environment described in Section 3.2, obtaining its corresponding reward score R(Wi)
that reflects generalization capability.

3. Policy Update: We use this batch of ‘(workflow, reward)’ pairs to update the parameters of
the planner πθ. In particular, we adopt the Group Relative Policy Optimization (GRPO) algo-
rithm (Shao et al., 2024). The core idea of GRPO is to use the average performance within the group
as a baseline to estimate advantages, thereby avoiding training an independent value network. We
compute the advantage as follows:

Â(Wi) = R(Wi)− µR

where µR = 1
k

∑k
j=1 R(Wj) is the average reward obtained by the group of k workflows. This

calculation based on “group-relative advantages” makes the optimization signal derive from whether
the workflow performance is better or worse than the current batch’s average level, rather than an
absolute, potentially noisy value estimate.

4. Variance Reduction: Evaluation Based on Common Random Numbers

The effectiveness of policy gradients largely depends on the accuracy of the advantage function
Â(Wi) estimation. In our GRPO method, the advantage is computed relative to the batch average
reward µR. If each workflow Wi in the batch is evaluated on a set of independently and randomly
sampled problem instances, the variance of the reward R(Wi) will include not only policy random-
ness (i.e., the quality of the workflow itself) but also environmental randomness (i.e., the difficulty
of problem instances). This additional variance propagates to µR and Â(Wi), producing noisier
gradients and reducing learning efficiency.

To address this issue, we adopt a classic variance reduction technique—Common Random Num-
bers (CRN) (Kleijnen, 1975). In specific implementation, we ensure that all k candidate work-
flows W1, . . . ,Wk in the same training batch (group) are evaluated on the exact same set of
problem instances {p1, . . . , pN}. By fixing the random variable of problem instances when com-
paring workflows, we eliminate noise arising from differences in problem sampling. This keeps the
expected value of R(Wi) − R(Wj) unchanged but significantly reduces its variance. Ultimately,
this ensures that our computed relative advantages more accurately reflect the intrinsic performance
differences between workflows, leading to a more stable policy update direction and accelerating
model convergence.

5 EXPERIMENTS

This section presents systematic experiments designed to evaluate our proposed MetaFlow frame-
work. The experimental design aims to answer several core research questions: (1) Can workflows
generated by MetaFlow achieve comparable performance to current state-of-the-art methods while
requiring only single inference for enhanced efficiency? (2) Does the framework exhibit strong
out-of-distribution (OOD) generalization to new tasks and operators? (3) What are the individ-
ual contributions of key components such as supervised fine-tuning initialization and reinforcement
learning with verifiable rewards? (4) Can MetaFlow effectively enhance the performance of small
to medium-sized language models on complex tasks? We first introduce the experimental configu-
ration, followed by main results, ablation studies, and representative case analyses.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 EXPERIMENTAL SETUP

To ensure fairness and reproducibility, we construct a standardized experimental environment.

5.1.1 TRAINING CONFIGURATION

MetaFlow employs a two-stage training paradigm.

Stage 1: Supervised Fine-Tuning (SFT) Initialization. To alleviate the cold-start problem in
reinforcement learning, we first conduct supervised fine-tuning on the base model Qwen3-8B. We
construct an expert dataset containing 1,300 high-quality samples, where each sample is a (task class
description, high-quality workflow) pair. These workflows cover typical strategy patterns including
sequential, branching, looping, and parallel execution, providing the model with a robust initial
policy.

Stage 2: Reinforcement Learning with Verifiable Rewards (RLVR) Optimization. Following
SFT initialization, we employ RLVR for end-to-end optimization of the Planner. To ensure training
efficiency, this stage focuses on four selected domains: GSM8K, DROP, MBPP, and HumanEval.
During this stage, the model is restricted to using only four basic operators. Training employs the
Grouped Relative Policy Optimization (GRPO) algorithm for 137 steps. The reward curve shows
consistent and stable policy improvement throughout the training process. To control training costs,
the Executor in the training loop calls a lightweight API—Qwen-Turbo.

0 20 40 60 80
Iterations

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

Lo
ss

SFT
loss

Figure 2: SFT loss curve

0 25 50 75 100
Iterations

60%

70%

80%

90%

100%

Re
w

ar
d

RL
reward

Figure 3: RL running reward

Figure 4: Trainning curves

We adopt the experimental settings from ScoreFlow, with evaluation covering three major domains:
question answering, code generation, and mathematical reasoning.

• Question Answering: 1,000 instances sampled from each of HotpotQA and DROP.

• Code Generation: Full sets of MBPP.and Humaneval.

• Mathematical Reasoning: 1,000 questions sampled from GSM8K and Level-5 problems
from the MATH dataset.

Consistent with ScoreFlow’s approach, all datasets except HumanEval are deterministically split
into train and test sets at a 1:4 ratio. We did not test the scores on the HumanEval dataset, as its
small size makes it difficult to complete the subsequent validation and testing steps.

5.1.2 BASELINE METHODS

We compare MetaFlow against two categories of methods:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Operators

• Manually Designed Workflows: Including existing prompting strategies such as Vanilla
Prompting(IO), Chain-of-Thought (CoT), Reflexion, LLM Debate, Step-back Abstraction,
Quality-Diversity (QD), and Dynamic Role Assignment.

• Automatically Optimized Workflows: Including current state-of-the-art methods such as
ADAS, AFLOW, and Scoreflow.

5.1.3 OPERATOR DESIGN

We predefine a set of general atomic operators: Generate, Summarize, Revise, and Ensemble. A
key feature of our framework is that the Planner can dynamically rewrite any operator’s prompt
to customize its behavior. To rigorously test OOD generalization, we introduce two novel opera-
tors unseen during training at the evaluation stage: Decompose and Programmer. These operators’
functionalities are provided through natural language descriptions via in-context injection. The De-
compose operator is responsible for breaking complex problems into subproblem lists, while the
Programmer operator requires the LLM to write code snippets and return execution results.

5.1.4 EVALUATION PROTOCOL

Inference Process: For each task, MetaFlow generates 20 candidate workflows. We employ a
best-of-20 strategy: all candidate workflows execute on an independent validation set containing 50
problem instances, and the workflow with the highest average reward is selected for final testing.

Executor and Judge: To ensure fair comparison, during evaluation, all methods (including base-
lines) use GPT-4o-mini as the Executor. For question answering tasks, we adopt the LLM-as-a-Judge
paradigm, also using GPT-4o-mini as the judge.

5.1.5 IMPLEMENTATION DETAILS

The Planner is implemented based on Qwen3-8B, with workflow execution orchestrated by the
MetaGPT framework.

5.2 MAIN RESULTS AND ANALYSIS

5.2.1 OVERALL PERFORMANCE COMPARISON

As shown in Table 1, MetaFlow achieves an average performance score of 78.8, demonstrating
competitive results. Notably, its performance is comparable to ScoreFlow, Aflow and ADAS, which
requires resource-intensive per-instance optimization. Additionally, MetaFlow matches or exceeds

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method DROP MBPP GSM8K MATH Avg

IO 81.6 69.5 89.1 52.2 73.1
CoT (Wei et al., 2022) 83.2 70.4 88.3 53.4 73.8
CoT SC (Wang et al., 2022) 83.2 71.3 88.6 53.8 74.2
MedPrompt (Nori et al., 2023) 83.0 69.2 88.1 53.7 73.5
MultiPersona (Wang et al., 2024) 81.3 70.4 89.8 51.9 73.4
Self Refine (Madaan et al., 2024) 82.5 70.0 87.5 50.0 72.5
ADAS (Hu et al., 2024) 81.3 68.7 90.5 51.7 73.1
AFlow (Zhang et al., 2024b) 83.5 82.9 90.8 55.8 78.3
ScoreFlow (Wang et al., 2025) 86.2 84.7 94.6 64.4 82.5

Ours 82.8 77.5 93.8 61.0 78.8

other automated workflow generation methods that rely on computationally expensive search pro-
cesses on downstream tasks. All baseline model scores in the table are sourced from the ScoreFlow
(Wang et al., 2025) paper.

5.2.2 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION

Adaptation to Novel Operators: Our results demonstrate that MetaFlow can effectively integrate
new operators into generated workflows based solely on their natural language descriptions. On
MATH,MBPP and HotpotQA A.0.1 in Appendix A, the model autonomously generated workflows
incorporating the unseen Programmer operator. This capability enables performance that not only
significantly surpasses manually designed workflows but also rivals automated search methods that
have access to the operator during training or search phases.

Adaptation to New Domains: The framework exhibits strong generalization to task domains not
encountered during RLVR optimization such as MATH. Using only high-level task descriptions pro-
vided in prompts, MetaFlow generates effective workflows with performance comparable to state-
of-the-art methods specifically trained or designed for these domains. This highlights the frame-
work’s rapid zero-shot adaptation capability, a core objective of our meta-learning paradigm.

6 CONCLUSION

We introduce MetaFlow, which employs a two-stage training paradigm with diverse task-operator
pairs. Across benchmarks in question answering, code generation, and mathematical reasoning,
MetaFlow achieves performance comparable to state-of-the-art baselines on in-domain tasks with
single inference, while demonstrating remarkable zero-shot generalization capabilities on out-of-
domain tasks and operator sets.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. arXiv preprint arXiv:2309.17288,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Hongxin Ding, Yue Fang, Runchuan Zhu, Xinke Jiang, Jinyang Zhang, Yongxin Xu, Xu Chu, Jun-
feng Zhao, and Yasha Wang. 3ds: Decomposed difficulty data selection’s case study on llm
medical domain adaptation. arXiv preprint arXiv:2410.10901, 2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
NAACL-HLT (1), pp. 2368–2378. Association for Computational Linguistics, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning, pp.
1126–1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In Proceedings of the 35th
International Conference on Machine Learning, pp. 1568–1577. PMLR, 2018.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min
Lin, and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents. arXiv preprint
arXiv:2504.15257, 2025.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Ilgee Hong, Zichong Li, Alexander Bukharin, Yixiao Li, Haoming Jiang, Tianbao Yang, and Tuo
Zhao. Adaptive preference scaling for reinforcement learning with human feedback. Advances in
Neural Information Processing Systems, 37:107249–107269, 2024.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Zhang, Zijuan Gui, et al. Metagpt: Meta programming for a multi-agent collab-
orative framework. arXiv preprint arXiv:2308.00352, 2023.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Bowen Jiang, Runchuan Zhu, Jiang Wu, Zinco Jiang, Yifan He, Junyuan Gao, Jia Yu, Rui Min,
Yinfan Wang, Haote Yang, et al. Evaluating large language model with knowledge oriented
language specific simple question answering. arXiv preprint arXiv:2505.16591, 2025.

Omar Khattab, Bhanukiran Vinzamuri Akula, et al. Dspy: Expressive, modular prompting for
language models. arXiv preprint arXiv:2310.01348, 2023.

Jack P. C. Kleijnen. Antithetic variates, common random numbers and optimal computer time
allocation in simulation. Management Science, 21(10):1176–1185, 1975.

Chenyang Li, Ziqiang Wang, Dong Zhang, Xue Zhao, Cheng Wang, Xingwu Wang, Yuan Wang,
Haifeng Zhang, and Wenwu Zhu. Scoreflow: Mastering llm agent workflows via score-based
preference optimization. arXiv preprint arXiv:2502.04306, 2025.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. Autoflow: Automated workflow generation for large language model agents.
arXiv preprint arXiv:2407.12821, 2024.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Conference on Language Modeling, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King,
Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. Can generalist foundation models outcompete
special-purpose tuning? case study in medicine. arXiv preprint arXiv:2311.16452, 2023.

OpenAI. Aime benchmark for mathematical reasoning. https://openai.com/research, 2023. Ac-
cessed 2024.

Zhihong Shao, Peiyi Yuan, Hongsheng Li, Yizhe Wang, Yubo Xu, Xiaoke Sun, Ke Liu, Yuanhan
Lin, Chunyan Yue, Kun Chen, et al. Deepseekmath: Pushing the limits of mathematical reasoning
in open language models. arXiv preprint arXiv:2402.03300, 2024.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, and
Chi Wang. Adaptive in-conversation team building for language model agents. arXiv preprint
arXiv:2405.19425, 2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
The Eleventh International Conference on Learning Representations, 2022.

Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering
llm agent workflows via score-based preference optimization. arXiv preprint arXiv:2502.04306,
2025.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 257–279, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zhenran Xu, Yiyu Wang, Xue Yang, Longyue Wang, Weihua Luo, Kaifu Zhang, Baotian Hu, and
Min Zhang. Comfyui-r1: Exploring reasoning models for workflow generation. arXiv preprint
arXiv:2506.09790, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topolo-
gies via graph neural networks. arXiv preprint arXiv:2410.11782, 2024a.

Jiayi Zhang, Yihang Xiang, Chao Wang, Amina Zhou, Jiaqi Lu, Di Chen, Chaowei He, Yanshuai
Wang, Bin Ding, Dacheng Gao, et al. Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762, 2024b.

Zeyu Zhu et al. Olympiadbench: A benchmark for mathematical reasoning at the olympiad level.
arXiv preprint arXiv:2402.00000, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A CASE STUDY: WORKFLOW DESIGN TRANSFORMATION AFTER TRAINING

To better understand the effectiveness of our training paradigm, we conduct a critical ablation study
analyzing changes in model behavior before and after training. We compare two randomly selected
workflows generated by the untrained base model (Qwen3-8B) versus the fully trained MetaFlow
model after our two-stage training.

A.0.1 IMPACT OF TRAINING ON WORKFLOW GENERATION BEHAVIOR

Before Training (Base Model Qwen3-8B): Without SFT and RLVR optimization, the base model
generates workflows with multi-step logic following a linear process: extract function name →
summarize → generate → revise → ensemble.

1 class Workflow:
2 # ... (initialization code omitted) ...
3 async def run_workflow(self):
4 # Step 1: Extract function name from test cases
5 func_name = await self.generate(
6 instruction="Extract the function name from the test cases.
7 Return ONLY the function name, nothing else.",
8 context=self.problem_text
9)

10 # Step 2: Summarize problem description and test cases
11 problem_summary = await self.summarize(
12 instruction="Summarize the problem description and test cases
13 to create a clear problem statement.",
14 context=self.problem_text
15)
16 # Step 3: Generate code based on problem summary
17 generated_code = await self.generate(
18 instruction=f"Write a Python function named ’{func_name}’...
19 Return ONLY the function definition, nothing

else.",
20 context=problem_summary
21)
22 # Steps 4 & 5: Revise and ensemble
23 revised_code = await self.revise(...)
24 final_code = await self.ensemble(contexts=[generated_code,

revised_code])
25 return final_code

Listing 1: Workflow generated by the untrained base model.

Analysis: While structured, this workflow has potential weaknesses:

1. Information Bottleneck: The summarize step, intended to condense information, risks
losing critical details or constraints from the original problem description.

2. Instruction Ambiguity: Vague instructions like ”Return ONLY the function definition”
can be misinterpreted, leading to incomplete code that lacks necessary import statements
or helper functions.

After Training (MetaFlow Model): In contrast, the MetaFlow model optimized through our two-
stage training paradigm generates a workflow that, while maintaining complexity, is significantly
more robust and methodical in its approach, and has learned the self-consistency operator unseen
during training.

1 % --- DO NOT IMPORT HERE ---
2 class Workflow:
3 def __init__(self, config, problem) -> None:
4 # --- DO NOT MODIFY THIS SECTION ---
5 self.config = config
6 self.problem_text = problem
7 self.llm = create(config)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

8

9 self.generate = operator.Generate(self.llm, self.problem_text)
10 self.revise = operator.Revise(self.llm, self.problem_text)
11 self.summarize = operator.Summarize(self.llm, self.problem_text)
12 self.ensemble = operator.Ensemble(self.llm, self.problem_text)
13 self.selfconsistency = operator.SelfConsistency(self.llm, self.

problem_text)
14

15 async def run_workflow(self):
16 """
17 Implement the core problem-solving logic here.
18 Remember:
19 - Use detailed, comprehensive instructions
20 - Dynamic instruction construction is powerful
21 - All operators expect (instruction: str, context: str) except

Ensemble which takes contexts: List[str]
22 """
23 import asyncio
24

25 # Step 1: Extract function name from test cases
26 function_name = await self.generate(
27 instruction="""
28 Analyze the test cases provided and extract the function name

.
29 The function name should match the naming convention used in

the test cases.
30 Return ONLY the function name, nothing else.
31 """,
32 context=self.problem_text
33)
34

35 # Step 2: Extract input types and expected outputs from test
cases

36 input_types_output = await self.generate(
37 instruction="""
38 Analyze the test cases provided and extract the input types

and expected outputs.
39 Format the response as a dictionary where keys are the

parameter names and values are the types.
40 Also, identify the expected output format.
41 Return ONLY the structured information, nothing else.
42 """,
43 context=self.problem_text
44)
45

46 # Step 3: Generate multiple candidate implementations
47 implementations = await asyncio.gather(
48 self.generate(
49 instruction=f"""
50 Given the problem description: {self.problem_text}
51 Generate a Python function that satisfies the test cases.
52 Ensure that the function name is ’{function_name}’.
53 Include all necessary imports at the beginning of the

function.
54 Use the extracted input types and expected outputs: {

input_types_output}.
55 """,
56 context=self.problem_text
57),
58 # ... (additional parallel generate calls omitted for brevity

) ...
59 self.generate(
60 instruction=f"""
61 Given the problem description: {self.problem_text}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

62 Generate another Python function that satisfies the test
cases.

63 Ensure that the function name is ’{function_name}’.
64 Include all necessary imports at the beginning of the

function.
65 Use the extracted input types and expected outputs: {

input_types_output}.
66 """,
67 context=self.problem_text
68)
69)
70

71 # Step 4: Select the best implementation using SelfConsistency
72 best_implementation = await self.selfconsistency(
73 instruction=f"""
74 Evaluate the following candidate implementations:
75 {implementations[0]}
76 {implementations[1]}
77

78 Select the best implementation based on the following
criteria:

79 - Consistency with the test cases
80 - Logical correctness
81 - Efficient and clean code
82 - Proper use of imports and function signature
83

84 Return ONLY the best implementation, nothing else.
85 """,
86 context=self.problem_text
87)
88

89 return best_implementation

Listing 2: Workflow generated by the trained MetaFlow model.

Analysis: The trained model’s workflow exhibits several key improvements contributing to its ro-
bustness:

1. From Compression to Structured Extraction: The model avoids the potentially lossy
summarize step. Instead, it performs targeted extractions to parse unstructured text into
structured data (e.g., function name, I/O types). This approach preserves information in-
tegrity and provides a more reliable foundation for subsequent steps.

2. Parallel Exploration for Increased Robustness: Rather than following a single
generation-and-revision path, the model generates multiple, independent candidate solu-
tions in parallel using asyncio.gather. This multi-path exploration inherently in-
creases the robustness of the process by diversifying the solution space and reducing the
risk of settling on a single, flawed implementation.

3. More Explicit and Context-Aware Instructions: The instructions are dynamically con-
structed using f-strings to include context from prior steps (e.g., ‘function name‘, ‘in-
put types output‘). This makes the prompts highly specific and unambiguous, directly
mitigating the weaknesses of the base model and ensuring that each generative step is pre-
cisely guided.

A CASE STUDY: LEARNING A NOVEL SEARCH OPERATOR FOR MULTI-HOP
QA

Our operator-centric framework is designed for extensibility, allowing external tools to be seam-
lessly integrated as new operators. This case study demonstrates how a model learns to utilize a
novel ‘Search‘ tool—specifically ‘operator.VectorSearch‘—which was not seen during its primary
training phase. The following workflow code was implemented to solve problems from the Hot-
potQA dataset, a task that requires multi-hop reasoning over multiple documents.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1

2 class Workflow:
3 def __init__(self, config, problem) -> None:
4 # --- DO NOT MODIFY THIS SECTION ---
5 self.config = config
6 self.problem_text = problem
7 self.llm = create(config)
8

9 self.generate = operator.Generate(self.llm, self.problem_text)
10 self.revise = operator.Revise(self.llm, self.problem_text)
11 self.summarize = operator.Summarize(self.llm, self.problem_text)
12 self.ensemble = operator.Ensemble(self.llm, self.problem_text)
13 self.vector_search = operator.VectorSearch(self.llm, self.

problem_text)
14

15 async def run_workflow(self):
16 """
17 Implement the core problem-solving logic here.
18 Remember:
19 - Use detailed, comprehensive instructions
20 - Dynamic instruction construction is powerful
21 - All operators expect (instruction: str, context: str) except

Ensemble which takes contexts: List[str]
22 """
23 import asyncio
24

25 # Step 1: Extract the question and identify the type of reasoning
required

26 question_extraction_instruction = """
27 Analyze the provided problem text and extract the following:
28 1. The exact question being asked
29 2. Identify whether the question requires:
30 - Bridge reasoning (connecting entities across documents)
31 - Comparison reasoning (comparing properties across documents)
32 - Compositional reasoning (combining multiple facts)
33 3. Provide a brief justification for your reasoning type

classification
34 """
35 question = await self.generate(instruction=

question_extraction_instruction, context=self.problem_text)
36

37 # Step 2: Retrieve relevant documents based on the question
38 doc_retrieval_instruction = """
39 Given the extracted question, retrieve relevant documents from

the knowledge base that provide information related to the
question.

40 Focus on documents that contain entities, relationships, or facts
that could help answer the question.

41 """
42 retrieved_docs = await self.vector_search(
43 instruction=doc_retrieval_instruction,
44 context=question,
45 top_k=5
46)
47

48 # Step 3: Analyze the retrieved documents to identify bridge
entities and reasoning chains

49 analysis_instruction = f"""
50 Based on the following information:
51 - Question: {question}
52 - Retrieved Documents: {retrieved_docs}
53

54 Perform the following steps:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

55 1. Identify all entities, key facts, and relationships across the
documents that are relevant to answering the question.

56 2. Determine which entity or concept serves as the "bridge"
connecting information across documents.

57 3. Construct an explicit reasoning chain that connects the
information from the documents to form a complete answer.

58 4. Ensure the reasoning chain is precise and follows a logical
flow.

59 """
60 reasoning_chain = await self.generate(instruction=

analysis_instruction, context=retrieved_docs)
61

62 # Step 4: Extract the final answer from the last document in the
reasoning chain

63 final_answer_extraction_instruction = """
64 From the reasoning chain provided, extract the final answer to

the question.
65 Ensure the answer is:
66 - A short text span (entity or phrase)
67 - Precise and unambiguous
68 - Directly supported by the reasoning chain
69 """
70 final_answer = await self.generate(
71 instruction=final_answer_extraction_instruction,
72 context=reasoning_chain
73)
74

75 # Step 5: Critique and refine the extracted answer if necessary
76 refinement_instruction = """
77 Review the extracted answer and refine it based on the following

criteria:
78 - Ensure it is factually accurate
79 - Ensure it is precise and concise
80 - Ensure it directly addresses the question
81 """
82 refined_answer = await self.revise(instruction=

refinement_instruction, context=final_answer)
83

84 return refined_answer

Listing 3: A workflow where the model learns to use the ‘VectorSearch‘ operator to retrieve
documents for multi-hop reasoning.

ANALYSIS AND PERFORMANCE

The workflow in Listing 3 demonstrates the successful integration and application of a new tool. In
Step 2, the model dynamically constructs a search query from its initial analysis and invokes the
VECTORSEARCH operator, effectively performing active information retrieval. When evaluated on
the HotpotQA downstream task, this approach achieved a 60% search accuracy. This result is
significant as it confirms that our operator framework enables models to learn and effectively utilize
unseen tools.

NOTE ON COMPARABILITY WITH BASELINES

It is crucial to highlight a fundamental difference between our evaluation and that of many previous
works on HotpotQA. Our methodology requires the model to actively perform a search to find
relevant information. In contrast, prior baselines are often provided with the ground-truth support-
ing documents as part of their input, thereby bypassing the challenging information retrieval step
entirely. Because our system solves a more complete and realistic version of the task that includes
an explicit search phase, a direct comparison of end-to-end accuracy with such baselines is not
meaningful.

16

	Introduction
	Related Works
	Agentic Workflow
	Automatic Workflow Generation

	Problem Definition
	Methodology
	MetaFlow Architecture
	Training Algorithm
	Phase One: SFT Initialization
	Phase Two: RLVR Optimization

	Experiments
	Experimental Setup
	Training Configuration
	Baseline Methods
	Operator Design
	Evaluation Protocol
	Implementation Details

	Main Results and Analysis
	Overall Performance Comparison
	Out-of-Distribution (OOD) Generalization

	Conclusion
	Case Study: Workflow Design Transformation After Training
	Impact of Training on Workflow Generation Behavior

	Case Study: Learning a Novel Search Operator for Multi-Hop QA

