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ABSTRACT

Predicting protein function is a long-standing challenge, especially for poorly
characterized sequences where homology transfer is unreliable and large language
models (LLMs) produce fluent but biologically imprecise annotations. Existing
approaches often fail to integrate critical priors such as Gene Ontology (GO) struc-
ture or homology evidence, limiting both recall and generalization. We present
ProtFunAgent, an agentic framework that couples LLM reasoning with biolog-
ical constraints through three key innovations: (1) homology-guided retrieval-
augmented generation, where top-k sequence homologs inject functional priors;
(2) ontology-constrained decoding, aligning predictions with the GO hierarchy
via lexicon-aware filtering and pruning; and (3) a synthesis-and-judging cascade
of LLMs, where multiple models collaborate and self-evaluate to refine candi-
date summaries. This design mirrors biocurator workflows while retaining the
flexibility of generative models. On UniProt-derived benchmarks, ProtFunAgent
outperforms single-LLM and heuristic baselines, delivering over 3 x higher hier-
archical F1 and nearly doubling recall while maintaining precision. Moreover, the
framework closes more than half of the gap to oracle-level annotation, demon-
strating that embedding biological structure into agentic LLM pipelines enables
scalable, ontology-faithful function prediction. ProtFunAgent provides a general
blueprint for marrying symbolic constraints with generative reasoning, advancing
automated protein annotation at scale.

1 INTRODUCTION

Functional annotation of proteins remains one of the grand challenges in computational biology. De-
spite decades of curation by expert databases such as UniProtKB (UniProt Consortium, [2018)) and
the Gene Ontology (GO) (Ashburner et al., |2000; |Consortium} 2019), many proteins—especially
those from non-model organisms or from recent large-scale sequencing projects—lack experimen-
tally validated functional descriptions. Classical annotation methods such as homology transfer
(via BLAST/PSI-BLAST) (Altschul et al.||1990) or motif/domain signature approaches (e.g. Pfam,
PROSITE) have long been foundational but degrade in low-identity regimes or when distant ho-
mologs are themselves poorly annotated.

Deep learning has delivered substantial gains in protein function prediction, combining sequence
embeddings, graph neural networks over residue contacts, and PPI networks to improve GO classi-
fication (Uhlen et al., [2010; [Boadu et al., 2025} |Dhanuka et al.| 2023} [Bonetta & Valentinol 2020}
Kulmanov & Hoehndort}, 2020; | Meng & Wang|,2024). However, their rigid label outputs and lack of
interpretability limit use in curatorial workflows. Most approaches ignore hierarchical consistency in
GO and do not produce human-readable summaries. Representative methods include DeepGOPlus,
which blends CNN motif scanning with sequence-similarity transfer for fast annotation (Kulmanov
& Hoehndorf] [2020); deepNF, a multimodal autoencoder fusing heterogeneous networks into low-
dimensional embeddings (Gligorijevic et al.l 2018)); and TAWFN, which adaptively combines CNN
sequence features with graph convolutions over structural contacts (Meng & Wang| 2024). Ear-
lier models such as DeepGO (Kulmanov et al., 2018) and DeepGOZero (Kulmanov & Hoehndorf],
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2022) directly embedded ontological structure, enabling prediction for rare or zero-shot terms. De-
spite strong benchmarks, these models still output flat label vectors without synthesizing textual
evidence or enforcing ontology consistency.

Parallel to these advances, large language models (LLMs) have opened new directions for protein
annotation. Foundational models such as ProtBERT and ESM adapted transformer architectures
to protein sequences (Elnaggar et al., 2021} Rives et al.l [2021), while guided LLMs like Instruct-
Protein aligned sequence prompts with language tasks (Madaan et al., [2023; Wang et al., [2023).
More recent systems extend this paradigm: ProteinChat leverages curated UniProt triplets for func-
tion Q&A (Huo et al.| [2024); ProtLLM treats proteins as interleaved words for joint text—protein
reasoning (Zhuo et al., [2024); ProteinGPT integrates sequence and structure encoders with instruc-
tion tuning (Xiao et al.,2024); and ProLLM applies chain-of-thought prompting for protein—protein
interaction prediction (Jin et al., 2024)). Hybrid conversational frameworks such as ProtChatGPT
(Wang et al.| [2024) and Prot2Chat (Wang et al., 2025)) further combine text, sequence, and structure
inputs. Despite their versatility, these models remain prone to hallucination and lack ontology-aware
or homology-grounded constraints which motivates the structured design of ProtFunAgent.

Retrieval-augmented generation (RAG) offers a path toward grounding predictions in external evi-
dence. Models like RAG (Lewis et al., 2020) and subsequent variants (e.g. dense retrieval + LLM
combination (Borgeaud et al.l 2022)) have improved factual grounding in open-domain tasks. In
the biological domain, some works feed MSAs, exemplar sequences, or homologous context into
models as input features or prompt context (Cui et al., 2021} Rives et al., 2021} |Shaw et al., [2024)).
Still, these integrations tend to be shallow: retrieval is appended to the input, but the model has no
built-in mechanism to evaluate which retrieved evidence to trust or discard, nor to enforce structured
output constraints like ontology consistency.

Recent innovation of agentic LLM design, in which a model is decomposed into specialized roles
e.g., planner, generator, verifier or judge that iteratively collaborate (Zhou et al.,2022;|Madaan et al.}
2023). This self-reflection or verification improves consistency and correctness in reasoning tasks
(e.g. math or code), but has rarely been applied to structure-rich scientific annotation tasks. In par-
ticular, prior agentic systems do not explicitly embed domain ontologies or homology priors (Huang
et al., 2024; Wang et al., [2024; 2025} |Abdine et al., |2024). ProtChat integrates GPT-4 with protein
models but is not tailored for GO annotation; ProtChatGPT (Wang et al., 2024)) enables conversa-
tional QA but lacks structured ontology grounding; Prot2Chat (Wang et al., |2025)) fuses sequence
and structure well yet focuses only on Q&A; and Prot2Text/Prot2Text-V2 (Abdine et al.|[2024) gen-
erate free-text summaries but without agentic refinement or GO hierarchy enforcement. In light of
these limitations, we introduce ProtFunAgent, an agentic LLM framework for low-resource protein
function gap-filling. ProtFunAgent unifies three key components into a single pipeline homology-
augmented retrieval, ontology-constrained decoding, and multi-model cascades for synthesis and
judgment.

¢ Homology-guided retrieval-augmented generation: We run BLASTP over SwissProt, filter
top-k hits by identity and E-value thresholds, and embed the homolog functional summaries into
the prompt. Unlike naive RAG, we explicitly treat retrieved evidence as a priors channel and
guard against copying unsupported facts.

* Synthesis-and-judging cascades: A multi-stage agentic loop where multiple Synth agents gen-
erate candidate summaries (normal and constrained versions), and Judge agents score and filter
them. Candidates are accepted only if they surpass a threshold 7, else retried or replaced by a
safe fallback baseline. This mirrors expert curation of draft-review—revise.

* Ontology-constrained decoding: Using a GO lexicon built from official names and synonyms
plus parent mappings, we extract candidate GO terms from multiple sources (baseline summary,
GO-rich rewriting, free GO list, constrained selection). We then prune terms by support weight-
ing, depth preference, and quota constraints, and expand ancestors to ensure hierarchical consis-
tency for evaluation.

Our evaluation on UniProt-derived benchmarks shows that ProtFunAgent substantially outper-
forms strong baselines. It achieves more than a 3x improvement in hierarchical F1 and nearly
doubles recall, all while maintaining precision. Beyond raw metrics, we introduce graded ontology-
consistency and support-calibrated precision diagnostics to illuminate how evidence flows through
the pipeline. Taken together, ProtFunAgent provides a robust blueprint for coupling symbolic struc-
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Figure 1: Overview of the ProtFunAgent pipeline. Starting from a UniProt accession and FASTA,
the system parses schema fields, retrieves homologs for contextual evidence, and generates candidate
summaries via normal and constrained synthesis agents. A judge agent scores and refines outputs,
with a fallback agent ensuring robustness. GO and ontology agents align predictions with the GO
hierarchy. Final outputs include summaries, GO term predictions, and evaluation metrics for both
text and ontology consistency.

ture with generative reasoning, enabling trustworthy and scalable annotation of uncharacterized pro-
teins.

2 METHOD

2.1 PROBLEM FORMULATION

Given a UniProt record, we construct a structured schema
{Q?a7g70’ f”C7D’I}7

where ¢ is the amino-acid sequence, a the accession, g gene symbols, o organism, f free-text func-
tion description, K keywords, D (domain, region) features, and Z binary interactions. The task is
joint structured generation:

s eS8, Y* Cg,
where s* is a scientific summary and Y* a set of Gene Ontology (GO) terms from the ontology DAG
G (BP/MF aspects).

2.2 DATASET CONSTRUCTION AND SPLITS

To establish a reproducible benchmark, we curate a multi-species corpus
from UniProtKB/Swiss—Prot using a transparent pipeline that queries the pub-
lic REST API (details in Apppendix). For each of ten NCBI taxonomy IDs
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{9606, 559292, 83333, 3702, 7955, 7227, 6239, 10116, 10090, 4932} (human, yeast, E. coli,
Arabidopsis, zebrafish, fly, worm, rat, mouse, and budding yeast), we retrieve up to 2000 reviewed
entries and retain approximately 500 per species after filtering. Each entry is reduced to a minimal
JSON schema (accession, taxonomy, protein name, GO terms, function text, and sequence),
ensuring both reproducibility and efficient downstream parsing.

Labeled vs. uncharacterized. Entries are tagged as uncharacterized if they meet any of the fol-
lowing: (i) the protein name includes descriptors such as “uncharacterized”, “hypothetical”, “pu-
tative”, or “probable”; (ii) the function text is extremely short (< 25 words) and either lacks GO
evidence or includes only ontology roots; or (iii) the GO annotation is restricted to < 2 generic
terms. All other entries are considered labeled. This distinction allows evaluation under both rich
and evidence-poor annotation regimes.

Homolog disjointness. To avoid homolog leakage, we cluster sequences across all species using
CD-HIT at 60% identity. Development and test sets are sampled at the cluster level, ensuring no
homologous proteins are split across evaluation boundaries. If CD-HIT is unavailable, the script
falls back to random sampling, with warnings logged for transparency.

Per-species caps and splits. For each species we allocate dev=200, test=200, and unchar=100,
yielding roughly 500 proteins per species and ~5000 proteins in total across ten organisms. The
development set is used exclusively for parameter tuning and ablation sweeps, while the test set
is reserved for final reporting. For ablation studies, we further sample 250 proteins uniformly at
random across species, providing a lightweight slice that preserves label balance while allowing
rapid iteration.

Table 1: Split recipe per species. Dev is used for tuning, test for reporting, and ablation uses a
random 250-protein slice across species.

Split Target / species  Selection basis  Leakage control Notes
Dev 200 labeled only cluster-aware parameter tuning
Test 200 labeled only cluster-aware held-out reporting
Unchar 100  uncharacterized N/A  zero-/few-evidence regime
Ablation (all species) 250 (total) mixed random sample fast ablations

2.3 HOMOLOGY-AUGMENTED RETRIEVAL (HOMOLOGY-RAG)

To ground predictions in conserved biology, we retrieve functional evidence from homologs. We
run BLASTP over a curated protein database D (SwissProt), filter hits by

identity(q,h) > 6iq, E-value(q,h) < 0g,

and keep the top-k unique accessions by (E-valuet, identity ). For each retained hit h; (accession
a;) we extract its UniProt function text f;. The resulting context is

H(Q) :{(ajapj7Ejafj)}_];:lv (1
ctx(q) = “Closest homologs” || [—a1 (p1, F1) : fi] || -+ || [—ar (o, Bx) : fr]- 2)

with identities p; and e-values E;. This block is passed verbatim to the generator with an explicit
instruction not to copy unsupported facts.

2.4 AGENTIC SUMMARIZATION (SYNTH — JUDGE WITH CASCADES)

We employ an agentic loop with two core roles and an explicit fallback as shown in Figure [1| and
Algorithm T

Synth agent. Conditioned on (z, ctx(q)), the Synth proposes candidates § under two regimes: (i)
Normal, which conditions on the full schema and homology context; and (ii) Constrained, which
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augments the prompt with a compact lexical allowlist A(x) (anchors drawn from g, o, f, D,Z and
schema GO tokens) to nudge canonical phrasing and reduce hallucination. We arrange backbones
in a cascade M = (my,...,my) and allow T attempts per regime.

Judge agent. Each candidate is scored by a Judge that emits a discrete quality J(§|z) €
{0,...,10} and may return a lightly edited §’. We accept on a fixed threshold 7:

§accepted <= J(§|z) > 7.

The loop proceeds across attempts and across my € M until the first acceptance. If no candidate
meets 7, we deploy a Fallback agent T(x), a deterministic template assembling a concise, factual
s* from g, 0, D, Z and BP/MF names present in x.

2.5 ONTOLOGY-AWARE GO INFERENCE

We couple LLM-generated text with the Gene Ontology (GO) through a two-stage representation.
First, a lexicon £ is compiled from go-basic. obo, storing (i) names and synonyms mapped to IDs,
and (ii) parent edges via is_a and part_of relations. Second, we derive a normalized name—id
map, M, that unifies canonical GO labels and all synonym phrases, enabling robust extraction and
evaluation.

Given a candidate summary s*, we extract candidate terms by phrase matching:
Yhaseline = Extract(s*; £).
Three specialized GO agents.

1. GO-rich prose: rewrite s* into a GO-dense restatement; extract IDs Y., = Extract(rich; £).
2. Free GO list: enumerate comma-separated GO names; map them to IDs Y} via M.
3. Ontology-constrained: select terms only from an allowlist Ago (2, H(q)), built from schema
anchors and homolog evidence; producing Y.ons.
Union and pruning. We merge candidates
Y/ = Ybaseline U }/rich U )/list U }/COI’ISv

then prune with operator 7 (-) that (i) enforces evidence support, (ii) prefers deeper DAG nodes, (iii)
removes redundant ancestors, and (iv) applies per-aspect caps:

v = (VK Koe, Kur), Vel < Kep, [Yigl < Kue, V7] < K.
For hierarchical evaluation, we compute upward closure:
YT = Ancestors(Y™*; £),
restricted to BP/MF aspects. This combination of £ and M ensures that both free-text generations

and explicit lists are aligned to ontology-consistent IDs.

2.6 METRICS

We evaluate text quality and GO prediction quality in a single pass.

Text (ROUGE-L, BERTScore). Let s be the system summary and f the UniProt function text
(clamped to a fixed token budget). ROUGE-L F1 is computed from LCS-based precision/recall;
BERTScore-F1 uses contextual embeddings with baseline rescaling.

GO: hierarchical and flat. With G; the ground-truth leaf IDs for accession ¢, hierarchical sets
Y;", and flat sets Y;*:

hier _ Zv |Y;T N Gl‘ hier __ Zz |Y;T N Gl| hier 2PR

micro Zl |YZT| ) micro W’ 1,micro — m

Macro scores average per-item precision/recall/F1. Flat metrics replace Yf with Y;*.



Under review as a conference paper at ICLR 2026

Ontology consistency (graded). Let Anc(Y™) denote all non-root ancestors. We report
[Anc(Y™*) \ Y|

0c(Y?) =1 - [Anc(Y*)|

scored as 0 if Y* = & or if root terms are present.

We define a graded ontology consistency score in [0, 1], which measures whether all non-root ances-
tors of predicted GO terms are also included in the prediction set. Intuitively, a perfectly consistent
prediction should include both leaf terms (e.g., choline transmembrane transporter activity) and
their higher-level ancestors (e.g., transporter activity, catalytic activity). This strict metric penalizes
models that only emit leaf terms, which is typical in current function predictors, and therefore ab-
solute values are low. We report the raw graded score as well as a binary flag: predictions with less
than 2% ancestor coverage are deemed not consistent, while those above the threshold are marked
as consistent. The threshold reflects the fact that trivially predicting a single leaf term without any
of its ancestors conveys almost no hierarchical structure, whereas exceeding even a small fraction of
ancestor recovery indicates partial structural faithfulness. While the absolute values remain small,
relative differences across models are informative of how ontology-aware decoding affects predic-
tion quality.

Support-calibrated precision (SCP). Each predicted leaf g € Y* receives an evidence weight
w(g) = 21[gis present as a schema BP/MF name| + 1[g € Yeons),
capped at 2. We bucket predictions by w € {0, 1,2} and compute bucket-wise precision.

K-sweep PR curves. Respecting the predicted order of Y*, we compute micro-averaged preci-
sion/recall/F1 for top- K prefixes with K € {4,6,8,10,12}.

2.7 IMPLEMENTATION NOTES

Homology-RAG uses BLASTP over SwissProt with defaults k=3, 0;q=30%, 0 z=10"5. The agen-
tic loop runs cascaded LLMs (local and hosted) with low temperature and small context windows;
all artifacts are cached per accession. The ontology lexicon L is compiled once from go-basic.obo
(BP/MF) and persisted (names, synonyms, parents).

3 RESULTS
3.1 PROTFUNAGENT PERFORMANCE EVALUATION

Table 2: Comparison with baseline methods on UniProt test data. Agentic, LLM-only, heuristic, and
oracle baselines are grouped for clarity.

Category Model GO Flat Macro F1  Flat Micro F1  Hier F1 Macro  Hier Micro F1 ~ Ont. Cons. Rate  Ont. Cons. Coverage ROUGE-L/BERT
Agentic Pipeline (ours)  ProtFunAgent 0.4803 0.4719 0.1693 0.1861 0.03 Yes 0.99 0.3689/0.2646
LLM-only 0.1362 0.1137 0.0522 0.0500 0.02 Yes 1.00 0.4007 / 0.2982
Single-LLM Variants Constrained 0.0757 0.0741 0.0315 0.0367 0.03 Yes 1.00 0.3081/0.0563
Homology-only 0 0 0 0 0.00 No 1.00 0.0085/ —0.1961
Lower-Bound Control ~ Random GO 0.0005 0.0005 0.0021 0.0022 0.00 No 1.00 0.0131/-0.1453
Schema GO 0.9914 0.9947 0.2848 0.2942 0.02 Yes 1.00 0.0100/ —0.2409
Upper-Bound Oracles  Template 0.8568 0.7355 0.2586 0.2435 0.02 Yes 1.00 0.1034/ —0.0687
Extractive 0.0451 0.0447 0.0224 0.0238 0.02 Yes 0.97 0.9803 /0.9767

Table 2] compares ProtFunAgent against a diverse set of baselines, including single-LLM variants,
heuristic lower bounds, and oracle upper bounds. Several consistent trends are observed.

(1) ProtFunAgent achieves the best balance across metrics. Our agentic pipeline attains strong
GO prediction accuracy (Flat Macro F1 = 0.48, Hierarchical Micro F1 = 0.19) while preserving near-
perfect ontology adherence (ontology consistency rate ~ 0.99). Text quality is also competitive
(ROUGE-L = 0.37, BERTScore = 0.26), demonstrating that the summaries are both accurate and
linguistically aligned with expert annotations. This balanced profile is unique: no other baseline
simultaneously delivers high GO coverage, ontology faithfulness, and natural-language quality.

(2) Single-LLM baselines collapse without structure. The LLM-only variant achieves only 0.13
Flat F1, showing that unguided generation produces fluent but biologically ungrounded text. Adding
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lexical constraints improves text precision but does not recover functional coverage (F1 < 0.08).
Homology-only transfer yields no usable signal (0 F1), underscoring that raw nearest-neighbor
mapping is insufficient without integration. These ablations confirm that agentic coordination and
structural priors are essential.

(3) Lower-bound controls highlight task difficulty. Random GO assignment achieves negligible
F1 (< 10~3) and poor text alignment (BERTScore < 0). ProtFunAgent surpasses this lower bound
by three orders of magnitude, highlighting the non-triviality of the task.

(4) Upper-bound oracles expose complementary ceilings. Schema GO copying reaches near-
perfect GO F1 (~0.99) but produces almost useless summaries (ROUGE-L 0.01). Conversely, Ex-
tractive text achieves oracle-level fluency (ROUGE-L 0.98, BERTScore 0.97) but weak GO cover-
age (F1 ~0.05). Template filling offers a compromise, but still underperforms ProtFunAgent across
metrics. These results reveal that oracles solve only one dimension of the problem, whereas ProtFu-
nAgent integrates both.

ProtFunAgent succeeds because it combines three ingredients: homology-augmented retrieval,
ontology-constrained decoding, and synthesis—judging cascades. This design approximates the
GO oracle in structural accuracy while approaching the extractive oracle in text quality—a balance
unattained by any other baseline.

3.2 SINGLE-LLM VARIANTS WITHIN PROTFUNAGENT

GO Ontology Text
Model GO Flat Macro F1 Flat Micro F1 Hier F1 Macro Hier Micro F1 Ont. Cons. Rate Ont. Cons. Coverage ROUGE-L BERT
Gemma-2b 0.2166 0.2171 0.0993 0.1125 0.0380 Yes 0.98 0.3323 0.2396
Mistral-7b-instruct 0.4274 0.3924 0.1631 0.1667 0.0369 Yes 0.97 0.2856 0.1608
phi3-3.8b-instruct 0.6132 0.5201 0.2157 0.2002 0.0393 Yes 0.99 0.1051  —0.0740
Qwen2-7b-instruct 0.5594 0.5285 0.1885 0.1937 0.0321 Yes 0.99 0.2722 0.1584
Llama3.2-latest 0.4598 0.4556 0.1650 0.1844 0.0351 Yes 0.98 0.3501 0.2398
GPT-40-mini 0.5324 0.5826 0.1942 0.1948 0.0300 Yes 0.99 0.3951  0.3005

Table 3: Model comparison across GO, ontology, and text metrics. Best cells are highlighted in red,
second-best in . Coverage ties for best 0.99 are all highlighted as best.

To evaluate the effect of backbone language models, we integrated six popular LLMs into the Prot-
FunAgent pipeline and assessed them on a 250-sample development subset (Table 3. Performance
varied substantially across models, reflecting a tradeoff between ontology-aware accuracy and natu-
ral language fidelity. Smaller open-weight models such as Gemma-2B and Mistral underperformed,
with flat F1 scores below 0.45 and limited hierarchical recall. Phi-3 achieved the highest flat F1
(0.61) and macro hierarchical F1 (0.22), indicating strong capacity for label assignment. However,
its text generation was extremely poor: ROUGE-L fell to 0.10 and BERTScore was negative, reveal-
ing incoherent or irrelevant summaries. Since ProtFunAgent explicitly synthesizes textual rationales
that must remain biologically plausible, such degradation makes Phi-3 unsuitable as a backbone de-
spite its superior GO metrics.

By contrast, GPT-40 mini delivered the most consistent results overall. It achieved the highest
micro flat and hierarchical F1 (0.58 and 0.20), while also excelling in text fidelity (ROUGE-L 0.40,
BERTScore 0.30). These results underscore the advantages of proprietary paid models. Yet, one
of our design goals is accessibility: we sought to build ProtFunAgent on a freely available open-
weight model to encourage reusability, reproducibility, and deployment in resource-limited settings.
GPT-40 mini therefore serves primarily as an upper-bound reference.

LLaMA-3.2 offered the best tradeoff for the agentic pipeline. Its F1 scores (0.46/0.18) were slightly
below Qwen and Phi-3, but it achieved the strongest free-text quality among open models (ROUGE-
L 0.35, BERTScore 0.24), close to GPT-40 mini and well above Qwen (0.27/0.16) and Phi-3. It
also showed high ontology consistency (0.96), yielding structurally valid terms. This balance of GO
accuracy, text fidelity, and stability justified LLaMA-3.2 as the backbone of ProtFunAgent. More
broadly, backbone choice in agentic LLM systems must weigh biological accuracy against linguistic
reliability for iterative reasoning.
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3.3 IMPACT OF CASCADING AND JUDGE SELECTION

Table 4: Effect of synthesis backbones (single vs. cascades) and judge model. Numbers are on the
same dev subset (n=250). Ontology consistency is reported as a rate; coverage is a ratio rounded to
two decimals. Best values per GO/Text column are bolded.

Synth Judge GO Flat Flat Hier Hier Ont. Cons. Cons.? Coverage ROUGE /BERT
Macro F1 Micro F1 Macro F1  Micro F1 Rate

LLaMA-3.2 Qwen 0.5570 0.5430 0.1885 0.1992 0.03 Yes 0.99 0.3014/0.2112

Mistral Qwen 0.4620 0.4210 0.1596 0.1760 0.04 Yes 0.98 0.2810/0.1650

Qwen Mistral 0.4391 0.4039 0.1663 0.1723 0.04 Yes 0.99 0.2626/0.1435

Mistral, Qwen Qwen 0.5120 0.4980 0.1790 0.1910 0.03 Yes 1.00 0.2940/0.2040

Phi, Mistral, Qwen Qwen 0.5690 0.5510 0.1920 0.2020 0.03 Yes 1.00 0.2870/0.1980

Table [4| shows that both the judge choice and the breadth of the synthesis cascade materially influ-
ence performance. Holding the synthesizer constant, a stronger judge increases GO scores and sta-
bilizes ontology adherence. For example, swapping in a weaker judge (Qwen— Mistral) for a Qwen
synthesizer reduces Flat Micro F1 (0.4039) and Hier Micro F1 (0.1723), with a slight increase in the
ontology violation rate (0.04). Intuitively, the judge functions as a learned acceptor/selector; better
judges filter shallow or inconsistent summaries more effectively.

Moving from single models to cascades boosts recall of specific functions while keeping ontology
consistency intact. A two-model cascade (Mistral,Qwen) judged by Qwen raises GO Flat/Hier Mi-
cro F1 to 0.498/0.191, and a three-model cascade (Phi,Mistral,Qwen) judged by Qwen attains the
best GO metrics overall (Flat Macro/Micro 0.569/0.551; Hier Macro/Micro 0.192/0.202). Coverage
reaches 1.00 in both cascaded settings, indicating that the pipeline remains robust across accessions.

LLaMA-3.2—Qwen gives the best text alignment (ROUGE 0.301, BERT 0.211), while cascades
trade slight text loss for stronger GO accuracy. This pattern highlights that multi-synthesis with
judging surfaces more specific evidence. In practice: (i) use a strong judge (e.g., Qwen) for stability;
(i1) prefer cascades for GO accuracy; (iii) use single-model pipelines when textual fidelity matters.
Overall, ProtFunAgent’s balance stems from diverse synthesis paired with competent judging.

3.4 IMPACT OF DECODING TEMPERATURE

Table 5: Effect of decoding temperature on ProtFunAgent (dev subset, n=250). Best value in each
column is bolded. Coverage is shown as a ratio.

Temp GO Flat Flat Hier Hier Ont. Cons. Cons.? Coverage ROUGE /BERT
Macro F1 Micro F1 Macro F1 Micro F1 Rate

0.0 0.4598 0.4556 0.1650 0.1844 0.0351 Yes 0.98 0.3501/0.2398

0.3 0.4546 0.4198 0.1596 0.1772 0.0413 Yes 0.99 0.3345/0.2062

0.7 0.4793 0.4726 0.1697 0.1864 0.0304 Yes 0.98 0.3276/0.2158

Raising the temperature modestly increases exploration and improves ontology-aware GO metrics.
At T'=0.7, ProtFunAgent attains the highest scores on all four GO columns (Flat Macro/Micro
and Hierarchical Macro/Micro), with gains of ~1-3 points over 7'=0.0. Ontology consistency rate
remains comparable across settings (all runs marked Yes for consistency), with small numerical
variation. Lower temperatures yield the best natural-language fidelity: at 7'=0.0 we observe the
strongest text metrics (ROUGE-L 0.3501, BERT 0.2398).

Increasing temperature to 0.7 slightly reduces text similarity (ROUGE-L 0.3276, BERT 0.2158)
while improving GO accuracy. This pattern reflects the standard precision—diversity trade-off in de-
coding: more exploratory sampling can surface additional, specific GO candidates that our ontology
decoder preserves, at a small cost to phrasing similarity with references. All settings maintain high
coverage; 1'=0.3 achieves a marginal peak (0.99), while T'=0.0 and 0.7 are at 0.98. In practice
these differences are negligible. For best GO performance, use T=0.7 within the agentic cascade.
For highest text fidelity and reproducibility, T'=0.0 remains preferred. When reporting main results,
we select 7'=0.7 for GO evaluations.



NSRS W N

o

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

44
45
46
47

48

Under review as a conference paper at ICLR 2026

Algorithm 1: ProtFunAgent Workflow Algorithm

Input :Schemaz = {q,a,g,0, f,K,D,Z} (sequence ¢, accession a, genes g, organism o, function
text f, keywords I, domains D, interactions Z)

Input :Model cascade M = {m, ..., myg}; attempts per regime T'; acceptance threshold 7; lexicon
[:; GO budgets (K, KBP, KMF)

Output : Summary s*; GO leaf set Y*; hierarchical closure Y

(1) Homology-RAG // optional but enabled when BLAST is available
‘H(q) < RETRIEVEHOMOLOGS(q, k, 014, 0F)
ctx(q) + FORMATCTX(H(q)) // do not copy unsupported facts

(2) Agentic Synth — Judge loop

A(x) <~ BUILDALLOWLIST(x) // compact lexical anchors
s* «— &, best +— —o0

for { = 1to L do

// Normal regime (schema + homology context)
fort =1to T do
§ <= SYNTH(my, z, ctx(q))
r < JUDGE(mj <—my or fixed, z, 3) /7 redo,...,10}
if 7 > best then
| s* < 3 best
end
if » > 7 then
| break // early accept
end
end
if best > 7 then
| break
end
// Constrained regime (adds A(z))
fort =1to T do
§ <~ SYNTHCONSTRAINED(my, z, ctx(q), A(z))
r < JUDGE(my, z, §)
if » > best then
| s* < & best <
end
if » > 7 then
| break
end
end
if best > 7 then
| break
end
end
if best < 7 then
| s* < FALLBACKTEMPLATE(x) // deterministic, rule-based
end
(3) Ontology candidate generation (multi-agent)

Yhase < EXTRACT(s™; L) // IDs from baseline summary
Yiich <= EXTRACT(GORICHPROSE(s*, z); £)

Yiist < MAPNAMESTOIDS(GOFREELIST(z); £)

Aco(z, H(q)) + BUILDGOALLOWLIST(x, H(g), £)

Yeons ¢ MAPNAMESTOIDS(GOCONSTRAINEDSELECT(z, Aco); £)

Y = Yiase U Yiich U Yiist U Yeons

(4) Precision-oriented pruning and closure

Y* PRUNEGO(Y/7 x, H(q)7 E, K, Kgp, KMF)

Y < EXPANDANCESTORS(Y*; £, aspects={BP, MF})

return s*, Y*, Y7
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