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ABSTRACT

Large language models (LLMs) excel across a wide range of tasks, yet their
instance-specific solutions often lack the structural consistency needed for reli-
able deployment. Workflows that encode recurring algorithmic patterns at the task
level provide a principled framework, offering robustness across instance varia-
tions, interpretable traces for debugging, and reusability across problem instances.
However, manually designing such workflows requires significant expertise and
effort, limiting their broader application. While automatic workflow generation
could address this bottleneck, existing methods either produce instance-specific
solutions without learning task-level patterns, or cannot generalize beyond their
training configurations. We present MetaFlow, which casts workflow generation
as a meta-learning problem: given a task and an operator set, the model learns
to compose solution strategies. MetaFlow trains in two stages—supervised fine-
tuning on synthetic workflow data, followed by reinforcement learning with ver-
ifiable rewards (RLVR) that uses execution feedback across problem instances in
the task to improve end-to-end success. The resulting model produces effective
workflows for trained tasks and exhibits strong generalization to untrained tasks
and novel operator sets. Across benchmarks in question answering, code genera-
tion, and mathematical reasoning, MetaFlow achieves performance comparable to
state-of-the-art baselines on in-domain tasks with single inference, while demon-
strating remarkable zero-shot generalization capabilities on out-of-domain tasks
and operator sets.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant performance across a wide range
of tasks, including code generation, question answering, and mathematical reasoning (Austin et al.,
2021; Chen et al., 2021; Yang et al., 2018; Dua et al., 2019; Ding et al., 2024; Jiang et al., 2025;
Cobbe et al., 2021; OpenAI, 2023; Zhu et al., 2024). However, because these models generate
instance-specific solutions, they lack the structural consistency and transparency needed for reliable
deployment, while also being difficult to adapt to similar tasks. Workflows that encode recurring al-
gorithmic patterns provide a principled alternative, decomposing complex challenges into structured,
manageable steps. However, manually designing such workflows requires significant expertise and
effort, limiting their broader application.

To address this challenge, recent effort have focused on the automatic workflow generation (Khattab
et al., 2023; Li et al., 2024; Song et al., 2024; Zhang et al., 2024a). Endowing LLMs with this
strategy planning capability means lowering the barrier for complex task automation from requiring
manual programming by experts to merely providing high-level task descriptions, thereby greatly
liberating productivity. Nevertheless, representing the workflow as static graph (Zhuge et al., 2024)
or neural network (Liu et al., 2024) in many of these methods limits the flexibility of generatable
workflows.

A promising direction emerges from works like ADAS (Hu et al., 2024), AFlow (Zhang et al.,
2024b), ScoreFlow (Wang et al., 2025) and FlowReasoner (Gao et al., 2025), which represent work-
flows as code (a structured combination of predefined operators), making the automatic generation
of workflows more flexible and expressive, where operator is an encapsulation of common agentic
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operations introduced by Zhang et al. (2024b). Within this code-based framework, current ap-
proaches adopt two different paradigms for workflow generation.

The first paradigm comprises task-level approaches, exemplified by ADAS (Hu et al., 2024) and
AFlow (Zhang et al., 2024b), which formulate workflow generation as a search problem within pre-
defined task-operator set combination. Both methods employ iterative search strategies, with ADAS
using evolutionary algorithms and AFlow using Monte Carlo Tree Search (MCTS), to discover high-
performing workflows through repeated refinement. However, this search-based paradigm inher-
ently constrains them to specific task and predetermined operator set. When encountering new tasks
or operators, these methods require complete re-optimization from scratch, incurring substantial
computational costs (Wang et al., 2025).

Conversely, the second paradigm consists of instance-level approaches, exemplified by Score-
Flow (Wang et al., 2025) and FlowReasoner (Gao et al., 2025), which generate workflows tailored
to individual problem instances in the task. Both methods dynamically construct workflows at infer-
ence time, with ScoreFlow leveraging gradient-based optimization to refine agentic workflows, and
FlowReasoner employing reasoning chains distilled from advanced models to design query-specific
multi-agent systems. While these instance-level methods excel at tailoring workflows to specific
problem instances, this granularity comes at the cost of reusability and deployment efficiency. They
cannot capture task-level patterns that recur across similar problem instances, leading to redundant
workflow generation for each query. In deployment scenarios, this approach foregoes the benefits of
having optimized, reusable workflow templates that could be consistently applied to entire task.

The limitations of existing paradigms underscore two fundamental challenges that must be addressed
to achieve truly general-purpose automatic workflow generation. (1) How can we overcome the re-
optimization requirement of task-level approaches when facing new domains (task-operator
set combinations)? (2) How can we learn generalizable patterns that avoid redundant instance-
level generation while adapting effectively to untrained domains?

To systematically overcome the challenges, we propose MetaFlow, which formulates workflow
generation as a meta-learning problem. Unlike search-based methods that require expensive re-
optimization for new task-operator set combinations, MetaFlow learns to directly synthesize work-
flows from task descriptions and operator set specifications, enabling zero-shot generation through
a single model inference.

To achieve robust zero-shot generalization, MetaFlow employs a two-stage training paradigm with
diverse task-operator pairs. Adopting the code-based workflow representation from prior works(Hu
et al., 2024; Zhang et al., 2024b; Wang et al., 2025; Gao et al., 2025), we first synthesize thou-
sands of workflows using Qwen-Max (Team, 2024) across four tasks and a single operator set to
finetune Qwen3-8B (Yang et al., 2025), establishing the foundation for understanding how tasks
and operators relate to workflow structures. Subsequently, we apply online reinforcement learning
with GRPO (Shao et al., 2024) across expanded domains, where execution feedback on problem
instances directly optimizes the generation policy. This training ensures the model learns general-
izable workflow construction principles rather than memorizing patterns. At inference, MetaFlow
zero-shot generates effective workflows for novel configurations with only a single forward pass.

Our main contributions are:

• Meta-learning Framework: We introduce MetaFlow, a novel approach that reformulates
workflow generation from discrete search within fixed configurations to continuous learn-
ing across diverse task-operator set combinations. By conditioning workflow generation
on task descriptions and operator specifications, our framework achieves strong zero-shot
generalization to unseen domains without any re-optimization, reducing computational cost
from thousands of API calls to a single model inference.

• Scalable Training Pipeline: We design a two-stage training framework combining su-
pervised learning with online reinforcement learning, utilizing diverse domains to ensure
robust generalization to untrained domains.

• Comprehensive Evaluation: Extensive experiments demonstrate that MetaFlow achieves
competitive performance on in-domain benchmarks while exhibiting remarkable zero-shot
generalization to out-of-domain task classes and operator sets, including solving program-
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ming problems with novel operator combinations never seen during training and solving
question answering problem using the vector database search operator.

2 RELATED WORKS

2.1 AGENTIC WORKFLOW

Agentic workflows decompose complex tasks into structured steps through predefined operators and
dependencies (Zhang et al., 2024b; Wang et al., 2025; Gao et al., 2025). Unlike autonomous agents
that learn through environment interaction (Zhuge et al., 2024; Hong et al., 2024), workflows provide
interpretable and consistent execution patterns. Recent works adopt code-based representations for
superior expressiveness (Hu et al., 2024; Zhang et al., 2024b; Wang et al., 2025; Gao et al., 2025),
supporting applications in code generation, question answering, and mathematical reasoning (Austin
et al., 2021; Chen et al., 2021; Yang et al., 2018; Dua et al., 2019; Ding et al., 2024; Jiang et al., 2025;
Cobbe et al., 2021; OpenAI, 2023; Zhu et al., 2024). However, manual workflow design remains a
significant bottleneck requiring deep expertise.

2.2 AUTOMATIC WORKFLOW GENERATION

Recent advances have explored automating workflow generation to improve LLM perfor-
mance (Chen et al., 2023; Zhang et al., 2024b; Wang et al., 2025; Li et al., 2024; Song et al.,
2024). While some methods optimize prompts within fixed workflows (Guo et al., 2023; Khattab
et al., 2023), we focus on optimizing workflow structures directly.

Current structural optimization follows two paradigms. Task-level approaches like ADAS (Hu et al.,
2024) and AFlow (Zhang et al., 2024b) search for optimal workflows through evolutionary algo-
rithms or MCTS, but require complete re-optimization for new domains. Instance-level methods in-
cluding ScoreFlow (Wang et al., 2025) and FlowReasoner (Gao et al., 2025) generate query-specific
workflows but fail to extract reusable patterns.

Our Methods, MetaFlow reformulates workflow generation as meta-learning over diverse task-
operator combinations during training. Through two-stage optimization combining supervised
learning with reinforcement learning, it achieves true zero-shot generation—producing effective
workflows for novel domains via single model inference, eliminating both re-optimization and adap-
tation overhead.

3 PROBLEM DEFINITION

Existing works often formulate automatic workflow generation as optimization problems (Xu et al.,
2025; Li et al., 2025), requiring separate optimizations for each task. We elevate this perspective
by reformulating it as a Meta-learning problem (Finn et al., 2017; Franceschi et al., 2018). To
ground this formulation, we first define our core concepts: a PROBLEM INSTANCE p is a single,
concrete problem to be solved. A TASK C is a family of such instances with a shared structure. The
available operators are defined by an OPERATOR SET Ops, a collection of fundamental, reusable
operations (Zhang et al., 2024b). Together, the (TASK, OPERATOR SET) (C,Ops) constitutes a
complete domain.

Within this meta-learning framework, an LLM serves as the meta-learner (the planner, πθ). Its core
responsibility is to learn a meta-strategy that enables fast adaptation. Specifically, given any (C,Ops)
pair, the planner can rapidly generate an efficient and reusable WORKFLOW W. This workflow is
a task-level strategy, formalized as a structured sequence of operators from Ops. When applied to
any specific PROBLEM INSTANCE p within TASK C, this workflow guides the execution process to
produce a high-quality SOLUTION s.

Unlike traditional meta-learning approaches such as Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017), which rely on gradient updates for adaptation, our method achieves fast adaptation
through the synthesis of workflows without requiring any gradient-based fine-tuning.

The differences between our method and traditional approachs can be illustrated as 1
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Figure 1: Three methods

As a meta-learning task, our goal is to optimize the meta-parameters θ of the planner LLM (πθ).
Specifically, we seek the optimal θ∗, such that the workflow W generated by πθ maximizes the
expected reward when applied to any domain (C,Ops) from the (task, operators set) distribution
D(C,Ops). We adopt the classic optimization strategy of meta-learning, namely the bi-level opti-
mization structure Franceschi et al. (2018), which can be rigorously formulated as:

θ∗ = argmax
θ

E(C,Ops)∼D(C,Ops)︸ ︷︷ ︸
Outer Loop (Meta-Optimization)

[EW∼πθ(·|C,Ops,O)[Ep∼P (p|C)[R(Exec(W, p))]]︸ ︷︷ ︸
Inner Loop (Task-Specific Adaptation & Evaluation)

]

Where

• (C,Ops) ∼ D(C,Ops): sampling a task from the (task, operators set) distribution D(C,Ops).

• W ∼ πθ(· | C,Ops,O): the planner πθ as the meta-learner, performing fast adaptation
under the given specific task description C, available operator set Ops, and optional con-
textual information O (such as system prompt), to generate a workflow W customized for
the task.

• p ∼ P (p | C): sampling a specific problem instance p from the instance distribution of task
C for evaluating the generated workflow.

• Exec(W, p) represents the process of applying the workflow W to solve the problem in-
stance p in the executor environment, producing the final solution.

• R(·) is a reward function used to evaluate the quality of the final solution (e.g., code test
pass rate, answer accuracy).

The outer loop optimizes not the performance on a single instance or single problem family, but
the average performance of workflows across the entire (task, operators set) distribution D(C,Ops),
which directly drives the meta-learner πθ to learn strategies with cross-domain generalization ca-
pabilities. In contrast, the optimization objectives of works such as ScoreFlow(Wang et al., 2025)
and ComfyUI-R1 (Xu et al., 2025) can be formalized as maximizing the expected reward on a
single problem instance p, i.e., argmaxEp∼P (p|C)[R(Exec(Wp, p))]. Our framework elevates the
optimization plane from the instance-level to the meta-level, thereby explicitly learning general
workflow strategies W ∼ πθ(· | C,Ops) that can generalize across entire task and operator combi-
nations (Zhang et al., 2024b; Li et al., 2025).

4 METHODOLOGY

Our MetaFlow framework aims to train a large language model through a two-stage learning process
to automatically generate efficient and reusable workflows for given problem families. This section
elaborates on our system architecture, and core training algorithm.
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4.1 METAFLOW ARCHITECTURE

The core architecture of MetaFlow includes a planner LLM and an execution-evaluation environ-
ment.

Workflow Representation: A workflow is represented as a structured script based on the MetaGPT
framework (Hong et al., 2023), composed of a series of predefined operator calls. Following the
practices of AFlow and ScoreFlow, we design a set of general, semantically rich atomic opera-
tors, including Generate (for content generation), Summarize (for information compression),
Revise (for iterative improvement), and Ensemble (for result aggregation) (Zhang et al., 2024b;
Li et al., 2025). These operators form the basic building blocks of workflows.

Input-Output: Building on this, we further clarify the complete input-output structure of the model.
The MODEL INPUT consists of two parts: OPERATOR DESCRIPTIONS, which define the functions,
parameters, and input-output formats of each available operator (whether preset or user-defined);
TASK TYPE DESCRIPTION, which elucidates the domain characteristics of the target problem family
and the input-output formats of each belonging problem instance. The OUTPUT requires a structured
WORKFLOW aimed at efficiently solving all problem instances under the task type using the given
operator set. This design paradigm allows users to conveniently introduce new tools and new task
types through natural language or semi-structured descriptions during testing. At the same time, it
ensures that these new tools and tasks can be quickly understood and effectively generalized by the
model, achieving high flexibility and scalability.

Execution & Evaluation Environment: To achieve end-to-end optimization, we build an auto-
mated environment. This environment receives a candidate workflow Wi and a set of N problem
instances p1, . . . , pN from a specific problem family C as input. In the execution phase, the en-
vironment uses the metagpt framework to orchestrate the workflow (Hong et al., 2023). Each
operator in the workflow (such as Generate) completes its specific subtask by calling an external
lightweight language model API (qwen-turbo) and processes each problem instance. Upon comple-
tion, an automated evaluator module verifies the correctness of each execution result, for example,
by running unit tests or comparing outputs with standard answers. Based on the evaluation results,
the environment computes a quantified, verifiable reward score R(Wi) for the workflow Wi. This
score directly reflects the generalization capability of the workflow, calculated as the average success
rate over N instances:

R(Wi) =
1

N

N∑
j=1

I(is correct(Exec(Wi, pj)))

where I(·) is the indicator function. This reward score R(Wi) is then passed to the training algorithm
as the basis for policy updates.

4.2 TRAINING ALGORITHM

Our training process is divided into two stages: supervised learning-based initialization and re-
inforcement learning-based end-to-end optimization. This combination aims to fully leverage
the guiding role of supervised data while retaining the ability of reinforcement learning to explore
superior strategy spaces.

4.2.1 PHASE ONE: SFT INITIALIZATION

To address the cold start problem caused by the excessively large exploration space in reinforcement
learning from scratch, we first perform supervised fine-tuning on the base LLM. We construct a
high-quality dataset containing pairs of (problem family-operator group description, high-quality
workflow). Through standard autoregressive language model training on this dataset, the model
πθ learns the initial ability to generate syntactically correct and structurally reasonable workflows.
The goal of this phase is to inject prior knowledge about effective strategy patterns into the model,
providing the generated candidate workflows with a reasonable starting point, thereby significantly
narrowing the search space in the subsequent RL phase and accelerating convergence.
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4.2.2 PHASE TWO: RLVR OPTIMIZATION

After SFT, we employ policy gradient algorithms to perform end-to-end self-improvement on the
planner πθ. The core of this phase is the RLVR (Reinforcement Learning with Verifiable Re-
ward) loop, with the specific process as follows:

1. Policy Sampling: For a problem family C sampled from the training set, the planner πθ generates
a batch of k candidate workflows W1,W2, . . . ,Wk.

2. Execution & Reward Calculation: Each candidate workflow Wi is tested in the execution and
evaluation environment described in Section 3.2, obtaining its corresponding reward score R(Wi)
that reflects generalization capability.

3. Policy Update: We use this batch of ‘(workflow, reward)’ pairs to update the parameters of
the planner πθ. In particular, we adopt the Group Relative Policy Optimization (GRPO) algo-
rithm (Shao et al., 2024). The core idea of GRPO is to use the average performance within the group
as a baseline to estimate advantages, thereby avoiding training an independent value network. We
compute the advantage as follows:

Â(Wi) = R(Wi)− µR

where µR = 1
k

∑k
j=1 R(Wj) is the average reward obtained by the group of k workflows. This

calculation based on “group-relative advantages” makes the optimization signal derive from whether
the workflow performance is better or worse than the current batch’s average level, rather than an
absolute, potentially noisy value estimate.

4. Variance Reduction: Evaluation Based on Common Random Numbers

The effectiveness of policy gradients largely depends on the accuracy of the advantage function
Â(Wi) estimation. In our GRPO method, the advantage is computed relative to the batch average
reward µR. If each workflow Wi in the batch is evaluated on a set of independently and randomly
sampled problem instances, the variance of the reward R(Wi) will include not only policy random-
ness (i.e., the quality of the workflow itself) but also environmental randomness (i.e., the difficulty
of problem instances). This additional variance propagates to µR and Â(Wi), producing noisier
gradients and reducing learning efficiency.

To address this issue, we adopt a classic variance reduction technique—Common Random Num-
bers (CRN) (Kleijnen, 1975). In specific implementation, we ensure that all k candidate work-
flows W1, . . . ,Wk in the same training batch (group) are evaluated on the exact same set of
problem instances {p1, . . . , pN}. By fixing the random variable of problem instances when com-
paring workflows, we eliminate noise arising from differences in problem sampling. This keeps the
expected value of R(Wi) − R(Wj) unchanged but significantly reduces its variance. Ultimately,
this ensures that our computed relative advantages more accurately reflect the intrinsic performance
differences between workflows, leading to a more stable policy update direction and accelerating
model convergence.

5 EXPERIMENTS

This section presents systematic experiments designed to evaluate our proposed MetaFlow frame-
work. The experimental design aims to answer several core research questions: (1) Can workflows
generated by MetaFlow achieve comparable performance to current state-of-the-art methods while
requiring only single inference for enhanced efficiency? (2) Does the framework exhibit strong
out-of-distribution (OOD) generalization to new tasks and operators? (3) What are the individ-
ual contributions of key components such as supervised fine-tuning initialization and reinforcement
learning with verifiable rewards? (4) Can MetaFlow effectively enhance the performance of small
to medium-sized language models on complex tasks? We first introduce the experimental configu-
ration, followed by main results, ablation studies, and representative case analyses.
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5.1 EXPERIMENTAL SETUP

To ensure fairness and reproducibility, we construct a standardized experimental environment.

5.1.1 TRAINING CONFIGURATION

MetaFlow employs a two-stage training paradigm.

Stage 1: Supervised Fine-Tuning (SFT) Initialization. To alleviate the cold-start problem in
reinforcement learning, we first conduct supervised fine-tuning on the base model Qwen3-8B. We
construct an expert dataset containing 1,300 high-quality samples, where each sample is a (task class
description, high-quality workflow) pair. These workflows cover typical strategy patterns including
sequential, branching, looping, and parallel execution, providing the model with a robust initial
policy.

Stage 2: Reinforcement Learning with Verifiable Rewards (RLVR) Optimization. Following
SFT initialization, we employ RLVR for end-to-end optimization of the Planner. To ensure training
efficiency, this stage focuses on four selected domains: GSM8K, DROP, MBPP, and HumanEval.
During this stage, the model is restricted to using only four basic operators. Training employs the
Grouped Relative Policy Optimization (GRPO) algorithm for 137 steps. The reward curve shows
consistent and stable policy improvement throughout the training process. To control training costs,
the Executor in the training loop calls a lightweight API—Qwen-Turbo.
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Figure 2: SFT loss curve
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Figure 3: RL running reward

Figure 4: Trainning curves

We adopt the experimental settings from ScoreFlow, with evaluation covering three major domains:
question answering, code generation, and mathematical reasoning.

• Question Answering: 1,000 instances sampled from each of HotpotQA and DROP.

• Code Generation: Full sets of MBPP.and Humaneval.

• Mathematical Reasoning: 1,000 questions sampled from GSM8K and Level-5 problems
from the MATH dataset.

Consistent with ScoreFlow’s approach, all datasets except HumanEval are deterministically split
into train and test sets at a 1:4 ratio. We did not test the scores on the HumanEval dataset, as its
small size makes it difficult to complete the subsequent validation and testing steps.

5.1.2 BASELINE METHODS

We compare MetaFlow against two categories of methods:

7
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Figure 5: Operators

• Manually Designed Workflows: Including existing prompting strategies such as Vanilla
Prompting(IO), Chain-of-Thought (CoT), Reflexion, LLM Debate, Step-back Abstraction,
Quality-Diversity (QD), and Dynamic Role Assignment.

• Automatically Optimized Workflows: Including current state-of-the-art methods such as
ADAS, AFLOW, and Scoreflow.

5.1.3 OPERATOR DESIGN

We predefine a set of general atomic operators: Generate, Summarize, Revise, and Ensemble. A
key feature of our framework is that the Planner can dynamically rewrite any operator’s prompt
to customize its behavior. To rigorously test OOD generalization, we introduce two novel opera-
tors unseen during training at the evaluation stage: Decompose and Programmer. These operators’
functionalities are provided through natural language descriptions via in-context injection. The De-
compose operator is responsible for breaking complex problems into subproblem lists, while the
Programmer operator requires the LLM to write code snippets and return execution results.

5.1.4 EVALUATION PROTOCOL

Inference Process: For each task, MetaFlow generates 20 candidate workflows. We employ a
best-of-20 strategy: all candidate workflows execute on an independent validation set containing 50
problem instances, and the workflow with the highest average reward is selected for final testing.

Executor and Judge: To ensure fair comparison, during evaluation, all methods (including base-
lines) use GPT-4o-mini as the Executor. For question answering tasks, we adopt the LLM-as-a-Judge
paradigm, also using GPT-4o-mini as the judge.

5.1.5 IMPLEMENTATION DETAILS

The Planner is implemented based on Qwen3-8B, with workflow execution orchestrated by the
MetaGPT framework.

5.2 MAIN RESULTS AND ANALYSIS

5.2.1 OVERALL PERFORMANCE COMPARISON

As shown in Table 1, MetaFlow achieves an average performance score of 78.8, demonstrating
competitive results. Notably, its performance is comparable to ScoreFlow, Aflow and ADAS, which
requires resource-intensive per-instance optimization. Additionally, MetaFlow matches or exceeds

8
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Method DROP MBPP GSM8K MATH Avg

IO 81.6 69.5 89.1 52.2 73.1
CoT (Wei et al., 2022) 83.2 70.4 88.3 53.4 73.8
CoT SC (Wang et al., 2022) 83.2 71.3 88.6 53.8 74.2
MedPrompt (Nori et al., 2023) 83.0 69.2 88.1 53.7 73.5
MultiPersona (Wang et al., 2024) 81.3 70.4 89.8 51.9 73.4
Self Refine (Madaan et al., 2024) 82.5 70.0 87.5 50.0 72.5
ADAS (Hu et al., 2024) 81.3 68.7 90.5 51.7 73.1
AFlow (Zhang et al., 2024b) 83.5 82.9 90.8 55.8 78.3
ScoreFlow (Wang et al., 2025) 86.2 84.7 94.6 64.4 82.5

Ours 82.8 77.5 93.8 61.0 78.8

other automated workflow generation methods that rely on computationally expensive search pro-
cesses on downstream tasks. All baseline model scores in the table are sourced from the ScoreFlow
(Wang et al., 2025) paper.

5.2.2 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION

Adaptation to Novel Operators: Our results demonstrate that MetaFlow can effectively integrate
new operators into generated workflows based solely on their natural language descriptions. On
MATH,MBPP and HotpotQA A.0.1 in Appendix A, the model autonomously generated workflows
incorporating the unseen Programmer operator. This capability enables performance that not only
significantly surpasses manually designed workflows but also rivals automated search methods that
have access to the operator during training or search phases.

Adaptation to New Domains: The framework exhibits strong generalization to task domains not
encountered during RLVR optimization such as MATH. Using only high-level task descriptions pro-
vided in prompts, MetaFlow generates effective workflows with performance comparable to state-
of-the-art methods specifically trained or designed for these domains. This highlights the frame-
work’s rapid zero-shot adaptation capability, a core objective of our meta-learning paradigm.

6 CONCLUSION

We introduce MetaFlow, which employs a two-stage training paradigm with diverse task-operator
pairs. Across benchmarks in question answering, code generation, and mathematical reasoning,
MetaFlow achieves performance comparable to state-of-the-art baselines on in-domain tasks with
single inference, while demonstrating remarkable zero-shot generalization capabilities on out-of-
domain tasks and operator sets.
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A CASE STUDY: WORKFLOW DESIGN TRANSFORMATION AFTER TRAINING

To better understand the effectiveness of our training paradigm, we conduct a critical ablation study
analyzing changes in model behavior before and after training. We compare two randomly selected
workflows generated by the untrained base model (Qwen3-8B) versus the fully trained MetaFlow
model after our two-stage training.

A.0.1 IMPACT OF TRAINING ON WORKFLOW GENERATION BEHAVIOR

Before Training (Base Model Qwen3-8B): Without SFT and RLVR optimization, the base model
generates workflows with multi-step logic following a linear process: extract function name →
summarize → generate → revise → ensemble.

1 class Workflow:
2 # ... (initialization code omitted) ...
3 async def run_workflow(self):
4 # Step 1: Extract function name from test cases
5 func_name = await self.generate(
6 instruction="Extract the function name from the test cases.
7 Return ONLY the function name, nothing else.",
8 context=self.problem_text
9 )

10 # Step 2: Summarize problem description and test cases
11 problem_summary = await self.summarize(
12 instruction="Summarize the problem description and test cases
13 to create a clear problem statement.",
14 context=self.problem_text
15 )
16 # Step 3: Generate code based on problem summary
17 generated_code = await self.generate(
18 instruction=f"Write a Python function named ’{func_name}’...
19 Return ONLY the function definition, nothing

else.",
20 context=problem_summary
21 )
22 # Steps 4 & 5: Revise and ensemble
23 revised_code = await self.revise(...)
24 final_code = await self.ensemble(contexts=[generated_code,

revised_code])
25 return final_code

Listing 1: Workflow generated by the untrained base model.

Analysis: While structured, this workflow has potential weaknesses:

1. Information Bottleneck: The summarize step, intended to condense information, risks
losing critical details or constraints from the original problem description.

2. Instruction Ambiguity: Vague instructions like ”Return ONLY the function definition”
can be misinterpreted, leading to incomplete code that lacks necessary import statements
or helper functions.

After Training (MetaFlow Model): In contrast, the MetaFlow model optimized through our two-
stage training paradigm generates a workflow that, while maintaining complexity, is significantly
more robust and methodical in its approach, and has learned the self-consistency operator unseen
during training.

1 % --- DO NOT IMPORT HERE ---
2 class Workflow:
3 def __init__(self, config, problem) -> None:
4 # --- DO NOT MODIFY THIS SECTION ---
5 self.config = config
6 self.problem_text = problem
7 self.llm = create(config)
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8

9 self.generate = operator.Generate(self.llm, self.problem_text)
10 self.revise = operator.Revise(self.llm, self.problem_text)
11 self.summarize = operator.Summarize(self.llm, self.problem_text)
12 self.ensemble = operator.Ensemble(self.llm, self.problem_text)
13 self.selfconsistency = operator.SelfConsistency(self.llm, self.

problem_text)
14

15 async def run_workflow(self):
16 """
17 Implement the core problem-solving logic here.
18 Remember:
19 - Use detailed, comprehensive instructions
20 - Dynamic instruction construction is powerful
21 - All operators expect (instruction: str, context: str) except

Ensemble which takes contexts: List[str]
22 """
23 import asyncio
24

25 # Step 1: Extract function name from test cases
26 function_name = await self.generate(
27 instruction="""
28 Analyze the test cases provided and extract the function name

.
29 The function name should match the naming convention used in

the test cases.
30 Return ONLY the function name, nothing else.
31 """,
32 context=self.problem_text
33 )
34

35 # Step 2: Extract input types and expected outputs from test
cases

36 input_types_output = await self.generate(
37 instruction="""
38 Analyze the test cases provided and extract the input types

and expected outputs.
39 Format the response as a dictionary where keys are the

parameter names and values are the types.
40 Also, identify the expected output format.
41 Return ONLY the structured information, nothing else.
42 """,
43 context=self.problem_text
44 )
45

46 # Step 3: Generate multiple candidate implementations
47 implementations = await asyncio.gather(
48 self.generate(
49 instruction=f"""
50 Given the problem description: {self.problem_text}
51 Generate a Python function that satisfies the test cases.
52 Ensure that the function name is ’{function_name}’.
53 Include all necessary imports at the beginning of the

function.
54 Use the extracted input types and expected outputs: {

input_types_output}.
55 """,
56 context=self.problem_text
57 ),
58 # ... (additional parallel generate calls omitted for brevity

) ...
59 self.generate(
60 instruction=f"""
61 Given the problem description: {self.problem_text}
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62 Generate another Python function that satisfies the test
cases.

63 Ensure that the function name is ’{function_name}’.
64 Include all necessary imports at the beginning of the

function.
65 Use the extracted input types and expected outputs: {

input_types_output}.
66 """,
67 context=self.problem_text
68 )
69 )
70

71 # Step 4: Select the best implementation using SelfConsistency
72 best_implementation = await self.selfconsistency(
73 instruction=f"""
74 Evaluate the following candidate implementations:
75 {implementations[0]}
76 {implementations[1]}
77

78 Select the best implementation based on the following
criteria:

79 - Consistency with the test cases
80 - Logical correctness
81 - Efficient and clean code
82 - Proper use of imports and function signature
83

84 Return ONLY the best implementation, nothing else.
85 """,
86 context=self.problem_text
87 )
88

89 return best_implementation

Listing 2: Workflow generated by the trained MetaFlow model.

Analysis: The trained model’s workflow exhibits several key improvements contributing to its ro-
bustness:

1. From Compression to Structured Extraction: The model avoids the potentially lossy
summarize step. Instead, it performs targeted extractions to parse unstructured text into
structured data (e.g., function name, I/O types). This approach preserves information in-
tegrity and provides a more reliable foundation for subsequent steps.

2. Parallel Exploration for Increased Robustness: Rather than following a single
generation-and-revision path, the model generates multiple, independent candidate solu-
tions in parallel using asyncio.gather. This multi-path exploration inherently in-
creases the robustness of the process by diversifying the solution space and reducing the
risk of settling on a single, flawed implementation.

3. More Explicit and Context-Aware Instructions: The instructions are dynamically con-
structed using f-strings to include context from prior steps (e.g., ‘function name‘, ‘in-
put types output‘). This makes the prompts highly specific and unambiguous, directly
mitigating the weaknesses of the base model and ensuring that each generative step is pre-
cisely guided.

A CASE STUDY: LEARNING A NOVEL SEARCH OPERATOR FOR MULTI-HOP
QA

Our operator-centric framework is designed for extensibility, allowing external tools to be seam-
lessly integrated as new operators. This case study demonstrates how a model learns to utilize a
novel ‘Search‘ tool—specifically ‘operator.VectorSearch‘—which was not seen during its primary
training phase. The following workflow code was implemented to solve problems from the Hot-
potQA dataset, a task that requires multi-hop reasoning over multiple documents.
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1

2 class Workflow:
3 def __init__(self, config, problem) -> None:
4 # --- DO NOT MODIFY THIS SECTION ---
5 self.config = config
6 self.problem_text = problem
7 self.llm = create(config)
8

9 self.generate = operator.Generate(self.llm, self.problem_text)
10 self.revise = operator.Revise(self.llm, self.problem_text)
11 self.summarize = operator.Summarize(self.llm, self.problem_text)
12 self.ensemble = operator.Ensemble(self.llm, self.problem_text)
13 self.vector_search = operator.VectorSearch(self.llm, self.

problem_text)
14

15 async def run_workflow(self):
16 """
17 Implement the core problem-solving logic here.
18 Remember:
19 - Use detailed, comprehensive instructions
20 - Dynamic instruction construction is powerful
21 - All operators expect (instruction: str, context: str) except

Ensemble which takes contexts: List[str]
22 """
23 import asyncio
24

25 # Step 1: Extract the question and identify the type of reasoning
required

26 question_extraction_instruction = """
27 Analyze the provided problem text and extract the following:
28 1. The exact question being asked
29 2. Identify whether the question requires:
30 - Bridge reasoning (connecting entities across documents)
31 - Comparison reasoning (comparing properties across documents)
32 - Compositional reasoning (combining multiple facts)
33 3. Provide a brief justification for your reasoning type

classification
34 """
35 question = await self.generate(instruction=

question_extraction_instruction, context=self.problem_text)
36

37 # Step 2: Retrieve relevant documents based on the question
38 doc_retrieval_instruction = """
39 Given the extracted question, retrieve relevant documents from

the knowledge base that provide information related to the
question.

40 Focus on documents that contain entities, relationships, or facts
that could help answer the question.

41 """
42 retrieved_docs = await self.vector_search(
43 instruction=doc_retrieval_instruction,
44 context=question,
45 top_k=5
46 )
47

48 # Step 3: Analyze the retrieved documents to identify bridge
entities and reasoning chains

49 analysis_instruction = f"""
50 Based on the following information:
51 - Question: {question}
52 - Retrieved Documents: {retrieved_docs}
53

54 Perform the following steps:
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55 1. Identify all entities, key facts, and relationships across the
documents that are relevant to answering the question.

56 2. Determine which entity or concept serves as the "bridge"
connecting information across documents.

57 3. Construct an explicit reasoning chain that connects the
information from the documents to form a complete answer.

58 4. Ensure the reasoning chain is precise and follows a logical
flow.

59 """
60 reasoning_chain = await self.generate(instruction=

analysis_instruction, context=retrieved_docs)
61

62 # Step 4: Extract the final answer from the last document in the
reasoning chain

63 final_answer_extraction_instruction = """
64 From the reasoning chain provided, extract the final answer to

the question.
65 Ensure the answer is:
66 - A short text span (entity or phrase)
67 - Precise and unambiguous
68 - Directly supported by the reasoning chain
69 """
70 final_answer = await self.generate(
71 instruction=final_answer_extraction_instruction,
72 context=reasoning_chain
73 )
74

75 # Step 5: Critique and refine the extracted answer if necessary
76 refinement_instruction = """
77 Review the extracted answer and refine it based on the following

criteria:
78 - Ensure it is factually accurate
79 - Ensure it is precise and concise
80 - Ensure it directly addresses the question
81 """
82 refined_answer = await self.revise(instruction=

refinement_instruction, context=final_answer)
83

84 return refined_answer

Listing 3: A workflow where the model learns to use the ‘VectorSearch‘ operator to retrieve
documents for multi-hop reasoning.

ANALYSIS AND PERFORMANCE

The workflow in Listing 3 demonstrates the successful integration and application of a new tool. In
Step 2, the model dynamically constructs a search query from its initial analysis and invokes the
VECTORSEARCH operator, effectively performing active information retrieval. When evaluated on
the HotpotQA downstream task, this approach achieved a 60% search accuracy. This result is
significant as it confirms that our operator framework enables models to learn and effectively utilize
unseen tools.

NOTE ON COMPARABILITY WITH BASELINES

It is crucial to highlight a fundamental difference between our evaluation and that of many previous
works on HotpotQA. Our methodology requires the model to actively perform a search to find
relevant information. In contrast, prior baselines are often provided with the ground-truth support-
ing documents as part of their input, thereby bypassing the challenging information retrieval step
entirely. Because our system solves a more complete and realistic version of the task that includes
an explicit search phase, a direct comparison of end-to-end accuracy with such baselines is not
meaningful.
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