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ABSTRACT

A significant gap exists between theory and practice in deep learning. One ex-
ample is given by generalization and approximation error bounds, which are of-
ten derived for overly simplified models or yield guarantees that are too loose to
be informative. Many such bounds rely on the manifold hypothesis and depend
on geometric regularity properties, including intrinsic dimension, curvature, and
reach of the data manifold or target functions. To make progress on improving
these bounds, one needs detailed insight into data manifold geometry and suitable
benchmarks on simple datasets. However, existing datasets and analysis tools typ-
ically fall into two extremes: analytically defined manifolds with precisely known
geometry but limited realism, or real-world datasets where bounds are assessed
only through downstream performance and geometric properties can be estimated
only coarsely and with hard-to-quantify error.
To address this lack of simple yet realistic datasets and accompanying geometric
tools, we introduce a benchmarking framework for studying data geometry. We
repurpose and extend the dSprites and COIL-20 datasets with additional transfor-
mation dimensions and finer sampling resolution. This enables accurate finite-
difference estimates of geometric quantities such as curvature, reach, and volume,
yielding a flexible benchmark for evaluating manifold learning methods. As il-
lustrative applications, we assess two established manifold learning bounds by
Genovese et al. and Fefferman et al., and analyze how manifold geometry evolves
across network layers in β-VAEs. Our results highlight both the limitations of
existing bounds and the value of controlled benchmarks for guiding future theo-
retical developments.

1 INTRODUCTION

Deep learning has become the dominant paradigm for a broad range of tasks, and in recent years gen-
erative models in particular such as variational autoencoders (VAEs) (Kingma & Welling, 2013), dif-
fusion models (Ho et al., 2020), and modern masked or autoencoding architectures (He et al., 2022)
have seen striking empirical success. A common way to interpret this success is through the mani-
fold hypothesis (Cayton et al., 2005): high-dimensional data often concentrate near low-dimensional
manifolds, and learning amounts to finding useful parameterizations of them. Many modern models
can thus be viewed as procedures for fitting or approximating data manifolds, whether explicitly,
as in latent-variable models (Arvanitidis et al., 2017), or implicitly, as in denoising and score-based
flows (Horvat & Pfister, 2021).

While appealing, it remains unclear how networks fit manifolds in practice. Classical results such as
Genovese et al. (2012) on minimax rates for manifold estimation, Fefferman et al. (2016) on testing
the manifold hypothesis, or more recent work on approximation of Sobolev classes on manifolds
(Tan et al., 2024) highlight the role of geometric quantities like curvature, reach, or sampling density
in learning. Yet in realistic data these quantities are rarely observable: the data-generating process
is unknown, the intrinsic dimension is uncertain (Campadelli et al., 2015), and sampling can be
irregular (Shroff et al., 2011; Sedghi et al., 2020). As a result, theoretical guarantees often rely on
constants that cannot be directly checked or measured.

This creates two complementary needs. On the theoretical side, sharper and more data-adaptive
bounds are desirable, or at least a clearer picture of when existing bounds are informative. On the
empirical side, there is a lack of benchmarks that balance realism with geometric control: synthetic
manifolds are too simple, while real-world datasets obscure the geometry entirely.
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To narrow this gap, we introduce a framework that constructs low-dimensional image families sam-
pled densely along controlled transformation axes (e.g., rotation, translation, scale), and provides
efficient finite-difference estimators for geometric measures such as curvature, reach, and volume.
Coupled with an experimental pipeline for probing manifold fitting methods (e.g., β-VAEs), our
framework enables systematic tests of how theory and practice align. While in this paper we il-
lustrate its use through generative models and manifold-fitting bounds, the framework is general
and can support investigations in other settings, such as discriminative learning or benchmarking
geometric measure approximation methods. Our contributions are the following:

• A reproducible framework of adapted low-dimensional datasets with dense, axis-aligned
sampling, plus an experimental pipeline for probing modern generative and representation
models.

• A suite of efficient finite-difference estimators for pointwise and global geometric quanti-
ties such as the curvature, reach, or the volume of manifolds.

• Empirical studies that demonstrate how the framework can be used to test theoretical
bounds and trace how learned representations reshape data geometry.

2 RELATED WORK

Manifold Analysis: Following the manifold hypothesis (Cayton et al., 2005), many works analyze
the geometry of data and learned representations. Early results on inferring topological structure
from samples include guarantees for homology recovery (Niyogi et al., 2008). Studies on VAEs and
β-VAEs (Kingma et al., 2019; Higgins et al., 2017) show that learned latent spaces often exhibit lim-
ited curvature (Arvanitidis et al., 2017; Shao et al., 2018). Geometric invariants—curvature, tangent
spaces, and reach—have been used to study robustness and disentanglement (Aamari et al., 2019;
Berenfeld et al., 2022; Birdal et al., 2021), though outcomes depend strongly on dataset, architecture,
and estimator (Brahma et al., 2015; Kaufman & Azencot, 2023). Recent representation-learning
approaches explicitly impose manifold structure via learned charts (Schonsheck et al., 2019). Con-
nections to expressive power have also been explored through manifold topology (Yao et al., 2024a).

Manifold Fitting Bounds: Genovese et al. (2012) established the minimax rate O(n−2/(2+d)),
later shown optimal by Kim & Zhou (2015), though the corresponding estimator is computationally
infeasible. Yao & Xia (2019) handled unbounded noise via projection, yielding O(σ2 log(1/σ))
Hausdorff error for sample size O(σ−(d+3)). Neural estimators (Yao et al., 2023; 2024b) offer
scalable alternatives at the cost of weaker guarantees. Earlier complexity results for testing the
manifold hypothesis (Narayanan & Mitter, 2010) relate geometry, dimension, and sample efficiency
more explicitly.

A complementary line of work uses reach as a structural primitive. Fefferman et al. (2016) intro-
duced a geometric approach based on preserving reach, with noisy-data extensions reducing com-
plexity from double- to single-exponential (Fefferman et al., 2018; 2020). However, these guarantees
depend on unknown geometric parameters such as reach and volume. For example, the constants in
Yao & Xia (2019) scale as τ−2, illustrating a recurring issue: theoretical bounds often require prior
knowledge of quantities that can only be estimated from the manifold itself.

Geometric Property Estimation: Recent work develops estimators and sample complexity bounds
for reach and related quantities (Aamari et al., 2019; Berenfeld et al., 2022; Aamari et al., 2023),
though empirical validation remains challenging due to the lack of ground-truth geometric data.
Similar progress exists for curvature estimation: scalar curvature estimators with nonasymptotic
guarantees (Aamari & Levrard, 2019; Gawlik & Neunteufel, 2025), methods for the second fun-
damental form and Ricci curvature (Acosta et al., 2023; Samal et al., 2018), and tangent-space
estimators with provable accuracy (Cheng & Chiu, 2016; Cazals & Pouget, 2005). These results
extend the classical geometric recovery literature (Niyogi et al., 2008).

Overall, theory provides strong asymptotic guarantees, but empirical understanding is hindered by
the absence of datasets with exact geometric ground truth. Our framework addresses this gap by
combining dense, axis-aligned sampling with finite-difference estimators, enabling controlled eval-
uation of geometric quantities and systematic tests of how theoretical bounds behave under realistic
approximations.
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3 BACKGROUND AND DEFINITIONS

Datasets as Manifolds: The manifold hypothesis suggests that high-dimensional datasets often
concentrate near low-dimensional manifolds. We focus on datasets where the number of intrinsic
factors of variation d is small and fixed, and where these factors are explicitly known. Each dataset
is modeled as a union of smooth d-dimensional manifolds embedded in RD, possibly with bound-
ary. Typically, each of the k semantic classes in the dataset corresponds to a separate connected
component of this union.

For this work, we restrict attention to simple topologies in which each manifold factors into cyclic
and non-cyclic directions. Concretely, every manifold is assumed to be homeomorphic to [0, 1]r ×
(S1)s, r + s = d, so that some coordinates vary over a compact interval while others wrap around
a circle. This setting captures many common synthetic datasets. A canonical example is dSprites,
a collection of 64 × 64 grayscale images of objects (square, ellipse, heart) undergoing controlled
transformations such as scaling, rotation, and translation. The manifold of a class in this dataset is
homeomorphic to [0, 1]3 × S1 and is embedded into R4096.

To obtain discrete datasets from this continuous geometric picture, we impose a grid structure. Let
nl be the number of sampled values along the l-th dimension, so that the total number of grid points
is n =

∏
l≤d nl. We define

G =
{(

j1
n1

, . . . , jr
nr

, 2π jr+1

nr+1
, . . . , 2π jd

nd

) ∣∣∣ 0 ≤ jℓ < nℓ

}
, (3.1)

where the first r coordinates sample [0, 1] uniformly and the last s coordinates sample S1 uniformly.
For each class i ≤ k, we define a mapping, ui : G → Mi, that associates each grid point with a
dataset element obtained by applying the corresponding transformations. The image ui[G] provides
a discrete parametrization of the manifold Mi, and by cutting along cyclic directions one obtains
discrete patches of Mi. The complete discretized dataset is then

XG =
⋃
i≤k

ui[G]. (3.2)

Geometric Measures: We focus on three geometric quantities describing the local and global struc-
ture of a manifold: volume, scalar curvature, and reach. For completeness, we recall the definitions
of the Riemannian metric and the objects needed to introduce these quantities.
Definition 3.1 (Riemannian metric). A Riemannian metric g on a d-dimensional differentiable man-
ifold M assigns to each point p ∈ M an inner product gp on the tangent space TpM . If M is em-
bedded in RD, the ambient Euclidean metric induces a Riemannian metric by restriction. In local
coordinates u : U → M , the metric matrix is

gij(x) = ⟨∂iu(x), ∂ju(x)⟩RD . (3.3)

Definition 3.2 (Volume element and volume). On a Riemannian manifold (M, g) with local coor-
dinates (u1, . . . , ud), the natural volume element is

dV =
√

det(g) du1 ∧ · · · ∧ dud. (3.4)

The volume of a region R ⊂ M is then

Vol(R) =

∫
u−1(R)

√
det(g) dx1 · · · dxd. (3.5)

Throughout, we use Einstein summation notation: free upper and lower indices in the same term are
implicitly summed, e.g. gijRicij =

∑
i,j g

ijRicij .

Definition 3.3 (Notions of curvature). The curvature of (M, g) is encoded in the Riemann tensor

Ri
jkl = ∂kΓ

i
jl − ∂lΓ

i
jk + Γi

krΓ
r
jl − Γi

lrΓ
r
jk, (3.6)

where the Christoffel symbols are

Γi
jk = 1

2g
ir(∂jgrk + ∂kgrj − ∂rgjk). (3.7)

Contracting yields the Ricci tensor Ricij = Rr
irj and the scalar curvature R = gijRicij .
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Definition 3.4 (Reach). For a closed set A ⊂ RD, the medial axis is the set of points with more
than one nearest neighbor in A. The reach of A is the distance to its medial axis:

τA = inf
p∈A

dℓ2(p,Med(A)). (3.8)

Here dℓ2 is the Euclidean distance: dℓ2(p, q) = ∥p − q∥2, and for a set A, dℓ2(p,A) =
infq∈A dℓ2(p, q). Intuitively, τA is the largest radius such that every point within distance < τA
of A has a unique nearest neighbor in A. For a compact d-dimensional submanifold M ⊂ RD, the
reach can be expressed as

τM = inf
p̸=q∈M

∥p− q∥2

2 dℓ2(q − p, TpM)
, (3.9)

where dℓ2(v, TpM) is the distance of a vector v to the tangent space at p.

In our applications, we consider both global quantities (total volume, the scalar curvature integral1,
global reach) and their local counterparts (volume element, pointwise scalar curvature, and local
reach estimators as in Aamari et al. (2019)).
Definition 3.5 (Hausdorff distance). Let A,B ⊂ RD be non-empty subsets. The Hausdorff distance
between A and B is

H(A,B) = max
{

sup
a∈A

dℓ2(a,B), sup
b∈B

dℓ2(b, A)
}
. (3.10)

If M is the ground-truth data manifold and M̂ a learned approximation (e.g., via an autoencoder),
then H(M,M̂) expresses the largest geometric error, i.e. how far the manifolds can be from each
other at any single point.

Manifold Fitting and Bounds: Manifold learning is closely connected with generative modeling:
in both cases, high-dimensional data are assumed to lie near a low-dimensional manifold. Gener-
ative models typically learn a mapping between the data manifold in RD and a lower-dimensional
latent space where semantic factors of variation are disentangled and sampling is easier. If the en-
coder–decoder network is sufficiently regular (locally C1 or C2), then composing the encoder with
the manifold charts ui yields a parametrization of the latent manifold. Each data point is mapped
to its latent representation, and decoding corresponds to projecting back onto the estimated data
manifold.

We focus on two theoretical results that provide bounds on the error of manifold fitting in terms
of sample size, intrinsic dimension, and geometric properties of the manifold. Before stating these
results, we define the normal fiber of radius r at a point p ∈ M as Lr(p) = T⊥

p M ∩BD(p, r), where
T⊥
p M is the space orthogonal to the tangent space at p and BD(p, r) is the D-dimensional ball of

radius r centered at p. Intuitively, this fiber is a (D − d)-dimensional ball extending away from the
manifold at p.

Minimax manifold estimation bound: Genovese et al. (2012) establish minimax rates for estimat-
ing a manifold from samples corrupted by small normal noise. Their result shows that the intrinsic
dimension d alone governs the difficulty of estimation.
Theorem 1 (Genovese et al. (2012)). Let M(τ) be the class of compact, smooth, boundaryless
d-dimensional manifolds embedded in RD with reach at least τ . For each M ∈ M(τ), let QM be
the distribution of Y = ξ+Z, where ξ is uniformly distributed on M and Z is uniformly distributed
on the normal fiber of radius σ at ξ. Let Q = {QM | M ∈ M(τ)}. For an n-sample estimator
M̂ : Rn → M, define the minimax risk

Rn(Q) = inf
M̂

sup
Q∈Q

EQ[H(M̂,M)], (3.11)

where H(·, ·) denotes the Hausdorff distance. Then there exist constants C1, C2 > 0 such that

C1

(
1

n

) 2
2+d

≤ Rn(Q) ≤ C2

(
log n

n

) 2
2+d

. (3.12)

1The integral of the scalar field defined by the scalar curvature R on M over the volume of M , i.e.
∫
M

R dV .
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Original
Dataset

Compute
Manifold
Measures
via finite
differences

Granular Datasets Versions

Reach

...

Volume

Dataset
Expansion

Figure 1: From a low-dimensional seed we produce dense, regular grids via analytic parametriza-
tions or systematic transforms; central finite differences recover geometric estimators such as reach
and curvature enabling validation of manifold-fitting bounds.

This result shows that the sample complexity depends exponentially on the intrinsic dimension d,
but not on the ambient dimension D. Intuitively, the distributions QM correspond to sampling a
point on M and perturbing it orthogonally within its reach. In our setting, an estimator M̂ may be
interpreted as a neural network (e.g., an autoencoder) that outputs a fitted manifold.

Testing the manifold hypothesis: Fefferman et al. (2016) introduce a testing framework for the
manifold hypothesis. Their analysis relates the required number of samples to two geometric pa-
rameters of the manifold: its volume and its reach. Assuming a manifold M satisfying the hypoth-
esis exists, they derive the following upper bound on the Hausdorff distance between the true and
estimated manifolds:

Rn(Q) ≤ C1
V 1/d

τ

(
1

n

)1/d

. (3.13)

Further details on the derivation of this bound are provided in Appendix A.

4 METHODS AND FRAMEWORK

We construct controlled synthetic manifolds of low intrinsic dimension (d = 1–4) sampled on regu-
larly spaced grids. Dense sampling enables stable finite-difference approximations of partial deriva-
tives, allowing accurate computation of the induced metric, volume element, curvature tensors, and
reach. This framework provides a setting to empirically assess theoretical manifold-fitting bounds
and a reproducible dataset suite for validating geometric estimators.

Datasets with a dense grid structure: We consider two complementary approaches for construct-
ing low-dimensional datasets with a grid structure.

For manifolds with an explicit mathematical description, we use known parametrizations to generate
a regular grid of points. For image-based or domain-specific datasets, we extend existing data by
systematically applying transformations (translations, rotations, scalings). Sampling all combina-
tions of these transformations yields a structured grid analogous to the analytic manifold case.

Although grid sampling provides dense coverage, it may not be uniform with respect to the intrinsic
geometry. To obtain more uniform subsets, we use two strategies:

• Iterative farthest-point sampling on the grid, selecting maximally separated points.

• Sampling according to the volume form, either by weighting grid points proportionally or,
when analytic expressions exist, by using inverse transform sampling across dimensions
via numerical integration. This becomes computationally demanding as d increases.

For experiments, we construct a fixed test set by selecting a uniformly distributed subset of grid
points. The remaining points form the training set, with varying training sizes. This ensures clear
train/test separation while keeping the test set sufficiently representative for approximating Haus-
dorff and average distances between manifolds. We compute the geometric measures on the full
dataset.
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Computation of geometric measures: To estimate geometric quantities such as the volume ele-
ment, scalar curvature, and reach, we use finite-difference approximations of partial derivatives on
the dense grid. We assume C3 regularity for estimating the reach and volume and C5 regularity for
estimating scalar curvature, enabling second-order finite-difference approximations of the required
first- and third-order derivatives.

Given a parametrization u : Rd → RD, the central difference approximation

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (4.1)

extends coordinate-wise. For example,

Dc
h,iu(x) =

u(x1, . . . , xi + h, . . . , xd)− u(x1, . . . , xi − h, . . . , xd)

2h
, (4.2)

gives a second-order accurate estimate of the ith partial derivative. Products of such approximations
yield gij = ⟨u,i, u,j⟩+O(h2), so all smooth metric-dependent quantities (volume form, Christoffel
symbols, curvature tensors, scalar curvature) inherit O(h2) accuracy. These intermediate tensors are
available within the framework for downstream analysis. Thus V̂ −V = O(h2) and R̂−R = O(h2).
For the reach, we use the estimator of Aamari et al. (2019), which on an equidistant grid of spacing
h satisfies

|τ̂ − τ | = O(h). (4.3)

We validate these estimators on manifolds with known closed-form geometric quantities, including
2- and 3-dimensional ellipsoids, hyperboloids, and 4-spheres in various ambient spaces. Across all
tested cases, relative errors are typically below 10−2, confirming that finite differences on dense
grids provide highly accurate geometric approximations.

Comparison to general estimation methods:

General estimators of curvature and reach from point clouds, such as those of Aamari et al. (2023)
for reach and Aamari & Levrard (2019) for curvature, operate in far broader settings than ours. They
must infer derivatives from unstructured samples via sophisticated interpolations, leading to optimal
but more complex rates, nontrivial constants, and substantial computational overhead. No publicly
available implementations currently exist.

On a d-dimensional grid with n points, spacing is h = n−1/d. Our reach estimate therefore satisfies

|τ̂ − τ | = O(h) = O(n−1/d),

which matches the lower bound and is slightly sharper than the O((log n/n)1/d) rate of Aamari
et al. (2023) for C3 manifolds.

For scalar curvature, our intrinsic finite-difference estimator gives

|R̂−R| = O(h2) = O(n−2/d).

The bound of Aamari & Levrard (2019) is O((log n/n)3/d) for C5 manifolds, which is slightly
better. This gap is due to our intrinsic computation of the Riemann curvature tensor, which requires
third-order derivatives. An extrinsic formulation via the second fundamental form would reduce the
derivative order and yield optimal rates. This is a natural extension for future work.

Our aim is not to compete with general estimators. Instead, the controlled grid setting provides
a straightforward and reproducible way to compute geometric quantities at near-optimal accuracy.
The resulting measures serve as reliable benchmarks and unit tests for developing and analyzing
more general methods on unstructured data.

5 APPLICATIONS

Datasets: Our experimental setup employs two types of datasets: (i) toy manifolds with explicit
mathematical parametrizations for analytical validation, and (ii) adapted versions of established im-
age datasets (dSprites Matthey et al. (2017) and COIL-20 Nene et al. (1996)) that provide controlled
settings for empirical evaluation. Table 1 summarizes the key characteristics of each dataset.

6
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The toy manifolds serve as analytically tractable benchmarks with known closed-form geometric
properties. For the image datasets, we modified the original sampling schemes to better suit geo-
metric computations: dSprites was regenerated with reduced resolution but improved anti-aliasing,
while COIL-20 was extended with additional transformations including scale and orientation. Both
datasets employ dense grid sampling with margin oversampling on non-cyclic dimensions to enable
finite difference computations of geometric measures. Detailed specifications are in Appendix B.

Manifold fitting methods: We consider two complementary approaches to fit manifolds to the
datasets: a geometric method, Manifold Moving Least Squares (MMLS) (Sober & Levin, 2020) ,
and a deep learning method, the β-VAE autoencoder (Higgins et al., 2017).

MMLS: MMLS, Sober & Levin (2020), is a local manifold approximation method in which, for
each query point, a neighborhood is weighted by a kernel function and a d-dimensional affine space
together with a local polynomial are fitted by weighted least squares. The projection onto the approx-
imated manifold is then obtained by projecting onto the fitted d-plane and evaluating the polynomial
correction, yielding a flexible higher-order local model of the manifold.

In our setting, the ambient dimension is too high to reliably estimate local polynomials. We therefore
customize the procedure by restricting the fit to the weighted d-plane alone. There are more details
on the method and our usage in Appendix C.1.

β-VAE: The β-VAE, Higgins et al. (2017), provides a learning-based approach. It maps input data
into a low-dimensional latent space and reconstructs them, with the reconstruction lying on a learned
manifold. The reconstruction distance can thus be interpreted as the distance to this manifold. As
the input dimensionality is too small for meaningful bottlenecks in toy datasets, we employ β-VAE
only for image datasets (dSprites, COIL-20). For more details, refer to Appendix C.1

Sampling protocol: For both methods, a fixed test set of 500 uniformly spread points is used. On
the toy datasets, training sets range from 5–500 points, and each experiment is repeated 20 times.
On dSprites and COIL-20, data ratios range from 0.01 up to 1.0, with three repetitions per setup.

The motivation for considering both methods is that MMLS directly fits a manifold in the original
data space, whereas β-VAE learns a latent manifold with richer semantic structure. Together, they
provide complementary views of manifold fitting performance.

Error Bounds evaluation: We now turn to the first application of manifold fitting: the empirical
evaluation of theoretical bounds on approximation error. Recall from section 3 that Genovese et al.
provide an upper and lower bound depending only on the intrinsic dimension, while Fefferman et al.
derive a sharper upper bound that additionally incorporates the reach and volume of the manifold.
For the fitting methods (MMLS, β-VAE), each dataset (toy, dSprites, COIL-20), and a range of
intrinsic dimensions, we fit manifolds for multiple training set sizes. As distance metric we use the
Hausdorff distance between the fitted and the true manifold.

Comparing to bounds: To estimate the constants appearing in the theoretical upper and lower
error bounds, we avoid attempting to compute these constants directly. Instead, we determine them
empirically by aligning the theoretical shapes of the bounds with the observed error curve.

The theoretical bounds scale like C1n
−2/(2+d) and C2(log n/n)

−2/(2+d), which suggests that the
true error curve should be well approximated by a power law of the form Rn ∼ Cn−g(d). Taking
logarithms yields a linear model logRn ∼ −A log n+logC. We therefore regress (lognj , log R̂nj )
for a sequence of sample sizes nj covering the fractions {0.01, 0.02, 0.05, 0.1, . . . , 1.0} of the test

Table 1: Dataset characteristics and parametrizations used in our experiments:
Dataset d D Factors Range Components
Circle 1 2 θ [0, 2π] 1
Two moons 1 2 θ [0, 2π] 2
Sphere 2 3 θ, ϕ [0, 2π]× [0, π] 1
Torus 2 3 θ, ϕ [0, 2π]× [0, 2π] 1

dSprites 4 4096 scale, orientation, pos. x, pos. y see Appendix B 3
COIL-20 3 4096 horiz. orient., scale, img. orient. see Appendix B 20
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Figure 2: Fitting bounds on dSprites for different dimensions utilizing MMLS.

dataset. Each experiment is repeated three times, and the empirical values R̂nj used for the fit are the
pointwise averages. The regression provides estimates Â and Ĉ, giving a fitted curve R̂fit

n = Ĉn−Â.

We then use this fitted curve to select constants for the upper and lower theoretical bounds. For each
nj , we compute the 0.99 percentile of the fitted values R̂fit

nj
. The upper bound constant is chosen as

the smallest value for which the bound stays above these percentiles; the lower bound constant is
chosen as the largest value for which the bound stays below them. This procedure yields stable and
reproducible constants while preserving the theoretical scaling behavior. For more details and plots
related to the logarithmic regression fitting, please look at the appendix sub-section C.2.

Results: We present three representative comparisons:

• Cross-dataset (Figure 4): curves for sphere, torus, COIL-20 and dSprites using MMLS.

• Cross-dimension (Figure 2): curves for dSprites with intrinsic dimensions d = 1, 2, 3, 4,
again using MMLS.

• Cross-model (Figure 3): comparison of MMLS and β-VAE on 4D dSprites.
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Figure 3: Bounds for MMLS & β-VAE on dSprites (4D)

The main observations are: (i) Fef-
ferman’s bounds, which explicitly
exploit reach and volume, yield sig-
nificantly tighter upper envelopes
than dimension-only bounds. (ii)
For toy datasets, the empirical
curves initially follow the upper rate(
logn
n

)1/d
but then approach the

lower rate
(
1
n

)1/d
as sample size

grows. (iii) For image datasets
(COIL-20, dSprites), the behavior is
reversed: curves start closer to the lower bound and move upward with larger n. We actually notice
that this behavior is correlated with the increase of scalar curvature magnitude on the datasets which
captures their complexity. One potential line of investigation could be to check if the logn factor on
the upper bounds can be connected with curvature or reach.
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Figure 5: Evolution of volume, scalar curvature, and reach of the manifold across layers of a β-VAE,
shown for both dSprites and COIL-20:

Manifold analysis: In the second application, we analyze how geometric properties of data mani-
folds evolve through the layers of a β-VAE using the dSprites (4D) and COIL-20 (3D) datasets. For
each layer we compute the manifold volume, integrated scalar curvature (with positive and negative
parts separated), reach, and the average distance between class manifolds (Figure 5).

We observe that curvature systematically increases while reach decreases in deeper layers, indicating
that the intermediate manifolds become progressively more intricate and approach self-intersections.
At the same time, average distances between class manifolds grow closer to the latent space, suggest-
ing that as semantic information strengthens, the network prioritizes class separation over preserving
low-level visual transformations.

6 DISCUSSION

We presented a framework for constructing dense manifolds and accurately estimating their geomet-
ric properties, enabling controlled studies of manifold fitting. We illustrated two use cases: assessing
existing manifold fitting bounds via log-log scaling fits, and analyzing how data geometry evolves
across layers of a β-VAE. Both revealed how geometric structure influences learning.

The main strength of this framework is its ability to provide ground truth geometric quantities that
are otherwise inaccessible or unreliable. Unlike real datasets, where assumptions cannot be veri-
fied, or simple analytic manifolds, which lack representational richness, our synthetic constructions
balance realism and control. This makes them well-suited for probing theoretical assumptions, vali-
dating estimators, or stress-testing bounds under controlled perturbations.

Several limitations should nonetheless be emphasized:

• The framework can analyze only manifolds of low dimension, up to 4–5. It is therefore
intended for benchmarking and understanding rather than analyzing arbitrary datasets.

• It currently supports manifolds with simple topology, [0, 1]r × (S1)s. Extending this is
possible but comes with additional implementation complexity.

Future work could address these limitations in several directions. Expanding the dataset suite to
include richer transformations, occlusions, more diverse topologies, and additional modalities (e.g.,
text or audio) would broaden applicability. Another possibility is to evaluate existing geometric es-
timators, e.g. for curvature or reach, by comparing them against the more accurate finite-difference
values on the test manifolds. The framework could also be used to study discriminative bounds,
where classifiers effectively fit functions on manifolds, and to quantify how geometric fidelity inter-
acts with generalization.

Finally, large language models (LLMs) were used to polish the writing of this paper. All scientific
ideas, results, and analyses are original.
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A BOUNDS FROM TESTING THE MANIFOLD HYPOTHESIS FEFFERMAN ET AL.
(2016)

Fefferman et al. (2016) provide a testing framework for the manifold hypothesis. Their result
connects the number of samples to geometric parameters of the manifold, namely its volume and
reach. Here we present a fuller version of their result which implies the bound mentioned in the
main text.

Theorem 2 ( Fefferman et al. (2016)). There exists an algorithm which, given samples from a
distribution P and ε > 0, distinguishes with probability at least 1 − δ between the following two
cases:

• There exists M ∈ G(d,CV, τ/C) such that L(M,P ) ≤ Cε.

• There does not exist M ∈ G(d, V/C, τC) such that L(M,P ) ≤ ε/C.

Here G(d, V, τ) denotes the class of d-dimensional manifolds of volume ≤ V and reach ≥ τ . The
required sample size is

n =
Np ln4(Np/ε) + ln(δ−1)

ε2
, Np = V

(
1

τd
+

1

τd/2εd/2

)
. (A.1)

Assuming that such a manifold M exists, the result yields an upper bound on the Hausdorff distance
between the true and estimated manifolds:

Rn(Q) ≤ C1

τ

(
V

n

)1/d

. (A.2)

B DATASETS

B.1 DSPRITES

For the original dataset check Matthey et al. (2017). Some example images can be seen in figure 6
and a projection of dataset to 3D with PCA in 7. One can notice how the projections of the manifolds
of the different classes are enveloped.
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Parameters:

• Image shape: 64× 64

• Shape: 3 values (square, ellipse, heart)

• Scale: 16 values linearly spaced in [0.5, 1]

• Orientation: 16 values in [0, 2π]

• Position X: 16 values in [0, 1]

• Position Y: 16 values in [0, 1]

• Total: 196,608 images (3× 164)

0 100 200 300 400 500

0

50

100

150

200

250
Figure 6: Example images of the heart class of dSprites.

B.2 COIL-20

For the original dataset check Nene et al. (1996). Some example images can be seen in figure 8 and
a projection of dataset to 3D with PCA in 9. Again one can notice how the classes are enveloped.

Parameters:

• Image shape: 64× 64

• Objects: 20 objects from original COIL-20

• Horizontal orientation: 18 values in [0, 2π]

• Scale: 16 values linearly spaced in [0.5, 1]

• Image orientation: 16 values in [0, 2π]

• Total: 92,160 images (20× 18× 162)

B.3 GEOMETRIC MEASURES ON PROJECTIONS

Below we also provide two 3D plots where the geometric measures are plotted on the hear class
of dSprites 10 and on the duck class of COIL-20 11. The absolute scalar curvature, is simply the
absolute value of the point-wise scalar curvature. One can notice in both datasets that the absolute
scalar curvature aligns well with the reach while the usual scalar curvature is much more noisy. This
indicates that the different transforms have an intense impact on the change of curvature direction
of each other.
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Figure 7: PCA projection of the dSprites dataset.
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Figure 8: Example images of the duck class of COIL-20. Note the resizing and the additional yz-
rotation and size transforms.
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Figure 9: PCA projection of the COIL-20 dataset.

Figure 10: PCA projection of the COIL-20 dataset.

C MANIFOLD FITTING

Here we provide details on the way we setup and run the experiments for the manifold fitting use
case of our framework. This included details on the datasets used, the fitting models and the way we
estimate the bound curves.
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Figure 11: PCA projection of the COIL-20 dataset.

C.1 FITTING METHODS

THE FITTING PROCESS AND DATA SELECTION

Most manifold-fitting methods estimate local structures on M—such as tangent d-planes, tubular
neighborhoods, or charts—from which a reconstructed manifold M̂ is obtained. Evaluating the
fit ideally requires computing the Hausdorff distance H(M,M̂). A direct numerical approximation
demands dense, uniformly distributed point sets on both M and M̂ , together with exhaustive nearest-
neighbor searches, which is computationally prohibitive.

For simple analytic manifolds, uniform coverage can be obtained through explicit parametrizations,
either via grids or by uniform volume sampling. For more complex datasets, curated sampling is
often needed to empirically cover the space. To avoid evaluating the full Hausdorff distance, one
can use the projection operators provided by the fitting methods: for each point p ∈ M , let p̂ be its
projection onto M̂ . The projection error ∥p−p̂∥2 serves as a surrogate for dℓ2(p, M̂), and H(M, M̂)
is approximated by the maximum error over a dense reference set on M .

Toy manifolds. Our procedure is:

• Construct a dense, approximately uniform reference set Y = {yi}i≤ntest
⊂ M .

• Uniformly sample n points X = {xi}i≤n ⊂ M for fitting.

• Fit the chosen manifold-fitting method on X .

• Project Y to Ŷ and compute the pointwise errors ∥yi − ŷi∥2 and their maximum.

The dense reference set Y is generated either directly via a grid in a closed-form parametrization or
by drawing a large uniform sample S = {si}i≤N ⊂ M and selecting ntest centroids C = {ci} ⊂ M
that minimize the Sinkhorn loss between C and S. All uniform sampling steps rely on closed-form
sampling formulas tailored to each manifold.

Image manifolds. The procedure mirrors the synthetic case:

• Select a dense subset Y = {yi}i≤ntest
⊂ XG from the grid XG.

• Uniformly sample X = {xi}i≤n ⊂ XG \ Y for fitting.

• Fit the manifold-fitting method on X .

• Project Y to Ŷ and compute ∥yi − ŷi∥2 and their maximum.

Dense subset selection is performed by a maximal-distance sub-sampling algorithm. Uniform sam-
pling on the grid uses a discrete distribution obtained by normalizing the per-point volume element.
Projection is geometric for MMLS and via reconstruction for the β-VAE.

MANIFOLD MOVING LEAST SQUARES (MMLS)

MMLS Sober & Levin (2020) is a projection-based manifold fitting method. Given sample points
Y = {yi}i≤N ⊂ RD drawn from an unknown manifold M , the algorithm estimates a fitted manifold
M̂ and provides a projection operator that maps any nearby point p to M̂ . A key ingredient is
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a kernel θ that assigns similarity weights based on point–point distances, enabling smooth local
approximations.

The procedure consists of two stages:

• Local affine fitting. For a query point p ∈ RD close to M , find an affine subspace H and
a point q ∈ BD(p, τ

2 ) that minimize∑
i≤N

dℓ2(yi, H)2 θ(∥yi − q∥2),

subject to p − q ⊥ H , where τ denotes the reach of M . This step provides a locally
estimated tangent space.

• Local polynomial reconstruction. With q and H fixed, fit a multivariate polynomial g :
Rd → RD by solving ∑

i≤N

∥g(projH(yi))− yi∥22 θ(∥yi − q∥2),

where projH(yi) is the orthogonal projection onto H . This serves as a local analogue of
the exponential map, taking coordinates in the tangent space TqM̂ and mapping them to
M̂ . The final projection of p is then g(p).

The method originates from the Moving Least Squares framework for hypersurfaces Levin (2003)
and was later extended to arbitrary embedded manifolds Sober & Levin (2020). Other techniques
exist (e.g., Zhang & Zha (2004) and the constructions used in Fefferman et al. (2016; 2018); Gen-
ovese et al. (2012)), but these are typically more intricate or tailored to dimensionality reduction
rather than direct manifold fitting.

Implementation for our experiments. We apply MMLS using the dense grid subset Y as the
reference set and the uniformly sampled points X as queries. Each x ∈ X is projected onto M̂ as
follows:

• Identify the k nearest neighbors Nx = {yi1 , . . . , yik} ⊆ Y .
• Compute distances ∥x− yim∥2 for all neighbors and assign weights via an isotropic Gaus-

sian kernel with bandwidth σ:

wm = exp

(
−
(
∥x− yim∥2

2σ

)2
)
.

• Estimate q as the weighted average of Nx. Estimate the affine space H by performing
weighted PCA on Nx with weights wm.

• Project x orthogonally onto H . In place of the full polynomial stage in Sober & Levin
(2020), we use a degree-1 (local linear) approximation.

Hyperparameters.

• k = 5 for toy manifolds and k = 2d+1 for image manifolds.
• Gaussian kernel bandwidth: σ = 1.0.

β-VAE

We use the reference implementation from WonKwang Lee (2018), which provides two standard
architectures: model B from Higgins et al. (2017) and model H from Burgess et al. (2018). Both
operate on 64× 64 images and differ mainly in channel width and bottleneck design.

Model B.

Encoder: Conv 32 × 4 × 4 (stride 2), 32 × 4 × 4 (stride 2), 32 × 4 × 4 (stride 2), 32 × 4 ×
4 (stride 2), FC 256 → 256 → 2zd.

Decoder: FC zd → 256 → 256 → 512, followed by Deconv layers mirroring the encoder (stride 2).

All layers use ReLU activations.
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Model H. Encoder: Conv 32×4×4 (stride 2), 32×4×4 (stride 2), 64×4×4 (stride 2), 64×
4× 4 (stride 2), 256× 4× 4 (stride 1), FC 2zd.

Decoder: FC zd → 256, followed by Deconv layers reversing the encoder (strides 1 and 2).

All layers use ReLU activations.

Objective. Model H uses the standard ELBO with a strengthened KL term:

L = recon + β DKL, β > 1.

Model B follows the capacity-controlled formulation:

L = recon + γ |DKL − C|,

where C is annealed linearly from 0 to Cmax.

Hyperparameters.

• β = 4, γ = 100, Cmax = 20.
• Learning rate: 5× 10−4 (dSprites), 10−4 (COIL-20).
• Batch size: 64.
• Latent dimension: zd = 10.
• Optimizer: Adam with β1 = 0.9, β2 = 0.999.
• Architecture choice: model B for dSprites, model H for COIL-20.
• Training budget: up to 106 iterations or 105 epochs.
• Early stopping when training loss does not improve for 0.5% of max epochs.

These settings closely follow WonKwang Lee (2018), with minimal tuning for stable convergence.
After training on the dense set Y , the decoder is used to reconstruct the test points X .

C.2 BOUND CURVES

THE DIFFICULTY OF COMPUTING THE BOUNDS’ CONSTANTS

The constants appearing in most bounds papers are unfortunately hard to compute but most impor-
tantly very large to be practical. The reason is because the authors goal is to derive the bounds in
terms of complexity and not to optimize those constants .To demonstrate how this looks like, we
track how such a constant appears in one of the bounds. Take the lower bound by Genovese et al.
(2012), this is:

C1

(
1

n

) 2
2+d

≤ Rn(Q). (C.1)

We will use some notation from the paper, if the reader wishes to understand the details, the afore-
mentioned paper should be consulted. To derive this bound, the authors use Le Cam’s lemma, which
bounds the supremum of errors of an estimator M̂ by the discrepancy between any two estimators
M0,M1 (see proof of theorem 1, section 3.2 in Genovese et al. (2012)):

sup
Q∈Q

EQn [H(M,M̂)] ≥ H(M0,M1) ||Qn
0 ∧Qn

1 ||.

Note that the manifolds are all in M(κ), where κ is the reach of the true data manifold (this is
usually denoted by τ , but the authors use κ in their paper) and a value 0 < σ < κ is selected as
a limit below the reach for the support of the considered distributions. Then the distribution space
is Q = Q(κ, σ) = {QM |M ∈ M(κ)} where QM is the density on M ⊕ σ defined by uniformly
sampling a point p on M and then sampling a point orthogonally to M at p up to distance σ, or to
be precise, on the fiber of size σ at p, Lσ(p) = Tp(M)⊥ ∩BD(p, σ).
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Now selecting M0,M1 in a way that they differ as much as possible, given the constraint they should
belong in M(κ), yields the following inequality:

H(M0,M1) ||Qn
0 ∧Qn

1 || = H(M0,M1)(1−
1

2

∫
|q0 − q1|)2n ≥ γ

2
(1− cγ

d+2
2 )2n.

Then setting γ to n− 2
d+2 leads to the bound, because for large enough n:

γ

2
(1− cγ

d+2
2 )2n =

(
1

n

) 2
d+2 1

2
(1− c

n
)2n ∼

(
1

n

) 2
d+2 1

2
e−c

. The constant c now comes from theorem 6 of the paper where the distance between the density
functions q0, q1 of Q0, Q1 is

∫
|q0 − q1| = O(γ

d+2
2 ). Tracing this to the proof of the theorem, in

section 7.2, one notices that this comes from the following inequality near the end of the proof:

V (S0 − S1) ≤ CσD−d−1
√
4γκ− γ2

d
γ,

where the constant C accounts for the coefficients of the volumes of the d- and D − d − 1 balls
involved in the product set containing S1 − S0 and the distortion involved in the product, thus:

C = c1(κ, σ) ωd ωD−d−1.

1080

Using Steiner’s formula, one can bound c1(κ, σ) by (1−
(
σ
κ

)2
)−

d
2 . By symmetry, one gets the same

inequality for V (S1 −S0). If one additionally uses the approximation
√

4γκ− γ2 = 2
√
κγ+ o(γ)

and assumes γ is small enough we get:

V (S0◦S1) ≤ 2C σD−d−1
√
4γκ− γ2

d
2γ ≤

[(
1−

(σ
κ

)2)− d
2

2d+2 ωd ωD−d−1 κ
d
2 σD−d−1

]
γ

d+2
2

Finally, lemma 4 connects distributions qM on M ⊕ σ with the volume density on the same set, uM

by: 1026
qM ≤ (1 +

σ

κ
)dωduM ,

integrating which we get: ∫
|q0 − q1| ≤ 2 (1 +

σ

κ
)d ωd

V (S0 ◦ S1)

V (M ⊕ σ)
.

We can use the tubular bound V (M ⊕ σ) ≥ V (M) ωD−dσ
D−d (2− (1− σ

κ )
D−d) and end up with

the following explicit formula for C1:

C1 =
1

2
e−c

where

c = 2d+3 κ
d
2

σD−d

(1−
(
σ
κ

)2
)−

d
2 (1 + σ

κ )
d

2− (1− σ
κ )

D−d

ωd ωD−d−1

ωD−d

Takeaways

• There are hidden dependencies of C1 on σ, κ,D, d and on n, if n is small.
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• While estimating a formula for C1 we needed to use separate bounds which make C1

potentially much smaller than it could actually be. Additionally, one needs to select a value
for 0 < σ < κ, which makes the computation of C1 also a bit arbitrary.

• The lower bound we presented has the simplest derivation of the constant. The two up-
per bounds we consider are more complicated and involve the use of more intermediate
inequalities which make the corresponding constants too large.

ESTIMATING THE BOUNDS’ CONSTANTS

Based on the obstacles on directly computing the constants of the bounds, we decided to select them
instead based on the values of the empirical curve. The idea is to simply place the upper bounds
so that they just touch the empirical curve from above and the lower bounds so that they just touch
the empirical curve from below. To get more reliable results, we first fit a curve on the empirical
curve and use this to place the bounding curve. The selection of the curves family for the empirical
curve is based on the observation that the formulas related to bounds depend exponentially on the
dimension and multiplicatively on the constant for example looking at the Genovese et al. upper and
lower bounds:

C1

(
1

n

) 2
2+d

≤ Rn(Q) ≤ C2

(
log n

n

) 2
2+d

. (C.2)

It is reasonable thus to assume that the real error curve can be well approximated by a formula of
the form:

Rn ∼ C( 1n )
g(d),

which can be written in terms of logarithms as:

logRn ∼ −g(d) log n+ logC = −A log n+ logC.

With this assumption, we use the logarithms of the empirical curve values {(log nj , log R̂nj
)}j∈J ,

where {nj | j ∈ J} ⊆ [0, N ] is an increasing sequence of number of samples of the total N dataset
points, to fit the above regression. This way we get estimates Â, Ĉ of A and C. Then we get the
resulting fitted empirical curve:

R̂fit
n = Ĉ

(
1

n

)Â

.

Finally, using the values of R̂fit
n , we set the values of constants of the lower/upper bounds to be the

largest/smallest constants such that the corresponding bounds are below/above the 0.99 percentile of
the values of R̂fit

nj
on the experiment values {nj}j∈J . In our experiments, those values correspond

to the
[0.01, 0.02, 0.05, 0.1, . . . , 1.0]

fractions of the dataset of N points. Finally, note that for each percentage the experiment is repeated
three time and the empirical curve used her is their point-wise average.

ANALYSIS OF THE FITTED EMPIRICAL CURVES

To provide a better understanding on the way we select the upper and lower bounds, we display a
version of figures 4, 3 and 2 including the fitted empirical curve as a blue dotted line in figures 14,
13 and 12.

Furthermore, we include figures 17, 16 and 15 with the regression line on the logarithmic values of
the empirical curves, residual plots on the fitted values, QQ plots and also the values of R2. Those
are again available for all three ablations present in the main paper. Most fits look reasonably good,
with the exception of the β-VAE plot which is a bit noisy and the low values on the sphere and
torus where on very low numbers of points, 5-20, there seems to be a need for a second, less steep
function which to model them.
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Figure 12: Fitting bounds on dSprites for different dimensions utilizing MMLS.
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Figure 14: Fitting bounds for MMLS on from left to right Sphere, Torus, COIL-20 and dSprites.
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Figure 15: Regression evaluation on dSprites for different dimensions utilizing MMLS.
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Figure 16: Regression evaluation for MMLS & β-VAE on dSprites (4D)
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Figure 17: Regression evaluation for MMLS on from left to right Sphere, Torus, COIL-20 and
dSprites.
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