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Abstract

Physics-informed neural networks (PINNs) have shown promising results in solving
partial differential equations (PDEs). Nevertheless, for some challenging PDEs,
standard PINNs can fail to converge. We propose a novel curriculum learning
strategy that addresses this limitation. Our method leverages an extension of the
implicit function theorem to guide the training process along the solution manifold
of the parameterized differential equation, starting from an easy-to-solve problem
and progressively moving towards a hard-to-solve one. We establish a theoretical
link between our approach and natural gradient descent, giving rise to a new
effective curriculum learning algorithm allowing us to solve difficult PDEs such as
Eikonal and Hamilton Jacobi-Bellman equations.

1 Introduction

Physics-informed neural networks (PINNs) (Raissi, Perdikaris, and Karniadakis|2019)) are a powerful
tool for approximating solutions to differential equations, which are ubiquitous in science and
engineering. Many real-world problems involve not a single equation, but a parameterized family of
partial differential equations (PDEs). Typically, a parameter in such PDEs represents some physical
property of the environment, e.g. a viscosity coefficient in the equations of fluid dynamics. At
the same time, the difficulty of finding a solution of a PDE with a PINN often depends on these
parameters, and for certain parameter values, standard PINNs fail to converge (Krishnapriyan et al.
2021). To address this challenge, we propose a novel curriculum learning strategy. Our method
leverages an extension of the implicit function theorem to navigate the solution space of parameterized
PDEs represented by a graph that connects a parameter of a PDE with its corresponding solution. By
starting with an "easy" problem, we progressively move towards the "hard" target problem, using the
structure of the solution manifold to guide the training process.

Therefore, the main contributions of this work are twofold. (i) We extend the implicit function theorem
for parameterized differential equations, which provides a principled way to perform curriculum
learning by moving along the "solution curve". (ii) We provide a theoretical connection between
our method and natural gradient descent (Amari|1998)), leading to an efficient implementation of a
curriculum learning algorithm for solving parameterized differential equations.

2 Optimization of PDEs via Physics-Informed Neural Networks

Let Q2 C R? be a domain. We consider a differential equation D[u] = f in 2, where D : H — L?(Q)
is a differential operator on a Hilbert space  of real-valued functions on 2. For ease of presentation,
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we omit boundary conditions here, but our method extends to them (see appendix [G)). PINNs
approximate the solution u with a neural network uy by minimizing the empirical loss
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where {2:P}7P, are points sampled in (.

Optimization in Function Space Standard optimizers like Adam can struggle with the non-convex
loss landscape of PINNs (De Ryck et al.|[2023)). While L-BFGS is a common alternative (Raissi,
Perdikaris, and Karniadakis [2019), recent work leverages the function space geometry through
natural gradient descent (NGD) (Schwencke and Furtlehner 2024} Miiller and Zeinhofer [2024). NGD

considers the functional loss £(v) = %|jv — fH%z(Q), whose L* gradient is VL = v — f. The NGD

update projects this ideal gradient onto the tangent space of the neural network’s output manifold,
then maps it back to the parameter space. The update rule is

B = 00 = s DUy, [y (V2Df])|. o

where dg D[u(-)]' is the pseudoinverse of the differential of the operator composed with the network,
and HT( py is the projection onto the tangent space (see Appendix [B). Directly computing this update
6

is often %Cntractable. The ANaGRAM method (Schwencke and Furtlehner 2024)) provides a scalable
empirical approximation, which we build upon.

3 Curriculum Learning for Parameterized PDEs

Parameterized Differential Equations We lift the classical PDE D[u] = f in ) to a parameterized
family by letting the operator depend on a scalar « € A C R:

Dla,u] = f in€. 3)

Fixing « recovers the classical setting, while varying « induces a solution map a — u, under
standard well-posedness assumptions. Our goal is to reach a hard target oy starting from an easy ag
by following the solution manifold {(c, u) : D[c,u] = f} ( see Figure[l]); boundary operators can
be incorporated analogously (Appendix [G).
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Figure 1: Three solutions of the convection differential equation (see Appendix |A) for three different
values of «v. Training a PINN directly on a3 leads to disappointing results (Krishnapriyan et al.[2021]).
In the framework of curriculum learning, we start at ccg and progressively increase « to attain our
goal ag.

Curriculum learning Curriculum learning (Bengio et al.|2009) consists in training a model on a
sequence of tasks whose difficulty increases progressively. Krishnapriyan et al.[202 1| demonstrate
that in some parametrized families, standard PINNs succeed only within favorable parameter regimes,
while their performance deteriorates in more challenging settings. By incorporating curriculum
learning into the PINN framework, they achieve accurate approximations even for challenging
parameters. The proposed strategy starts by training the PINN to solve the parameterized differential
equation at an initial, easily solvable parameter «y. Then, for each new alpha, until the target
parameter o is reached, we train the PINN to learn a new solution by starting from the previously
trained weights, thereby guiding the model through increasingly difficult regimes. This procedure is
formalized in Algorithm 3]
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Figure 2: Illustration of implicit function theorem. The graph corresponds to the solution w,, for the
corresponding differential equation with parameter . We start at a point (ag, ug), and the goal is to
calculate uy at point oy using implicit function theorem, by moving along the solution curve.

4 Our method

We propose Implicit Curriculum Learning, a curriculum learning strategy for PINNs that leverages
the implicit function theorem. Similarly to classical curriculum learning, we incrementally find the
solution for a target parameter cx; by starting from a known solution ug corresponding to a parameter
ag. The difference is the implicit construction of a continuous path of solutions that follows the
evolution from (g, ug) to (1, u;) ensuring the smoothest transition.

Let g, 1 € A be the starting and terminal parameters, respectively. We assume that we have a
function ug that is a valid solution to the differential equation (3)) for & = ag. The central question
we address is: can we build a sequence of ay, and uy, € H with K + 1 elements, where oy = og and
ag = o so that for any k > 1, ug_1 can be used for finding uy,?

The implicit function theorem provides a way to navigate the solution manifold with respect to the
parameter «, as illustrated in To formalize this, we introduce a time-like variable ¢ € [0, 1]
and define continuous paths for the parameter and the solution:

a:[0,1] = A, tealt), w:[0,1] = H, t—u(t). 4)
These paths are constructed such that «(0) = ag, a(l) = a1, and u(0) = ug. The crucial
constraint is that for all ¢ € [0, 1], u(¢) must remain a valid solution to the differential equation for the
corresponding parameter «(t), i.e., D[a(t), u(t)] = f. This effectively creates a path in the solution
space that connects the initial solution ug to the target solution u;. We state the following theorem.

Theorem 1 (Implicit function theorem in parameter space). Let « : [0, g — A, a function that
verifies «(0) = o, and a(1) = aq, with A C R. Let 0 : [0,1] — R the parameters of the

parametric model such that u : {?EO’ 1 : Zf is a solution of the problem|3|with «. Suppose
10t)
u(0) = ug, we have
0(t) = —dy (D[o (1), u()) (Hg(g; (oD [a<t>,u<t>ha(t))) , )

which is optimal in the least squares sense for the minimal norm, where 7;(D) is the tangent space on
the parametric model D o u(-) evaluated in 0 (see appendix [E])

Theorem [I] provides the foundation for a numerical method to trace the solution path. By discretizing
the time interval [0, 1], we can employ an Euler method to approximate the evolution of the neural
network parameters 6(t). Given an initial parameter set 6, for which wg, is a solution for the PDE
with parameter g, we can iteratively update the parameters to follow the solution curve. This leads
to the following implicit function theorem update rule:

Ors1 = O + nkbr = Or — Nidy (D[O‘(k)vu(')])re(k) (H%(Jz; (doDcv(k), u(k)]a(k))) ,  (6)

where k corresponds to a discretization and 7y, is the step size at iteration k.



Remark 1. This update rule bears a strong resemblance to the natural gradient descent (NGD)
method (2). The key distinction lies in the term being projected. While NGD projects the gradient of
the loss function, our update projects the derivative of the differential operator with respect to the
parameter «. This projection guides the parameter update in a direction that stays on the solution
curve as « changes infinitesimally.

5 Experimental results

In this section, we consider three parameterized differential equations. Details about the experimental
settings can be found in Appendix [D] Results are summarized in Table [I]

Eikonal equation We consider eikonal equation described in Appendix with viscosity
parameter €1 = 0. This equation has an infinite number of generalized solutions. However, we are
particularly interested in the viscosity solution. Standard PINN training typically does not converge
to the viscosity solution, meanwhile curriculum learning allows one to guide the model towards this
viscosity solution. Furthermore, typical bad optimization behaviors leading to a large variance for
Adam are described in the Appendix.

Burgers’ equation We consider Burgers’ equation described in Appendix [A.0.4] with the target
parameter 1 = 0.001. This viscosity parameter is lower than the usual 0.01/7 considered in
the literature (Raissi, Perdikaris, and Karniadakis 2019} Urban, Stefanou, and Pons 2025)), which
complicates the approximation of the solution in the nearly-discontinuous regions.

Hamilton-Jacobi-Bellman equation We consider a particular case of Hamilton-Jacobi-Bellman
equation, coming from optimal control field, as described in Appendix[A.0.6] Like for the eikonal
equation, we are interested in the notion of viscosity solution that we target by parameterizing the
differential equation (by adding a e Au regularization term, see Appendix [E-3).

Table 1: Comparison of methods on different PDEs

Equation Method Metric
Hamilton—Jacobi-Bellman (Relative Error) Adam 5.56e-01 + 1.99e-01
Implicit Curriculum Learning  3.44e-01 + 2.05e-01
Eikonal (Relative Error) Adam 8.02e-01 + 9.78e-01
Implicit Curriculum Learning  2.05e-02 £ 1.09e-02
Burgers (Evaluation Loss) Adam 1.32e-02
Implicit Curriculum Learning 7.21e-03

6 Discussion

Building on the findings of Krishnapriyan et al. 2021, we confirmed that curriculum learning
can substantially boost the performance of PINNs when approximating families of parameterized
differential equations. To this end, we introduced a novel curriculum learning strategy grounded in
the implicit function theorem, which naturally connects to the geometry of natural gradient descent.

Our empirical evaluation demonstrates that this approach yields promising results. Unlike conven-
tional curriculum learning schemes, the implicit function theorem based method critically relies on
maintaining a correct solution for the current parameter value o at every stage ¢. Consequently, the
choice of parameter increments (o to ai41) is crucial. In this work, we consider a few heuristical
schedules of a;;, however an adaptive schedule could further enhance performance and is a compelling
direction for future research.

Moreover, our experiments on Hamilton—Jacobi-Bellman equations revealed that interleaving standard
optimization steps (e.g., Adam) with the implicit updates improves the estimate and also ensures that
the approximation at time ¢ is correct. Determining, in an adaptive manner, both when and how many
conventional training iterations to apply before each implicit update offers another promising avenue
for refining the method.
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A Parameterized differential equations

In this section, we present several differential equations that can be effectively addressed using the
framework of curriculum learning. This list is not exhaustive. Rather, it serves to illustrate and justify
the applicability of curriculum learning—based methods for approximating the solution of differential
equations.

A.0.1 Heat equation

One of the simplest differential equation we consider is the heat equation. It is a linear differential

equation defined by:

O — @0pzu =0 inQ =10,1] x [0,1]. )
u(0, x) =sin(rz) forx € [0,1].

where « is a parameter representing the thermal diffusivity. With high thermal diffusivity, the heat

moves rapidly, while it is the opposite when the value is small.

A.0.2 1D Convection equation

We formalize the one-dimensional convection problem as a hyperbolic PDE which represents the
transport of a quantity:

{&u—kﬂ@xu =0, ze€,tel0,T], ®)
u(z,0) =g(x), x€,

where [ is a parameter of velocity, 2 C R. We can show that such equation has the following
analytical solution:

u(2,t) = F~1 (F(g())e™™) ©)
where F is the Fourier transform, 2 = —1 and k is the frequency in the Fourier domain. For more
reference on the solution and the equation, one can see Krishnapriyan et al. 2021,

In practice, we choose 2 = [0, 27), and 7' = 1, and we will use the boundary and periodic equations:
u(z,0) = sin(z), (10)
u(0,t) = u(2m,t). (11)

shows the solutions of the 1D convection equation for different values of 3. As mentioned
previously, the solution is harder to approximate with PINN when the velocity /5 becomes large.

A.0.3 Reaction-Diffusion

We introduce the reaction-diffusion differential equation, which often appears in chemistry, biology
and physics. In the context of chemistry, it models the chemical reaction between substances across
time and the spacial diffusion of reactants. In 1D, we define it as follows:

O — vOgu —pu(l —w) =0, z€Q,tel0,T], (12)
u(zx,0) =g(z), z€qQ,

with  C R, and v, p € R two parameters. For further details about the reaction-diffusion and its
solution, the reader is referred to Krishnapriyan et al.[2021]

In practice, we set {2 = [0, 27), and T = 1, and we use the boundary and periodic equations:
u(z,0) = sin(z), (13)
u(0,t) = u(2m,t). (14)

A.0.4 Burgers’ equation

Burgers’ equation comes originates from the fluid dynamic field and is a convection-diffusion equation
that can be defined with boundary conditions as:
Opu + u0yu — vOzpu =0 in[0,1] x [—1,1]
u =0 in0,1] x {-1,1} (15)
u(0,x2) = —sin(rz) =0 forxe[-1,1].



In particular, the viscosity coefficient v in Burgers’ equation defines the difficulty of solving the
differential equation. The lower v, the stiffer the derivative in the middle, the harder the approximation.
This equation was also considered in the founding paper of Physics-Informed Neural Network in
Raissi, Perdikaris, and Karniadakis Using the algorithm L-BFGS, it was solved with viscosity
coefficient v = 0.01 /7 ~ 0.0032. Schwencke and Furtlehner also consider Burgers’ equation
with ¥ = 0.001, however overfitting occurs, and the solution is shifted near the shock, which shows
the difficulty of learning the solution directly with very low coefficient term. Burgers’ equation is
frequently used as a benchmark for PINN algorithms in the literature, that is the reason why we
included it. We observe that curriculum learning allows us to approximate the solution of Burgers’
equation in an accurate way, even for viscosity coefficient equals to 0.001.

A reference solution for the Burgers equation when v = 0.01 /7 is presented in
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Figure 3: Reference solution for v = 0.01/7, obtained with EDTRK4 algorithm.

A.0.5 Eikonal equation

The eikonal equation is encountered in problems of wave propagations like in optics, describing the
propagation of light, and can be written this way:

|| =1 in[-1,1]
{U(—l) =u(l) =0 on{-1,1}. (16)

In particular, we consider a variant that we call the square eikonal equation

|u'|? =1 in[-1,1]
{u(l) =u(l) =0 on{-1,1}. {17

It is easy to see that the two problems in (T6) and (T7) have exactly the same solutions. One can
notice that currently, this problem is non-parameterized. However, it is often useful to consider
a parameterized version of eikonal to obtain a special solution of eikonal equation, which is the
viscosity solution. To understand why, first, we notice that the eikonal equation does not have smooth
C1((0,1)) solution. Indeed, eikonal differential equation constraints the solution to have a linear
function with slopes +1 or -1. However, the boundary conditions impose the function to be 0 at points
x = —1and x = 1. It is impossible to find a linear function with two points at 0 when the slope is
+1 or —1 (a linear function has only one root). In the class of piece-wise smooth solutions, it is easy
to see that eikonal equation has infinitely many solutions. Piecewise linear functions with slope +1 or
-1 that verify the boundary conditions are such solutions, and three of them are shown in the [Figure 4]
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Figure 4: Several solutions of eikonal equation, represented with different colors.

In practice, finding a solution directly using PINN does not work: the convergence is almost
impossible, and even if it converges, we do not really know what solution the neural network finally
approximates between all the possible ones. The solution in red: u*(x) := 1 — |z| is the simplest
of all, with only one sharp corner. In particular, we can show that this solution is also a viscosity
solution (see section[A.0.6). Leveraging the theory of viscosity (Fleming and Souganidis[1986), we
can define the differential equation:

12 _ " — m [—
{|u| eu 1 in[-1,1] (18)

w(-1)=u(l) =0 on{-1,1}’

where € > 0 is a real parameter. This equation admits a smooth solution:

ue(z) =€ [log <cosh (i)) — log (cosh (‘z))} . (19)

Also, for all z € [-1,1], lim+ ue(z) = u*(z) := 1 — |z|. Equation can be seen as a smooth
e—0

approximation of eikonal, and in particular, using PINN it is possible to find a valid solution when
viscosity term ¢ has high value. Thus, eikonal equation can fall in curriculum learning setting where
we start from a high value € where it is easier to approximate the solution, and then we can make ¢
decrease to 0 until we reach the solution u*. We can see in[Figure 3|the different solutions when we
move ¢, along with the target solution u*.
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Figure 5: Solutions to smooth eikonal (T8)) with different value of .

A.0.6 Hamilton-Jacobi-Bellman equation

In this section, we define the Hamilton-Jacobi-Bellman equation from optimal control field. Optimal
control is a field that consists in studying a dynamical system, by finding a control that optimizes
an objective function. This section only gives a summary of this field, for more information, one
can consult Fleming and Soner 2006, Bardi, Dolcetta, et al. 1997, First, we start by considering
a continuous time set R, which indicates the evolution of our system according to the time. Let
x : Ry — X which gives the state along the time, where X C R™ represents the state space. The
state dynamic is governed by the following equation:

{Z’(g))::i”(y(t)ﬂb(t)) , >0 0)

where f is fixed and known and is called the dynamic, and ¢ : Ry — A is the control function
in a function space ¥, with A C R the action space. The control ¢ is a function that encodes our
strategy to manipulate the state y(¢) through (20), in such way to maximize

J() = / Ty (), 00t + 2T Ry (7)), e

where  : X x A — R is a known function such that r(z, a) represents the reward obtained in
state y after doing action a, and y(t) is the state after time ¢, when following the control ) along all
the trajectory. In the formula, we also consider a boundary term " R(y(7)) where 7 is an exit time
representing the time where we leave the interior of the state space (in particular it can be 7 = +00).
After reaching the boundary of the state space, we receive a boundary reward R(y..(7)). The term
v with v € (0,1) is here to ensure that the integral is finite, and is called discount factor. The
interpretation is that the reward is less important for high value of ¢. We finally introduce the value
function as:

V(z) := sup J(z, ). (22)

YEW

The value function is thus the maximum cumulative reward we can obtain. If the sup is reached by
an ¥*, we call such function an optimal control.
Remark 2. Usually, optimal control is described in such way that we minimize J instead of maximiz-
ing it like in (22)), by replacing the reward r by a cost [. We choose here to go in the other direction to
have a context of "reinforcement learning", where we want to maximize a reward. We can pass from
one formulation to the other just by choosing the cost I(x,a) = —r(x, a).



By assuming we know the dynamic f and the reward r, the optimal control questions that we consider
in this section are

1. What are the different strategies to calculate this value function.
2. How to deduce an optimal control from a value function.

Example 1 (Simple example from Munos 2000). We consider a one-dimensional state space [0, 1].
The control ¢ (t) at time ¢ can take only two values, —1,+1, and the state dynamics are given by
f(y,a) = afora € {—1,+1}. The reward is defined as r(y,a) = 0 for y € (0, 1), while at the
boundaries we have R(0) = Ry and R(1) = Ry, with Ry, Ry > 0.

This means that, starting from an initial position y(0) = z, the goal is to choose actions +1 or —1 in
such a way to reach one of the boundaries as quickly as possible to obtain a positive reward. From the
dynamics, choosing +1 moves the state towards y = 1, while choosing —1 moves it towards y = 0.

It is quite clear that the optimal control consists of consistently choosing either +1 or —1, since
switching actions only increases the time to reach a boundary. In other words, the value function is

V(z) = e Y R(y (7)), (23)

where 7 is the exit time to reach the boundary starting from .

If we start at = and take the constant action +1, the dynamics are y'(¢) = 1, which integrates to
y(t) = x + t. The boundary y = 1 is reached when = + ¢ = 1, i.e., at time 7 = 1 — z. Similarly, if
we choose the constant action —1, we reach the boundary y = 0 at time 7 = .

Thus, the value function can be written explicitly as

V(z) = max(y"Ro, 7" *Ry). (24)

Apart from this simple example, optimal control has many real-world applications, for instance, in
robotics for the snake gait (Guo, Zhu, and Fang|2018)), or in physical systems such as a pendulum,
where by applying a force we can make it stand still in the upward position. Panetta and Fister {2000
considered the use of optimal control in cancer chemotherapy, while Boissaux and Schiltz 2010
showed that it can also be applied to finance.

Thus, there are many problems that fall within the optimal control framework. Each formulation is
associated with a value function, that corresponds to the maximum cumulative reward achievable
with an optimal policy. This value function is particularly interesting to compute because it naturally
yields the optimal control: for a given state x, the optimal action is the one that drives the system
toward the state with the highest value function. In other words, the state should evolve along the
gradient of the value function.

In the following, we present a result showing that the value function satisfies a first-order nonlinear
differential equation known as the Hamilton—Jacobi—Bellman (HJB) equation. As discussed above,
since one can define infinitely many optimal control problems with their associated value functions,
it is more accurate to say that there exists a whole class of Hamilton—Jacobi—Bellman equations,
each depending on the specific problem. We also discuss some difficulties that arise when trying to
approximate such equations, due to the existence of infinitely many generalized solutions, and we
introduce the vanishing viscosity lemma, which provides a potential way to overcome this issue.

Theorem 2 (Hamilton-Jacobi-Bellman equation). If the value function V' is differentiable at x, then
it verifies the HJB equation:

log(MV (y) + ZEE{VV(y) “f(y,u) +r(y,u)} = 0. (25)

Remark 3 (Interpretation of HIB equation). A proof of the HJB equation can be found in Fleming and
Soner 2006l However, we are going to give an intuitive interpretation of this differential equation. Let
us suppose that V' is differentiable, thus by theorem 2} the HJB equation is verified by the function V.
In particular, we have:

Viy) = % sup{VV(y) - f(y,a) +r(y,a)}. (26)
log (;) acA

10



A theorem called verification theorem shows that the optimal action to take for a given state y is
the one that verifies the sup on the right hand side of the equation (see Fleming and Soner 2006).
This also validates the intuition we provided earlier, because it consists in finding the action a € A
such that the state evolves in the direction of VV () (the steepest ascent of the value function) while
balancing this with the instantaneous reward r(y, a).

Several problems arise from the HIB equation. First, the value function is not necessarily differen-
tiable everywhere. In example[I] the value function is not differentiable everywhere because of the
max. Another problem is that if we consider generalized solutions, which are solutions that verify the
HIJB equation almost everywhere, then often there is an infinite number of them. Again, we can see
this problem in the simple example [I|where the HIB equation can be written:

log(7)V (y) + max(V'(y), =V'(y)) = 0, fory € (0,1). 27)

with the boundary condition V' (0) > Ry and V(1) > R;. Munos|2000|showed that this differential
equation admits several generalized solutions. Thus, if we apply PINNs to approximate a solution
of the differential equation, it is not clear to which solution the method is going to converge. In
particular, we are specifically interested in the value function, rather than other possible solutions.
Our goal is therefore to find this value function so that we can target it directly when solving the HIB
equation with PINNS.

To achieve this, we make use of the theory of viscosity solutions developed in Crandall and Lions
1983, For more details, see Fleming and Soner|[2006. The key idea is to define a generalized solution
with desirable properties such as uniqueness. We will not provide a formal definition of viscosity
solutions here, as this has already been extensively developed in the literature. A gentle introduction
can be found in Bressan 2011l An important result from this theory is that, for the HIB equation,
under certain assumptions such as the continuity of the state dynamics f and the reward function r ,
the value function is the unique viscosity solution.

Thus, solving the optimal control problem amounts to targeting the unique viscosity solution of the
HIB equation. At the best of our knowledge, Shilova et al.[2024is the only work that use PINNs
to target specifically this viscosity solution on the HIB equation. For this, they make use of the
vanishing viscosity lemma that consists in considering the differential equation:

log(vM)We(y) + sup {(VWe(y) - f(y,u) +7(y,u)} = eAW(y). (28)

This differential equation is similar to the HIB equation except that we add a regularization term
eAW,(y) for a fixed € > 0. Under some assumption, Fleming and Soner 2006/ show that the solution
of this new differential equation is unique, and that it is satisfies the vanishing viscosity lemma: if W,
converges uniformly to a function W and e AW, converges uniformly to 0, then the limit function W
is the viscosity solution of the original HIB equation [25] Shilova et al.[2024] proposes thus to use
curriculum learning by solving the equation [28| for different values of ¢, as € converges to 0 to obtain
the corresponding function limit which should be the viscosity solution.

B Natural gradient descent and ANaGRAM

B.1 Natural Gradient Descent

Gradient descent has the general form:
O1 <— 0r + medy, (29)

where d; is a descent direction. In general d; = VEA(G), but such an update does not take into
consideration the geometry of our function space (e.g. the neural networks function space). To
explain the notion of natural gradient descent, we first introduce some definitions and notations
(mostly taken from Schwencke and Furtlehner 2024)

Definition 1 (Parametric model). Given a domain {2 C R™ and a Hilbert space # containing functions
defined on €2 — R™, we define our parametric model as a differentiable functional:

.{RP —H

0 = (zeQr u(z;0)) 30)

To prevent confusion, we write u|g () instead of u(z; ) for all x € Q.
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Definition 2 (Differential of a parametric model). Let u : R” —  be a parametric model, and
6 € R, The differential of the parametric model u with respect to 6 is the differential:

e — R —H 31
o =194, ’%25:1%3735 (31)

To simplify notations, we note J,ug instead of g—zg.

We can generalize gradient descent from the specific case of a parameter spaces R’ to any Hilbert
space. To do so, let us consider a Hilbert space H equipped with its inner product (-,-)3. A
(functional) loss on H is then any differential map £ : H — R,. We can then consider the
following minimization problem:

umeiﬁ L(u), (32)

i.e. finding v € H such that £(u) is minimal. Since £ is differentiable, we can write for all u, h € H
its first order Taylor’s expansion:

L(u+h) = L(uw) +dLy(h) + o(||h|ln). (33)
By Riesz-Fréchet representation theorem, we have that for all u € H, there is V.L,, € H such that
forall h € H,

dLy(h) = (VLuy, h)y. (34

VL, is then precisely the gradient of £ with respect to the metric of 7{. Similarly to the R case, one
way to minimize L is to perform a gradient descent. More precisely, considering an initial ug € #,
we define the following sequence of w1 for £ > 0 by:

Uty < Ut — ntvuﬁ(ut) (35)

In the following, we will investigate the particular case, where the functional loss is given by the
regression of a function f € L2(£2). We will see later how we can generalize this to PINNs and
differential equations. The following proposition illustrates that this gradient descent is the most
natural for a regression in L2(2).

Proposition 1. Let f a function in L*(SY), we define the loss for u € H in the following way

1
L(u) = 5llu = fl7z0), (36)
in such way that:
VuL(u) =u— f. 37
Let u: Ry — H, then the following ODE
’LL(O) = Ug
u (38)
{it(t) = —VuL(u)
has a unique solution
ut) = o + (1= e™)(f — o). (39)
Proof. Let u(t) a solution of (38). In particular, we have:
u(t) = =VuL(u) = f —u(t). (40)
By passing u to the left and multiplying both sides by e!, we have:
el (t) + e'u(t) = e f. 41
We can rewrite it:
(eu()(t) =¢'f. (42)
By integrating on both sides:
chu(t) = (' = 1)f +C, (43)
from which we deduce:
u(t)=e'C+(1—e")f. (44)
We also know that u(0) = uog, thus we get C' = ug, we conclude:
ut) =etug+ (1 —e N f =ug+ (1 —e b)(f —up). (45)

We verify for the converse that such u(¢) is a solution of the ODE (38).
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In particular, the functional gradient descent (33)) corresponds to the Euler approximation of the ODE
(38)), which in turn corresponds to regressing f by following in a straight line the segment [ug, f]. It
is thus an ideal and desirable update. However, the update (33) implies that we can perform updates
directly in the function space, which is not the case in practice. In a parametric model settings (e.g. a
neural network), we update the function defined by the model only through the parameters. Doing a
gradient descent in the parameter space yields the following:

01 < O + mrwy, (46)

where w; is a descent direction. If we write the Taylor’s expansion of ug, ,, = g, {1,w,, W€ Obtain:

g,y = o, + mdug, (we) + 0 (ne[we]) - 47)

One way to define the natural gradient update is to choose w; in the parameter update in such way
that the ideal functional update (35) is the closest to the Taylor expansion of ug, , defined in (@7).

Thus, we can define w; as the minimizer:

1 2
we € arg min 5 [dug, (w) + VuLl(ug,)|7z2q) - (48)

The following proposition gives an expression for the descent direction w; as defined in (48), which
allow us to define the natural gradient descent.
Proposition 2 (Natural gradient direction, Miiller and Zeinhofer [2024)). Let
RF =R
(= 49

The descent direction w; defined in {@8)) can be rewritten:
wy = —G(0;) Vol(0y), (50)

where G : RE — R x RF correspond to the Gram matrix for a given parameter 0. For § € RY it is
defined by:

G(Q)p’q = <3p’U,9,aqUQ>L2(Q). (51)
Thus the natural gradient update can be formulated this way:
9t+1 — 6‘,5 — ntG(Gt)TVM(Qt)7 (52)

where G(0)T refers to Moore-Penrose pseudoinverse, see appendix

Proof. Let’s consider the descent direction w; as defined in (@8). We can simplify the expression by
using the definition of the differential 2}

2
1
5 ||du9t( )+V ‘C(uet HLz(Q)

Z wpOpug,

P
+ > wy (Opug,, Vuﬁ(ugt»LQ(Q)
=1

LZ(Q) P
(53)
1 2
+ 5 IVu L)l 20 - (54)
(55)
The first term can be rewritten:
P 2 | 2P
prapU(;t = 5 ZZwaq@pugtﬁquet}Lz(Q) (56)
p=1 L2(Q) p=1qg=1
LA
=3 > wpG(0:)p.qwy (57)
p=1qg=1
1
= §<G(0t)w, w>RP. (58)
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For the second term, we have by chain rule:

9pl(0) = duL(Opue,) (59)
= (Opue,, VuLl(ue,))r2(0); (60)
where the last inequality comes from the definition of the differential in L2. Thus,
P
pr <8Pu9t’VUE(u0t)>L2(Q) = (w, Vol(0:))rr. (61)
p=1

We can then rewrite the optimization problem:

w € arg min, S(COw, W) + {0, VolB))rr + 5 IVulluo) oy (@)
This problem is convex in w, and putting the derivative to zero yields
G(01)wy = —Vol(0;). (63)
We can take the Moore-Penrose inverse:
wy = —G(0;) Vol(0;). (64)

For such w; to be a valid solution to (63), we need to verify that Vyi(0;) € Im G(6;), in such way
that we can apply proposition @ Let Tp, := Imdug, = Span(dyug, | 1 < p < P) C L*(),
(we call it the tangent space). We can decompose V., L(ug,) = Wy, + W(,Lt where Wy, € Tj, and
th € (Ty,)*. We can decompose further Wy, = ZqP=1 hqOpuyg, for some h € R, By using (60),
we have forall 1 <p < P:

Opl(0;) = (Bpua,, Wo, + W) 120 (65)
= (Opue,, Wo,)12(0) because ngt is orthogonal to 0, u)g, (66)
P
= (Opue, Z hqaquetﬁ?(sz) (67)
q=1
P
=Y (Opua,. Oqus,) r2(0)hg (68)
q=1
P
= G(O:)pehy (69)
q=1
= (G(01)h),- (70)
We deduce that
V@l(et) = G(Gt)h € Im G(Qt), (71)
thus by proposition @ wy = —G(0;)TVel(6;) is a valid solution to (63)), and is thus the minimizer of
43 O

From proposition 2] we conclude the following natural gradient update:
Orr1 = 0 — 0 G(0,) Vol (6;) (72)
B.1.1 Link with the classical gradient descent

The classical gradient descent is a special case of the natural gradient descent when the derivative of
the parametric model J,uy are orthonormals, i.e. (Opug, Ogug)2(0) = Opq for all 0 € RP. Indeed,
in this case, the gram Matrix G(0) = Ip.

Example 2 (Linear parametric model). Let (¢,)F_; € L?(Q) an orthonormal basis. Let’s define the
parametric model as:

P
ug =Y Opby, (73)
p=1

then 0,ug = ¢y, and by using the fact that the ¢,, are orthonormal, we deduce that G(#) = Ip for all
6 € RP.
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B.1.2 Tangent space

To understand what happens in the functional space, we give two additional definitions:

Definition 3 (Image set of u). We define M as the set of functions reached with the parametric
model, i.e.

M :=Tmu:= {ug | § € R"} C L*(Q). (74)

Definition 4 (Tangent space of u at §). We define Ty as the linear subspace of L?(£2) reached by
du‘g, ie.

To := Im dujg = Span(dyug | 1 < p < P) C L*(Q). (75)

The natural gradient update defined in (72)) is the one that allows us to perform an update in the
parameter space such that in the function space, the corresponding update is the closest to the ideal
function update (33). The following theorem states formally this assertion:

Theorem 3 (Theorem 1 of Miiller and Zeinhofer 2024). Let’s suppose that 0, is defined with the
natural gradient update defined in (T2). Then, in the function space we have:

UGy, = U, — UtH%t (VUE ((U‘Qt)) + &, (76)

where €, is an error

er = o(nel|G(0,)TVL(0,)])). (717)

Proof. From the definition of w; in (48]), we make a change of variables :

. 1 2 . 1 2
wy € arg Juin, o [dug, (w) + VuLl(uo, )12y < dug,(wi) = arg d%l%f B ld = (=VuL(ug, ) z2(0) -
(78)

Thus
dug, (w;) = =TIz, (V.,L(ug,)). (79)

From the Taylor’s expansion in (@7), and the expression of w; in (30) we conclude the theorem. [J

We can also write the natural update in the parameter space through a formula using the tangent space
instead of the Gramian.

Theorem 4 (Another form of the natural update in parameter space). Let us suppose that 0441 is
defined with the natural gradient update in (72). We can rewrite it:

O = 00 — mdu, (T, (VuL(ug,)) (80)

Proof. Starting from (79), by taking the pseudoinverse of duyg,, we have:

wy = —dugt (Hf,‘bt (Vuﬁ(ugt))> , (81)
which concludes the theorem. O

Remark 4 (Interpretation of theorem ). An interpretation of the natural gradient descent can be
directly understood from the theorem ] and the update (80). We take the true ideal gradient of the
loss V., L(up,) and we project it onto the tangent space of the parametric model at 6, because the
projection is the closest point from the true gradient to the tangent space. This represents the descent
direction in the parametric model space that is the closest possible to the steepest descent in the
function space with the L? metric. Then we transform back onto the parameter space through the
pseudoinverse duL . This defines the natural gradient descent, which allows us to perform gradient
descent in the ideal function space restricted to the manifold defined by the parametric model.
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B.2 ANaGRAM: an empirical gradient descent optimizer
B.2.1 Introduction

As it is shown in the previous section, natural gradient descent allows us to take into consideration
the geometry of the parametric model, while classical gradient descent is a special case when the
derivative of the parametric model with respect to the parameter are orthonormals. However, the
computational cost of the natural gradient descent is expensive because we need to calculate the
pseudoinverse of the Gram matrix G(6) of size P x P defined in which induces a time complexity
of O(PS). In neural networks, P can be quite big, and thus it makes the method intractable. Another
problem is that in general, we cannot calculate exactly the Gramian matrix, because we need to
calculate scalar product in L?(£2).

Schwencke and Furtlehner [2024]show in theorem 3] that under some hypothesis on the dataset, and
by supposing that the model can be decomposed as uy = Lg, o Cy, where § = (61, 63) and Ly is
linear in 01, then we can construct an algorithm completely equivalent to the natural gradient descent
as presented in (72) by calculating the pseudoinverse of a matrix of shape N x P instead, where
N is the number of training samples. In the case where we cannot decompose the model with a
linear operator as described above, experimental results show that ANaGRAM outperforms other
optimizers like Adam, LBFGS, E-NGD (Miiller and Zeinhofer 2023) when using Physics-Informed
Neural network on most of the differential equations.

In the previous section, we used a generic loss £(ug), to define the natural gradient descent. In this
section, to be more concrete we use the L? loss:

1
L(u) = 5w = fls, (82)
0(0) := L(ug). (83)

We could generalize the results to other losses, but the goal will be to apply it to PINN, and in this
context L? loss is standard.

B.2.2 Natural Neural Tangent Kernel

We recall the natural gradient descent update in its functional form stated in the theorem 4]

Or41 0 — mduly (T, (VuL(ug,)) - (84)

One of the contribution of ANaGRAM is to relate the projection onto the tangent space HJT-Q to the
Natural Neural Tangent Kernel (NNTK). They prove a characterization of this projection with the
following proposition:

Proposition 3 (Corollary 2 in Schwencke and Furtlehner [2024). We define the Natural Neural
Tangent Kernel (NNTK), for all § € RY

NNTKy(x,y) ZZ Opujg( )Lq(ﬁqu‘g(y))T Sforall z,y € Q, (85)

p=1g=1

where G(0) is the Gram matrix introduced in proposition The NNTKjy is the kernel of the
projection Iz, : L*(2) — Ty onto Ty. In other words:

II7, (f)(z) = (NNTKg(z,-), f) 12(0)- (86)

First, in the proposition 3| we define the NNTK, which is the analogous of the Neural Tangent Kernel
(NTK) in the case of natural gradient descent.

B.2.3 Empirical Natural Gradient Descent

The problem in practice is that we have a limited number of samples and thus cannot calculate a
scalar product in L2, except for some parametric model. We thus introduce some training points
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x; € Q, and the corresponding targets f(z;) for all 1 < ¢ < S. We can write the corresponding
approximation of the L? loss, which we call the empirical quadratic loss:

S
0(6) == % Z (wpo (i) — f(2:))* (87)

We can show that the parametric model dynamic across time can be written in term of an empirical

tangent space:

[NTE = Span (NNTKg(-, x;) : (2:)7,) - (88)

In particular, considering the natural gradient update in (84), we can define the empirical natural
gradient descent which instead uses the empirical tangent space that is defined by the dataset we have.

Definition 5. We define the empirical natural gradient descent with the following update in the
parameter space:

Opp1 « 0, — ntdu‘Tet (H;QNN_TK (vuc(uf,t)) , (89)

where the empirical tangent space is defined in[88]

Theorem 5 (ANaGRAM, Theorem 1 in Schwencke and Furtlehner [2024). We define the matrix
b9 € R¥*P such that forall 1 < i < Sand1 < p < P:

(Zggifp = 8pu|9(xl) (90)
The empirical gradient of the loss evaluated in the dataset:
VL, = VL, (2:) = wp(x:) — f(z:), ©On
then we can write the dynamic of the empirical natural gradient descent:
duret <HJT:9]V5TK(VUE(U9t)> = (ésg +E;netric) (VLW‘B n Ej) ’ 92)

where EJ*'"¢ and Ej are correction terms defined in the theorem I in Schwencke and Furtlehner
2024

Remark 5 (Discussion on the theorem[5)). The theorem gives us an expression of the empirical natural
gradient direction that we can calculate as long as we have a dataset. We recall that in the case

when the parametric model is a neural network, we can compute the derivative of uy with respect to
the parameter through auto-differentiation. The theorem makes appear E}**/"® and E;- which can
be calculated through G(H)l. However, in some cases, they can be ignored. To be more concrete,
Egretric will be determined by the way we choose the dataset (z;) &, in such way that the empirical

tangent space TQNIN TK approximates well the true tangent space Tp. Proposition 1 in Schwencke

and Furtlehner [2024] shows that there exists P points (z;) such that TONIN TK = Ty, and this case
Egretric = . For Ej, they show that this term is equal to 0 in a very particular case when f = 0

and v has a last linear layer. They show that in practice, those terms can be ignored and the empirical
natural gradient update becomes:

Ori1 =0 — B, VLju,,, - (93)

The gradient Vﬁ‘ul 5, Can be easily calculated by evaluating ujy — f at the sampled points. The
difference with the previous update (52) is that now we need to invert a matrix of shape P x N,
instead of P x P, which costs O(PS min(P, S)). We calculate the pseudoinverse using a SVD (see
[E), with an appropriate chosen cutoff as we show in the next algorithm. Thus, in practice we ignore
the correction terms E§*“*" and Ej-, which yields the ANaGRAM algorithm.

Remark 6 (Discussion on algorithm|I). As we discussed in the remark [5] the ANaGRAM algorithm
used the closed form of the empirical natural gradient update given by theorem [5] by neglecting
the correcting terms E*“*"*“ and E(ﬁ-. The parametric model u considered in the algorithm can be
anything: it can be a Fourier model, in this case we have a simple closed-form expression to calculate
bo .- More commonly it can be a neural network, in this case the matrix bo , can be calculated through
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Algorithm 1: ANaGRAM for regression (same as in Schwencke and Furtlehner[2024)

Data: v : R” — L?(Q, i) , a parametric model

0y € RT , initialization of the parametric model

f € L?(Q), target function of the quadratic regression
(z;) € Q% , abatchin Q

€ > 0, cutoff level to compute the pseudo inverse

repeat
bo, + (Opujp, (:172))1 <i<s, 1<p<pr AN S X P matrix computed via auto-differentiation;

Us, Ao, Vil < SVD(¢y, ):

Ay, (Aet,p if Ag, , > eelse O)
VL (ujg, (1) — f(2)
do, + Vo, A} UV L;

1<p<P’

1<i<S?

2
. S . .

Nt < argming e+ » (f(wz) = Ujg,—ndy, (xl)) , using e.g. line search;

011 < 0r — mida,;

until stop criterion is met,

auto-differentiation, which is implemented in libraries like Pytorch, Jax, Tensorflow. In general,
the condition to choose the parametric model is to have enough expressive power, and to be able
to calculate easily its derivatives with respect to the parameters. The cutoff ¢ to invert the matrix

¢, is another important part algorithm, and gives a threshold for which singular values below ¢
are treated as 0 before inverting them. This takes into account the numerical errors that happen in
practice when doing calculations on a machine. Taking a cutoff too small will take into account too
much noises, while a cutoff too high will ignore potential important parts of the signal. In general a
value between 10! and 10~ works well for most cases. Finally, the line search allows us to find the
best learning rate to minimize the loss using such an empirical natural gradient update. In pratice, we
simply generate a list of candidates values for the learning rate 7, and keep the one that minimizes
the loss the most.

B.3 Applying ANaGRAM to PINN

In the previous section, ANaGRAM is presented in the context of L? regression, i.e. when we want
to approximate a function f € L? through the loss £(ug) = ||ug — f||3.. Now, we generalize this
to the context of PINN, to solve differential equations. The only difference is that we compose the
parametric model with differential operators. Thus, this section is just a rewriting of previous theory
in the case of PINN.

Here we consider the setting with a boundary equation:

Dlu] = f in Q
{B[u] =g on 01, ©4)

In the main paper, we consider a special case where we don’t have a boundary equation to simplify
the notation. The equation [94]is a more general case, in particular to "remove" the boundary equation,
we can take define B[u] := 0 and g = 0.

We can rewrite [04]in the form of a regression problem
(D, B)ou=(f,9), 95)

where (D, B) o u can be seen as a parametric model, defined by the composition of the differential
operators with the parametric model u defined in [T}

RP —H  — L%(Q,09) = L2(Q — R) x L2(9Q — R)

(D’ B) ou: { 0 — U|g — (DU|9, BU‘Q) (96)
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In particular the natural gradient descent can be written:
Ouvs = 0= (D, B) o) (o (VL)) o)

As a consequence, we can rewrite the algorithm[I]in the context of PINN in the following way.

Algorithm 2: ANaGRAM for PINN (same as in Schwencke and Furtlehner 2024

Data: u:RF — L%(Q, i) , a parametric model, i.e. a neural network
0y € RY , initialization of the parametric model

f € L?(Q), target function of the quadratic regression

D :H — L*(Q — R), a differential operator.

B :H —s L?(0Q — R) , a boundary operator.

f € L*Q — R), asource.

g € L?(0Q — R) , A boundary value.

(xP) € Q5P | abatchin

(xP) € Q52 , abatch in 90

€ > 0, cutoff level to compute the pseudo inverse

while criterion is not met do

n S S
¢9t — ((GI’D[U‘Gt](‘Il))Z:Dl ’ (8I’B[u|9t](x1))ljl

computed via auto-differentiation;
Us,, No,, Vil < SVD(y,):
Agt — (Aghp if Aghp > e else O) ;
1<p<P
- (D[U\Gt](IZD) - f(‘riD))1<Z'<S .
VL D By PP
(B[U\Gt](xi ) - g(xi ))1§7?SSB
do, + Vo, A} USVL;
. D 2

m < argmingers Yy (f(2P) = Dlulo,—a,,|(@P))” +

ZZS:BI (9(zP) — B[u\gt,ndet](xf))2, using e.g. line search;
Or1 < 0r — medy,;

) ,a(SP + SB) x P matrix
1<p<P

end

C Algorithms

C.1 Classical curriculum learning algorithm

Algorithm 3: Curriculum learning (Krishnapriyan et al. 2021)

Data: og € R, a starting parameter

a3 € R, afinal parameter

a : [0,1] — R such that «(0) = ag, and a3 = 3.

0=ty <t; < -+ <ty <tnyy1 = 1,adiscretization of time in [0, 1]

Oinit € RY, randomly initialized weights for the neural network;
Get 0 by training PINN for the differential equation with parameter c;
k<« 1;
while K < N + 1do
Get 0(k) by training PINN for the differential equation with parameter «(k), by starting with
weights 0, _1;
k<+ k+1;
end
return 0y 1, the neural network parameter to approximate solution for oy.
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C.2 Implicit function theorem method

We designed a new curriculum learning based method to solve parameterized differential equations.
This algorithm is justified by theorem [I| which gives the implicit update to perform in the parameter
space when we do a small variation on the parameter o

Ors1 = Or + nkby = O — nide (D[a(k)vd()(k)u(')])rg(k) (H#s((ii (daD[d(k),U(k)ha(k)))
(98)

We notice the connection between [98]and the natural gradient descent[97] The update is exactly the
same, except that we project a different function. It means that we can define implicit updates by
doing natural gradient descent. As we have seen in Appendix [B] natural gradient descent may be
intractable when the model’s number of parameters P is high. However, as described in the same
Appendix, Schwencke and Furtlehner [2024) proposed a empirical method to perform natural gradient
descent in a tractable way. We can leverage the theorem [5] by replacing V£ (the function that we
normally project in natural gradient descent) by

T = do DIé(k), u(k)]jar)- (99)

We can define its empirical version Z = (Z (xl))f:(?) With such change, the theorem stays valid, and
thus we can apply ANaGRAM algorithm 2] This defines the following algorithm:

Algorithm 4: Implicit function theorem method (our contribution).

Data: oo € R, a starting parameter

a7 € R, afinal parameter

a : [0,1] — R such that «(0) = ag, and oy = 3.

0=ty <ty <- - <ty <tys1 = 1,adiscretization of time in [0, 1]

Oinit € RY, randomly initialized weights for the neural network;
Get 0 by training PINN for the differential equation with parameter cxg;
k<« 1;
while k < N + 1do
Get 0(k) by doing one step of algorithmby replacing VL by Z with weights 651 and
parameter a(k);
k+— k+1;
end
return 61, the neural network parameter to approximate solution for oy .

D Experimental setups

D.1 Benchmark criteria

To be able to measure the performance of our method, we define some metrics. We first define the Lo
relative error:

5 ) — u ()
et VEL () — v (w) | 00,

S u(w)?

and the Lo absolute error:

1 S
Eobs — §Z(uw(a:,»)—u*(:ci))2, (101)
i=1

where (;)5_; corresponds to a dataset of size S, and u* is the desired solution of the differential
equation, and wg is the approximation of the solution obtained through any parametric method.
However, in some cases, we do not have an analytical solution of the differential equation, and in this
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case we cannot calculate the relative and absolute errors. For this reason, we define another metric
which is the Lo evaluation loss:

S S
LS (DluglP) — P+ oS (Blugl(e) - g(aP))’
257, 2 (Pluol(@?) = S@2))"+ 35 ) (Blusl(w) — g(w?)" (102)

where we consider equation (3)) and a boundary condition Bu = g. We can easily generalize this loss
(and the methods) to any differential equations when there are more than 2 equations.

We will apply different methods to solve several differential equations with a target parameter oy .
The basic method consists of training the PINN with any optimizer such as Adam, ANaGRAM, and
L-BFGS for the differential equation parameterized by cv;. The classical curriculum learning method
is performed using the algorithm [3and the implicit function when starting at a given ag, moving to
a7 . In both cases, except if stated otherwise, the initial PINN for the parameter o is trained using
ANaGRAM algorithm with the same hyperparameter as "ANaGRAM method". Hyperparameters are
given for each case. The differential equations are presented in Appendix [A] For each differential
equation, we repeat the experiments several times for random seeds, and calculate some statistics in
consequences: the mean, minimum, maximum, standard deviation and the median of relative/absolute
errors and evaluation loss.

D.2 Computational details

For the implementation of neural networking training, Adam, L-BFGS and ANaGRAM, we used
PyTorch version 2.0.1+cul17 (Paszke et al.2019)). All experiments were run on a NVIDIA A40 GPU.
We also note that, unless otherwise specified, a uniform dataset of the domain is used. ANaGRAM
method needs the inversion of a matrix of size S x P, where S is the number of sampled points.
Thus, to have a tractable algorithm, we consider, unless otherwise specified, that we sample 1000
points in the uniform dataset for ANaGRAM. If the dataset has less than 1000 points, then we use the
whole dataset.

D.3 Curriculum learning: choice for the parameter path «(t)

The path «(t) can be chosen freely, as long as it satisfies the boundary conditions «(0) = ag and
a1 = ap. A general form is a(t) = g+ ¢(t) (a1 — awp ), where ¢ : [0, 1] — [0, 1] is a differentiable
function with ¢(0) = 0 and ¢(1) = 1. The choice of ¢ determines the scheduling of the parameter
change. For a linear progression, we can choose ¢(t) = t, which results in a constant velocity
&(t) = a1 — . For a logarithmic schedule, which can be useful for certain problems, we can use:

~ log(1 +at)
~ log(1+a)

where a > 0 is a hyperparameter controlling the curvature of the schedule.

B(t) : (103)

D.4 Results and comparisons with other methods
D.4.1 Burgers equation

For Burgers’ equation (see Appendix [A.0.4), we consider the target parameter » = 0.001. In the
literature, researchers tend to consider » = 0.01/7 =~ 0.0032 which makes the solution easier to
approximate. For computational proposes, we will consider only one seed. The neural network
will has 3 layers of size 32, with tanh activation function, except at the last layer, for a total of
2241 parameters. For ANaGRAM, we consider a cutoff of 0.001, 1500 epochs. For Adam we use
a learning rate of 0.001 with 10000 epochs. For L-BFGS, we use Strong-Wolfe for the line search,
maximum iteration of 500 and a learning rate of 1, we train the PINN with 50 epochs. For curriculum
learning based methods, we start with v = 0.1, apply 200 initial epochs (with ANaGRAM), and
then perform 1200 updates. Because the solution of Burgers equation tends to be more steep around
x = 0, we choose to sample more points around this point to have better performance. In time ¢, we
consider a regular grid D, of n points in [0,1], but at space = consider a non-regular grid D, defined
by:

* A regular grid of % points on [—1, —0.25).
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* A regular grid of % points on (0.25, 1].
* A grid defined as —2P1s on [—0.25, 0), where Dy, is a regular grid of 2 points in [2, 32].
* A grid defined as 2P'2s on (0, 0.25], where Dy, is a regular grid of 2 points in [2, 32].

We select n = 100, while we take 200 for the evaluation. Using such grids, we define the interior
of the domain as D; x D,. For the boundaries, we consider 102 points in [0,1] x {—1,+1} and
51 points in {0} x [—1, 1]. In the case of Adam, we use the whole dataset, while with L-BFGS and
ANaGRAM we sample uniformly 1000 points in the discretization of the domain, because of memory
issue.

Evaluation loss

Adam 1.32e-02
ANaGRAM 1.23e-01

L-BFGS 1.78e+00

Classical curriculum learning 1.40e-02
Implicit function method 7.21e-03

Table 2: Evaluation loss for Burgers equation with v = 0.001

In the following picture, we show the loss at each point for the different methods.
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(e) Implicit function theorem
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As we can see in the loss plots, the approximation is especially difficult around x = 0. Also we can

see that the loss of Adam is very specific, and give a complete different solution (see [Figure 7
reference solution 3] shows that it is highly likely that Adam optimizer fell into a non optimal

0.6
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0.2
0.0
0.2
-0.4
—-0.6

minimizer.

0.8
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X

Figure 7: Approximation with Adam

D.4.2 Eikonal equation

. The

| local

We consider the eikonal equation [I8]defined in Appendix [A.0.5]with the target parameter € = 0. The
number of seeds is 5. We consider a neural network with 3 hidden layers of size 32 with in total 2209
parameters (weights and biases). Hyperbolic tangent activation function is used, except in the last
layer. For ANaGRAM, a cutoff of 0.001 were chosen. For L-BFGS, we use Strong-Wolfe for the
line search, maximum iteration of 200 and a learning rate of 1, we train the PINN with 50 epochs.
For curriculum learning like implicit function theorem which is implemented using ANaGRAM, we
also use a cutoff of 0.001. For curriculum learning based methods, we start with ¢ = 1, and apply 10
initial epochs to train the PINN. Then, we choose 200 values for ¢; in a logarithm space in [0, 1]. For
the datasets, we take uniformly 50 points in = (—1, 1) and 100 points in 9Q = {—1, 1} (50 for
each). For evaluation dataset, 200 points for 2 and 400 points for 92 were used.

Mean min max std median
Adam 8.02e-01 1.18e-03 2.00e+00 9.78e-01 4.88e-03
ANaGRAM 9.27e-01 4.17e-01 1.59e+00 3.93e-01  8.08e-01
L-BFGS 1.20e+00 9.95e-04 2.00e+00 9.66e-01 1.98e+00
Classical curriculum learning, algorithm 1.67e-02 5.48e-03 3.06e-02 8.15e-03 1.64e-02
Implicit function method, algorithleI 2.05e-02  1.24e-02 4.20e-02  1.09e-02  1.63e-02
Table 3: Relative errors for eikonal equation

Mean min max std median

Adam 4.63e-01 6.83e-04 1.15e+00 5.65e-01  2.82e-03

ANaGRAM 5.35e-01 2.41e-01 9.20e-01 2.27e-01 4.66e-01

L-BFGS 6.94e-01 5.74e-04 1.16e+00 5.58e-01 1.14e+00

Classical curriculum learning, algorithm 9.64e-03 3.16e-03 1.76e-02 4.71e-03  9.49¢-03
7.14e-03  2.42e-02 6.31e-03  9.42¢-03

Implicit function method, algorithleI 1.18e-02

Table 4: Absolute errors for eikonal equation

The experiments on eikonal with the different methods show several behaviors. The first behavior
often happens with methods like ANaGRAM where the solution obtained is not valid, even when the
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Mean min max std median

Adam 2.89e-03  2.46e-03 3.27e-03 3.22e-04 2.76e-03

ANaGRAM 1.32e-01 8.58e-02 1.75e-01  2.84e-02  1.34e-01

L-BFGS 9.00e-01 2.78e-03 3.07e+00 1.16e+00 3.27e-01

Classical curriculum learning, algorithm 2.77e-03 2.45e-03 3.12e-03 2.38e-04 2.78e-03
2.28e-03 3.01e-02 1.08e-02  2.66e-03

Implicit function method, algorithm 8.62e-03

Table 5: Evaluation loss for eikonal equation

loss is very low (Figure 8b). Another behavior happens sometimes with Adam, where the model is a
valid solution, but not the viscosity solution (Figure 8a)): this explains why sometimes the relative
and absolute error are high for Adam even though the evaluation loss is low. We can see that using
curriculum learning based methods, we can guide the approximation towards the viscosity solution
by starting with a simple differential equation (Figure 8c).

100 — approximation 144 — approximation
true solution true solution

-100 -0.75 -0.50 025 000 025 050 075 100 -100 -0.75 -0.50 025 000 025 050 075 100

(a) Adam (b) ANaGRAM

10 . —— approximation

ol /

/

-1.00 -0.75 -0.50 025 000 025 050 075 100

(c) Implicit function theorem

D.5 Hamilton-Jacobi-Bellman equation

As we seen in the Appendix [A.0.6] there is an infinite number of Hamilton-Jacobi-Bellman, that are
problem-dependent. In the following experiment, we will consider the one defined in example[T] We
perform the experiments on 5 randomly generated seeds. The neural network has 2 layers of size 32
with tanh activation function, except at the last layer, for a total of 1153 parameters. For ANaGRAM
we consider a cutoff of 0.001, and train for 500 epochs. For Adam, we use a learning rate of 0.001
and train it for 10000 epochs. For L-BFGS, we use Strong-Wolfe as line search, a maximum iteration
of 500, a learning rate of 1, and train it with 50 epochs. For curriculum learning based methods, we
start with a viscosity parameter €9 = 0.1 and finish with €1 = 0, doing 5000 initial epochs with
Adam optimizer. Then, we perform 500 curriculum learning updates. The dataset is uniform in
the domain. For the training, we sample uniformly 100 points in the interior and 200 points on the
boundary. For the evaluation we sample 200 points in the interior and 400 points in the boundary.

In this example, we see that even a simple case of the HIB equation is difficult to approximate. For
non-curriculum learning methods, it completely fails. The most satisfying would be the solution
obtained using L-BFGS, however the boundary condition at 0 is not fulfilled. For the curriculum
learning method, it is better but still not satisfactory. This shows that PINNs might need a lot of
training to perform well. In particular, if we increase the number of updates in the curriculum learning
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Mean min max std median
Adam 5.56e-01 3.11e-01 7.22e-01 1.99e-01  7.14e-01
ANaGRAM 1.38¢e+00 4.80e-01 2.51e+00 6.62e-01 1.36e+00
L-BFGS 7.09e-01  6.87e-01 7.34e-01 1.74e-02 7.08e-01
Classical curriculum learning, algorithm 3.64e-01 2.04e-01 4.70e-01 8.98e-02  3.81e-01
Implicit function method, algorithm 3.44e-01  9.20e-02 590e-01 2.05e-01 4.14e-01
Table 6: Relative errors
Mean min max std median
Adam 9.45e-01  5.29e-01 1.23e+00 3.38¢-01 1.21e+00
ANaGRAM 2.34e+00 8.17e-01  4.26e+00 1.12e+00 2.32e+00
L-BFGS 1.20e+00 1.17e+00 1.25e+00 2.96e-02 1.20e+00
Classical curriculum learning, algorithm 6.18e-01  3.47e-01  7.99e-01 1.53e-01  6.48e-01
Implicit function method, algorithm 5.84e-01 1.56e-01 1.00e+00 3.49e-01  7.04e-01
Table 7: Absolute errors
Mean min max std median
Adam 1.22e-01 1.56e-02 2.83e-01 1.31e-01 1.56e-02
ANaGRAM 8.98e-02 2.22e-02 2.32e-01 8.32e-02 3.38e-02
L-BFGS 1.56e-02 1.56e-02 1.56e-02 4.8%¢-07 1.56e-02
Classical curriculum learning, algorithm 3.65e-02 1.86e-02 6.82e-02 1.72e-02 3.07e-02
1.90e-02  7.50e-02 2.18e-02 4.12e-02

Implicit function method, algorithm|Z| 4.73e-02

Table 8: Evaluation loss

method we can obtain a better approximation. By doing 100 epochs every update, i.e. 100 epochs for
each new value of parameter £;, we can obtain the

2.0 4 —— approximation
true solution

0.0 0.2 0.4 0.6
X

0.8

1.0

Figure 10: Implicit function theorem method with additional epochs between each update.
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Figure 9: Approximations with different methods. The yellow curve is the true solution and the blue
curve is the approximation.

Meanwhile, increasing the number of epochs for non-curriculum learning methods does not work.
For instance, we tried to train the PINN with Adam optimizer using 10 times more epochs than the
previously, going up to 100000 epochs. In this case we obtain the [Figure TI] We observe that the
model is very instable, exactly as we observed with ANaGRAM optimizer in the eikonal experiments.
The loss is very low because the differential equation is respected almost everywhere, even though
the approximation is pretty far from the true solution.
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Figure 11: Adam method with 100000 epochs.
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(a) Direct application of the implicit function theo- (b) Between each implicit update, we perform sev-
rem. eral Adam iterations on the loss.

Figure 12: Applying optimization steps between implicit updates for the HIB equation. The yellow
curve is the true solution and the blue curve is the approximation.

E Moore-Penrose pseudoinverse

In this section, we will define the Moore-Penrose inverse, also called pseudoinverse. It can be seen as
a generalization of inverse for non-square matrices. It can also be generalized to continuous linear
operator defined on Hilbert space under some assumptions. The goal of this appendix is to justify the
use of pseudoinverse in our work.

E.1 Pseudo inverse of a matrix

For a rectangular matrix (potentially square), we can define Moore-Penrose inverse algebraically. But
to obtain a simple form computable easily on computer, the simplest approach is to define it through
its Singular Value Decomposition (SVD).

Definition 6 (Moore-Penrose inverse). Let A € RM*Y and r = rank(A) < min(M, N). We can
always consider the SVD of such matrix, and write it A = UAVT, with A = diag(o;) € R™,
and U € RMX" V ¢ RN*" are orthogonal matrices, i.e. UTU = VTV = I.. We define the

pseudoinverse as:

At = VATUT e RVXM (104)
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where the pseudoinverse of a diagonal matrix is:

0 ifo;, =0
T _ 3 9
A = {1 otherwise. (105)

g4

In particular, it is interesting to see that the pseudoinverse is equals to the classical inverse when the
matrix A is square and invertible.

Proposition 4. If A is a square matrix of size N that is invertible, then AT = A~1.

Proof. We can decompose A with the SVD A = UAVT with U, V orthogonal matrices. Since A
is invertible, then we have A=! = (VT)~tA~1U~!, in particular A~ = AT and because U, V are
orthogonal, then, A~ = VATUT = AT, O
Proposition 5 (Properties of pseudoinverse). Let A € RM*N
following properties:

a matrix. The pseudoinverse has the

1. AATA = A,

2. ATAAT = AT,
3. (ATA)T = AT A4,
4. (AADHT = AAT,

5. AV A is an orthogonal projection in ImAT,

6. AAT is an orthogonal projection in ImA.

Proof. Let’s consider the SVD of A: A = UAVT, where U and V are orthogonal matrices. Proof
of [If We have AATA = (UAVT)(VATUT)(UAVT) = U(AATA)VT because U and V are
orthogonal matrices. We also have AATA = diag(al-azal-) = diag(o;) = A. Thus AATA =
UAVT = A. The proof of andcan also be deduced in a very similar way using the SVD. Now
we are going to prove[St Let’s write Q = AT A, first, let’s check that @ is an orthogonal projection
matrix: we have Q? = ATAATA = ATA = Q by property 2] Also QT = (ATA)T = ATA = Q
by property 3] Now that we know that () is an orthogonal projection, we want to show its image is
ImA”. By property[1} we have A = AATA = AQ, thus AT = QT AT = QAT. We deduce that
ImAT C I'mQ. In converse, since QT = Q, then ImQ = ImQT = ImAT(ANT c ImAT. We
prove[6]in a very similar way. O

Remark 7. In particular, the properties[T} 21 3] and[]are a way to define the pseudoinverse algebraically.
As we shown in the proof, the properties [5and[6are consequences of those properties.

The next propositions justify the use of pseudoinverse to solve a matrix equation.

Proposition 6. Let A € RM*N g matrix. We have AATy = y if and only if y € Im A.

Proof. If AATy = 4, then y € Im A by definition of Im. Now if we suppose that y € Im A, then
since AAT is a projection in Im A by property E] of proposition |5} then AATy = y. O

When y ¢ Im A, we can interpret the pseudoinverse as the minimal norm solution of the correspond-
ing least squares problem.

Proposition 7 (Least squares). Let’s consider the optimization problem:
1
argmin§||A;Ufy||§, (106)
x

then xt .= Ay is a solution of this problem and also it is the one with the minimal norm ||.||2.
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Proof. The least squares problem is a convex continuous and differentiable problem, thus we can
calculate the derivative of the objective problem and derive that the solutions should verify the
so-called normal equation:

AT Az = ATy, (107)

We show that xf verifies the normal equation, indeed by considering the SVD decomposition
A=UAVT, we have:

AT Azt = AT AATy (108)
=VAUTUAVTVATUTy (109)
=VA2ATUTy (110)
=VAUTy (111)
= ATy. (112)

Now let’s show that z is indeed the solution of minimal norm. Let & another solution of the
optimization problem, in particular it verifies the normal equation: AT Az = A”y. By substracting
with the normal equation on ' we have:

AT Az —zT) =0. (113)
Thus & — 27 € ker AT A = ker A. So it exists a w € ker A such that:
i—attw. (114)

The key now is to show that z7 € Im AT = (ker A)*: because of the propertyof proposition
we have Af Azt € Im AT, But also by propertywe have AT Azt = ATAATy = Aty = 2T, Thus
2" € Im AT = (ker A)*, thus, we can apply Pythagorean theorem:

1215 = ll«" 13 + [lwl3- (115)
To have the minimal norm, we have to choose w = 0, and thus in this case & = 21. O

E.2 Pseudoinverse of the differential for a parametric model

In this work, we often consider the differential in # € R noted du|9 associated to a model uy such

that dug : RY — H, where H is a Hilbert space. We want to be able to consider the pseudoinverse
du’ : H — RP. It is possible to define the pseudoinverse for a general bounded linear operator
A Hy — Ho with Hq, Ha two general Hilbert spaces (bounded means that there exists M > 0
such that || Az ||y, < M||z||x, forall z € H;), and where the image Im A is closed. However, in the
case that interests us (for dug), H; = RT is a vector space of finite dimension, which simplifies such
an extension of the pseudoinverse. Since the parameter space R” has finite dimension, the image of
duyg also has a finite dimension. In particular Im du = Span({du(e;),...,du(ep)}). Thus, du is a
bounded linear operator with a closed image. Also, we can define the SVD of such operator, which
allows us to define the pseudoinverse:

Proposition 8 (Pseudo inverse of dug). Let § € RY. For dug : R® — H as defined in[2} We can
apply SVD on such operator, i.e. for ar < P there exists (v;)i_, orthonormal vectors in R?, and
(u;)7_q an orthonormal basis of Im du, and (0;)}_, non negative numbers such that:

dug(h) = Zai<h,vi>ui. (116)
i=1

Thus, we define the pseudo inverse of dug : Ty — R¥ as a bounded linear operator such that for all
y € Tp := Im(du), we have:

duf(y) = ol (y, ui)nvi, (117)
i=1
with
T 0 lfO'L = O,
i {Ul otherwise. (118)
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Proof. Let (ep)]; the canonical basis of R”. Let g; := dug(e;) € H. In particular, we have

Ty = Span(g; : 1 < i < P). Let G € RP*F the Gram matrix such that G;; = (g;, g;)n. We
can find diagonalize this symmetrical real matrix and in particular we can find orthonormal vectors
(vi)f_, such that Gv; = \jv; and (v;,v;) = §;; forall 4,5 € {1,...,r}. Let’s define o; = v/A;. We
claim that

1 £
wi=— Y vi;g;, (119)
7
is an orthonormal basis of Ty. We can see that because fori,n € {1,...,7}:
| BF
(Uis un)y = Zzﬂijvnk@jagk)% (120)
Ti0n S5 =1
1 Er
= 3> vivnrGik (121)
Ti0n j=1k=1
1
= vl G, (122)
0;0n
Y
= vl (123)
0;0n
Ai
= din (124)
0;0n
= Gin. (125)

Now, for h € RF, we can write it as: h = 211;1 hie, and thus by linearity dug(h) = 25:1 higr.
Using the orthonormality of (u;)7_,, we have:

r

dug(h) = Z(dug(h), g ) U (126)
=1
r P 1 P
= Z<Z hkgk,Jinijgj> u; (127)
i=1 \k=1 J=1 H
r P P 1
=Y D> —hviGrjui (128)
i=1 k=1 j=1 i
= oilw, vi)u;. (129)
=1
O

Proposition 9 (Adjoint of the differential). We recall that the adjoint of an operator is a generalization
of the transpose for a matrix. Let T : H1 — Ho, a bounded linear operator with H1, Ho two Hilbert
spaces. Rudin|1991|(section 12.9 in second edition) show that there is a unique adjoint for T’ noted
T* such that:

(Th,y) = (h,T*y) forall h,y. (130)

In particular, we can write an explicit formula for the adjoints associated to dug and its pseudoinverse.
Forany h € RP and k € H.

duj(y) =Y oily, ui)avi, (131)
i=1

(dud)*(h) = > ol (h, vi)u;. (132)
=1
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Proof. Using proposition 8] with the same notations, we can write:

(dug(h),y)n = <Z oi(h, vi)ui, y>

i=1

= <h7zgi<uiay>7{vi> .
H

i=1

‘We conclude that:

dug(y)* =Y oilui, y)nvi
i=1

In the same way, we have:

<dU$(y),h> = <ZO§<%U¢>H% h>
<y7 Z 0-11'. <viv h>u1>

H

‘We conclude that:

(@uty (h) = 3 ot (v, Ry,
i=1

From this definition of the pseudoinverse, we can generalize the properties [5}

Proposition 10. Let § € RY. For any h € RY and y € H, we have the following properties:

1. dug o du}) o dug(h) = dug(h),

N

. dug odug o duj; = duz,

3. (du o dug)* (h) = du}) o dug(h),

4. (dug o dug)*(y) = dug o duj; (y),

5. du;r, o dug is an orthogonal projection in Im duy,

6. dug o dug is an orthogonal projection in Im duy.
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Proof. Proof of[T} from proposition[8] we have:

dug o du}; odug(h) = dug o dug Z oj(h,vj)u; (139)
j=1
= dug Za: <Z Uj<h,vj>uj,ui> v; (140)
i=1 j=1 ”
= dug Z Zojoj(h,vjﬂuj,ui)w (141)
i=1 j=1
=dug | > (hv;)v; (142)
j=1,0;70
—Zol< Z hvj>vj,vz->u,- (143)
j=1,0;7#0

_Z Z oi(h,vj){v;, vi)u; (144)

i=1 j=1,0,;#0

= Zm(h,vi)ui. (145)

The proof of property 2]is very similar. For the proof of property[3] we can use the proposition[9] we
have:

(dup o dug)*(h) = dujy o (dup)* (h) (146)

= duj [ Y ol(h,v)u; (147)

- Zai <Z Uj-(h,vmuj, ui> v; (148)
i=1 j=1
= > > oo (hyvy){ug ui)av; (149)

i=1 j=1
= > (b (150)
i=1,0,#0
= duf o dug(h). (151)

The proof for[dis similar. For the proof of properties [5|and [f] we have seen in the proof of proposition
[]that this is a consequence of properties [T]2] B]and O

We can also generalize the proposition [7}

Proposition 11 (Least squares for the differential). Let § € R”, Let’s consider the optimization
problem:

1 2
arg min o ldug(h) — yz2, (152)

then ht = dug (y) is a solution of this problem and also it is the one with the minimal norm ||.|2.

Proof. The proof is identical to the one of proposition[7} except that we have to justify the fact that
solutions of the least squares problem verifies the normal equation. As justified in proposition 0] the
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linear operator dug admits a unique adjoint noted duj, : H — R that verifies:
(dug(h), k) = (h,du}(k))2, forh eRY kcH. (153)

From this, we deduce that for any h, i/ € RP:
1 1
5 lldug(h + 1) = yllF = 3 lduo(h) — yll3, + (dug(h'), dug(h) — y)u + |dug(h)[3,  (154)

1
= 5 lldug(h) — yll3 + (W, dug(dug(h) — y))2 + o([h]]). (155)

We deduce that the gradient of 3 ||dug(h) — yl|3, is equal to dujj(dug(h) — y). In particular, for any
solution h* of the least squares problem, we have the normal equation:

dug(dug(h*) —y) = 0. (156)
We can verify the rest of the proof in a similar way than the proof of proposition O

E.3 Pseudoinverse for the differential with respect to a function

Until now, we considered the differential duy with respect to 6 a parameter in a finite dimension
space. However, it can be useful to consider the differential with respect to a function. For example,
d,, D[i] would be the differential of the operator D evaluated a function 4. The issue is that in such
case, the operator is defined on two potentially infinite dimension Hilbert space, and thus we need
some assumptions to obtain results as before. First, we need to suppose that d,, D[] is a bounded
operator to be able to define the pseudoinverse (Engl and Ramlau 2015). However, the pseudoinverse
in this case is not necessarily bounded as shown in the following example:

Example 3 (Unbounded pseudoinverse). Let ¢?(N) the sequence space, equipped with the scalar

product (w, z) = 3% w,,z,. Let us consider the operator

n=0
" {@(N) — 2(N)

) 157
(wo,w1,...) +— (oowg,o1w1,...) 57

where 0, 1= 15. A is a bounded operator: |[Aw|| < [jw| for all w € £*(N). We can define the
pseudoinverse in Im(A) as:

1 1
Aty = (yl7 —a,. ) ,  wherey € ITm(A). (158)
g1 g2
However, if we consider the canonical basis of £2(N): e*) = (0,0,...,1,0,...), we have:
y ) = Ae®) = (0,0,...,0%,0,...). (159)
Applying the pseudoinverse on 3*) yields back:
AfyF) = ), (160)
However we have:
JAly ™ 1
=~ =k+1—3 +00 (161)
ly®)|] o k—+o0

An unbounded pseudoinverse implies that the pseudoinverse is discontinuous, which leads to instabil-
ity in approximating the solution of the least-squares problem. It can be shown that the pseudoinverse
is bounded if and only if the image of the operator d,, D(1) is closed (Engl and Ramlau 2015).

F Technical details about the implicit function theorem

Theorem 6 (Implicit function theorem, functional space). Let « : [0,1] — A, be a function that
verifies a(0) = g, and a; = g, with A C R. Let u(t) : [0,1] — H a solution of the problem 3]
with a. Additionnally, we suppose that the linear operator d,, D is bounded and that its pseudoinverse
(du D) is also bounded (see Appendix . Supposing that u(0) = ug, we have:

ilt) = ~dy (Dla(t), D) (daDC, u(t)) (e a(1)]) (162)

is the derivative of u in time, optimal in the least squares sense with the minimal norm.
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Proof. Lett € [0, 1], from the assumptions, we have D[ay, u(t)] = f. We can derivate it with respect
tot:
d

By using the chain rule, we have:
do D[ u(t)]jaqe (6(t) + duDla(t), Jjue) ((t) =0, (164)
thus,
duD](t), Jjuqy (@(t)) = —da D[, u(t)]ja@) (&(1)) - (165)
We can consider the associated least squares problem:
1 . 2
71316171-1[ 5 ||dUD[a(t)7 ]|u(t) (’LU) + dO/D[v u(t)]\oc(t) (a(t))HLZ : (166)
We know that the minimal norm solution of this problem can be defined using the pseudoinverse:
u(t) = —dy (D[a(t)7 '])\Tu(t) (dozD('a u(t>)\a(t) [a(t)]) i (167)
O

The theorem 6] gives a first-order infinitesimal variation of the function on the solution path. Thus,
starting at ug, we could for instance perform a Euler approximation:

U1 = Uk + Ml (168)
= u — iy (D{a(k), DI, (daDCur)jam @), (169)

with 75, € (0, 1] the size of the step, and uy, := u(tx) where (t;)&_, is a time discretization such that
to = 0 and tx = 1. The issue is that we cannot perform updates in the functional space. We would
like to obtain the variation to perform in the parameter space to move along the solution curve. The
first-order variation in the parameter space is given by the next theorem:

Theorem 7 (Implicit function theorem in parameter space). Let « : [0,1] — A, a function that
verifies a(0) = ag, and a1 = aq, with A C R. Let 6 : [0,1] — RY the parameters of the parametric

0,1] —H

model such that u : {£ is a solution of the problem|3|with . Suppose u(0) = ug, we

= Ujg(t)
have:

(t) = —dy (Dlalt), u())lye, (H;D) (dama(t),u(t»a(t))) , (170)

0(t)

is the derivative of 0 in time, optimal in the least squares sense for the minimal norm, where T;D) is
the tangent space on the parametric model D o u(-) evaluated in 0 (see Appendix @)

Proof. Lett € [0, 1], from the assumptions, we have D[y, u(6(¢))] = f. We can derivate it with
respect to t:

%D[a(t),u(&(t))] =0, 171)
We can apply chain rules, and obtain:
da DL u(B()]jag) (6(6) + doDla(t), e (98)) =0, (172)
thus,
doDa(t), u(jace) () = ~da DL, w(B(E))]jao) (1)) (173)

We can write the associated least squares problem:
; .1 . 2
0(t) € arg min 2 [[doDla(®), (oo (1) + da Dl wO(O) oy @O0 (174

The minimal norm solution of this optimization problem is the one defined using pseudoinverse
(proposition [TT):

0(t) = —dp (D[a(t), u(-)))p) (Hgg (daD(a(tLu(t))a(t))) : (175)

O
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G Generalization with a boundary equation

Previously, we considered the equation [3] However, we can generalize implicit function theorem
when we add boundary equation. The new setting is the following:

Dla,u] =f inQ
176
{B[u] =g onOf. (176)
We can rewrite this differential equation:
(D, B)ou=(f.9), a7

as presented in the appendix

In practice, we can add as many equations we want, however to ease the presentation we consider
only the addition of a boundary equation. We can generalize the implicit function theorem [I]in the
following way:

Theorem 8. Ler o : [0, 1] — A, a function that verifies «(0) = avo, and (1) = a1, with A C R.

Let 0 : [0,1] — RY be the parameters of the parametric model such that u : {1{07 1] : ;}j isa
10(t)
solution of the pr()blem with a. Suppose u(0) = ug, we have:
6 = —do (D, B) o (0, u(-))), (H%D,B) [daD(, u(01) o, (at),0>]> : (178)

is the derivative of 0 in time, optimal in the least squares sense for the minimal norm, where %(D’B)
is the tangent space in the parametric model (D, B) o u(-) evaluated in 0 (see Appendix|B).

Proof. Lett € [0, 1], from the assumptions, we have (D, B) o (a, u(t)) = (f, g). We can derivate
it with respect to ¢:

d
%(D,B) o (ag,u(t)) =0. (179)
By chain rule, we have:
0 = da((D, B) o (- u(t)))ja, [de] + do((D, B) o (e, u(-)))a, (011)) - (180)
Thus,
do((D, B) o (ar,u(-)o, (0(1)) = =da((D, B) o (- u(00)))}, [é] (1s1)

= — (daD(-,u(01))|a,,0) . (182)

Exactly as in the proof of theorem [/| we can take the pseudoinverse to conclude the demonstration of
the theorem.

0, = ~do (D, B) o (o, ()}, (HT [do D (- u(01) 0, (at>,o>]) Casy)

O
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