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Abstract
Federated Learning (FL) enables collaborative
training with privacy preservation but is vulnera-
ble to backdoor attacks, where malicious clients
degrade model performance on targeted inputs.
These attacks exploit FL decentralized nature,
while existing defenses, based on isolated behav-
iors and fixed rules, can be bypassed by adaptive
attackers. To address these limitations, we pro-
pose SPMC, a marginal collaboration defense
mechanism that leverages intrinsic consistency
across clients to estimate inter-client marginal
contributions. This allows the system to dynam-
ically reduce the influence of clients whose be-
havior deviates from the collaborative norm, thus
maintaining robustness even as the number of at-
tackers changes. In addition to overcoming proxy-
dependent purification’s weaknesses, we intro-
duce a self-purification process that locally ad-
justs suspicious gradients. By aligning them with
margin-based model updates, we mitigate the ef-
fect of local poisoning. Together, these two mod-
ules significantly improve the adaptability and
resilience of FL systems, both at the client and
server levels. Experimental results on a variety of
classification benchmarks demonstrate that SPMC
achieves strong defense performance against so-
phisticated backdoor attacks without sacrificing
accuracy on benign tasks. The code is posted at:
https://github.com/WenddHe0119/SPMC.

1. Introduction
Federated Learning (FL), as a decentralized machine learn-
ing paradigm (McMahan et al., 2016; Bonawitz, 2019), en-
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Figure 1. Motivation. Illustration of the limitations of existing
defenses and the advantages of the proposed method from both
server-side and client-side. The comparison table highlights that
our method uniquely avoids reliance on three drawbacks. de-
notes attacker and denotes benign client.

ables multiple devices to collaboratively train a global model
while preserving data privacy by storing data locally on end
devices. The general approaches (McMahan et al., 2017;
Blanchard et al., 2017) aggregate parameters from participat-
ing devices and subsequently redistribute the global model
(averaged parameters) for further training, aiming to learn a
high-quality model without centralizing private data. How-
ever, this distributed learning framework complicates the
verification of each participant’s trustworthiness, rendering
it vulnerable to backdoor attacks (Chen et al., 2017; Gu
et al., 2019; Li et al., 2022; Fung et al., 2020). In such
attacks, an attacker may insert triggers into one or more
local models, causing the global model to exhibit specific
malicious behaviors when these triggers are activated. For
instance, in the context of autonomous driving, an attacker
could place special stickers (e.g., smiley faces) on a stop
sign, misleading the system into interpreting the stop sign as
a speed limit, thereby exemplifying a backdoor attack in a
real-world scenario (Gu et al., 2019). Therefore, effectively
addressing backdoor attacks is essential for ensuring the
reliability of federated learning in real-time applications.
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Existing defenses against backdoor attacks can be catego-
rized into server-side defenses (Nguyen et al., 2024) and
client-side defenses (Zhu et al., 2023b; Huang et al., 2024a).
Both strategies either leverage individual distance differ-
ences (Blanchard et al., 2017; Fung et al., 2018; Shejwalkar
& Houmansadr, 2021), focus on outlier resilience by the
overall statistical characteristics of local updates (Guerraoui
et al., 2018; Yin et al., 2018), or optimize local updates based
on target thresholds (Li et al., 2019; Ozdayi et al., 2021;
Xie et al., 2021). However, these approaches rely on two
primary assumptions: individual behavior and passive purifi-
cation. Individual action regarding client-to-whole distances
overlooks the behavioral communication between clients.
Passive purification, which relies on predefined scaling rules
or an additional clean dataset, can easily compromise data
privacy and overlook biases in poisoned participant num-
bers (Li et al., 2020b; Ye et al., 2025b; Fang et al., 2025).

Inspired by the Shapley value (SV) from game theory (Ghor-
bani et al., 2020; Jiang et al., 2023), we observe an important
phenomenon in FL. The contribution made by a backdoor
attacker differs significantly from that of a coalition that
excludes the attacker. This difference can serve as a reliable
indicator for identifying malicious clients. To quantify this,
we define the inter-client margin contribution, which mea-
sures the impact of a client’s participation by comparing
its local model parameters with those of the corresponding
coalition model. This approach addresses the limitations of
existing assumptions and enhances system robustness by ef-
fectively capturing and mitigating abnormal client behavior.

Motivated by the perspective of margin contribution in game
theory, we introduce a Self-purifying Backdoor Defense via
Margin Contribution (SPMC), including client gradient op-
timization and server aggregation for active purification.
Specifically, the server receives malicious gradient orienta-
tions markedly different from those of benign participants,
resulting in a substantial margin difference. We argue that
the difference in model parameters with the contribution of
the margin is crucial to accurately identify attackers. Conse-
quently, we propose margin difference aggregation, wherein,
for each client, we measure the margin contribution by the
cosine similarity based on the parameter differences be-
tween that client and other clients (the coalition), allowing
the purification of poisoning effects without a predefined
scale. We adaptively adjust the importance of each partici-
pant according to their margin contribution, assigning lower
aggregation weights to distorted clients with significant mar-
gin differences while encouraging participants with smaller
margin differences to contribute more to the collaborative
effort. In the client-side scenario, to mitigate the impact of
attackers continuously influencing the global model with
toxic data, we further align the direction of the participants
local model gradients with the direction of the gradient rep-
resenting general knowledge (Guo et al., 2022; Zhu et al.,

2023a) to realize self-purifying. This gradient measures the
discrepancy between local model predictions and the knowl-
edge communicated by the coalition model, thereby pre-
venting overfitting to poisoned samples (Wang et al., 2023;
Rame et al., 2022; McMahan et al., 2017; Shi et al., 2021;
Yang et al., 2024). Extensive experiments demonstrate that
our defense method maintains high model performance and
robustness simultaneously, a feat not previously achieved.

Our main contributions are as follows:
• We concentrate on the backdoor robustness in federated

learning and reveal that existing approaches only focus
on individual action and overly depend on the prede-
fined scale with proxy assistance to enhance backdoor
attack defenses, resulting in the global model’s vulner-
ability against changes in the number of attackers. We
address the lack of flexible purification of malicious
impacts through client margin difference contributions,
realizing non-proxy distillate for local model guidance.

• To establish a clear distinction between the malicious
and benign participants in the global model, we intro-
duce a self-purifying margin difference contribution de-
fense (SPMC). In server aggregation, our method quan-
tifies parameter differences between the local model
and the margin coalition model, governing server ag-
gregation without any predefined scale. On the client
side, we realize non-proxy distillation to guide local
gradients to align with the margin models’ direction,
preserving all local gradients in a benign direction.

• We conduct experiments on various datasets, including
CIFAR-10/100, MNIST, and FashionMNIST, under
backdoor attack conditions. The effectiveness of the
proposed SPMC is validated, confirming the indispens-
ability of the foundational module.

2. Related work
2.1. Overview of Federated learning

Federated Learning (Huang et al., 2024b; Wan et al., 2025)
has become a popular Machine Learning framework be-
cause it allows clients to train models in a decentralized
manner without having to share any private datasets. In
the FL framework, data for learning tasks is acquired and
processed locally at the edge node, and only the updated Ma-
chine Learning parameters are transmitted to the central or-
chestration server for aggregation. It consists of four phases:
FL initialization, local model training, local model updating,
and aggregation. If we make certain assumptions about the
type of attack and limit the number of malicious clients.
Aggregation techniques can produce robust training models
in some cases (Huang et al., 2023b; 2022). Fedavg (McMa-
han et al., 2016) is widely used in FL for both attack and
defense scenarios, especially in work on backdoor attacks
and defences (Bagdasaryan et al., 2020; Nguyen et al., 2022;
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Shen et al., 2016; Nguyen et al., 2020; Muñoz-González
et al., 2019; Fung et al., 2020). While the algorithm also
allows for weighting the contributions of different clients,
this also makes the system more susceptible to manipulation,
as malicious users can use this to increase their impact.

2.2. Defense Against the Backdoor Attack

Malicious backdoor attacks pose a serious threat to fed-
eral systems. Existing backdoor defense schemes against
backdoor attackers can be classified into three categories:

Distance Differential Defence (Blanchard et al., 2017;
Fung et al., 2018; Tian et al., 2021; Zheng et al., 2021;
Han et al., 2023; Fereidooni et al., 2024). Mainly through
the difference in distance between local updates and server
aggregated updates, clients with obviously far from the
overall direction are considered evil and excluded from the
aggregation process. For example, Sageflow (Park et al.,
2021) combines entropy filtering and loss to measure the
difference between the local model and the ideal distribution
weighting of the server model. FLTrust (Cao et al., 2021a)
collects a clean, small training dataset and thus introduces
Relu-clipped cosine similarity to allocate high trust scores
for those reliable clients. Distance discrepancy defense
mostly focuses on local-to-server exchanges, thus neglecting
inter-local edge exchanges. In addition, the security of the
agent dataset determines whether the ideal distribution is
fitted to the benign update, aggregating the robust model.

Statistical Distribution Defence (Yin et al., 2018; Guer-
raoui et al., 2018; Pillutla et al., 2022; Zhang et al., 2022b;
Cao et al., 2023) constructs different statistical criteria to
select and exclude bad users. For example, RFA (Pillutla
et al., 2022) calculates the geometric median with an al-
ternating minimization function. FLDetector (Zhang et al.,
2022b) considers the historical client updates and votes for
those with large discrepancies between the predicted and
received client updates as attackers. However, the above two
approaches require complex hyper-parameter configurations
to adapt to heterogeneous federation scenarios, striking a
blow to the generalization and robustness of backdoor de-
fense in terms of generalization and robustness.

Objective Optimized Defence (Wu et al., 2020; Li et al.,
2019; Ozdayi et al., 2021; Cao et al., 2021b; El-Mhamdi
et al., 2021; Panda et al., 2022) locally sets threshold ob-
jectives to regulate the global paradigm and weed out bad
users. For example, RLR (Ozdayi et al., 2021) adjusts the
learning rate considering the agent update direction and
slows down the learning rate for potentially malicious par-
ticipants with a large number of locally conflicting update
directions. CRFL (Xie et al., 2021) sets pruning thresholds
for the global model paradigm, scales the model scrub eu-
calyptus tree of bad users proportionally, and adds noise to
reduce the malicious influence of bad users. However, the

above methods require appropriate thresholds to regulate
the benign update of global paradigms.

The above defenses mainly rely on individual action, the
predefined rule, and proxy assistance, as shown in Fig. 1.
These rules are crucial to ensure the difference between
benign and malicious updates and the correctness of the
overall direction of the client’s local updates, which are
serious rule challenges for different realistic settings.

3. Preliminaries
Threat Model: Backdoor attacks have been extensively
studied against centralized learning to manipulate the cen-
tralized model by inserting some triggers during training.
Specifically, we define τ as the trigger pattern and m as
the trigger location mask. The modified backdoor instance
is represented as ξ̃ = (x̃, ỹ). For x̃, we apply the formula
x̃ = (1−m)⊙x+m⊙ τ , incorporating the trigger pattern
τ into the original instance x at locations specified by the
mask m (Liao et al., 2018). We then alter the original label
y to the predefined attack target ỹ. For any input x, the kth
client dataset Dkhas the following output:

Dk =

{
D̃(x̃, ỹ), ∃x ∈ ξ̃

D(x, y), ∀x ̸∈ ξ̃
, (1)

where D̃ denotes the compromised dataset that exploits the
flip-flop label attack or proportionally increases the weight
of the malicious model (Xie et al., 2020).

Local Update: In each iteration of FL, each client updates
the local model based on its local dataset (Li et al., 2020a).
We denote Dk as the kth client’s local dataset. Under hetero-
geneous federated learning, the kth client’s model parameter
distribution Itk in the tth epoch:

Itk ← wt−1
g − η∇L(wt−1

g , Dk), (2)

where η denotes the learning rate and Itk is determined by
the local dataset Dk, global parameter wt−1

g , and updates
model parameters by the loss function L.

Server Aggregation: In federated learning, the central
server receives the updated model parameters from the lo-
cal and updates the global model according to a certain
aggregation strategy (usually federated aggregation (McMa-
han et al., 2017)). The global model parameters in the tth
epoch can be expressed as: wt

g =
∑N

k=1 αkI
t
k, where αk

denotes the weight of the kth client, which must satisfy∑N
k=1 αi = 1.

4. Methodology
4.1. SPMC: Self-Purifying Margin Contribution

Motivation. Most existing defenses to backdoor attacks
focus on individual actions that reward clients based on
global distribution but ignore inter-client communications.
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Figure 2. Overview of Self-Purifying Margin Contribution (SPMC). See Sec. 4. On the client side, we utilize the coalition aggregation
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To address these problems, our idea is to estimate each
client’s contribution to other clients, and further use the
contribution to guide the direction of local updates and
identify malicious attackers (Jiang et al., 2022). This idea is
inspired by the Shapley Value, a classical method to quantify
participants’ contributions in cooperative game theory. Our
research is the first to apply SV for backdoor defense.

For N clients, we have IN = {Ik}Nk=1 as the set of local
client distributions. According to Eq. 2, the distribution Ik
is supported on a space Dk = X × Y , X and Y is input
and output respectively. The coalition S ∼ DM is a set of
clients, such that ∥S∥ = M , where M denotes the number
of clients in the coalition. Let Γ ∈ [0, 1] denote the utility
function, and Γ(S) represents the value of S coalition. We
express Γ as the target Γ← minEDk∼DM [S(L(wg, Dk))]
for each coalition. We define SV as below:

ϕk (k; Γ;D;N) = E
M∼[N ],Γ∼DM−1

[Γ (S ∪ {k})− Γ (S)]. (3)

From this definition, the SV of a client is its expected margin
contribution in Γ to a set of client coalitions S. To calcu-
late SV, we need to consider all possible client coalitions,
i.e., all subsets of N clients. The cost will be exponen-
tially increased with respect to the number of clients N ,
that is, O(2N ). Such computation is extremely expensive,
even with a small number of clients. Therefore, it is crit-
ical to find an efficient solution for client valuation. By
analyzing the SV definition, we notice that the key is to
measure the value with and without a certain client with
respect to all possible combinations of other clients (shown
in Fig. 1). Therefore, we propose an efficient approximation,
by directly measuring the contribution of client k to others
(N\{k}). We define our new value ϕk as:

ϕk(k; Γ;D;N) = E
Γ∼DN

[Γ (N\{k})− Γ({k})]

Γ({k}) = Ik,
(4)

where ϕk is our proposed function to measure the margin
contribution of client k. We focus on verifying whether a
new client contributes benignly to the existing client. Sup-
pose the new client differs significantly from the existing
client in terms of the target goal; in that case, we believe
that the federation resulting from the new client joining the
existing client will produce a malicious contribution. Back-
door defense in federated learning aims to penalize clients
whose coalitions generate malicious contributions.

In the rest part of this section, we investigate how to apply
margin contribution on both the server-side and client-side
for attacker identification and self-purification ( Fig. 2).

4.2. Margin Contribution Aggregration

Margin Aggregation: According to Eq. 4, we first compute
the coalition Γ (S\{k}) on the server side as a standard to
measure the likelihood of potential attackers. The attacker
trains malicious local model parameters due to poisoned
private datasets. Therefore, we secondly similarly utilize
coalition Γ (S\{k}) as a standard for updating local model
parameters on the client side. Since the global model over-
writes the local model in round t, we need to store the up-
dated local model parameters for round t−1 and recalculate
the kth coalition. We define ISk

as a simplistic modelling
description of the coalition Γ (S\{k}) in the tth epoch:

ISk ← Γ (N\{k}) =
Sk∑
i

αiI
t
i︸ ︷︷ ︸

Server

=
wt

g − αk × It−1
k

1− αk︸ ︷︷ ︸
Client

,
(5)

where Sk = ({1, 2, . . . , n} \ {k}) represents a coalition
without the kth client and αk means the kth client’s aggre-
gation weight reconstructed via margin contribution.

Difference Computation: According to Eq. 4, under Fed-
erated Learning (FL), the margin contribution of client k is
quantified as the discrepancy in model parameters between
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client k and the coalition excluding that client. We employ
the cosine similarity measure to evaluate the alignment be-
tween the local client and the margin aggregation model
(the coalition model) (Huang et al., 2023a), as it focuses
on directional alignment rather than magnitude, making it
more robust in high-dimensional, heterogeneous FL settings.
We further compare cosine similarity with Euclidean and
Wasserstein distances, with results reported in Table 5 in
Appendix C. Consequently, the Equation can be simplified
as: ϕk (k; Γ;D;N) =

ISk
·Ik/∈Sk

∥ISk
∥×∥Ik∥ . As indicated by the for-

mula, a high level of similarity suggests that the potential
attacker is significantly distant from the parameters of the
coalition model for accurately identifying that attacker.

Reweighted Aggregation: We note that the existing ag-
gregation weights αk are typically based on data scale:
αk = Nk∑K

k Nk
or participant size αk = 1

K . We argue that
popular aggregation methods ignore the reliability of the
margin contribution and assign higher weights to potential
attackers that are far from their corresponding margin coali-
tion. Therefore, we reconfigure the aggregation weights of
the clients via the margin contribution set ϕ:

ϕ = [Γ (N\{1})−Γ ({1}) , . . . ,Γ (N\{n})− Γ ({n})]

Cosine ⇓ ϕ̂k ∈ max−ϕk

ϕ̂ = [ϕ̂1, . . . , ϕ̂k, . . . , ϕ̂n],

αk =
σ(−ϕ̂k)∑
k′ σ(−ϕ̂k′)

.

(6)

Specifically, for local models, the impact of their model
parameters is highlighted when the similarity between their
model parameters and the coalition model parameters is
high, and their impact is penalized when it’s low.

4.3. Local Gradient Alignment

Motivation. The central server broadcasts wg to each par-
ticipant in the form of wk ← wg. Participants perform the
local optimal function to fit the local distribution according
to their private dataset Dk. From Eqs. 1 and 2, benign and
malicious fit different distributions and naturally hold dif-
ferent gradient directions (Rame et al., 2022). Specifically,
malicious changes the original label y to an attack target ỹ
by trigger pattern τ , resulting in a gradient direction that
deviates significantly from the benign participants’ direction
to influence the global model subtly:

Lk(w
t
k, Dk) =

1
|Dk| [

∑
ξ∈Dk

LCE(x, y)︸ ︷︷ ︸
Benign

+
∑

ξ̃∈Dk
LCE(x̃, ỹ)︸ ︷︷ ︸

Backdoor

],
(7)

where ξ̃ = (x̃, ỹ) denotes the modified backdoor trigger.
LCE ← −

∑
yilog (p (ti|x)) is the loss function typically

used by traditional methods, optimizing the model param-
eter by minimizing the negative log-likelihood. But LCE

relies heavily on anti-overfitting techniques (Zhou et al.,

2022), encouraging the attacker to extend the malicious
impact once again. We propose an effective self-purifying
updates paradigm that aligns local malicious gradient direc-
tion with the general knowledge of margin coalition models.

Non-proxy Distillation. Due to the great success of knowl-
edge distillation in catastrophic forgetting (Phuong & Lam-
pert, 2019; Hinton et al., 2015; Kirkpatrick et al., 2017),
researchers have applied knowledge distillation in backdoor
attacks, expecting the model to be more discriminative to the
attacker. We hope to leverage margin contributions to distill
agentless datasets for self-purification. We utilize the mar-
gin coalition model predictions as general knowledge and
compare the model predictions to the general knowledge to
align the local gradient direction. Specifically, we obtain the
domain-specific direction by calculating the cross-entropy
LCE(w) between the local model prediction p(ti|x) and the
true target y, and the general knowledge direction based on
the Kullback-Leibler (KL) divergence between p(ti|x) and
the marginal model union prediction pSk

(ti|x):

Lkl(w) = −
∑

pSk (ti|x)× log
p(ti|x)

pSk (ti|x)
. (8)

We denote the gradients of Lkl(w) and Lce(v) as Gg =
∇Lkl(w) and Gd = ∇LCE(w), respectively. The relations
between Gg and Gd are twofold. Firstly, the fact that their
angle is less than 90° indicates that the local knowledge pos-
sessed by the local client does not conflict with the general
knowledge, In this case, we safely set the updated gradient
direction Glocgrad as Gd. Secondly, their angle is greater
than 90°, which indicates that the local knowledge conflicts
with the general knowledge. In this case, we project the
Gd to the orthogonal direction of Gg to optimize the classi-
fication model, which avoids increasing the KL loss. Our
LocGrad strategy is mathematically formulated as:

Glocgrad =


Gd, if Gd ·Gg ≥ 0,

Gd − λ · Gd ·Gg

∥Gg∥2
Gg, otherwise,

(9)

where λ is a scaling factor for adjusting the projection. In-
stead of updating the local parameter vectors using Gd, we
optimize the local parameter vectors using Glocgrad, which
prevents the gradient direction from overfitting to poisoned
samples when the participant is malicious.

5. Experiment
5.1. Experiment Setup

Dataset. Following (Li et al., 2021; Mu et al., 2021), we
experiment on four federated scenarios.

• MNIST (LeCun et al., 1998) is a handwritten digit
dataset of 10 digits class (19̃) with 70, 000 images.

• CIFAR-10 (Krizhevsky & Hinton, 2009) has 10 seman-
tics with 50k, 10k images for training, validation.

• CIFAR-100 is a collection of 60,000 32×32 color im-
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Figure 3. Comparison of different lambda λ for backdoor failure
rateR on CIFAR-10 with malicious ratio γ = {0.2, 0.3}. We set
λ = 1.0 for the next experiments. See Sec. 5.2.

Table 1. Ablation on key components for SPMC in MNIST and
CIFAR-10 with β = 0.5 and γ = {0.2, 0.3}. The λ (Eq. 9) for
GradReg experiment setting is 1.0. See Sec. 5.2.

MNIST
LGAlign MCAgg γ = 0.2 γ = 0.3

Sec. 4.3 Sec. 4.2 A R V A R V
99.25 2.20 50.73 99.17 1.27 50.22

✓ 98.85 27.92 63.38 98.94 18.78 58.86
✓ 99.27 2.11 50.69 99.19 0.52 49.85

✓ ✓ 98.79 42.73 70.76 98.72 55.95 77.34

CIFAR-10
LGAlign MCAgg γ = 0.2 γ = 0.3

Sec. 4.3 Sec. 4.2 A R V A R V
65.03 50.62 57.83 64.82 36.12 50.47

✓ 66.66 81.90 74.28 65.13 77.57 71.35
✓ 64.96 48.18 56.57 63.81 37.17 50.49

✓ ✓ 66.78 85.32 76.05 65.83 80.14 72.98

ages in 100 classes, with 600 images per class, com-
monly used for image classification tasks in machine
learning and computer vision.

• FashionMNIST (Xiao et al., 2017) is a dataset of
70,000 grayscale images of 10 fashion categories.

As for the data heterogeneity simulation, we utilize the
Dirichlet distribution β to simulate the label skew, as pre-
vious methods (Li et al., 2020a; 2021; Zhang et al., 2022a;
Huang et al., 2023c), where β > 0 is the concentration pa-
rameter to adjust the class-wise skew level. We set β = 0.5
to simulate the heterogeneous federated network for follow-
ing experiments.

Counterparts.We compare three types of backdoor defense
solutions. The details are as follows:
i) Distance Difference Defense:

• FoolsGold [arXiv’18] (Fung et al., 2018): Analysing
similarity of updates to mitigate malicious clients.

• DnC [NDSS’21] (Shejwalkar & Houmansadr, 2021):
Downgrading peacekeeping and outlier removal
against model poisoning attacks in federated learning.

• Sageflow [NeurIPS’21] (Park et al., 2021): Combine en-
tropy filtering and loss dynamically adjusting weights.

• Finetuning [ToolsforDL’19] (Quinn et al., 2019): Directly
optimizes the aggregated global model on vaidation.
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with γ = 0.3 for the federated benign performanceA (Green line),
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Table). More details see Sec. 5.2.
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Figure 5. Ablation on Client numN on CIFAR-10 (β = 0.5,γ =
0.3) with the popular counterpart. See Sec. 5.2.

ii) Statistics Distribution Defense:
• Bulyan [ICML’18] (Guerraoui et al., 2018): Agree on

coordinates by principal component vectors, chosen
via Byzantine–resilient aggregations algorithms.

• RFA [TSP’22] (Pillutla et al., 2022): Leverage the geo-
metric median and the smoothed Weiszfeld algorithm.

iii) Objective Optimized Defense:
• RSA [AAAI’19] (Li et al., 2019): Norm regularization and

random subgradient aggregation against Byzantine.
• RLR [AAAI’21] (Ozdayi et al., 2021): Adjust the server

learning rate with dimension and communication.
• CRFL [ICML’21] (Xie et al., 2021): Exploit clipping and

smoothing operations to train federated learning model.
Backdoor Attacks. We demonstrate the effectiveness of
the proposed method under the popular paradigm (Gu et al.,
2019; Han et al., 2023). The size of the trigger pattern τ is
2× 6 and its location is in the top-left corner of the images.
We convert the attacked label to the second class (i.e., 2 in
Digits). We set the malicious client ratio γ as {0.2, 0.3}.
The local data poisoned portion is default set as 0.3.

Evaluation Metric. Given that the backdoored model fw
is anticipated to misclassify poisoned dataset D̃ as ỹ, the
Backdoor Failure RateR = 1− 1

∥D̃∥

∑
x∈D̃{fw(xi) = ỹ}

based on the Attack Success Rate (ASR) (Han et al., 2023;
Krizhevsky & Hinton, 2009; Ye et al., 2025a). Addition-
ally, the trained model fw should produce normal outputs

6
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Table 2. Comparison with the state-of-the-art backdoor robust solutions in the FashionMNIST, CIFAR-10, and CIFAR-100 dataset
with γ ∈ {0.2, 0.3}. Up arrows ↑ indicate advancements in the given metric compared to FedAvg, while down arrows ↓ denote regressions.
The bolded number is the best result in the irregular case, and – means failure optimization. Refer to Sec. 5.3 for detailed explanations.

FashionMNIST CIFAR-10 CIFAR-100
γ = 0.2

Methods
A R V A R V A R V

FedAvg 87.89 4.73 46.31 65.03 50.62 57.83 57.82 15.75 36.78
Predefined Scale Requirement

DnC 87.25 88.70 87.97 59.79 80.93 70.36 57.52 15.91 36.72
Sageflow 88.15 9.48 48.81 64.55 51.88 58.22 57.49 17.87 37.68

Bulyan 38.12 99.94 69.03 10.61 100.0 55.30 51.64 13.23 32.43
RFA 85.66 0.18 42.92 64.33 72.47 68.40 57.15 8.09 32.62
RLR 87.69 7.48 47.58 64.32 45.59 54.96 45.94 25.85 35.89

CRFL 84.19 1.04 42.62 49.45 64.22 56.8 26.50 60.41 43.46
No Predefined Scale Requirement

FoolsGold 82.92 0.27 41.60 54.28 94.01 74.15 24.92 68.63 46.77
RSA 10.00 99.99 54.99 10.00 100.00 55.00 – – –

Finetuning 87.15 16.71 51.93 59.70 59.17 59.44 41.43 37.93 39.68
Ours 82.19↓5.69 70.07↑65.3 76.45↑30.1 66.78↑1.75 85.32↑34.7 76.05↑18.2 64.52↑6.70 49.87↑34.12 57.20↑20.42

FashionMNIST CIFAR-10 CIFAR-100
γ = 0.3

Methods
A R V A R V A R V

FedAvg 88.13 0.95 44.54 64.82 36.12 50.47 56.06 11.86 33.96
Predefined Scale Requirement

DnC 87.09 34.49 60.79 59.99 63.35 61.67 56.14 11.01 33.58
Sageflow 87.84 0.47 44.16 64.87 36.88 50.88 56.07 11.03 33.69

Bulyan 45.05 86.67 65.86 10.00 80.00 45.00 51.77 3.92 27.84
RFA 85.61 0.06 42.83 63.64 40.0 51.82 54.74 4.67 29.71
RLR 87.52 0.83 44.17 63.63 36.84 50.24 52.68 11.68 32.18

CRFL 78.62 0.10 39.36 45.10 49.83 47.47 25.99 57.75 41.87
No Predefined Scale Requirement

FoolsGold 79.98 0.04 40.01 56.94 37.17 47.06 22.90 55.40 39.15
RSA 10.20 86.19 48.20 10.00 100.00 55.00 – – –

Finetuning 87.16 2.48 44.82 57.36 54.11 55.74 38.60 41.07 39.83
Ours 85.14↓2.99 60.52↑59.6 72.83↑28.3 65.83↑1.01 80.14↑44.0 72.98↑22.5 66.12↓10.06 19.02↑7.16 42.57↑8.61
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Figure 6. Comparison of federated benign performance A and backdoor failure rateR on CIFAR-10 with γ = {0.2, 0.3}. SPMC
appears to have stable convergence speed and satisfying performance.

on benign samples (e.g., images without triggers). The
model’s accuracy on these samples can be measured us-
ing the metric called Main Task Accuracy (MTA) (Xie
et al., 2020) on benign samples. This is calculated as
A = 1

∥D∥
∑

x∈D{fw(xi) = y}, where D denotes the val-
idation dataset without malicious trigger pattern. Further-
more, we define the V to measure the heterogeneity and
robustness trade-off as: V = A+R

2 . All three of these met-
rics are proportional to model performance. We utilize the
mean performance value of the last five communication
epochs as the final evaluation results.

Network Structure. Following (Huang et al., 2023c; Li
et al., 2021), we utilize CNN as the backbone. Specifically,
we use a simple CNN structure on FashionMNIST, MNIST,
and CIFAR-10. Moreover, we use resnet-18 as the backbone
on CIFAR-100 dataset.

Training Set. For model efficiency and algorithmic con-
vergence consideration, we conduct communication epochs
for E = 50 for three datasets. We set local updating round
T = 10, where all federated learning approaches have little
or no accuracy gain with more communications. We use
the SGD optimizer with the learning rate η = 0.01 for all
approaches. The corresponding weight decay is 1e− 5 and
momentum is 0.9. The training batch size is 64.

5.2. Diagnostic Experiments

For a thorough analysis, we perform a set of ablative studies
on MNIST and CIFAR-10 with label skew β = 0.5 and
malicious ratio γ selected by {0.2, 0.3}.

Control Hyper-Parameter λ in Eq 9. Fig. 3 quantifies the
effect of the hyperparameter λ, which measures the strength
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Original Image SPMC DnC

Figure 7. Comparison of heat maps for SPMC and DnC with and
without the trigger. Final models are trained with γ = 0.3.

of the gradient alignment in different scenarios. Specifically,
the proportion of malicious attackers does not affect the
effect of the hyperparameter λ on the model. As can be seen
from the figure, the effect is not significant when λ exceeds
1.0 or is less than 1.0. This is because when the alignment
criterion is less than λ = 1.0, some benign participants are
forced to learn a part of the malicious knowledge. If the
alignment criterion is greater than λ = 1.0, the malingerers
are prone to keep the original update direction. As a result,
under strict regularization stiffness, the alignment gradient is
effective for method improvement. In the next experiments,
we choose λ = 1.0 for different scenarios.

Target Objective. We quantitatively analyze the proposed
SPMC. In Table 1, although Local Gradient Alignment
(LGAlign) has a good performance, it still performs poorly
with a high percentage of malicious clients with complex
images as input. Even in the case of a high percentage
of malicious clients, combining Local Gradient Alignment
(LGAlign) and Margin Contribution Aggregation (MCAgg)
acquires satisfying federated benign task and backdoor re-
moval performance, which is consistent with the fact that
we utilize the margin coalition model for Local Gradient
Alignment and Server Aggregation motivation.

Local Updating Rounds. Furthermore, we analyze the
effect of local updating rounds in Fig. 4. SPMC maintains
stable performance under different local rounds, indicating
that SPMC achieves fast convergence in limited epochs and
possesses the ability to resist client drift under various local
rounds (Zhang et al., 2023; Moreno-Torres et al., 2012). We
choose T = 10 as the updating round.

Client Scale N . We evaluate the performance with var-
ious participating client scales N in Fig. 5. Our SPMC
achieves competitive heterogeneity and robustness trade-off
performances, demonstrating that our method is capable of
dealing with the high client scale in the federated system.

5.3. Comparison to State-of-the-Arts

Tab. 2 plots the final metric by the end of the federated
learning process with popular backdoor defense methods.
Despite the handwritten dataset with simple features, SPMC
demonstrates robustness when compared to other methods
vulnerability on handwritten datasets. Moreover, although
DnC demonstrates superior performance in scenarios with
a low attacker ratio (γ = 0.2), the limitations of the pre-
defined rules become evident as the number of attackers
varies. It shows that our method achieves a more satisfy-
ing performance than our different counterparts on different
evaluation metrics, which confirms that SPMC effectively
enhances the backdoor robustness in heterogeneous feder-
ated learning. Take the result of CIFAR-100 with γ = 0.2
as an example, our method outperforms the best counterpart
with a gap of 10.43% on the V metric. Furthermore, exist-
ing backdoor defensive methods appear fragile Backdoor
Failure RateR under either the large malicious client ratio
γ = 0.3. It reveals that existing solutions fail to conduct
client-wise discrimination selection under large-scale evils.
The expanded experiment on the MNIST dataset is shown
in Appendix C.2.

We further plot both the Federated Benign Performance A
and Backdoor Failure RateR during the communication pro-
cess on CIFAR-10 setting in Fig. 6. We observe that SDFC
presents faster and stabler convergence speed than others
with different malicious ratios. We utilize Grad-CAM (Sel-
varaju et al., 2017; He et al., 2023) to visualize the network
attention with or without the trigger (Fan et al., 2025). Com-
pared to DnC, SPMC prefers to extract key features despite
attacks (Fig. 7). We visualize the learned features using
t-SNE in Appendix C.3. Results shows SPMC effectively
purifies poisoned samples, mitigating their influence and
substantially lowering the attack success rate.

6. Conclusion
We present self-purifying backdoor defense via margin con-
tribution (SPMC), the first work to implement backdoor ro-
bustness in heterogeneous federated learning based on mar-
gin contributions. We argue that existing backdoor defenses
either focus only on individual behaviors, rely on predefined
scales, or utilize proxy data to design well-designed client
selection mechanisms. However, malicious clients can adapt
their adversarial strategies to bypass these defense proto-
cols. Therefore, we utilize margin contributions to quantify
the discrepancy between the local parameter distribution
and its coalition model parameter distribution, enabling the
system to self-purify malicious impacts. The effectiveness
and robustness of our method are validated against common
backdoor attacks involving varying numbers of adversaries.
We hope this work offers a novel perspective and paves the
way for future research in this domain.
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APPENDIX

A. Notation Table
We provide the notation table in Tab. 3.

Table 3. Notations table.
Description Description

k Client index N All clients gather
Dk kth client private data D̃k kth client poisoned data
x̃ Data with trigger ỹ Poisoned target
wg Shared global network Ik Model parameter distribution
αk kth client’s aggregation weight t Communication round index
η Local learning rate Sk The coalition of kth client
ϕk The shapley value Γ(k) The value of kth client
σ The function of softmax Glocagrad Local update direction
Gd The direction of LCE Gg The direction of Lkl

B. Algorithm
We provide the algorithm description in Algorithm 1.

Algorithm 1 SPMC
Data: The local dataset Dk

Input: Communication rounds T , participant set N , kth client
private model Ik, learnable aggregation weight αk with
updating epoch E and learning rate η

Output: The final global model wg

for t = 1, 2, ..., T do
Participant Side
for k = 1, 2, ...,K in parallel do

Itk ← LocalUpdating(wt, αk)
end
Server Side
// Reweight by margin contribution

{αk}Nk=1 ← Eq. (6)
wt+1

g ←
∑N

k=1 αkI
t
k

end

LocalUpdating(wt−1
g , αk):

// Calculate the coalition model
ISk ← Eq. (5)
for e = 1, 2, ..., E do

for Bg={xi}⊂Dg do
// Calculate local updated direction

by projection
Gd = ∇LCE

Gg = ∇Lkl

Glocagrad ← Eq. (9)
// Local Updating

It+1
k ← wt

k − ηGlocagrad

end
end

C. More experiments
C.1. The choice of metric on Margin Contribution

We used cosine similarity, Euclidean distance, and Wasser-
stein distance as evaluation metrics to measure Γ(N{n})−
Γ({n}). As shown in Table 5, cosine similarity proves to
be the most suitable metric. In SPMC, cosine similarity

is chosen primarily because it effectively measures the di-
rectional difference between two vectors, rather than their
magnitude (as in Euclidean distance) or the divergence be-
tween probability distributions (as in Wasserstein distance).
In the model parameter space, this allows for the evaluation
of directional consistency among client updates, which is
particularly important for identifying malicious attackers.
Malicious clients often train their local models on poisoned
datasets, resulting in update directions that deviate signifi-
cantly from those of benign clients.

Table 4. Comparison with evaluation metrics on the CIFAR-10
dataset with malicious proportion γ=0.3. We use the trade-off V
to evaluate the performance of different evaluation metrics.

Cosine similarity Euclidean distance Wasserstein distance

SPMC 72.98 45.30 69.09

C.2. Expanded experiment on MNIST dataset
Table 5. Comparison with the state-of-the-art backdoor robust so-
lutions in the MNIST dataset. Up arrows ↑ indicate advancements
in the given metric compared to FedAvg, while down arrows ↓

denote regressions. The bolded number is the best result.
γ = 0.2 γ = 0.3

Method
A R V A R V

FedAvg 99.25 2.20 50.73 99.17 1.27 50.22
Predefined Scale Requirement

DnC 99.01 77.77 88.39 99.07 1.62 50.34
Sageflow 99.21 1.69 50.45 99.29 2.21 50.75

Bulyan 10.54 100.0 55.27 10.31 60.0 35.15
RFA 99.09 0.26 49.68 99.27 0.15 49.71
RLR 99.07 1.71 50.39 99.11 0.91 50.01

CRFL 97.87 3.01 50.38 97.60 0.36 48.98
No Predefined Scale Requirement
FoolsGold 96.13 0.37 48.25 81.56 9.48 45.52

RSA 30.25 88.18 59.22 35.29 79.70 57.49
Finetuning 98.89 3.88 51.38 98.88 2.34 50.61

Ours 98.79↓0.46 42.73↑40.5 70.76↑20.0 98.72↓0.45 55.95↑54.6 77.33↑22.1

C.3. Visualization of Feature Distributions on CIFAR-10
No-defense SPMC

R：33.07 R：77.72

Figure 8. T-SNE visualization of the feature representations on
the CIFAR-10 dataset. Blue point corresponds to benign samples
and red point represents poisoned samples. In the absence of
defense, the poisoned samples are clearly distinguishable and form
clusters separate from the benign data, indicating that the backdoor
attack successfully manipulates the feature space to achieve high
attack success rates. However, after SPMC, these poisoned features
become less distinguishable, blending into the benign distribution.
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