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ABSTRACT

Recent reinforcement learning approaches have achieved impressive success in
solving combinatorial optimization (CO) problems. However, most existing works
focus on evaluating their solvers under a prevalent fixed-size protocol, ignoring
generalization to different-size instances. When the solver is confronted with
instances of the size it has not been trained on, the performance drops dramatically.
In practice, these approaches that lack size-insensitive generalization capacities are
unacceptable since an additional training period is repeated for each new instance
size. We observe the main obstacle preventing us from training a generalized com-
binatorial solver is oscillating reward signals. Reward oscillation mainly includes
two sides: 1) The conventional reward fails to depict the actual performance of
solvers for different instance sizes. 2) The inherent difficulties varying across
different sizes worsen training stability. Thus, we present Reward Adjustment
Policy Optimization (RAPO), an end-to-end approach to building combinatorial
solvers for a wide range of CO problems. RAPO contains a reward adjustment
method across instances with variable sizes to address the first side of reward
oscillation, along with a promising curriculum strategy to alleviate another side.
We conduct experiments on three popular CO problems, namely, the traveling
salesman problem (TSP), the capacitated vehicle routing problem (CVRP), and the
0-1 knapsack problem (KP). RAPO exhibits significant improvement in generaliza-
tion to instances with variable sizes consistently on all benchmarks. Remarkably,
RAPO even outperforms its fixed-size counterparts in its well-trained size by a
clear margin.

1 INTRODUCTION

Combinatorial optimization (CO) problems are frequently encountered in modern industry. Typical
scenarios include traffic optimization (Böther et al., 2021), supply chain optimization (Eskandarpour
et al., 2015), and scheduling (Artigues et al., 2013). Many CO problems are NP-hard, which
means it is considered unlikely to propose a deterministic algorithm that can solve these problems
within polynomial running time. NP-hard CO problems have been studied extensively by the
traditional Operations Research (OR) community. Still, real-world CO problems tend to have unique
formulations and complicated constraints that vary case-by-case. Developing a powerful and efficient
approximate algorithm to solve these problems requires careful hands-on design and extensive
experience of domain experts (Affenzeller & Mayrhofer, 2002; Karp, 1972; Helsgaun, 2017), which
motivates us to develop a data-driven algorithm that automatically builds combinatorial solvers to
save labor costs.

Recently, deep reinforcement learning based combinatorial solvers have made incredible progress.
These methods present promising results on various classical NP-hard CO problems such as the
traveling salesman problem (TSP) and the capacitated vehicle routing problem (CVRP) at a superior
speed (Bello et al., 2016; Kool et al., 2019; Kwon et al., 2020; Joshi et al., 2022). However, most
existing works focus on evaluating their solvers under a prevalent fixed-size protocol, ignoring
the generalization to different-size instances. This rough evaluation covers up their fragile out-of-
distribution performance. Traditional solvers have the inherent capacities to handle combinatorial
optimization problems with different input sizes, called size-insensitive generalization. However, it is
not the case with existing learning-based solvers. When the solver is confronted with instances of the
size it has not been trained on, the performance drops dramatically. Meanwhile, a straightforward
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Figure 1: The overview of the reward oscillations. (a) shows the oscillation caused by the conventional
reward. The green arrow indicates the optimization direction for size-20 instances under the optimality
gap 32.1% which is larger than the optimality gap 27.2% of the blue arrow corresponding to size-200
instances. However, the rewards of these two sizes are −5.02 and −14.00 respectively, leading the
final direction of the red arrow substantially tending to the blue one whose optimality gap is smaller.
(b) is how the reward adjustment alleviates the oscillation. (c-d) show how a curriculum alleviates the
second aspect of the reward oscillations

remedy is to train instances with variable sizes simultaneously, but leading to overall poor performance
on each size. In practice, these approaches that lack size-insensitive generalization are unacceptable
since an additional training period is repeated for each new instance size. This dilemma of existing
neural combinatorial solvers highly motivates us to develop a new approach that allows us to train
solvers to handle instances of different sizes efficiently.

We observe the main obstacle preventing us from training a generalized combinatorial solver is
oscillating reward signals. Reward oscillation mainly includes two aspects. First, the conventional
reward that is directly defined by the negative measure function fails to depict the actual performance
of solvers for different instance sizes. As shown in Figure 1(a), the red arrow, denoting optimization
direction, tends to the blue arrow with a lower reward but neglecting the green arrow with a larger
gap. Second, the inherent difficulties varying across different sizes worsen training stability. The
complexities of NP-hard CO problems increase dramatically along with the instance size growing.
As shown in Figure 1(c), rapidly switching the instances of different sizes in stochastic training as a
straightforward approach makes the optimization struggle.

Thus, we present Reward Adjustment Policy Optimization (RAPO), an end-to-end approach to
building combinatorial solvers for a wide range of CO problems. On the one hand, we design a new
adjusted reward that can fairly reflect the actual performance of solvers for different sizes and provide
a stable signal throughout the training process. On the other hand, we propose a curriculum strategy
that gradually increases the scope of variable sizes. Besides, for problems defined in the Euclidean
space, we propose a Euclidean Transformer that incorporates Euclidean structural information of the
instance into the model, which is shown effective in our experiments with a low cost.

Finally we conduct comprehensive experiments to prove the superiority of RAPO, including three
classical combinatorial optimization problems, TSP, CVRP and KP. Remarkably, RAPO outperforms
its fixed-size counterparts in their fixed-size specialized paradigm by a clear margin and has additional
generalization capabilities for instances with variable sizes at no additional cost. For TSP and CVRP,
besides the standard uniformly generated instances, we build a new benchmark based on sampling
locations from real USA cities, proving the extensibility of RAPO to complex real-world distributions.
These results show that RAPO largely closes the optimality gap in instances with variable sizes and
some more cases with larger fixed size and can easily apply to practical applications.

The contributions of this paper are summarized as follows.

• We observe reward oscillations when training a neural combinatorial solver with variable
size instances. To address the issues, we propose Reward Adjustment Policy Optimization
(RAPO), an end-to-end approach to building a generalized combinatorial solver for a wide
range of CO problems. RAPO includes two components, namely, a new adjusted reward
based on the reinforcement learning procedure and a curriculum strategy.
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• We conduct comprehensive experiments, including three classic combinatorial problems,
the traveling salesman problem (TSP), the capacitated vehicle routing problem (CVRP), and
the 0-1 knapsack problem (KP). RAPO exhibits significant improvement in generalization
to instances with variable sizes consistently on all benchmarks. Remarkably, RAPO even
outperforms its fixed-size counterparts in its well-trained size by a clear margin.

2 RELATED WORK

Neural combinatorial optimization. The use of deep learning models to obtain solutions to
combinatorial optimization problems has been extensively explored in the last few years. Bello
et al. (2016) serve as one of the earliest reinforcement learning approaches based on pointer network
framework (Vinyals et al., 2015). Compared with supervised learning, reinforcement learning
methods do not require ground-truth optimal solutions as training labels and are more suitable for
solving combinatorial optimization problems. Since then, a series of works (Nazari et al., 2018;
Kool et al., 2019; Kwon et al., 2020) continues to improve this line, and they build solutions in a
greedy style. As a result, these methods are very fast in one run. Our work also belongs to this
line. Another path of neural combinatorial solvers is to build solution in an iterative manner. These
methods improve solutions based on previous ones continuously (Wu et al., 2021; Chen & Tian,
2019; d O Costa et al., 2020; Hottung & Tierney, 2019). The running time of these local search style
methods is related to the predefined computational budget.

Model architecture. Pointer network (Vinyals et al., 2015) is built upon long short-term memory
(LSTM) networks (Hochreiter & Schmidhuber, 1997). Nazari et al. (2018) introduce a permutation
invariant encoder and then Kool et al. (2019) extend the idea and adopts Transformer models (Vaswani
et al., 2017) without positional encodings. Khalil et al. (2017) build their model on Struct2Vec Dai
et al. (2016). For those problems with fully connected graphs as input, the permutation or structure
of the input nodes does not seem to be important. Even so, our work demonstrates that it is still
beneficial to incorporate data structure information into the model as a prior information.

Size generalization of neural combinatorial solvers. Previous literature (Vinyals et al., 2015;
Bello et al., 2016; Kool et al., 2019; Kwon et al., 2020) mainly follows a common fixed-size protocol
where training and test data are generated by uniformly sampling a fixed number of points from a unit
square. Only very few works are on the generalization ability of neural combinatorial solvers. Recent
discussions (Joshi et al., 2022; Garmendia et al., 2022; Manchanda et al., 2022) point out that these
fixed input-size models fail to generalize to different problem sizes, which limits the applicability of
these methods. Zhang et al. (2022) and Jiang et al. (2022) study the mismatch in training and test
distributions within a fixed input-size for a learned TSP solver. It is another meaningful angle. Fu et al.
(2021) introduces a divide-and-conquer mechanism to generalize a fixed pre-trained neural solver to
large-size instances. Wang et al. (2021) and Manchanda et al. (2022) consider another challenging
problem in generalizing a model to its unseen distributions. In this paper, we attempt to tackle the
size-insensitive generalization problem and unleash the power of learned solvers.

3 MOTIVATION

3.1 PROBLEM DEFINITION

A typical combinatorial optimization instance s includes a group of nodes V = {v1,v2, · · · ,vn}
as the inputs, where n indicates the problem size. A solution to a CO instance s can be represented
as a combination of the input node-set V . Take 2D Euclidean TSP for an example. a valid solution
τ = (vτ(1),vτ(2), · · · ,vτ(n)) to a TSP instance is a permutation of the node set V , denoting the path
traveled through. The measure of the solution can be defined as

M(τ) = ||vτ(1) − vτ(n)||2 +
n−1∑
i=1

||vτ(i+1) − vτ(i)||2. (1)

For each instance there is a potential optimal solution τ∗ with the minimal measure M(τ∗). However,
no polynomial algorithm to this optimal τ∗ is known to date. The object of an approximate solver
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Figure 2: The overview of RAPO. (a) is curriculum strategy; (b) shows how the solver interacts with
instances and measure function in RAPO. (c) displays the architecture of Euclidean Transformer.

can be regarded as follows,
min
π

Es∼DM(π(s)), (2)

where the expectation is taken over the problem distribution D. M(·) can be the measure function for
arbitrary CO problems (e.g. TSP, CVRP, KP and so on). We denote π(s) as a solution τ generated by
a solver π for the instance s. Previous learning-based methods (Bello et al., 2016; Kool et al., 2019;
Kwon et al., 2020) mainly build upon this optimization objective. They directly set the reward func-
tion to −M(π(s)) by default and learn a solver to minimize the measure function via reinforcement
learning.

3.2 SIZE-INSENSITIVE GENERALIZATION

Traditional solvers have the inherent capacities to handle combinatorial optimization problems with
different input sizes. However, it is not the case with existing learning-based solvers. As shown in
Figure 3, solvers trained on instances with a fixed size could hardly generalize to other scales. The
prevalent fix-size evaluation protocols (Bello et al., 2016; Kool et al., 2019; Kwon et al., 2020) merely
consider training and testing their solvers on some fixed small sizes (e.g. 20, 50, 100), and thus cover
up the fragile out-of-distribution performance of these baseline methods. This phenomenon has also
been observed in the literature (Joshi et al., 2022) and proved to be an open problem in this area.

Training on instances with variable sizes simultaneously seems to be a feasible approach to enhance
the generalization on variable problem sizes. The modified learning objective can be rewritten as,

min
π

En∼UEs∼Dn
M(π(s)), (3)

where the expectation on n denotes that the sampled instance size follows a uniform distribution U
over the problem sizes in the target set. However, Figure 3 shows that straightforward optimizing
Equation 3 is not a bright way. We can see that even when train-test matching is satisfied, the learned
solvers still struggle to achieve the size-insensitive generalization. In practice, these approaches that
lack size-insensitive generalization capabilities are unacceptable since an additional training period is
repeated for each new instance size. This dilemma of existing neural combinatorial solvers highly
motivates us to develop a new approach that allows us to train solvers to handle instances of different
sizes efficiently.

4 METHOD

In the above discussion, we show that the vanilla training with variable sizes simultaneously does
not yield the desired size-insensitive generalization capacities. We find that the oscillating reward
signals in the training process are the main reason for the failure. As we mentioned above, most
previous works adopt the conventional reward function −M(π(s)) throughout training. However,
the scale of this reward would change dramatically according to the size of instance in CO problems.
This will cause the reward to fail in revealing the actual performance of solvers for variable-size
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Figure 3: The comparison of generalization capacities among RAPO and baselines on various
benchmarks. The instances in (a) and (c) are uniformly generated from a unit square [0, 1]2, while the
instances in (b) and (d) are uniformly generated from USA cities that present non-trivial topology.

instances. Moreover, the oscillating rewards in the stochastic training will make the optimization
struggle. Based on this motivation, we propose Reward Adjustment Policy Optimization (RAPO), a
modified learning approach that stabilizes the rewards on variable sizes and eliminates the difficulties
of optimization in training.

4.1 REWARD ADJUSTMENT POLICY OPTIMIZATION

Towards the problem of reward oscillation, the core of our approach is to maintain the reward signals
stable across instances of variable sizes. In particular, the optimality gap defined for combinatorial
problems is a natural metric that could be applied with instances of variable sizes, which is formulated
as

G(π(s)) =
M(π(s))−M(τ∗)

M(τ∗)
, (4)

where the measure function M(π(s)) is normalized by the optimal measure M(τ∗). Compared with
the naive measure M , the optimality gap G could eliminate the influence of the reward scale and
reflect the performance precisely. However, we cannot use the optimality gap as the reward function
straightly, since the optimal measure for each instance is not given and is NP-hard to obtain. Hence,
we need to find a surrogate to replace M(τ∗) as the normalization factor.

A lower bound surrogate. Compared with computing M(τ∗) towards certain instance, estimating
the average optimal measure with size n is a more feasible way to reveal the scale. For example,
there is a series of theoretical results on the expected M(τ∗) for TSP problem with uniform node
distribution. Suppose v1,v2, · · · ,vn are n independent random variables uniformly distributed
within the square [0, 1]2. The best lower bound to date on the expectation of the M(τ∗) for this TSP
problem given by Steinerberger (2015) has the following form:

En[M(τ∗)] ≥
(
5

8
+

19

5184

)√
n. (5)

This lower bound provides explicit order of En[M(τ∗)] on size n, which is an ideal surrogate for the
intractable M(τ∗) in the optimality gap G(π(s)). Besides, there are also many alternatives for TSP
problems, e.g., Euclidean minimum spanning tree (Steele & Snyder, 1989). We will discuss these
design options in the later section.

However, these lower bounds or numerical estimations are very limited in general use. An elegant
lower bound heavily relies on careful theoretical derivation and ideal assumptions, which makes it
hard to be adapted to other combinatorial problems and real-world distributions. As a result, we
propose a general data-adaptive method to estimate a new surrogate globally in the training procedure.

A momentum updated surrogate. To overcome the disadvantage of the lower bound surrogate, we
consider an estimation method that could be embedded into the learning process towards general CO
problems or distributions. To match the commonly used stochastic learning setting, the estimation
needs to be done within the streaming of sampled mini-batches. Moreover, since the estimated results
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are simultaneously used to normalize the reward, we need to keep the numerical stability in the
training process. Inspired by the momentum method in the stochastic gradient descent, we propose
to apply a momentum updating mechanism to derive the global estimation. Formally, we write the
estimated result as vector M, where each component Mn represents the estimated surrogate for
problem size n. We update Mn during the training process by

M
t+1

n ← γM
t

n + (1− γ)M(πt(s)). (6)

Here γ ∈ [0, 1) is a momentum coefficient. With this momentum updating mechanism, the element
Mn could describe the expected measure of the solver on distribution of instance with size n in
training process. Similar with the average optimal measure En[M(τ∗)], the surrogate Mn is also
a proper statistic to reveal the global measure scale that could be estimated with higher precision.
Furthermore, the slow evolving property of the momentum update also promises the optimization to
be as stable as the constant surrogate such as the lower bound surrogate.

After the design of the sophisticated momentum updated surrogate, our training objective function
with the policy gradient algorithm (the baseline version) can be formulated as follows:

∇θJ
t(θ) ≈ En∼U,s∼Dn

(
M(τ)

M
t

n

− b(s)

)
∇θ log pθ(τ |s), (7)

where∇θJ
t(θ) is the policy gradient. In the objective function, we replace the conventional reward

M(τ) to the adjusted reward M(τ)/M
t

n where we ignore the constant −1 in the optimality gap.
We also minus the shared baseline b(s) following Kwon et al. (2020). The training procedure with
this optimization objective is shown in Figure 2(b). With the introduction of the new surrogate, the
adjusted reward is balanced and instructive on instances with variable sizes and could depict the
actual performance of the solver. We find that compared with the theoretical lower bounds or other
numerical estimation methods, the momentum updated surrogate is a more efficient and extensible
choice in our empirical study. Table 4 displays the detailed comparison.

Curriculum strategy. While the above adjusted reward addresses the first side of the reward
oscillation, there remains the other side that the inherent difficulties varying across different sizes
would worsen training stability. Inspired by the observation that the difficulty of NP-hard problems
grows dramatically with problem size, we introduce a curriculum strategy as the crucial part of
Reward Adjustment Policy Optimization (RAPO). When we sample the size of instances, we make
the maximum of the uniform distribution gradually grow in the training process. After the curriculum
finishes, the instance size will be sampled uniformly on the target size set. The curriculum strategy is

nt ∼ U(low,up), where up =

{(
nmax−low

tcur

)
t+ low if t ≤ tcur,

nmax otherwise.
(8)

Here low can be assigned to an arbitrarily small size (e.g., 20 in TSP), up grows along the training
process. nmax is the max problem size we expect to solve. tcur denotes the current training step.

Lisicki et al. (2020) first evaluate the effect of the curriculum strategy paradigms in TSP scenarios. But
they merely obtain tiny gains on the performance (1.6% training data reduction with no performance
improvement). This is because they only consider one side of reward oscillation and still adopt
imbalanced conventional reward throughout training. Considering our superior performance in the
experiments, we think that our reward adjustment plays a key role in releasing the potential of the
curriculum strategy.

4.2 EUCLIDEAN TRANSFORMER

Except for the improvement over learning policy, the architecture modification is another way to
enhance the learned solver. Towards CO problems, a promising approach is to properly incorporate
structural information of the instances into models to boost the learning. As shown in Figure 2(c), we
present the Euclidean Transformer, a modified architecture with special structure design, for large
group of CO problems that are defined on Euclidean space.
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Polar positional encoding. Unlike vision or language tasks, there is no explicit order relation of
the input nodes in routing problems. For this reason, the original Transformer for CO problems
proposed in (Kool et al., 2019) erases the positional encoding among the input tokens. Since the
polar transformation is a fundamental operation in many computational geometry algorithms such as
convex hull, we incorporate the polar information as an effective structural prior into the model. In
the Euclidean Transformer, we develop a polar positional encoding that is formulated as follows:

h
(0)
i = xi + Embed(sinφi, cosφi, ri). (9)

Here, φi denotes the polar angle of the node and ri denotes the radius. Embed is a linear layer. In
this way, the Euclidean Transformer can utilize the polar information explicitly.

Relative distance encoding. For combinatorial optimization defined in the Euclidean space, the
pairwise distances always provide crucial relation information. We present relative distance encoding
that explicitly incorporates pairwise distance information into the attention layers of Euclidean
Transformer. The following describes how the relative distance encoding influences the attention
computation for each block,

Aij =
(hi ·WQ)(hj ·WK)T√

d
+ αdist(i, j) + β, (10)

where dist(i, j) denotes the relative distance between nodes i and j, h denotes the hidden state,
and WQ and WK are weight matrices in the multi-head self-attention mechanism. The additional
parameters α and β are learnable and are distinct between every attention head and layer. In the end,
a softmax function is performed on A to produce the attention values. With the additional knowledge
from the distance, it would be easier for the Euclidean Transformer to capture the topological structure
and measure the length of path for easing policy optimization in RAPO.

5 EXPERIMENTS

We conduct our experiments on three well-known combinatorial optimization problems: travelling
salesman problem (TSP), capacitated vehicle routing problem (CVRP) and 0-1 knapsack problem
(KP). TSP and CVRP are typical routing problems, which are commonly adopted by previous work.
Beyond routing problems, our evaluation on the 0-1 knapsack problem aims to prove that our proposed
RAPO is general, and can be easily applied to different kinds of combinatorial optimization problems.
Finally, We ablate the important design elements in RAPO.

5.1 ROUTING PROBLEMS: TSP AND CVRP

In this paper, we deal with Euclidean TSP and CVRP, where cities or nodes are generated from
Euclidean space and the distance between each pair of nodes equals to their Euclidean distance.

Benchmark. We generate instances of routing problems following two different benchmarks: a
uniform benchmark and the real-world USA benchmark. For the uniform benchmark, each node of
an instance is uniformly sampled from the unit square [0, 1]2. Most of the existing works (Bello et al.,
2016; Kool et al., 2019; Kwon et al., 2020; Joshi et al., 2022) on TSP and CVRP are evaluated with
this benchmark. However, in real-world applications, the node distributions for CO problems are
hardly uniform. Therefore, we propose a real-world USA benchmark, where the node is sampled from
the distribution of 115475 cities or towns on a real USA map provided by the USA TSP challenge
(Cook, 2012). Details about this benchmark can be found in Appendix B.

Evaluation protocol. We evaluate trained models on five different protocols w.r.t. problem sizes:
fixed-size protocols n = 100, n = 200, n = 500, as well as varying-size protocols n ∈ [50, 250] and
n ∈ [50, 500]. For the varying-size ones, we sample the size of each problem uniformly from the
range [50, 250] and [50, 500], in order to assess the model’s ability to generalize to different sizes.
For each protocol, we sample 1000 problems with the uniform benchmark or the USA benchmark
and report averaged evaluation results. Evaluation results of RAPO reported in fixed-size protocols,
namely n = 100, n = 200 and n = 500, are produced by models trained on size intervals [50, 100],
[50, 200] and [50, 500], respectively. As for the solution sampling strategy, POMO and RAPO both
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Table 1: Experiment results on TSP
Dataset n = 100 n = 200 n = 500 n ∈ [50, 250] n ∈ [50, 500]

Metric Gap Time Gap Time Gap Time Gap Time Gap Time
un

if
or

m
Concorde 0.00% 4m 0.00% 22m 0.00% 4h 0.00% 14m 0.00% 3h

LKH3 0.00% 7m 0.00% 9m 0.21% 17m 0.00% 8m 0.08% 20m
AM 2.27% 45m 8.16% 2h 12.06% 12h 8.07% 1h 10.78% 8h

POMO 0.39% 25s 2.75% 1m 7.13% 18m 2.56% 1m 4.10% 12m
RAPO 0.30% 25s 1.52% 1m 5.36% 18m 1.05% 1m 2.98% 12m

U
SA

Concorde 0.00% 5m 0.00% 18m 0.00% 3h 0.00% 9m 0.00% 2h
LKH3 0.00% 7m 0.00% 9m 0.07% 17m 0.00% 8m 0.02% 22m
AM 2.14% 45m 8.47% 2h 11.90% 12h 8.23% 1h 10.90% 8h

POMO 0.53% 25s 3.84% 1m 8.73% 18m 3.28% 1m 5.66% 12m
RAPO 0.25% 25s 1.45% 1m 5.40% 18m 0.96% 1m 2.86% 12m

Table 2: Experiment results on CVRP
Dataset n = 100 n = 200 n = 500 n ∈ [50, 250] n ∈ [50, 500]

Metric Gap Time Gap Time Gap Time Gap Time Gap Time

un
if

or
m LKH3 0.00% 13h 0.00% 18h 0.00% 33h 0.00% 17h 0.00% 44h

AM 4.71% 30m 5.10% 2h 8.13% 16h 5.37% 2h 7.34% 12h
POMO 1.40% 32s 2.07% 2m 3.52% 20m 1.95% 2m 2.60% 14m
RAPO 1.59% 32s 1.71% 2m 1.81% 20m 1.62% 2m 1.92% 14m

U
SA

LKH3 0.00% 17h 0.00% 26h 0.00% 47h 0.00% 22h 0.00% 69h
AM 4.94% 30m 4.55% 2h 8.75% 16h 4.96% 2h 7.68% 12h

POMO 2.34% 32s 2.90% 2m 5.62% 20m 2.75% 2m 3.81% 14m
RAPO 1.52% 32s 1.74% 2m 2.27% 20m 1.51% 2m 2.04% 14m

follow the POMO default multiple optima strategy over 8 augmentations for each instance (Kwon
et al., 2020) , while AM follows its original 1280-sampling strategy without any augmentation. The
Time column reported for each protocol is the total time used to solve 1000 problems.

Travelling salesman problem. In Table 1, we compare the performance of RAPO with other
baselines on TSP. The best results obtained from the neural solvers are marked in bold. We consider
handcrafted solvers Concorde (Applegate et al., 2006) and LKH3 (Helsgaun, 2017), and neural
solvers Attention Model (AM) (Kool et al., 2019) and POMO (Kwon et al., 2020). The AM and
POMO results for fixed-size protocol are produced by models trained with corresponding fixed
size, while results for varying-size protocol are produced by models trained using the objective in
Equation 3. RAPO produces high quality solutions under all evaluation protocols on all benchmarks,
outperforming POMO by a clear margin especially in varying-size and large-size protocols. In the
n ∈ [50, 250] protocol, RAPO reduces the gap by 60% and 70% on uniform and USA benchmarks
respectively, in comparison to its POMO counterpart.

Capacitated vehicle routing problem. For each CVRP instance, we use the solution from the
heurstic solver LKH3 as the baseline. The “Gap” values in the table are given relative to LKH3. The
results on CVRP are reported in Table 2. RAPO gives superior results over all neural solvers. In
large-size protocols, such as n = 500 , RAPO halves the gap produced by POMO, and can generate
solution with a gap only around 2% using only 1% of the time needed for a handcrafted solver. This
result shows that RAPO is capable of solving large-scale, complicated combinatorial optimization
problems efficiently and can achieve a very good trade-off between solution quality and solving time.

5.2 BEYOND ROUTING PROBLEMS: 0-1 KNAPSACK PROBLEM

We evaluate our model on KP to prove the versatility of our method. The 0-1 knapsack problem can
be formulated in a similar manner as TSP, where the x and y coordinates stand for the weight and
value of each item. We reuse the model architecture for solving TSP. For each decoding step, the
decoder chooses an item to put in the knapsack until all item weights exceed the remaining capacity
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Table 3: Experiment results on KP
Dataset n = 100 n = 200 n = 500 n ∈ [50, 250] n ∈ [50, 500]

Metric Score Gap Score Gap Score Gap Score Gap Score Gap

Oracle 40.343 0.00‰ 57.554 0.00‰ 91.535 0.00‰ 47.982 0.00‰ 65.111 0.00‰
AM 40.175 4.22‰ 57.113 7.69‰ 90.600 10.22‰ 47.647 6.93‰ 64.546 8.34‰

POMO 40.333 0.25‰ 57.535 0.33‰ 91.505 0.32‰ 47.966 0.33‰ 65.089 0.35‰
RAPO 40.334 0.21‰ 57.538 0.24‰ 91.513 0.24‰ 47.969 0.24‰ 65.095 0.24‰

of the knapsack. The comparison between RAPO and baselines in KP is shown in Table 3. The
oracle of each problem is obtained via a dynamic programming algorithm. RAPO achieves superior
performance over POMO in all evaluation protocols. POMO still suffers from the oscillating reward,
as we find the gap of POMO on n ∈ [50, 500] is mainly caused by weak performance on small
instances. RAPO, on the other hand, adjusts the reward and therefore produces better results.

5.3 MODEL ANALYSIS

In this section, we conduct the ablation study on our model from three key aspects. We choose TSP
instances generated from the uniform benchmark as our testbed. The evaluation procedure follows
these two protocols n = 200 and n ∈ [50, 250].

Surrogates for reward adjustment. We compare three design choices of the surrogate discussed
in Section 4.1: a numerical solution of lower bound (Steinerberger, 2015), an Euclidean minimum
spanning tree (Steele & Snyder, 1989) and our general momentum updated global surrogate. The
Euclidean minimum spanning tree (EMST) is an ideal choice for TSP, and the length of the optimal
TSP tour can be bounded by EMST, as |EMST| ≤ |TSP∗| ≤ 2 × |EMST| (Cormen et al., 2009).
We also conduct experiments with the optimality gap as Equation (4), when the optimal measure
is computed in advance. Evaluation results are demonstrated in Table 4. The results with original
optimality gap and the two surrogates with the lower bound and the EMST supports our motivation
of reward adjustment. However, these surrogates are limited and hard to be applied for other CO
problems. By contrast, the momentum updated surrogate proposed in this work achieves even better
optimality gap in the experiment. These results show that the momentum updated surrogate is a better
choice that could also be extensively used on various CO problems.

Curriculum strategy. We present the benefits of the curriculum strategy on both sides, boosting
training efficiency and achieving smaller optimality gap. Results in Table 4 support the complementary
effect between reward adjustment and curriculum strategy (1.34% to 1.05%). The training curves
in Figure 4 highlight that this combination plays an important role in training for solving large TSP
instances. Given that Lisicki et al. (2020) observed that curriculum lags the performance in each
single size and brings no gains in training efficiency, the importance of our reward adjustment is
further emphasized.

Euclidean Transformer. We perform an ablation study on the importance of different module
designs in our proposed Euclidean Transformer. The results demonstrate that both polar encoding
(PE) and distance encoding (DE) lead to a performance gain compared to the vanilla Transformer and
support that a promising structural prior indeed helps to build a strong combinatorial solvers. The
detailed results are included in Table 5.

6 CONCLUSION

This paper studies the open problem that neural combinatorial solvers fail to generalize to instances
with variable sizes. We analyze the obstacle that prevents these solvers to tackle different-size CO
instances. We provide RAPO, a generalized reinforcement learning based solver enhanced by a
reward adjustment mechanism and a curriculum strategy. We have empirically evaluated RAPO
with three classic combinatorial optimization problems, namely TSP, CVRP, and KP. We conduct
experiments with settings including classic fixed size evaluation but larger problem size, instances
with variable sizes, and instances generated from distribution of real USA cities of nonuniform
locations. For all settings, RAPO achieves remarkable improvement over existing learned solvers.
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Figure 4: Training curves on different models, where RAPO
stands for RAPO model trained on n ∈ [50, 200], POMO-
200 for POMO trained on n = 200 and POMO-vary for
POMO trained on n ∈ [50, 200].

Table 4: Reward adjustment designs
Designs n = 200 n ∈ [50, 250]

None 2.89% 2.56%
Oracle 2.29% 1.61%
EMST 2.27% 1.61%

lower-bound 2.18% 1.58%
Momentum 1.94% 1.34%

Momentum+Curriculum 1.52% 1.05%

Table 5: Euclidean Transformer designs
Designs n = 200 n ∈ [50, 250]

None 1.65% 1.15%
PE 1.61% 1.13%
DE 1.57% 1.07%

PE+DE 1.52% 1.05%
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A IMPLEMENT DETAILS

Our experiment with RAPO takes POMO as the base model. It is worth mentioning that RAPO is a
general method, and we choose to use our method on POMO because it is currently the state-of-the-art
solver in end-to-end neural combinatorial solvers for TSP and CVRP. Each of our models is trained
for 400K iterations, which takes about 2 days. Adam is used as our optimizer with a learning rate
η = 10−4 and a weight decay w = 10−6. We conduct each of our experiments using a single Nvidia
TITAN V GPU and a single core of an Intel Xeon Gold 6130 CPU at 2.10GHz. Hyperparameters of
the attention model are set the same as Kwon et al. (2020).

A.1 TRAVELLING SALESMAN PROBLEM

Problem setup Given a set of n cities, the goal of Travelling salesman problem (TSP) is to find the
shortest possible route that visits a series of city exactly once and returns to the starting city. In our
paper, we use 2D Euclidean coordinates (x, y) to represent the location of each city.

Encoder We implement our Euclidean Transformer on top of POMO. The encoder produces a node
embedding hi for each node input vi in a problem instance.

Decoder In the original POMO paper, the decoder uses the average node embedding h, the
embedding of the first node hi

τ(t−1), and the embedding of the current node hi
τ(1) as the query for the

decoder. The query, in the form of a concatenation, is defined in Equation (6) and (7) of Kwon et al.
(2020).

hi
(c) =

{[
h̄, hi

τ(t−1), hi
τ(1)

]
t > 1

none t = 1.
(11)

hi
τ(1) = hi for i = 1, 2, . . . , N. (12)

Here τ is the current trajectory, and hi
τ(1) stands for the starting points of multiple trajectories used

by POMO.

We adopt a simpler version of the query given by authors of POMO in their source code. This version
of the query is the same as the original one, except that the average node embedding is removed.

hi
(c) =

{[
hi
τ(t−1), hi

τ(1)

]
t > 1

none t = 1.
(13)

Hyperparameters We use the same hyperparameters following previous setups (Kool et al., 2019;
Kwon et al., 2020). The node embedding layer maps a node to a dh = 128 dimension embedding.
The encoder has Nenc = 6 attention layers. The multi-head attention (MHA) module in the attention
layer has M = 8 heads. Key, value, and query has dimension dk = dv = dq = 16. The feed-forward
sublayer in each attention layer has hidden dimension dff = 512. Logit clipping is adpoted in the
decoder with the clipping coefficient C = 10. The set of hyperparamters is the same for CVRP and
KP.

A.2 CAPACITATED VEHICLE ROUTING PROBLEM

Problem setup Capacitated vehicle routing problem (CVRP) is an extension of the TSP that aims
to find the optimal route for a vehicle with limited capacity to deliver goods to a given set of customer
nodes. The route consists of several sub-routes, at the beginning of which, each vehicle fills its load
to its capacity at a given depot and later returns to the depot after a series of delivery. For a CVRP
instance with size N , the demand of each customer node δi is sampled uniformly from a discrete set
{1, 2, · · · , 9} and the capacity of the vehicle is defined as D = ⌈30 + N

5 ⌉. In using RAPO to solve
the problem, the demand is normalized to δ̂i = δi/D, and the capacity is normalized to D̂ = 1.

Encoder An independent encoder is use for the depot node to embed the depot node. This encoder
is identical to the encoder for other problem nodes, but the two encoders don’t share parameters.

12



Under review as a conference paper at ICLR 2023

Decoder Similar to TSP, in the original POMO paper, the CVRP decoder uses the average node
embedding h, the embedding of the first node hi

τ(t−1), and the current load D̂t as the query for the
decoder, formulated below.

hi
(c) =

{[
h̄, hi

τ(t−1), D̂t

]
t > 1

none t = 1.
(14)

Likewise, we drop the average node embedding term in our implemented query.

hi
(c) =

{[
hi
τ(t−1), D̂t

]
t > 1

none t = 1.
(15)

Since the vehicle can return to the depot node at any time to refill the load, different solutions for
a certain CVRP instance can differ in lengths. In order to train and evaluate CVRP in batches, we
mask all other nodes for trajectories that have finished deliveries so that they can only stay at the
depot node and wait for other trajectories to finish. Since actions under this masking has probability
1, these masked steps will not affect the training procedure.

A.3 0-1 KNAPSACK PROBLEM

Problem setup Given a set of items that each has a weight w and a value v, and a knapsack with
capacity D, the goal of the 0-1 Knapsack Problem (KP) is to find the subset of items that has the
highest total value while their total weight does not exceed D. Following the setting in POMO, each
item mi = (wi, vi) in a KP instance is sampled uniformly from [0, 1]2, and D is set to 25.

Encoder KP can be encoded in the same way as TSP, whereas w and v substitute x and y in the
node input. The encoder architecture for KP is exactly the same as for TSP.

Decoder The KP decoder is the same as the TSP decoder except for masking operations. For
each decoding step, the already chosen items and items whose weight exceeds the current available
capacity are masked. After masking, the decoder chooses an unmasked item to put in the knapsack.
Decoding ends when no more items can be chosen. Similar to CVRP, different solutions for the same
KP instance may have different lengths, as they choose different number of items. The trajectories
that have no available capacity will be forced to choose a dummy node until all trajectories in the
batch have finished decoding.

B DETAILS OF THE USA CITIES’ LOCATION DATASET

The USA benchmark is motivated from the USA TSP challenge held by University of Waterloo
in 2012(Cook, 2012). The organizer of this competition made use of the data collected by the US
Geological Survey to propose a 115475-city challenge through nearly all cities, towns, and villages in
the contiguous 48 states of USA. The full view of all the points in the dataset is presented in Figure
B. We can see from the figure that the points in the dataset are not uniformly distributed.

Since the coordinates take relatively big values (bigger than 10000) representing the latitude and
altitude of the cities, we regularized them so that each point falls in the unit square [0, 1]2 for better
performance with neural networks. In order to keep the shape of the distribution, the x and y
coordinates are divided by the same divisor. In the USA distribution for TSP and CVRP, the points
representing cities or customers are sampled at random from this regularized dataset.

C MORE EXPERIMENTS RESULTS

We also proposed a different curriculum than the one we mentioned in 4.1, formulated as below.

nt =

{
n,where n ∼ U(low,

(
nmax−low

tcur

)
t+ low) if t ≤ tcur,

nmax otherwise.
(16)
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Figure 5: 115475 location points in the USA dataset from Cook (2012)

Table 6: Curriclum experiment results on TSP
Dataset n = 100 n = 200 n = 500 n ∈ [50, 250] n ∈ [50, 500]

Metric Gap Time Gap Time Gap Time Gap Time Gap Time

un
if

or
m Concorde 0.00% 4m 0.00% 22m 0.00% 4h 0.00% 14m 0.00% 3h

POMO 0.39% 25s 2.75% 1m 7.13% 18m 2.56% 1m 4.10% 12m
RAPO 0.30% 25s 1.52% 1m 5.36% 18m 1.05% 1m 2.98% 12m

RAPO-F 0.25% 25s 1.36% 1m 5.24% 18m 1.10% 1m 3.52% 12m

U
SA

Concorde 0.00% 5m 0.00% 18m 0.00% 3h 0.00% 9m 0.00% 2h
POMO 0.53% 25s 3.84% 1m 8.73% 18m 3.28% 1m 5.66% 12m
RAPO 0.25% 25s 1.45% 1m 5.40% 18m 0.96% 1m 2.86% 12m

RAPO-F 0.22% 25s 1.34% 1m 5.53% 18m 1.07% 1m 3.36% 12m

Table 7: Curriclum experiment results on CVRP
Dataset n = 100 n = 200 n = 500 n ∈ [50, 250] n ∈ [50, 500]

Metric Gap Time Gap Time Gap Time Gap Time Gap Time

un
if

or
m LKH3 0.00% 13h 0.00% 18h 0.00% 33h 0.00% 17h 0.00% 44h

POMO 1.40% 32s 2.07% 2m 3.52% 20m 1.95% 2m 2.60% 14m
RAPO 1.59% 32s 1.71% 2m 1.81% 20m 1.62% 2m 1.92% 14m

RAPO-F 1.43% 32s 1.67% 2m 1.85% 20m 3.15% 2m 2.36% 14m

U
SA

LKH3 0.00% 17h 0.00% 26h 0.00% 47h 0.00% 22h 0.00% 69h
POMO 2.34% 32s 2.90% 2m 5.62% 20m 2.75% 2m 3.81% 14m
RAPO 1.52% 32s 1.74% 2m 2.27% 20m 1.51% 2m 2.04% 14m

RAPO-F 1.44% 32s 1.76% 2m 2.51% 20m 3.42% 2m 2.68% 14m

The notations are the same as in Equation 8. The starting size for curriculum low can be assigned an
arbitrarily small size, nt stands for the choice of problem size at training step t, and nmax is the max
problem size we expect to solve. The main difference between Equation 8 and Equation 16 is that in
this new curriculum setting, the model only trains on the fixed size nmax once training step t reaches
tcur. RAPO using this curriculum is denoted as RAPO-F, since the curriculum evolves into fixed-size
training.

Experiment results using RAPO-F are presented in Table 6 and Table 7. RAPO-F performs better
than RAPO on fixed-size protocols, this is because RAPO-F has more access to the problems with
size nmax, which matches evaluation. Consequently, RAPO-F has poor performance on varying-size
protocols because it gradually forgets small instances during training on nmax size instances.
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Table 8: Momentum experiment results
Distribution uniform TSP USA TSP uniform CVRP USA CVRP

Protocol 200 [50, 250] 200 [50, 250] 200 [50, 250] 200 [50, 250]

γ = 0.85 2.93% 2.23% 1.63% 1.08% 1.89% 1.77% 1.93% 1.74%
γ = 0.9 2.20% 1.57% 1.54% 1.03% 1.81% 1.73% 2.00% 1.78%
γ = 0.99 1.94% 1.34% 1.50% 1.01% 1.90% 1.80% 2.02% 1.77%
γ = 0.999 2.91% 2.17% 1.85% 1.24% 1.78% 1.69% 1.93% 1.71%

D ABLATION ON THE MOMENTUM COEFFICIENT

The momentum coefficient γ controls the update speed of the momentum updated surrogate, as shown
in Equation 6. Table 8 shows the gap of RAPO on n = 200 and n ∈ [50, 250] protocol with different
γ values.

For TSP, γ = 0.99 performs the best. The momentum taking a value too small, such as 0.85, will
result in high variance in learning dynamics, causing oscillation. If the momentum takes a relatively
large value such as 0.999, the surrogate updates too slowly, causing it to be inaccurate.

For CVRP, where training is more difficult, a larger momentum value γ = 0.999 performs better, as
it can provide a slowly progressing surrogate and make training smoother.

E EFFECT OF INSTANCE AUGMENTATION

Instance augmentation is a common technique for enhancing the model performance. POMO
introduced unit square augmentation for Euclidean routing problems in the evaluation phase. The
drawback of unit square augmentation is that it only has 8 transformations. As a result, one can only
choose from limited 8 trajectories when it comes to sampling from unit square augmentation. We
extended the unit square augmentation by adding a rotation of the coordinates of the problem instance
around the central point (0.5, 0.5) by angle θ. The transformation is formulated as Equation 17.

{
x = (x− 0.5)cos θ + (y − 0.5)sin θ + 0.5

y = −(x− 0.5)sin θ + (y − 0.5)cos θ + 0.5
(17)

This new transformation allows sampling infinitely many augments, as θ can take any value. The
rotation augment provides non-linear numerical perturbation, and is therefore highly efficient. We
compare evaluation results using 32 rotation augmentations (denoted as ×32) to the 8 unit square
augmentations in Table 9 and Table 10. Our new approach takes 4 times more inference time as the
unit square augment, and in turn closes the gap by around 10%.

During our experiments, we also find that introducing augmentation in the training phase has a
positive effect on evaluation.
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Table 9: Augment experiment results on TSP
Dataset n = 100 n = 200 n = 500 n ∈ [50, 250] n ∈ [50, 500]

Metric Gap Time Gap Time Gap Time Gap Time Gap Time

un
if

or
m

Concorde 0.00% 4m 0.00% 22m 0.00% 4h 0.00% 14m 0.00% 3h
RAPO 0.30% 25s 1.52% 1m 5.36% 18m 1.05% 1m 2.98% 12m

RAPO, ×32 0.23% 3m 1.37% 6m 5.05% 1h 0.91% 4m 2.69% 48m
RAPO-F 0.25% 25s 1.36% 1m 5.24% 18m 1.10% 1m 3.52% 12m

RAPO-F, ×32 0.18% 3m 1.24% 6m 4.92% 1h 0.94% 4m 3.13% 48m

U
SA

Concorde 0.00% 5m 0.00% 18m 0.00% 3h 0.00% 9m 0.00% 2h
RAPO 0.25% 25s 1.45% 1m 5.40% 18m 0.96% 1m 2.86% 12m

RAPO, ×32 0.22% 3m 1.37% 6m 5.28% 1h 0.88% 4m 2.73% 48m
RAPO-F 0.22% 25s 1.34% 1m 5.53% 18m 1.07% 1m 3.36% 12m

RAPO-F, ×32 0.20% 3m 1.23% 6m 5.38% 1h 0.94% 4m 3.16% 48m

Table 10: Augment experiment results on CVRP
Dataset n = 100 n = 200 n = 500 n ∈ [50, 250] n ∈ [50, 500]

Metric Gap Time Gap Time Gap Time Gap Time Gap Time

un
if

or
m

LKH3 0.00% 13h 0.00% 18h 0.00% 33h 0.00% 17h 0.00% 44h
RAPO 1.59% 32s 1.71% 2m 1.81% 20m 1.62% 2m 1.92% 14m

RAPO, ×32 1.40% 2m 1.52% 10m 1.73% 1h 1.43% 8m 1.70% 1h
RAPO-F 1.43% 32s 1.67% 2m 1.85% 20m 3.15% 2m 2.36% 14m

RAPO-F, ×32 1.32% 2m 1.46% 10m 1.64% 1h 2.69% 8m 2.10% 1h

U
SA

LKH3 0.00% 17h 0.00% 26h 0.00% 47h 0.00% 22h 0.00% 69h
RAPO 1.52% 32s 1.74% 2m 2.27% 20m 1.51% 2m 2.04% 14m

RAPO, ×32 1.36% 2m 1.54% 10m 2.08% 1h 1.38% 8m 1.83% 1h
RAPO-F 1.44% 32s 1.76% 2m 2.51% 20m 3.42% 2m 2.68% 14m

RAPO-F, ×32 1.29% 2m 1.56% 10m 2.33% 1h 2.87% 8m 2.37% 1h
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Figure 6: The oracle length histogram of different sizes for uniform and explosion distribution.
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