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ABSTRACT

Linear contextual bandit is one of the most popular models in online decision-
making with bandit feedback. Prior work has studied different variants of this
model, e.g., misspecified, non-stationary, and multi-task/life-long linear contex-
tual bandits. However, there is no single framework that can unify the algo-
rithm design and analysis for these variants. In this paper, we propose a unified
framework for linear contextual bandits based on feel-good Thompson sampling
(Zhang, 2021). The algorithm derived from our framework achieves nearly min-
imax optimal regret in various settings and resolves the respective open problem
in each setting. Specifically, let d be the dimension of the context and T be the
length of the horizon, our algorithm achieves an Õ(d

√
ST ) regret bound for non-

stationary linear bandits with at most S switches, Õ(d 5
6T

2
3P

1
3 ) regret for non-

stationary linear bandits with bounded path length P , and Õ(d
√
kT +

√
dkMT )

regret for (generalized) lifelong linear bandits over M tasks that share an unknown
representation of dimension k. We believe our framework will shed light on the
design and analysis of other linear contextual bandit variants.

1 INTRODUCTION

Linear contextual bandit is one of the most popular models in online decision-making with a large,
possibly infinite, action space. This bandit model has been widely studied in the past decade. One of
the most successful approaches is based on the upper confidence bound (Auer, 2002). For example,
LinUCB (Li et al., 2010) (or OFUL (Abbasi-Yadkori et al., 2011)) follows the optimism-in-the-
face-of-uncertainty principle and chooses the best action within an elliptical confidence ball. The
algorithm has been proved to be nearly minimax optimal by using the elliptical potential lemma to
track the bonus term. With some modifications to the algorithm, one had generalized this algorithm
to various settings, e.g., non-stationary linear bandits (Chen et al., 2019), multi-task linear bandits
(Hu et al., 2021), to mention a few. The analyses for these generalizations require the corresponding
modified elliptical potential lemma, which is, however, hard to derive in general. (One may refer to
the technical note (Faury et al., 2021) which discusses the faults in the elliptical potential lemma for
non-stationary linear bandits).
Another common approach for online decision-making is exponentially weighted sampling. By
sampling from a distribution over actions based on their historical rewards, it gives rise to near-
optimal policy-based algorithms for various settings such as the hedge algorithm (Littlestone &
Warmuth, 1994) for prediction with expert advice. For contextual bandits, EXP4 (Auer et al., 2002)
enjoys a regret bound of

E[Regret(T )] ≤ O(
√

KT log |H|),
where K is the number of actions, T is the length of the horizon, and H is the feasible policy
set. Note that contextual policy-based algorithms usually allow the policy to take round index as
context. This gives a natural way to deal with non-stationary environment. For instance, one can
solve non-stationary expert problems using meta-experts by following different experts in different
rounds (Herbster & Warmuth, 2004). With this idea, one can obtain the regret bound for a variety of
bandit models by counting the number of policies |H|, which is easy to do in general.
This motivates us to find a policy-based algorithm for linear contextual bandits. We note that EXP4
is not suitable for our purpose since its regret suffers a polynomial dependence on the number of
actions, which can be unbounded in linear contextual bandits. This is due to the fact that EXP4 is
designed for general reward functions and does not leverage the linear structure of linear bandits.
Given this observation, we raise the following question:
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Can we design an EXP4-type algorithm for linear contextual bandits?

In this paper, we answer the above question affirmatively. In detail, we propose Feel-Good
Thompson Sampling over Linear Policies (FGTS.LP), which is a policy-based algorithm for linear
contextual bandits. Our algorithm can be regarded as a policy-based adaption of feel-good Thomp-
son sampling (Zhang, 2021) to linear bandits, while this adaption is nontrivial. Our algorithm enjoys
a regret bound that is logarithmically dependent on the number of policies and polynomially depen-
dent on the dimension of contexts. To be specific, we prove the following regret bound for FGTS.LP:
Theorem 1.1 (Regret Bound of FGTS.LP (informal)). Let d be the dimension of the context, T be
the length of the horizon, and H be the set of all feasible policy hypotheses. The regret of FGTS.LP
is bounded by

E[Regret(T )] ≤ O(
√
dT logN(H, ϵ) + T

√
dϵ),

where ϵ is some hyperparameter and N(H, ϵ) is the covering number of policy set which contains
an ϵ-optimal policy.

The above theorem provides a general interface to analyze the performance of FGTS.LP in differ-
ent settings. Following the idea of including round index, FGTS.LP can deal with various linear
contextual bandits. The results are highlighted as follows:
Theorem 1.2 (Regret Bound over Variants of Linear Bandits (informal)). With specific modification
for each setting, the regret of FGTS.LP is bounded as

• E[Regret(T )] ≤ Õ(d
√
T + T

√
dζ) for ζ-misspecified linear contextual bandits.

• E[Regret(T )] ≤ Õ(d
√
ST ) for non-stationary linear contextual bandits with at most S switches.

• E[Regret(T )] ≤ Õ(d 5
6T

2
3P

1
3 ) for non-stationary linear contextual bandits with path length

bounded by P .

• E[Regret(T )] ≤ Õ(d
√
kT +

√
dkMT ) for (generalized) lifelong linear contextual bandits over

M tasks that share an unknown representation of dimension k.

We note that the above results are all near-optimal which match or improve the state-of-the-art in
the corresponding settings. To sum up, our contributions are:

• We propose a unified framework for design and analyze various linear contextual bandit models.
Our framework is easy to interpret and enjoys near-optimal regret bound in different settings.

• We propose the first nearly minimax algorithm for non-stationary linear contextual bandits with a
bounded number of switches.

• We propose a new algorithm for non-stationary linear contextual bandits with bounded path length.
It is the first algorithm that achieves nearly minimax regret.

• We propose the first near-optimal algorithm for (generalized) lifelong linear contextual bandits.
Its regret matches the state-of-the-art for multi-task linear contextual bandits (Hu et al., 2021),
which is a special case of our model.

Notation. We use lower and upper case bold face letters to denote vectors and matrices respectively.
We use [k] to denote the set {1, 2, · · · , k}. We denote the Euclidean norm of vector x ∈ Rd by
∥x∥2. For a matrix A = [a1, · · · ,ak] ∈ Rd×k, we define ∥A∥2,∞ = max1≤i≤k ∥ai∥2. For
two non-negative sequence {an}, {bn}, we write an ≤ O(bn) if there exists an absolute constant
C > 0 such that an ≤ Cbn for all n ≥ 1, and an ≤ Õ(bn) if there exists an absolute constant k
such that an ≤ O(bn logk bn); we write an ≥ Ω(bn) if there exists an absolute constant C > 0

such that an ≥ Cbn for all n ≥ 1 and an ≥ Ω̃(bn) if there exists absolute constant k such that
an ≥ Ω(bn log

−k bn); we write an = Θ(bn) if there exists absolute constants 0 < C1 ≤ C2 such
that C1bn ≤ an ≤ C2bn for all n ≥ 1 . For any set C, we use |C| to denote its cardinality. We use
log to denote loge for short.

2 RELATED WORK

Misspecified Linear Bandits. The misspecified linear bandits was first studied by Ghosh et al.
(2017), and they proposed an algorithm that achieves sub-linear regret when the misspecification ζ

is small. Lattimore & Szepesvari (2020) proposed an algorithm with an Õ(d
√
T + T

√
dζ) regret
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but requiring the contexts to be stationary. The regret is nearly minimax optimal as they proved a
matching lower bound in the paper. Later, Zanette et al. (2020) proposed a LinUCB-like algorithm
with the same regret that gets rid of the requirement of stationary context. More recent works
(Foster et al., 2020a; Krishnamurthy et al., 2021; Takemura et al., 2021) studied the problem when
the misspecification level is unknown.
Non-Stationary Linear Bandits with Bounded Switches. Non-stationary online decision-making
models with bounded switches have long been studied in the literature. Cesa-Bianchi et al. (1993)
studied the problem in the full information experts setting, and proposed an algorithm with an ex-
pected regret bound Õ(

√
ST ), where S is the number of switches. Later, a high probability bound

was obtained by a a UCB-type algorithm (Auer, 2002). In the bandit feedback setting, EXP3.S (Auer
et al., 2001) achieves a regret of Õ(

√
KST ), where K is the number of actions. Borrowing the idea

from EXP4, the algorithm has been extended to the contextual setting with the Õ(
√
KST log |Π|)

regret bound (Luo et al., 2018), where Π is the finite policy class. More recently, Luo et al. (2022)
studied the non-stationary linear bandit setting where the action set is a unit ball and proposed a
bandit-over-bandit approach that achieves a regret of Õ(

√
dST ). There is no existing algorithms for

non-stationary linear contextual bandits with bounded switches.
Non-Stationary Linear Bandits with Bounded Path Length. In recent years, non-Stationary
linear bandits with bounded path length have received increasing attention. Various algorithms have
been developed (Cheung et al., 2019; Chen et al., 2019; Zhao et al., 2020) in this setting. The key
idea behind these algorithms is to progressively forget the past data, and the proof is based on the
same kind of elliptical potential lemma. However, as discussed by Faury et al. (2021), there is a
fault in the proof of the original paper (Cheung et al., 2019), and the corrected analysis can only get
a regret bound of Õ(d 3

4T
3
4P

1
4 ). Meanwhile, the lower bound of this problem is Ω(T

2
3P

1
3 ) (Faury

et al., 2021). The algorithm derived from our framework closes the gap on T .
(Generalized) Lifelong Linear Bandits with Shared Representation. The multi-task linear ban-
dit, in which the agent plays over a collection of tasks simultaneously, was first studied by Yang
et al. (2020). They proposed an explore-then-commit algorithm that leverages the multi-task struc-
ture but requires a unit-ball action space. Their followed-up work (Yang et al., 2022) improved the
regret of the algorithm and generalized it to the lifelong setting. The algorithm has a regret bound
of Õ(d

√
kT + k

√
MT ). Hu et al. (2021) studied the multi-task setting in linear contextual bandits

and proposed a computationally inefficient algorithm with a regret of Õ(d
√
kT +

√
dkMT ) using

LinUCB-type approach. Recent work (Qin et al., 2022) studied the non-stationary lifelong linear
bandits with a task diversity assumption. On the lower bound side, Yang et al. (2020) proved that
any algorithm for multi-task linear bandits suffers at least an Ω(d

√
kT + k

√
MT ) regret.

3 THE PROPOSED FRAMEWORK

3.1 PROBLEM SETUP

We first introduce a framework which is able to cover variants of linear contextual bandits. Let d be
the dimension of the context, and T be the lenght of horizon. Denote by A ⊆ {a ∈ Rd : ∥a∥2 ≤ 1}
the action space and F ⊆ RA the reward function space. The contextual bandit can be described as
a repeated game between an agent (the bandit algorithm) and the environment (the adversary). In
each round t = 1, · · · , T , the environment first picks a hidden reward function f (t) ∈ F and draws
an action set A(t) ⊆ A. After observing the action set A(t), the agent selects an action a(t) ∈ A(t)

and receives a stochastic reward

r(t) = f (t)(a(t)) + ξ(t),

where f (t)(a(t)) is the expected value of the observed reward r(t) and ξ(t) is a zero mean random
noise satisfying E[ξ(t)|Ω(t−1), f (t),A(t),a(t)] = 0, where Ω(t) = {(f (τ),A(t),a(τ), r(τ))}tτ=1 is
the history in the first t rounds. The learning objective of the agent is to maximize the expected
cumulative reward, or equivalently, to minimize the pseudo-regret

Regret(T ) :=
∑T

t=1

(
f (t)(a

(t)
∗ )− f (t)(a(t))

)
, (1)

where a
(t)
∗ = argmaxa∈A(t) f (t)(a) is the optimal action in round t. We assume the reward func-

tions can be approximated by linear functions.
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Assumption 3.1. There is a mapping θ : F → {x ∈ Rd : ∥x∥2 ≤ 1} and a universal constant
ζ ∈ [0, 1] such that

sup
(f,a)∈(F×A)

|⟨a,θ(f)⟩ − f(a)| ≤ ζ.

Moreover, we assume |f(a)| ≤ 1 for all (f,a) ∈ (F ×A).
We call ζ the misspecification level of the model. For the special case ζ = 0, the model reduces to
standard linear bandits. We further assume the observed reward is universally bounded.

Assumption 3.2. The observed reward always satisfies |r(t)| ≤ 1 for all t ∈ [T ].

This assumption ensures the additive noise ξ(t) is bounded. Note that this assumption is not essential
to the algorithm, our analysis can be naturally generalized to unbounded sub-Gaussian with constant
variance as it showed by Zhang (2021). We use bounded noise to avoid introducing variance as an
extra parameter.
The above framework is compatible with variants of linear contextual bandits. For example, one can
formulate specific linear contextual bandits by restricting the environment to select reward sequences
(f (1), · · · , f (T )) from the corresponding structural set. We will present some concrete instances in
the sequel.

3.2 SPECIFIC EXAMPLES

3.2.1 STATIONARY MISSPECIFIED LINEAR BANDITS

For stationary linear contextual bandits, the reward function is fixed before agent decides. Thus, the
environment is restricted to select reward function sequences that has the same linear approximation
across rounds.

Assumption 3.3. There exists a vector θ0 ∈ Rd such that θ(f (t)) = θ0 for all t ∈ [T ].

The reward function is allowed to be misspecified from linear functions in Assumption 3.1. It is
easy to verify that our framework reduces to linear contextual bandits with misspecification (Foster
et al., 2020a) under Assumptions 3.1- 3.3.

3.2.2 NON-STATIONARY LINEAR BANDITS WITH BOUNDED SWITCHES

For non-stationary linear bandits, we first consider the case where the reward function may change
dramatically for a finite number of times (Auer et al., 2001; Luo et al., 2022). The agent is not told
when and how the reward function switches, and the environment can schedule the change in an
adversarial way. We describe this setting using the following assumption:

Assumption 3.4. There exists a constant S such that
∑T

t=2 1[θ(f
(t)) ̸= θ(f (t−1))] ≤ S.

We call S the number of switches. We call the problem formulated under Assumptions 3.1, 3.2
and 3.4 as the non-stationary linear bandits with bounded switches. We note that the non-stationary
linear bandits with bounded switches is a harder problem than that with bounded path length, since
there is a black-box reduction from non-stationary linear bandits with bounded path length to non-
stationary misspecified linear bandits with bounded switches. Recently, Luo et al. (2022) studied
this setting but for non-contextual linear bandits with A(t) = {a ∈ Rd : ∥a∥2 ≤ 1}. They proposed
an algorithm with T 1/2 regret. However, there is no existing algorithm for non-stationary contextual
linear bandits with T 1/2 regret.

3.2.3 NON-STATIONARY LINEAR BANDITS WITH BOUNDED PATH LENGTH

We also consider another kind of non-stationary linear bandits where the reward function can drift
slowly over time (Cheung et al., 2019). The agent does not know the evolution dynamic, while
the environment can choose the reward function adversarially in each round. We characterize this
setting by the following assumption.

Assumption 3.5. There exists a constant P such that
∑T

t=2 ∥θ(f (t))− θ(f (t−1))∥2 ≤ P .

We call P the path length. One can verify our framework under Assumptions 3.1, 3.2 and 3.5 reduces
to non-stationary linear bandits with bounded path length (Faury et al., 2021). Existing regret upper
bound is of order T 3/4 while the lower bound is of order T 2/3. So there is still a gap between the
regret upper and lower bounds.
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3.2.4 (GENERALIZED) LIFELONG LINEAR BANDITS WITH SHARED REPRESENTATION

We consider the setting where the agents have to solve a collection of correlated tasks sequentially.
Let M be the number of tasks. At the beginning of the process, the environment first chooses M
tasks f1, · · · , fM . In each round t, the environment draws a task index m(t) ∈ [M ] and assign
current reward function as f (t) = fm(t) . Besides the action set A(t), the agent is provided with the
task index m(t) and selects the action a(t).
It is worth noting that our lifelong learning setting is a generalized version of the lifelong learning
setting studied in Yang et al. (2022). The original setting of lifelong learning, in which the same
task only appears in one interval, is equivalent to the case where the same m(t) lies in a single
interval. We consider this generalized setting since it also captures multi-task learning (Hu et al.,
2021), where the tasks appear periodically. We make the following assumption.
Assumption 3.6. There exists a hidden orthogonal matrix B ∈ Rd×k and a set of hidden vectors
{wi}Mi=1 with wi ∈ Rk such that θ(f (t)) = Bwm(t) holds for all t ∈ [T ] where {m(t)}Tt=1 is some
sequence with m(t) ∈ [M ].
In Assumption 3.6, B is called the linear feature extractor of the model. The assumption implies
[θ(f (1)), · · · ,θ(f (T ))] is a low rank matrix which can be decomposed over the bases B. This
is a common assumption for representation learning over linear bandits in the literature (see e.g.,
(Hu et al., 2021; Yang et al., 2022)). The genearlized lifelong linear bandits is defined under our
framework with Assumptions 3.1, 3.2 and 3.6. Recently, Yang et al. (2022) studied the lifelong
learning setting for non-contextual linear bandits where A(t) = {a ∈ Rd : ∥a∥2 ≤ 1} and proposed
an algorithm with T 1/2 regret. However, there is no existing algorithm for lifelong contextual linear
bandits with T 1/2 regret.

4 FEEL-GOOD THOMPSON SAMPLING OVER LINEAR POLICIES

In this section, we present our main algorithm FGTS.LP (Feel-Good Thompson Sampling over
Linear Policies) for solving linear context bandits under the framework described in Section 3. We
first introduce some important concepts in the algorithm design.

4.1 LINEAR POLICY CLASS AND ITS COVERING

It is pretty annoying that the regret defined in (1) is related with dynamic variableA(t). We introduce
an essential concept in our algorithm. Instead of selecting an action a(t), we let the bandit algorithm
to select a sequence of policies π(t), which decide how the agent take action based on the observed
context over time. Formally, a sequence of policies π : [T ]×A → R is a time-variant hypothesis for
the expected reward of choosing any actions in any round, i.e., the expected reward of action a ∈ A
on round t is π(t,a). Thus, the sequence suggests to play action a(t) = argmaxa∈A(t) π(t,a)

when the action set A(t) is realized on round t. Since the reward functions in our setting can be
approximated by linear functions, we would focus on linear policies that can be approximated by
linear functions:
Definition 4.1 (Linear Policy). A linear policy π(Θ) is a sequence of models parameterized by the
matrix Θ = [θ1, · · · ,θT ] ∈ Rd×T such that π(Θ)(t,a) = ⟨a,θt⟩.
LetH be the set of all feasible linear policies. Under certain assumptions within our framework, the
linear policy set is restricted to a corresponding domain. For example, under Assumption 3.3, the
linear policy setH is parameterized by matrices Θ in which all columns are the same.
Note thatH is a set over continuous domain and thus of infinite size. To deal with the infinite number
of linear policies, we introduce the approach of ϵ-net and covering number.
Definition 4.2 (ϵ-Net of Linear Policies). Hϵ is said to be a ϵ-net of H if any linear policy Θ =

[θ1, · · · ,θT ] ∈ H has an ϵ-approximation Θ̃ = [θ̃1, · · · , θ̃T ] ∈ Hϵ with ∥θt − θ̃t∥2 ≤ ϵ for all
t ∈ [T ]. Moreover, we define the covering number of H (at scale ϵ) be the size of minimum Hϵ, i.e.,
N(H, ϵ, ∥ · ∥2,∞) := inf |Hϵ|.
One can regard the metric entropy logN(H, ϵ, ∥ · ∥2,∞) as the effective dimension of the policy set.

4.2 THE ALGORITHM

Now we are ready to present our main algorithm. The algorithm is an adaptation of the FGTS
(Zhang, 2021). We present the pseudo-code in Algorithm 1.
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Algorithm 1 FGTS.LP

input: linear policies setH; inverse temperature β; exploration parameter λ; covering radius ϵ.
construct an ϵ-netHϵ ofH such that log |Hϵ| = O(logN(H, ϵ, ∥ · ∥2,∞))
for round t = 1, · · · , T do

sample Θ(t) = [θ
(t)
1 , · · · ,θ(t)

T ] ∼ P (t)(Θ) ∝ exp
(
− β

∑t−1
τ=1 L

(τ)(Θ)
)

for (3) overHϵ

take action a(t) ← argmaxa∈A(t)⟨a,θ(t)
t ⟩

end for

At the beginning, the algorithm constructs an ϵ-net Hϵ over all feasible linear policies H. In each
round t, the algorithm first samples a policy Θ(t) overHϵ according to the distribution

P (t)(Θ) :=
exp

(
− β

∑t−1
τ=1 L

(τ)(Θ)
)∑

Θ′∈Hϵ
exp

(
− β

∑t−1
τ=1 L

(τ)(Θ′)
) , (2)

where β > 0 is the inverse temperature and L(t) : Rd×T → R is a loss function defined as follows

L(t)(Θ) = (r(t) − ⟨a(t),θt⟩)2 − λ max
a∈A(t)

⟨a,θt⟩. (3)

Here λ > 0 is a tuning parameter which controls the exploration. The algorithm then chooses the
optimal action a(t) that maximizes the expected reward according to the chosen policy Θ(t) among
the action set A(t).
We note the loss function in (3) has two terms. The first term is the Thompson sampling term. It
casts penalty based on the estimation error of the reward. Recall r(τ) is a random variable with mean
f (τ)(a(τ)) ≈ ⟨a(τ),θ(f (τ))⟩, this term forces the algorithm to select policy close to the true policy
θ(f (τ)). This encourages the algorithm to do exploitation. The second term is so called feel-good
exploration term (Zhang, 2021). It favors the policy that grants large rewards for historical actions,
which can be regarded as an bonus that encourages the algorithm to do exploration.
Note that Algorithm 1 needs to know T andH before hand. By restarting the algorithm periodically
with the doubling trick, one can run the algorithm without knowing T in hindsight. However, it is
unclear if the algorithm can be parameter-free forH since model selection for exponential weighted
sampling algorithm remains an open question (Foster et al., 2020b). Furthermore, the algorithm is
sampled over ϵ-net ofH, which is not necessarily computationally efficient in practice. So it is better
to regard Algorithm 1 as an oracle-efficient algorithm provided the sampling oracle over Hϵ. For
the implementation of this algorithm in practice, we present a detailed discussion in Appendix B

4.3 COMPARISON WITH EXISTING ALGORITHMS

Comparison with FGTS. One may see that FGTS.LP has the same structure as the original FGTS
(Zhang, 2021). Both algorithms use exponentially weighted sampling over the same loss function.
The main difference between the two algorithms is that the original FGTS samples over models (or
equivalently, reward functions) rather than policies. Note that sampling over models is equivalent to
choosing the stationary policies, which always select the same action given the same context. Thus,
the original FGTS cannot deal with non-stationary environments in which the reward functions
change over time. In contrast, sampling over policies enables us to inspect the misspecification
explicitly and thus analyze it meticulously. As a result, FGTS.LP can achieve nearly minimax regret
bound for misspecified linear bandits and non-stationary linear bandits.
Comparison with EXP4. Another contextual bandit algorithm that uses exponentially weighted
sampling is EXP4 (Auer et al., 2002). Using exponentially weighted sampling, one can corral a large
set of policies achieving a low regret as long as the reward for each policy is revealed. However,
the agent cannot observe the payoff for policies that are not chosen in the bandits setting, and has
to estimate it. EXP4 uses an unbiased estimator to estimate the reward. However, the estimator
has a large variance which is proportional to the number of actions. This causes a polynomial
dependence on the size of the action set in the regret bound. As a comparison, FGTS.LP uses the
expected reward reported by the policies but casts penalties on the policies that cannot estimate the
payoff of chosen actions. Although this estimator may be biased in estimating the actual reward,
the estimator will assigns a large value to the policy with a high return. So the regret analysis for
exponentially weighted sampling (Littlestone & Warmuth, 1994) can still be applied to FGTS.LP.
Since the variance of this estimator is much smaller and independent of the number of actions,
FGTS.LP is able to get a regret bound that is independent of the size of the action set.
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Comparison with LinUCB. In addition to Thompson sampling and posterior sampling, another
common approach for linear contextual bandits is LinUCB (Li et al., 2010) (or OFUL (Abbasi-
Yadkori et al., 2011)). The algorithm implements the optimism-in-face-of-uncertainty principle,
which selects the policy with the largest optimistic reward among all possible policies that agree
with the observed reward in history. Note that FGTS.LP tends to sample policy with large estimated
reward on the historical data and small estimation error. Therefore, FGTS.LP can also be regarded
as an implementation of the same principle. The difference is, rather than focusing on one action,
FGTS.LP uses exponentially weighted sampling to select a policy. From the game theory perspec-
tive, the variants of linear contextual bandits can be regarded as a two-player game. It is known that
a mixed strategy profile usually generates better rewards than a pure strategy profile against adver-
sarial opponents (Fudenberg & Tirole, 1991). Thus, FGTS.LP will have a stronger ability to solve
variants of linear contextual bandits.

5 MAIN RESULTS

In this section, we present the theoretical results of our algorithm. The following theorem provides
a regret guarantee for Algorithm 1 when applied to general linear bandits.

Theorem 5.1. Suppose ϵ ∈ [0, 1], set λ = Θ
(√

logN(H, ϵ, ∥ · ∥2,∞)/(dT ) + (ϵ+ ζ)2/d
)

and
β = Θ(1). Under Assumptions 3.1 and 3.2, for any policy classH, the expected regret of Algorithm
1 is bounded by

E[Regret(T )] ≤ O
(√

dT logN(H, ϵ, ∥ · ∥2,∞) + T
√
d(ϵ+ ζ)

)
, (4)

where the expectation is taken over all randomness of the learning algorithm and the data noise.

There are two terms on the RHS of (4), which we will explain separately. The first term depends
on the metric entropy logN(H, ϵ, ∥ · ∥2,∞), which depicts the complexity of the policy set H. The
second term depends on the scale of the ϵ-net Hϵ as well as the misspecification level ζ. There is a
trade-off between the first term and the second term driven by the scale of the ϵ-net: for large ϵ, the
first term is small and the second term is large; for small ϵ, the first term will be large and the second
term will be small.
With Theorem 5.1, one only needs to calculate the metric entropy logN(H, ϵ, ∥ · ∥2,∞) and select
proper ϵ to minimize (4), i.e., ensuring logN(H, ϵ, ∥ · ∥2,∞) ∼

√
T (ϵ+ ζ). Since the metric entropy

logN(H, ϵ, ∥·∥2,∞) is the effective dimension of the policy class, it is easy to calculate for different
policy classes and derive the corresponding regret bound. As a result, Algorithm 1 can be viewed as
a unified framework for linear contextual bandits.

5.1 IMPLICATIONS TO LINEAR BANDIT VARIANTS

In this subsection, we show the implications of Theorem 5.1 on the specific examples of contex-
tual linear bandit variants. For the ease of comparison between our results and prior results, we
summarize the results in Table 1.

5.1.1 MISSPECIFIED LINEAR BANDITS

We start with the simple setting where the approximate linear function is stationary. In this setting,
the ϵ-net of the linear policy class can be reduced to the ϵ-net of single reward function. Since the
embedding is of dimension d, the covering number is exactly O(ϵ−d):
Lemma 5.1 (Covering Number for Misspecified Linear Bandits). Under Assumptions 3.1 and 3.3,
the metric entropy of linear policy class satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O(d log ϵ−1).

By choosing ϵ = T−1, the metric entropy can be bounded as logN(H, ϵ, ∥ · ∥2,∞) ≤ O(d log T ).
With Theorem 5.1, we directly get the following regret bound:
Corollary 5.1 (Upper Bound for Misspecified Linear Bandits). Under Assumptions 3.1, 3.2 and 3.3,
the expected regret of FGTS.LP is bounded by

E[Regret(T )] ≤ O
(
d
√

T log T + T
√
dζ

)
.

The following lower bound shows that the regret upper bound in Corollary 5.1 is tight up to loga-
rithmic factors:
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Existing Algorithm FGTS.LP (This Paper) Lower Bounds

Misspecified LCB Õ(d
√
T + T

√
dζ) Õ(d

√
T + T

√
dζ) Ω̃(d

√
T + T

√
dζ)

(Zanette et al., 2020) (Corollary 5.1) (Lattimore & Szepesvari, 2020)

Non-stationary LCB – Õ(d
√
ST ) Ω̃(d

√
ST )

(Bounded Switches) (Corollary 5.2) (Lemma F.5)
Non-stationary LCB Õ(d 3

4T
3
4P

1
4 ) Õ(d 5

6T
2
3P

1
3 ) Ω̃(d

2
3T

2
3P

1
3 )

(Bounded Length) (Faury et al., 2021) (Corollary 5.3) (Cheung et al., 2019)

Multi-task LCB Õ(d
√
kT +

√
dkMT ) Õ(d

√
kT +

√
dkMT ) Ω̃(d

√
kT + k

√
MT )

(Hu et al., 2021) (Corollary 5.4) (Yang et al., 2020)

Lifelong LCB – Õ(d
√
kT +

√
dkMT ) Ω̃(d

√
kT + k

√
MT )

(Corollary 5.4) (Yang et al., 2020)

Table 1: Summary of the results on variants of linear contextual bandits. d is the dimension of the
context, T is the length of horizon, and ζ is the misspecification level for misspecified bandits. In
addition, S is the number of switches and P is the path length for non-stationary bandits. Further-
more, M denotes the number of tasks and k denotes the representation dimension for multi-task and
lifelong bandits.

Proposition 5.1 (Lower Bound for Misspecified Linear Bandits). Under Assumptions 3.1, 3.2 and
3.3, for any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
d
√
T + T

√
d/ log Tζ

)
.

5.1.2 NON-STATIONARY LINEAR BANDITS WITH BOUNDED SWITCHES

In this setting, we can construct the ϵ-net by enumerating the positions of switches and cover the
reward function set after each switch. The set of reward functions after each switch has a cover-
ing number of O(ϵ−d). So the set of reward functions with S switches has a covering number of
O(ϵ−dS). Moreover, the different positions of switches within T rounds can be bounded byO(TS).
With above facts, we can bound the size of ϵ-net:

Lemma 5.2 (Covering Number for Non-Stationary Linear Bandits with Bounded Switches). Under
Assumptions 3.1 and 3.4, the metric entropy of the linear policy set satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O(dS log ϵ−1 + S log T ).

Using Theorem 5.1 with ϵ = T−1, we immediately obtain the following regret bound:

Corollary 5.2 (Upper Bound for Non-Stationary Linear Bandits with Bounded Switches). Under
Assumptions 3.1, 3.2 and 3.4, the expected regret of FGTS.LP is bounded by

E[Regret(T )] ≤ O
(
d
√
ST log T + T

√
dζ

)
.

The following lower bound shows FGTS.LP is nearly minimax optimal for non-stationary linear
bandits with bounded switches:

Proposition 5.2 (Lower Bound for Non-Stationary Linear Bandits with Bounded Switches). Under
Assumptions 3.1, 3.2 and 3.4, for any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
d
√
ST + T

√
d/ log Tζ

)
.

5.1.3 NON-STATIONARY LINEAR BANDITS WITH BOUNDED PATH LENGTH

Now we move to the more challenging setting where the parameters slowly drift over time. We
would reduce the parameter drift to parameter switch. More specifically, a parameter switch is
considered to happen only if the path length of parameter drift from last switch exceeds ϵ/2. Since
the total path length is bounded by P , there are no more than 2Pϵ−1 switches. As a result, an ϵ/2-
net of the reward functions for non-stationary linear bandits with no more than 2Pϵ−1 switches is
an ϵ-net of the reward functions for non-stationary linear bandits with path length no more than P .
This immediately gives the following result on its covering number:
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Lemma 5.3 (Covering Number for Non-Stationary Linear Bandits with Bounded Path Length).
Under Assumptions 3.1 and 3.5, the metric entropy of linear policies satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O(d log ϵ−1 + dPϵ−1 log ϵ−1 + Pϵ−1 log T ).

Using Theorem 5.1 with ϵ = max{T− 1
3 d

1
3P

1
3 , T−1}, we get the following regret bound:

Corollary 5.3 (Upper Bound for Non-Stationary Linear Bandits with Bounded Path Length). Under
Assumptions 3.1, 3.2 and 3.5, the expected regret of FGTS.LP is bounded by

E[Regret(T )] ≤ Õ
(
d

5
6T

2
3P

1
3 + d

√
T + T

√
dζ

)
.

The following lower bound shows that the regret upper bound in Corollary 5.3 is nearly optimal:
Proposition 5.3 (Lower Bound for Non-Stationary Linear Bandits with Bounded Path Length). Un-
der Assumptions 3.1, 3.2 and 3.5, for any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
d

2
3T

2
3P

1
3 + d

√
T + T

√
d/ log Tζ

)
.

5.1.4 (GENERALIZED) LIFELONG LINEAR BANDITS WITH SHARED REPRESENTATION

In this setting, every feasible linear policy can be described by a low-rank matrix that is the product
of two matrices B ∈ Rd×k and [wi]

M
i=1 ∈ Rk×M . We can construct the ϵ-net of linear policies using

the product of two ϵ/2-net over B and [wi]
M
i=1. Also, the dimension of linear policies is dk + kM .

This implies the following result on its covering number:
Lemma 5.4 (Covering Number for Lifelong with Shared Representation). Under Assumptions 3.1
and 3.6, the metric entropy of linear policies satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O
(
dk log ϵ−1 + kM log ϵ−1

)
.

Using Theorem 5.1 with ϵ = T−1, we obtain the following regret bound:
Corollary 5.4 (Upper Bound for Lifelong Linear Bandits with Shared Representation). Under As-
sumptions 3.1, 3.2 and 3.6, the expected regret of FGTS.LP is bounded by

E[Regret(T )] ≤ Õ
(
d
√
kT +

√
dkMT + T

√
dζ

)
.

If each task appears uniformly for T/M rounds, an algorithm that solves each task independently
suffers a regret bound of Θ̃(d

√
MT ) using a nearly minimax algorithm such as LinUCB (Li et al.,

2010). In the case that k ≪ M and k ≪ d, our algorithm saves a factor of
√
M/k or

√
M/d,

which shows it utilizes the underlying representation. Moreover, this regret bound matches the
near-optimal algorithm for multi-task linear bandits (Hu et al., 2021), which is a special case of our
setting. The following lower bound shows that our algorithm is near-optimal:
Proposition 5.4 (Lower Bound for Lifelong Linear Bandits with Shared Representation). Under
Assumptions 3.1, 3.2 and 3.6, for any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
d
√
kT + k

√
MT + T

√
d/ log Tζ

)
.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a unified framework for linear contextual bandits based on feel-good
Thompson sampling, which can cover different variants of linear contextual bandits. At the core of
our algorithm is an adaption of feel-good Thompson sampling from reward function to policy class,
which enables the algorithm to deal with time-varying environments. We showed that our algorithm
can achieve near-optimal regret bounds for these variants of linear bandits, which resolve several
open problems in the respective settings.
We notice that there is still a gap between the regret upper and lower bounds in terms of the depen-
dence on the dimension d for non-stationary linear bandits with bounded path length. We leave it as
a future work to close this gap.
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A ADDITIONAL RELATED WORK

Thompson Sampling. Thompson sampling is a classical algorithm that can be adapted to contextual
bandits (Thompson, 1933). Russo & Roy (2014) proposed the first general theoretical guarantee
for Thompson sampling. By utilizing the connection between Thompson sampling and optimistic
policies, they showed Thompson sampling achieves a Bayesian regret bound of Õ(d

√
T ) for linear

bandits, where the underlying parameters are randomly drawn from some public distribution. For
frequentist regret, Agrawal & Goyal (2013) showed a modified Thompson sampling in which the
variance of the posterior distribution is inflated by Õ(d) achieves a regret bound of Õ(d 3

2

√
T ) on

linear bandits. As shown by Hamidi & Bayati (2020), inflation is necessary for Thompson sampling
to achieve sub-linear regret; thus, one cannot improve the regret bounds for original Thompson
sampling. In comparison, feel-good Thompson sampling (Zhang, 2021) introduced an optimistic
bonus on the loss function, making it possible to achieve a nearly minimax regret on the linear
contextual bandits.
Exponentially Weighted Sampling. A classical technique for online learning is exponentially
weighted sampling. This approach allows an algorithm to corral a collection of policies in small
regret. By constructing unbiased estimators for unobserved actions, Auer et al. (2002) adapted the
ideas to contextual bandits and proposed EXP4. Its regret suffers a polynomial dependence on the
number of actions. For linear bandits with stationary contexts, the dependence can be reduced to
logarithmic using an EXP2-type algorithm (Bubeck et al., 2012). The algorithm can also be regarded
as an EXP3 with a modified estimator, which can be implemented efficiently under specific action
sets using stochastic mirror descent.
UCB-Based Algorithms. The concept of upper confidence bound was first proposed by Lai & Rob-
bins (1985) to solve multi-arm bandits. The algorithm can be adapted to linear contextual bandits
with an infinite number of actions by analyzing the dynamics of the confidence set using an elliptical
lemma (Dani et al., 2008; Li et al., 2010; Abbasi-Yadkori et al., 2011). However, it is hard to get
the potential lemma for other function spaces, making it difficult to generalize the approach to a
broader function class. A recent line of works showed the contextual bandits could be reduced to
regression oracles (Foster et al., 2018; Foster & Rakhlin, 2020). This observation pointed out a way
for UCB-based algorithms to work on general function classes. However, the algorithm suffers from
a polynomial dependence on the number of actions, which is incapable of infinite action sets.

B IMPLEMENTATION OF THE PROPOSED ALGORITHM

In this section, we discuss the implementations for our main algorithm FGTS.LP in practice. In
particular, we present an efficient algorithm to sample from the distribution defined in (2) approxi-
mately. Consider distribution P̃ (t) in which the probability density function over Θ is proportional
to

P̃ (t)(Θ) ∝ exp
(
− β

t−1∑
τ=1

L(τ)(Θ)
)
· P0(Θ), (5)

where L(t) is the loss function defined in (3) and P0 is some prior distribution to be determined. One
may see P̃ (t) is identical to P (t)(Θ) if one chooses the uniform mixture of discrete distribution of
support Hϵ as prior. For efficient implementations, we would use a continuous distribution to cover
H instead. More details can be found in the following sections.
Inspired by Xu et al. (2022), we would use Langevin Monte Carlo (Roberts & Tweedie, 1996; Bakry
et al., 2013) to take sample from (5). In specific, on round t, we run the following subroutines for
Kt steps. For iteration step s = 1, · · · ,Kt, we set

Θt,s−1 = Θt,s − ηt,s

t−1∑
τ=1

∇L(τ)(Θt,s−1) + β−1ηt,s∇ logP0(Θt,s−1) +
√
2β−1ηt,sϵt,s (6)

where ϵt,s is Gaussian random matrices and ηt,s is the step size. This updating rule can be regarded
as the Euler-Maruyama discretization of the following Langevin dynamics

dΘ(s) = −
t−1∑
τ=1

∇L(τ)(Θ(s))ds+ β−1∇ logP0(Θ(s))ds+
√
2β−1dB(s) (7)
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where s > 0 is the continuous time index and B(s) ∈ Rd is a Brownian motion. It was shown
under mild conditions, the above Langevin dynamics will converge to the stationary distribution (5).
So it is reasonable to take sample from (5) using LMC. We list the corresponding pseudo-code in
Algorithm 2.
Algorithm 2 LMC-FGTS.LP, General Framework

input: prior distribution P0; inverse temperature β; exploration parameter λ; number of iterations
{Kt}t≥1; step sizes {ηt,s}t,s≥1.
sample matrix Θ(0) ∈ Rd×T fromH according to P0

for round t = 1, · · · , T do
Θt,0 ← Θ(t−1)

for iteration s = 1, · · · ,Kt do
sample matrix ϵt,s ∼ N (0, IT×d)

Θt,s ← Θt,s−1− ηt,s
∑t−1

τ=1∇L(τ)(Θt,s−1)−β−1ηt,s∇ logP0(Θt,s−1)+
√

2β−1ηt,sϵt,s
end for
Θ(t) ← Θt,Kt

take action a(t) ← argmaxa∈A(t)⟨a,θ(t)
t ⟩ where θ

(t)
t is the t-th column of Θ(t)

end for
It is important to mention the above algorithm is a general framework for linear contextual bandits.
The algorithm could be further refined into specific settings. For example, since we know linear
policy set H only contains matrix Θ in which all columns are same, it is sufficient to record only
one column of Θ. In the following sections, we discuss how to implement the algorithm for specific
linear contextual bandits, and also present corresponding simulation results.

B.1 MISSPECIFIED LINEAR CONTEXTUAL BANDITS

We first discuss the implementation for misspecified linear contextual bandits, i.e., the variants de-
picted in Corollary 5.1. In this case, we parameterize any matrix Θ = [θ, · · · ,θ] in H using any
of its column vector θ. We choose the Gaussian distribution N (0, Id/d) as the prior P0. One can
check the expected length of random vector sampled from P0 is 1, which matches the hypothesis set
given by Assumption 3.1 and 3.3. In the algorithm, we slightly abuse L(t) and use it to denote loss
function Rd → R,

L(t)(θ) = (r(t) − ⟨a(t),θ⟩)2 − λ max
a∈A(t)

⟨a,θ⟩. (8)

which is a counterpart of (3) for single round policies. We list the pseudo-code in Algorithm 3.
Algorithm 3 LMC-FGTS.LP for Misspecified Linear Contextual Bandits

input: time horizon T , feature dimension d, misspecification level ξ, inverse temperature β;
exploration parameter λ; number of iterations {Kt}t≥1; step sizes {ηt,s}t,s≥1.
sample vector θ(0) ∼ N (0, Id/d)
for round t = 1, · · · , T do
θt,0 ← θ(t−1)

for iteration s = 1, · · · ,Kt do
sample vector ϵt,s ∼ N (0, Id)

θt,s ← θt,s−1 − ηt,s
∑t−1

τ=1∇L(τ)(θt,s−1)− dβ−1ηt,sθt,s−1 +
√

2β−1ηt,sϵt,s
end for
θ(t) ← θt,Kt

take action a(t) ← argmaxa∈A(t)⟨a,θ(t)⟩
end for

Simulation Results. We generate the synthetic data in the following way: The horizon length
is set to T = 3000 and the feature dimension is set to d = 100. We first generate θ0 from
unit sphere Sd−1 = {x ∈ Rd : ∥x∥2 = 1} randomly. On each round t, A = 20 actions
{a(t)i }i=1···A are independently drawn from the same unit sphere. The reward of action a

(t)
i is

set to f (t)(a(t)) = ⟨a(t)i ,θ0⟩ + Unif(−ζ, ζ) where Unif(l, u) is the uniform random distribution
in [l, u] for misspecification level ζ ∈ {0, 0.05, 0.1}. The observed reward of it is then given by
r(t) = f (t)(a(t)) + ξ(t) where ξ(t) is randomly sampled from Gaussian noise with standard devia-
tion 0.2.
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We run Algorithm 3 with exploration parameter λ =
√

1/T + ζ2/d according to our theoretical re-
sult given by Theorem 5.1 and Lemma 5.1. We set the temperature parameter β−1 to 0.01 following
Xu et al. (2022), which is the 1/4 of the variance of reward noise. On each round t, the algorithm do
Kt = 200 iterations and the step size of iteration s is τt,s = 1/(ds). To accelerate the running speed
of the algorithm, we do not find the precise maximum action in (8) in each iteration. We record the
maximum action and recompute it only in first 14 steps or once for every 14 steps afterwards.
We compare our algorithm to LinUCB with adaptation to misspecification (Zanette et al., 2020) and
Linear Thompson Sampling (Abeille & Lazaric, 2017). The result is shown in Figure 1. One can
see our algorithm has comparative performance with those existing algorithms.
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Figure 1: The performance of Algorithm 3 comparing with other linear contextual bandit algorithms.
Results are averaged over 5 runs with standard errors shown as shaded areas.

B.2 LIFELONG LINEAR CONTEXTUAL BANDITS

This section discuss the practical implementation for lifelong linear bandits, i.e., the variants de-
picted in Corollary 5.4. In this case, the linear policy set H only contains matrices Θ that can be
decomposed using two matrices B ∈ Rd×k and W = {wi}Mi=1 ∈ RM×k. Thus, we do not need
to maintain the whole sequence of models Θ, it is sufficient to keep those two matrices. Moreover,
rather than taking LMC iterations on Θ, we compute the gradient respective to B and W to update
them directly.
In the algorithm, instead of taking LMC iterations on Θ, we compute the gradient to update B and
W directly. The prior distribution is also defined on those two matrices. We take N (0, kId×k/d)
and N (0, Ik×M/k) as the prior distribution for B and W, respectively. We use a different prior
distribution for initialization which ensures the length of θ is about 1 to improve the overall per-
formance. On every iteration of round t, the algorithm computes linear policy for all historical
task θt,s−1,i and uses them to compute gradient. The loss function is defined in (8). We list the
pseudo-code in Algorithm 4.
Algorithm 4 LMC-FGTS.LP for (Generalized) Lifelong Linear Contextual Bandits

input: task index sequence {m(t)}Tt=1; inverse temperature β; exploration parameter λ; number
of iterations {Kt}t≥1; step sizes {ηt,s}t,s≥1.
sample matrix B(0) from orthogonal random matrices in Rd×k

sample matrix W(0) ∼ N (0, Ik×M/k)
for round t = 1, · · · , T do
(Bt,0,Wt,0)← (B(t−1),W(t−1))
for iteration s = 1, · · · ,Kt do

sample matrix ϵBt,s ∼ N (0, Id×k) and ϵWt,s ∼ N (0, Ik×M )
compute θt,s−1,i ← Bt,s−1,wt,s−1,i for i ∈ [M ] where wt,s−1,i is the i-th row of Wt,s−1

Bt,s ← Bt,s−1 − ηt,s
∑t−1

τ=1∇BL
(τ)(θt,s,m(τ))− dk−1β−1ηt,sBt,s−1 +

√
2β−1ηt,sϵ

B
t,s

Wt,s ←Wt,s−1 − ηt,s
∑t−1

τ=1∇WL(τ)(θt,s,m(τ))− kβ−1ηt,sWt,s−1 +
√

2β−1ηt,sϵ
W
t,s

end for
(B(t),W(t))← (Bt,Kt

,Wt,Kt
)

compute θ(t) ← B(t)w
(t)

m(t) where w
(t)

m(t) is the m(t)-th row of W(t)

take action a(t) ← argmaxa∈A(t)⟨a,θ(t)⟩
end for

Simulation Results. We generate the synthetic data in the following way: The horizon length is
set to T = 3000 and the feature dimension is set to d = 40. There are M = 20 tasks and each
of them appear in exactly T/M = 100 rounds in sequential, i.e, the task on round t is given by
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m(t) = ⌈t/100⌉. The dimension of hidden subspace is set in k ∈ {2, 3, 4}. The hidden linear
feature extractor B is a random orthogonal matrix in Rd×k and each of the task-specific vector
{wi}Mi=1 are independent random vectors from unit sphere Sk−1 = {x ∈ Rk : ∥x∥2 = 1}. On
each round t, A = 20 actions {a(t)i }i=1···A are randomly drawn from unit sphere Sd−1. We fix
the misspecification level to be ζ = 0. The observed reward of action a

(t)
i is given by r(t) =

⟨a(t)i ,Bwm(t)⟩+ξ(t) where ξ(t) is independent random Gaussian variable of standard deviation 0.2.
We run Algorithm 4 with exploration parameter λ =

√
(dk +Mk)/(dT ) and temperature parame-

ter β−1 = 0.01. On each round t, the algorithm do Kt = 100 iterations and the step size of iteration
s is τt,s = 1/(dks). Similar to misspecified linear contextual bandits, we record the maximum
action and recompute it only in first 10 steps or once for every 10 steps afterwards to accelerate
its running speed. Since there is no existing algorithm for lifelong linear contextual bandits, we
compare the performance with running LinUCB on each task independently. The result is shown
in figure 2. One can see our algorithm leverage the underlying representation with a good constant
factor.
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(b) k = 3
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(c) k = 4

Figure 2: The performance of Algorithm 4 comparing with running LinUCB on each task. Results
are averaged over 5 runs with standard errors shown as shaded areas.

C PROOF SKETCH OF THEOREM 5.1

This section presents a proof sketch of our main Theorem 5.1. We note the proof is similar to the
proof of Theorem 2 in Zhang (2021). The main difference comes from the usage of covering number
of the policy set and our decoupling lemma under misspecification.
Let Θ∗ = [θ∗

1 , · · · ,θ∗
T ] be the optimal policy in the ϵ-net Hϵ. For any linear policy Θ =

[θ1, · · · ,θT ], denote ∆t(Θ,a(t)) := ⟨a(t),θt − θ∗
t ⟩ as the Bellman error and ∆∗

t (Θ) :=
maxa∈A(t)⟨a,θt⟩ −maxa∈A(t)⟨a,θ∗

t ⟩ as the feel-good error. Since ⟨a(t),θt⟩ = maxa∈A(t)⟨a,θt⟩
according to definition of a(t), we can decompose the expected regret on round t by

E
a(t)

[f (t)(a
(t)
∗ )− f (t)(a(t))] ≤ E

a(t),Θ(t)

[
∆t(Θ

(t)a(t))−∆∗
t (Θ

(t))
]
+ 2(ϵ+ ζ). (9)

Besides, we construct a potential function following the classical analysis for exponentially weighted
sampling,

Φ(t) =
1

βλ
log

∑
Θ∈Hϵ

exp
(
β

t∑
τ=1

(
L(τ)(Θ∗)− L(τ)(Θ)

))
.

The boundary value of the potential function follows

Φ(0) − Φ(T ) ≤ log |Hϵ|
βλ

. (10)

The increment of potential function on round t satisfies

E
a(t),r(t)

[
Φ(t) − Φ(t−1)

]
≤ 1

βλ
E
a(t)

[
log E

r(t)
E
Θ
exp

(
β
(
L(t)(Θ∗)− L(t)(Θ)

))]
. (11)

Recall L(t)(Θ) = (r(t) − ⟨a(t),θt⟩)2 − λmaxa∈A(t)⟨a,θt⟩, the randomness on r(t) only casts an
additive noise −2βξ(t)∆t(Θ,a(t)) to the term β

(
L(t)(Θ∗)− L(t)(Θ)

)
in the exponent. Since ξ(t)

is constantly bounded and zero mean, the noise can be controlled by selecting proper β according
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to Hoeffding’s lemma. With classical inequalities over logarithm and exponential, we can show the
variation of potential function satisfies

E
a(t),r(t)

[
Φ(t) − Φ(t−1)

]
≤ − 1

λ
E

a(t),Θ

[
∆t(Θ,a(t))2 + Ct(a

(t))∆t(Θ,a(t))
]

+ E
Θ
∆∗

t (Θ) +O
(
βλ+

β(ϵ+ ζ)2

λ

)
(12)

where Ct(a
(t)) = f (t) − ⟨Θ(t),θ∗

t ⟩ is the misspecification of Θ∗ with respect to ground truth f (t).
One can see that the first two terms on the RHS of (12) are very similar to the first two terms on the
RHS of (9). But with one critical difference, the chosen policy Θ(t) in (9) is replaced by a random
policy Θ in (12): Although Θ(t) and Θ have the same margin, Θ(t) is correlated with a(t) but Θ
is independent from a(t). As a result, Θ(t)∆∗

t (Θ
(t)) = EΘ ∆∗

t (Θ) but Ea(t),Θ(t) [∆t(Θ
(t),a(t))] is

not necessary equal to Ea(t),Θ[∆t(Θ,a(t))]. Therefore, we cannot get a regret bound by combining
(9), (10) and (12) directly.
This is where the decoupling lemma helps. Following Zhang (2021), one can get the following
lemma for linear models,

E
a(t),Θ(t)

∆t(Θ
(t),a(t)) ≤ 1

λ
E

a(t),Θ
∆t(Θ,a(t))2 +O(λd). (13)

For our usage, in order to achieve optimal dependence with the covering radius and misspecification,
we derived a decoupling lemma includes the corruptions. In particular, Lemma D.2 implies

E
a(t),Θ(t)

∆t(Θ
(t),a(t)) ≤ 1

λ
E

a(t),Θ

[
∆t(Θ,a(t))2 + Ct(a

(t))∆t(Θ,a(t))
]

+O
(
λd+ (ϵ+ ζ) +

(ϵ+ ζ)2

λ

)
. (14)

By combining (9), (10), (12) and (14), with β = Θ(1), we conclude that

E[Regret(T )] =

T∑
t=1

E
a(t)

[f (t)(a
(t)
∗ )− f (t)(a(t))] ≤ O

(
λdT + (ϵ+ ζ)T +

log |Hϵ|+ (ϵ+ ζ)2T

λ

)
.

One can obtain the desired statement using λ = Θ
(√

log |Hϵ|/(dT ) + (ϵ+ ζ)2/d
)
.

We note our analysis uses a refined way to deal with the covering radius and misspecification. One
can only get a regret bound of O(

√
dT log |Hϵ| + T

√
d(ϵ+ ζ)) if uses (13) and follows the proof

in Zhang (2021) faithfully, which has a worse dependence on (ϵ+ ζ).

D FULL PROOF OF THEOREM 5.1

In this section, we will provide a complete proof of Theorem 5.1. The following decoupling lemma
is a critical structural lemma for our analysis, which is a generalization of Lemma 2 in Zhang (2021).

Lemma D.1 (Decoupling Lemma). Let P be a joint distribution over two Rd space, i.e., P ∈
∆(Rd × Rd). For any constant λ > 0, we have

E
(θ,ϕ)∼P

⟨θ,ϕ⟩ ≤ dλ+
0.25

λ
E

(θ,ϕ)∼P
(θ′,ϕ′)∼P

⟨θ,ϕ′⟩2,

where (θ,ϕ) on LHS is a sample from P while (θ,ϕ) and (θ′,ϕ′) on RHS are two independent
samples from P .
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Proof. Let Σ = E(θ,ϕ)∼P θθ⊤ be a matrix in Rd×d. Denote ξ1, · · · , ξd as a set of orthogonal
eigenvectors of Σ. Let si = E(θ,ϕ)∼P ⟨θ, ξi⟩2. Then,

E
(θ,ϕ)∼P

⟨θ,ϕ⟩ = E
(θ,ϕ)∼P

d∑
i=1

⟨θ, ξi⟩⟨ξi,ϕ⟩

=

d∑
i=1

E
(θ,ϕ)∼P

√
2λ

si
⟨θ, ξi⟩ ·

√
0.5si
λ
⟨ξi,ϕ⟩

≤
d∑

i=1

E
(θ,ϕ)∼P

( λ

si
⟨θ, ξi⟩2 +

0.25si
λ
⟨ξi,ϕ⟩2

)
, (15)

where the first equality follows from θ =
∑d

i=1⟨θ, ξi⟩ξi and the inequality follows from ab ≤
0.5a2 + 0.5b2. For the first term, we have

d∑
i=1

E
(θ,ϕ)∼P

λ

si
⟨θ, ξi⟩2 =

d∑
i=1

λ = λd. (16)

For the second term, it holds that

0.25

λ

d∑
i=1

E
(θ,ϕ)∼P

si⟨ξi,ϕ⟩2 =
0.25

λ

d∑
i=1

E
(θ,ϕ)∼P
(θ′,ϕ′)∼P

⟨θ, ξi⟩2⟨ξi,ϕ′⟩2

=
0.25

λ

d∑
i=1

d∑
j=1

E
(θ,ϕ)∼P
(θ′,ϕ′)∼P

⟨θ, ξi⟩⟨ξi,ϕ′⟩⟨θ, ξj⟩⟨ξj ,ϕ′⟩

=
0.25

λ
E

(θ,ϕ)∼P
(θ′,ϕ′)∼P

( d∑
i=1

⟨θ, ξi⟩⟨ξi,ϕ′⟩
)2

=
0.25

λ
E

(θ,ϕ)∼P
(θ′,ϕ′)∼P

⟨θ,ϕ′⟩2, (17)

where the first equality follows from the definition of si, the second equality holds since
E(θ,ϕ)∼P ⟨θ, ξi⟩⟨θ, ξj⟩ = ξ⊤i Σξj = 0 for all i ̸= j and the final equality follows from the def-
inition of ξi. By plugging (16) and (17) into (15), we can conclude that

E
(θ,ϕ)∼P

⟨θ,ϕ⟩ ≤ λd+
0.25

λ
E

(θ,ϕ)∼P
(θ′,ϕ′)∼P

⟨θ,ϕ′⟩2.

Using this lemma, we can bound the expectation of the inner product of two correlated random
variables using the expectation of the inner product of two independent random variables with the
corresponding margin. To provide a nearly minimax bound with optimal dependence on misspecifi-
cation, we further propose a decoupling lemma that takes misspecification into account:

Lemma D.2 (Decoupling Lemma with Misspecification). Let P be a joint distribution over two Rd

space, i.e., P ∈ ∆(Rd×Rd). Let C(·) : Rd → R be a function such that |C(θ)| ≤ ζ for all θ ∈ Rd.
For any constant λ > 0, we have

E
(θ,ϕ)∼P

⟨θ,ϕ⟩ ≤ λ(d+ 1) +
4ζ2

λ
+ 4ζ +

0.25

λ
E

(θ,ϕ)∼P
(θ′,ϕ′)∼P

[
⟨θ,ϕ′⟩2 + 8C(θ) · ⟨θ,ϕ′⟩

]
,

where (θ,ϕ) on LHS is a sample from P while (θ,ϕ) and (θ′,ϕ′) on RHS are two independent
samples from P .
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Proof. Let P+ be an auxiliary distribution over ∆(Rd+1,Rd+1) in which each element is
(θ+,ϕ+) = ([θ⊤, C(θ)]⊤, [ϕ⊤, 1]⊤) where (θ,ϕ) ∼ P . For two independent samples (θ+,ϕ+)
and (θ′

+,ϕ
′
+), we have

⟨θ+,ϕ+⟩ = ⟨θ,ϕ⟩+ 4C(θ), (18)

⟨θ+,ϕ′
+⟩2 = ⟨θ,ϕ′⟩2 + 8C(θ) · ⟨θ,ϕ′⟩+ 16C(θ)2. (19)

Apply Lemma D.1 to distribution P+, we have

E
(θ+,ϕ+)∼P+

⟨θ+,ϕ+⟩ ≤ λ(d+ 1) +
0.25

λ
E

(θ+,ϕ+)∼P+

(θ′
+,ϕ′

+)∼P+

⟨θ+,ϕ′
+⟩2. (20)

Plugging (18) and (19) into (20), we have

E
(θ,ϕ)∼P

[
⟨θ,ϕ⟩+ 4C(θ)

]
≤ λ(d+ 1) +

0.25

λ
E

(θ,ϕ)∼P
(θ′,ϕ′)∼P

[
⟨θ,ϕ′⟩2 + 8C(θ) · ⟨θ,ϕ′⟩+ 16C(θ)2

]
.

Since |C(θ)| ≤ ζ always holds, we can further conclude that

E
(θ,ϕ)∼P

⟨θ,ϕ⟩ ≤ λ(d+ 1) +
4ζ2

λ
+ 4ζ +

0.25

λ
E

(θ,ϕ)∼P
(θ′,ϕ′)∼P

[
⟨θ,ϕ′⟩2 + 8C(θ) · ⟨θ,ϕ′⟩

]
.

Denote Ω
(t)
− = Ω(t−1) ∪ {A(t), f (t)} be the history before the agent chooses action on round t. Let

Θ∗ = [θ∗
1 , · · · ,θ∗

T ] be the optimal policy within ϵ-netHϵ. For any linear policy Θ = [θ1, · · · ,θT ],
denote

∆t(Θ,a(t)) := ⟨a(t),θt − θ∗
t ⟩,∆∗

t (Θ) := max
a∈A(t)

⟨a,θt⟩ − max
a∈A(t)

⟨a,θ∗
t ⟩.

Note ∆t is referred to the Bellman error and ∆∗
t is referred to the feel-good error. The next lemma

shows that we can decomposed the expected regret using these two notions:
Lemma D.3. Under Assumption 3.1, the expected regret on round t satisfies

E
a(t)|Ω(t)

−

[
f (t)(a

(t)
∗ )− f (t)(a(t))

]
≤ E

a(t),Θ(t)|Ω(t)
−

[
∆t(Θ

(t),a(t))−∆∗
t (Θ

(t))
]
+ 2(ϵ+ ζ).

Proof. For any action a ∈ A, we have

⟨a,θ∗
t ⟩ ≤ f (t)(a) + |f (t)(a)− ⟨a,θ(f (t))⟩|+ |⟨a,θ(f (t))⟩ − ⟨a,θ∗

t ⟩| ≤ f (t)(a) + ϵ+ ζ,

where the first inequality follows from triangle inequality and the second inequality holds follows
from Assumption 3.1 and the definition of ϵ-net with |⟨a,θ(f (t))⟩ − ⟨a,θ∗

t ⟩| ≤ ∥a∥2 · ∥θ(f (t)) −
θ∗
t ∥2 ≤ ζ. Similarly, we have ⟨a,θ∗

t ⟩ ≥ f (t)(a)− (ϵ+ ζ). Thus,

E
a(t)|Ω(t)

−

[
f (t)(a

(t)
∗ )− f (t)(a(t))

]
≤ E

a(t)|Ω(t)
−

[
⟨a(t)∗ ,θ∗

t ⟩ − ⟨a(t),θ∗
t ⟩
]
+ 2(ϵ+ ζ). (21)

Moreover, we have

E
a(t)|Ω(t)

−

[
⟨a(t)∗ ,θ∗

t ⟩ − ⟨a(t),θ∗
t ⟩
]

≤ E
a(t)|Ω(t)

−

[
max
a∈A(t)

⟨a,θ∗
t ⟩ − ⟨a(t),θ∗

t ⟩
]

= E
a(t)|Ω(t)

−

[
max
a∈A(t)

⟨a,θ∗
t ⟩ − max

a∈A(t)
⟨a,θt⟩+ ⟨a(t),θt⟩ − ⟨a(t),θ∗

t ⟩
]

= E
a(t),Θ(t)|Ω(t)

−

[
∆t(Θ

(t),a(t))−∆∗
t (Θ

(t))
]
. (22)

where the first equality follows from the fact that action a(t) maximizes ⟨a,θt⟩ and thus
maxa∈A(t)⟨a,θt⟩ = ⟨a(t),θt⟩. By combining (21) and (22), we obtain the desired result.
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The following lemma shows a connection between ∆t and a potential function.

Lemma D.4. Define potential function

Φ(t) :=
1

βλ
log

∑
Θ∈Hϵ

exp
(
β

t∑
τ=1

(
L(τ)(Θ∗)− L(τ)(Θ)

))
.

Let Ct(a
(t)) := f (t)(a(t)) − ⟨a(t),θ∗

t ⟩ be the misspecification of Θ∗ on action a(t) with respect to
ground truth f (t). For any ϵ ∈ [0, 1], β ∈ (0, 0.01] and λ ∈ [0, 1], under Assumptions 3.1 and 3.2,
the expected increment of potential function on any round t satisfies

E
a(t),r(t)|Ω(t)

−

[
Φ(t) − Φ(t−1)

]
≤ −0.25

λ
E

a(t)|Ω(t)
−

E
Θ∼P (t)

[
∆t(Θ,a(t))2 + 8Ct(a

(t))∆t(Θ,a(t))
]

+ E
Θ∼P (t)

∆∗
t (Θ) + 4βλ+

8β

λ
(ϵ+ ζ)2.

Proof. the expected increment of the potential function in round t conditional on the reward function
and context in round t satisfies:

E
a(t),r(t)|Ω(t)

−

[
Φ(t) − Φ(t−1)

]

=
1

βλ
E

a(t),r(t)|Ω(t)
−

[
log

∑
Θ∈Hϵ

exp
(
β
∑t

τ=1

(
L(τ)(Θ∗)− L(τ)(Θ)

))
∑

Θ∈Hϵ
exp

(
β
∑t−1

τ=1

(
L(τ)(Θ∗)− L(τ)(Θ)

))
]

=
1

βλ
E

a(t),r(t)|Ω(t)
−

[
log

∑
Θ∈Hϵ

exp
(
− β

∑t−1
τ=1 L

(τ)(Θ)
)
· exp

(
β
(
L(t)(Θ∗)− L(t)(Θ)

))∑
Θ∈Hϵ

exp
(
− β

∑t−1
τ=1 L

(τ)(Θ)
) ]

=
1

βλ
E

a(t),r(t)|Ω(t)
−

[
log E

Θ∼P (t)
exp

(
β
(
L(t)(Θ∗)− L(t)(Θ)

))]
≤ 1

βλ
E

a(t)|Ω(t)
−

[
log E

r(t)|Ω(t)
− ,a(t)

E
Θ∼P (t)

exp
(
β
(
L(t)(Θ∗)− L(t)(Θ)

))]
. (23)

where the last equality follows from the construction of P (t) and the last inequality follows from
Jensen’s inequality. Moreover, we can decompose the loss function for any policy Θ according to

L(t)(Θ) = (r(t) − ⟨a(t),θt⟩)2 − λ max
a∈A(t)

⟨a,θt⟩

= (f (t)(a(t)) + ξ(t) − ⟨a(t),θt⟩)2 − λ max
a∈A(t)

⟨a,θt⟩

= (Ct(a
(t)) + ξ(t) −∆t(Θ,a(t)))2 − λ max

a∈A(t)
⟨a,θt⟩, (24)

where the first equality follows from the definition r(t) = f (t)(a(t)) + ξ(t) and the second equality
follows from the definition of Ct. For the optimal policy Θ∗ in ϵ-net, one can see that

L(t)(Θ∗) = (Ct(a
(t)) + ξ(t))2 − λ max

a∈A(t)
⟨a,θ∗

t ⟩. (25)

Combining (24) and (25), the terms in the exponent can be computed by

β(L(t)(Θ∗)− L(t)(Θ))

= −2βCt(a
(t))∆t(Θ,a(t))− 2βξ(t)∆t(Θ,a(t))− β∆t(Θ,a(t))2 + βλ∆∗

t (Θ). (26)

Since ξ(t) is zero mean random variables with range 2, according to Hoeffding’s lemma, we have

E
r(t)|Ω(t)

− ,a(t)

[
exp(−2βξ(t)∆t(Θ,a(t))

]
≤ exp

(
2β2∆t(Θ,a(t))2

)
. (27)
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In case that β ∈ (0, 0.01], we have 2β2 − β ≤ −0.5β. Plugging (26) and (27) into (23) gives

E
a(t),r(t)|Ω(t)

−

[
Φ(t) − Φ(t−1)

]
≤ 1

βλ
E

a(t)|Ω(t)
−

[
log E

Θ∼P (t)
exp

(
− 2βCt(a

(t))∆t(Θ,a(t))− 0.5β∆t(Θ,a(t))2 + βλ∆∗
t (Θ)

)]
.

According to Cauchy-Schwarz inequality, we can decompose RHS by

E
a(t),r(t)|Ω(t)

−

[
Φ(t) − Φ(t−1)

]
≤ 0.5

βλ
E

a(t)|Ω(t)
−

[
log E

Θ∼P (t)
exp

(
− 4βCt(a

(t))∆t(Θ,a(t))
)]

︸ ︷︷ ︸
I1

+
0.25

βλ
E

a(t)|Ω(t)
−

[
log E

Θ∼P (t)
exp

(
− 2β∆t(Θ,a(t))2

)]
︸ ︷︷ ︸

I2

+
0.25

βλ
E

a(t)|Ω(t)
−

[
log E

Θ∼P (t)
exp

(
4βλ∆∗

t (Θ)
)

︸ ︷︷ ︸
I3

]
. (28)

For the first term,

I1 ≤
0.5

βλ
E

a(t)|Ω(t)
−

[
log E

Θ∼P (t)

[
1− 4βCt(a

(t))∆t(Θ,a(t)) + 16β2(ϵ+ ζ)2
]]

≤ −0.25

λ
E

a(t)|Ω(t)
−

E
Θ∼P (t)

8Ct(a
(t))∆t(Θ,a(t)) +

8β

λ
(ϵ+ ζ)2 (29)

where the first inequality follows from ex ≤ 1+x+ t2 for |x| ≤ t ≤ 1 with |Ct(a
(t))| ≤ ϵ+ ζ ≤ 2,

|∆t(Θ,a(t))| ≤ 2 and β ∈ (0, 0.01], and the second inequality follows from log(1 + x) ≤ x for
x ≥ −1.
For the second term,

I2 ≤
0.25

βλ
E

a(t)|Ω(t)
−

[
log E

Θ∼P (t)

[
1− β∆t(Θ,a(t))2

]]

≤ −0.25

λ
E

a(t)|Ω(t)
−

E
Θ∼P (t)

∆t(Θ,a(t))2, (30)

where the first inequality follows from e−x ≤ 1 − 0.5x for x ∈ [0, 1] with |∆t(Θ,a(t))| ≤ 2 and
β ∈ (0, 0.01], and the second inequality follows from log(1− x) ≤ −x for all x ≤ 1.
For the third term,

I3 ≤
0.25

βλ
E

a(t)|Ω(t)
−

[
log E

Θ∼P (t)

[
1 + 4βλ∆∗

t (Θ) + 16β2λ2
]]

≤ E
Θ∼P (t)

∆∗
t (Θ) + 4βλ, (31)

where the first inequality follows from ex ≤ 1 + x + t2 for |x| ≤ t ≤ 1 with |∆∗
t (Θ)| ≤ 2,

β ∈ (0, 0.01] and λ ∈ [0, 1], and the second inequality follows from log(1 + x) ≤ x for x ≥ −1.
Combining (29), (30) and (31) with (28), we have

E
a(t),r(t)|Ω(t)

−

[
Φ(t) − Φ(t−1)

]
≤ −0.25

λ
E

a(t)|Ω(t)
−

E
Θ∼P (t)

[
∆t(Θ,a(t))2 + 8Ct(a

(t))∆t(Θ,a(t))
]

+ E
Θ∼P (t)

∆∗
t (Θ) + 4βλ+

8β

λ
(ϵ+ ζ)2.
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The following Lemma upper bounds the total change of the potential:
Lemma D.5. Under the settings of Lemma D.4, we have

Φ(0) − Φ(T ) ≤ 1

βλ
logN(H, ϵ, ∥ · ∥2,∞).

Proof. The statement can be proved by combining

Φ(0) =
1

βλ

[
log

∑
Θ∈Hϵ

exp(0)
]
=

1

βλ
log |Hϵ|,

and

Φ(T ) ≥ 1

βλ
E

Ω(T )

[
log max

Θ∈Hϵ

exp
(
β

T∑
τ=1

(−L(τ)(Θ) + L(τ)(Θ∗))
)]
≥ 0,

where the second inequality follows from Θ∗ ∈ Hϵ.

Note the chosen policy Θ(t) in Lemma D.3 is correlated with the selected action a(t) while the
random policy Θ in Lemma D.4 is not. The following lemma presents a connection between these
two notions.
Lemma D.6. Let Ct : Rd → R be a function such that |Ct(a)| ≤ ϵ+ ζ for any a ∈ A. Then,

E
Θ(t)|Ω(t)

−

∆∗
t (Θ

(t)) = E
Θ∼P (t)

∆∗
t (Θ),

and also

E
a(t),Θ(t)|Ω(t)

−

∆t(Θ
(t),a(t)) ≤ 0.25

λ
E

a(t)|Ω(t)
−

E
Θ∼P (t)

[
∆t(Θ,a(t))2 + 8Ct(a

(t))∆t(Θ,a(t))
]

+ λ(d+ 1) +
4

λ
(ϵ+ ζ)2 + 4(ϵ+ ζ).

Proof. According to the construction of P (t), the conditional distribution Θ(t)|Ω(t)
− is identical to

distribution Θ ∼ P (t). This directly gives

E
Θ(t)|Ω(t)

−

∆∗
t (Θ

(t)) = E
Θ∼P (t)

∆∗
t (Θ).

Moreover, apply Lemma D.2 to joint distribution (a(t),θ
(t)
t − θ∗

t ) conditional on Ω
(t)
− , we have

E
a(t),θ

(t)
t |Ω(t)

−

⟨a(t),θ(t)
t − θ∗

t ⟩ ≤
0.25

λ
E

a(t)|Ω(t)
−

E
θt∼P (t)

[
⟨a(t),θt − θ∗

t ⟩2 + 8Ct(a
(t))⟨a(t),θt − θ∗

t ⟩
]

+ λ(d+ 1) +
4

λ
(ϵ+ ζ)2 + 4(ϵ+ ζ).

The desired statement can be obtained using the definition of ∆t.

Now, we are ready to prove Theorem 5.1:

Proof of Theorem 5.1. We choose the parameters according to

λ :=

√
log |Hϵ|+ (ϵ+ ζ)2T

dT
= O(1/d), β := 0.01. (32)

Denote

Xt :=
0.25

λ
E

a(t)|Ω(t)
−

E
Θ∼P (t)

[
∆t(Θ,a(t))2 + 8Ct(a

(t))∆t(Θ,a(t))
]
− E

Θ∼P (t)
∆∗

t (Θ).

According to Lemma D.6, we have

E
a(t),Θ(t)|Ω(t)

−

[
∆t(Θ

(t),a(t))−∆∗
t (Θ

(t))
]
≤ Xt + λ(d+ 1) +

4

λ
(ϵ+ ζ)2 + 4(ϵ+ ζ). (33)
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According to Lemma D.4, we have

E
a(t),r(t)|Ω(t)

−

[
Φ(t) − Φ(t−1)

]
≤ −Xt + 4βλ+

8β

λ
(ϵ+ ζ)2. (34)

Combining (33) and (34) gives

E
a(t),Θ(t)|Ω(t)

−

[
∆t(Θ

(t),a(t))−∆∗
t (Θ

(t))
]

≤ E
a(t),r(t)|Ω(t)

−

[
Φ(t−1) − Φ(t)

]
+ λ(d+ 1 + 4β) +

4 + 8β

λ
(ϵ+ ζ)2 + 4(ϵ+ ζ). (35)

Moreover, we have

E[Regret(T )]

=

T∑
t=1

E
a(t)|Ω(t)

−

[
f (t)(a

(t)
∗ )− f (t)(a(t))

]
≤

T∑
t=1

E
a(t),Θ(t)|Ω(t)

−

[
∆t(Θ

(t),a(t))−∆∗
t (Θ

(t))
]
+ 2(ϵ+ ζ)T

≤
T∑

t=1

E
a(t),r(t)|Ω(t)

−

[
Φ(t−1) − Φ(t)

]
+ λ(d+ 1 + 4β)T +

4 + 8β

λ
(ϵ+ ζ)2T + 6(ϵ+ ζ)T

≤ 1

βλ
log |Hϵ|+ λ(d+ 1 + 4β)T +

4 + 8β

λ
(ϵ+ ζ)2T + 6(ϵ+ ζ)T,

where the first inequality follows from Lemma D.3, the second inequality follows from (35), and the
last inequality follows from Lemma D.5. With the parameter defined in (32), we conclude that

E[Regret(T )] ≤ O
(√

dT log |Hϵ|+ T
√
d(ϵ+ ζ)

)
.

E PROOF OF COVERING NUMBER FROM SECTION 5.1

In this section, we prove covering number bounds for some specific linear bandit settings. We first
introduce a classic result on the covering number of the unit ball.
Lemma E.1 (Lemma 5.2 in Vershynin (2012), Restated). The unit Euclidean ball Bd = {x ∈ Rd :
∥x∥2 ≤ 1} equipped with the Euclidean metric satisfies for every ϵ > 0 that

N(Bd, ϵ, ∥ · ∥2) ≤ (1 + 2ϵ−1)d.

With this lemma, we can directly prove the covering number of stationary linear bandits.
Lemma 5.1 (Covering Number for Misspecified Linear Bandits). Under Assumptions 3.1 and 3.3,
the metric entropy of linear policies satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O(d log ϵ−1).

Proof. We will prove this lemma by constructing an ϵ-net for H. Let Bd
ϵ be the minimum ϵ-net of

unit Euclidean ball Bd in L2 distance. LetHϵ be the set that contains every matrix [θ̃, · · · , θ̃] for all
θ̃ ∈ Bd

ϵ . According to Lemma E.1, we have |Hϵ| = |Bd
ϵ | ≤ (1 + 2ϵ−1)d.

We then show Hϵ is an ϵ-net of H under Assumption 3.3: For every linear policy [θ, · · · ,θ], there
exists θ̃ ∈ Bd

ϵ such that ∥θ − θ̃∥2 ≤ ϵ according to definition of Bd
ϵ . This shows [θ̃, · · · , θ̃] ∈ Hϵ

is an ϵ-approximation policy of [θ, · · · ,θ] which impliesHϵ is indeed an ϵ-net ofH.
As a result, we can bound the metric entropy by

logN(H, ϵ, ∥ · ∥2,∞) ≤ log |Hϵ| = O(d log ϵ−1).
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One can naturally extend the proof to non-stationary linear bandits with bounded switches:
Lemma 5.2 (Covering Number for Non-Stationary Linear Bandits with Bounded Switches). Under
Assumptions 3.1 and 3.4, the metric entropy of linear policies satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O(dS log ϵ−1 + S log T ).

Proof. We will prove this lemma by constructing an ϵ-net for H. Let Bd
ϵ be the minimum ϵ-

net of unit Euclidean ball Bd in L2 distance. We build a set Hϵ by mapping any sequence
(t1, · · · , tS) with 1 < t1 < · · · < tS ≤ T and S + 1 vectors θ̃0, · · · , θ̃S ∈ Bd

ϵ to the matrix
[θ̃0, · · · , θ̃0, θ̃1, · · · , θ̃1, · · · , θ̃S ] where the first θ̃i occurs at index ti. ti describes the round of i-th
switch and θ̃i characterize the parameter after the switch. The size ofHϵ can be bounded by

|Hϵ| ≤
(
T

S

)
· |Bd

ϵ |S+1 ≤ TS · (1 + 2ϵ−1)d(S+1),

where the first term is the number of possible (ti) and the second term is the number of possible θ̃i.
We then show Hϵ is an ϵ-net of H under under Assumption 3.4: Every linear policy in H
can also be written in form [θ0, · · · ,θ0,θ1, · · · ,θ1, · · · ,θS ] which can be covered by some
[θ̃0, · · · , θ̃0, θ̃1, · · · , θ̃1, · · · , θ̃S ] with the same switch locations and corresponding parameters. Ac-
cording to the definition of Bd

ϵ , ∥θi − θ̃i∥ ≤ ϵ for every i and thusHϵ is an ϵ-net ofH.
As a result, we can bound the metric entropy by

logN(H, ϵ, ∥ · ∥2,∞) ≤ log |Hϵ| = O(dS log ϵ−1 + S log T ).

For non-stationary linear bandits with bounded path length, we will show the ϵ-net for some bounded
switches instances can be transformed into a desired covering:
Lemma 5.3 (Covering Number for Non-Stationary Linear Bandits with Bounded Path Length).
Under Assumptions 3.1 and 3.5, the metric entropy of linear policies satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O(d log ϵ−1 + dPϵ−1 log ϵ−1 + Pϵ−1 log T ).

Proof. Let Ĥϵ/2 be the ϵ/2-net covering of non-stationary bandits with no more than 2Pϵ−1 (see
Assumption 3.4). We will show Ĥϵ/2 is an ϵ-net covering of non-stationary bandits with path length
no more than P :
For some linear policy Θ = [θ1,θ2, · · · ,θT ] ∈ H such that

∑T
t=1 ∥θt − θt−1∥ ≤ P , consider a

sequence 1 = t0 < t1 < · · · < tM ≤ T where ti is the minimal index such that ∥θti−θti−1
∥ > ϵ/2

for all i ≥ 1. Denote Θ̂ = [θ1, · · · ,θ1,θt1 , · · · ,θt1 , · · · ,θtM ] as the linear policy, which quantizes
the parameter drift in which the first θti occurs at index ti. Since the number of switch of Θ̂ is
bounded by M ≤ P/(ϵ/2) ≤ 2Pϵ−1, the ϵ/2-net Ĥϵ/2 contains an ϵ/2 approximated policy of Θ̂.
Denote the policy as Θ̃.
Since deviation of each single round policy in the same slice is no more than ϵ/2, we have ∥Θ̂ −
Θ∥2,∞ ≤ ϵ/2. According to the definition of ϵ/2-net, we also have ∥Θ̃−Θ̂∥2,∞ ≤ ϵ/2. According
to triangle inequality, we have ∥Θ̃−Θ∥2,∞ ≤ ϵ. This shows that Θ always has an ϵ-approximation
within Ĥϵ/2 and thus Ĥϵ/2 is indeed an ϵ-net ofH.
As a result, we can bound the metric entropy using Lemma 5.2

logN(H, ϵ, ∥ · ∥2,∞) ≤ log |Ĥϵ/2| ≤ O(d log ϵ−1 + dPϵ−1 log ϵ−1 + Pϵ−1 log T ),

where the extra d log ϵ−1 term follows from the special case S = 2Pϵ−1 < 1.

Now we consider the lifelong linear bandits. Its covering number bound is essentially the covering
number of low-rank matrices.
Lemma 5.4 (Covering Number for Lifelong Bandits with Shared Representation). Under Assump-
tions 3.1 and 3.6, the metric entropy of linear policies satisfies

logN(H, ϵ, ∥ · ∥2,∞) ≤ O(dk log ϵ−1 + kM log ϵ−1).
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Proof. We will prove this lemma by constructing an ϵ-net forH. This is done by constructing an ϵ/2-
net for all possible feature extractor B and an ϵ/2-net for all possible tasks specific vectors {wi}Mi=1.
In specific, we build a set Bϵ/2 such that there exists B̃ ∈ Bϵ/2 such that ∥B− B̃∥2 ≤ ϵ/2 andWϵ/2

such that there exists {w̃i}Mi=1 ∈ Wϵ/2 such that ∥wi − w̃i∥2 ≤ ϵ/2 for all i. We generate the ϵ-net
by mapping every pairs of B̃ and {w̃i}Mi=1 to matrix [θ̃(1), · · · , θ̃(T )] where θ̃(t) = Bw̃m(t) .

In any round with θ(t) = Bwm(t) , the vector θ̃(t) = B̃w̃m(t) with corresponding B̃ and w̃m(t) in
ϵ/2-net satisfies

∥θ(t) − θ̃(t)∥2 = ∥Bwm(t) − B̃w̃m(t)∥2
≤ ∥Bwm(t) −Bw̃m(t)∥2 + ∥Bw̃m(t) − B̃w̃m(t)∥2
≤ ∥B∥2∥wm(t) − w̃m(t)∥2 + ∥B− B̃∥2∥w̃m(t)∥2
≤ 1 · ϵ/2 + 1 · ϵ/2 ≤ ϵ,

where the second inequality follows from triangle inequality and the third inequality holds since B
is orthogonal matrix. This shows any task can be ϵ-approximated and the generated set is indeed an
ϵ-net. As a result, with Lemma E.1, we conclude that

logN(H, ϵ, ∥ · ∥2,∞) ≤ log |Bϵ/2|+ log |Wϵ/2| ≤ O(dk log ϵ−1 + kM log ϵ−1).

F LOWER BOUNDS IN SECTION 5.1

In this section, we give regret lower bounds for some specific linear bandit settings. We first present
some existing result in the literature. It is easy to check the corresponding hard instance satisfies our
formulation.
Lemma F.1. (Theorem 24.1 in Lattimore & Szepesvári (2020), Restated) Under Assumptions 3.1,
3.2 and 3.3, for any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
d
√
T
)
.

Lemma F.2. (Theorem 1 in Cheung et al. (2019), Restated) Under Assumptions 3.1, 3.2 and 3.5,
for any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
d

2
3T

2
3P

1
3

)
.

Lemma F.3. (Theorem 4 in Yang et al. (2020), Restated) Under Assumptions 3.1, 3.2 and 3.6, for
any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
d
√
kT + k

√
MT

)
.

Lemma F.4. (Theorem F.1 in Lattimore & Szepesvari (2020), Restated) Under Assumptions 3.1 and
3.2, for any algorithm, there exists a bandit instance for which

E[Regret(T )] ≥ Ω
(
T
√
d/ log Tζ

)
.

Remark F.1. In Lattimore & Szepesvari (2020), they proved a lower bound in the order of
Ω(min(T,K)

√
d/ log(K)ζ), where K is the number of actions. Here we choose K = T for

simplicity.

We further prove a lower bound for non-stationary linear bandits with bounded switches.
Lemma F.5. Under Assumptions 3.1, 3.2 and 3.4, for any algorithm, there exists a bandit instance
for which

E[Regret(T )] ≥ Ω
(
d
√
ST

)
.

Proof. Without loss of generality, assume T is divided by S. Consider a bandit instance where
the switch occurs at round T/S, 2T/S, · · · . Note the reward functions after different switches are
independent. Thus, according to Lemma F.1, any algorithm suffers Ω(d

√
T/S) regret in any interval

between two switches. Since there are S switches, for any algorithm, there exists a bandit instance
for which E[Regret(T )] ≥ Ω(d

√
ST ).
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The lower bounds result in Section 5.1 can be obtained by combining above lemmas:

• Combining Lemma F.1 and Lemma F.4 gives Proposition 5.1.
• Combining Lemma F.5 and Lemma F.4 gives Proposition 5.2.
• Combining Lemma F.2, Lemma F.1, and Lemma F.4 gives Proposition 5.3.
• Combining Lemma F.3 and Lemma F.4 gives Proposition 5.4.
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