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ABSTRACT

A significant gap exists between theory and practice in deep learning. While gen-
eralization and approximation error bounds have been proposed, they are often
restricted to overly simplified models or result in loose guarantees. Many of these
bounds rely on the manifold hypothesis and depend on geometric regularity prop-
erties such as intrinsic dimension, curvature, or reach of the data manifold or target
functions. However, evaluations of such bounds typically fall into two extremes:
either synthetic, analytically defined manifolds where geometric properties are
precisely known, or real-world datasets where the bounds are judged solely by
downstream performance. Neither approach adequately reveals how data geome-
try affects the tightness or applicability of the theoretical results.
We propose a general-purpose framework for studying data geometry by creat-
ing dense, controllable versions of dSprites and COIL-20 with additional trans-
formation dimensions and fine sampling resolution. This setup enables accurate
finite-difference estimates of geometric measures such as curvature, reach, and
volume, offering a flexible benchmark for analyzing manifold learning methods.
As illustrative applications, we evaluate two established manifold learning bounds
by Genovese et al. and Fefferman et al., and we examine how manifold geometry
evolves across network layers in β-VAEs. Our results highlight both the limita-
tions of existing bounds and the potential of such controlled benchmarks to guide
future theoretical developments.

1 INTRODUCTION

Deep learning has become the dominant paradigm for a broad range of tasks, and in recent years gen-
erative models in particular such as variational autoencoders (VAEs) (Kingma & Welling, 2013), dif-
fusion models (Ho et al., 2020), and modern masked or autoencoding architectures (He et al., 2022)
have seen striking empirical success. A common way to interpret this success is through the mani-
fold hypothesis (Cayton et al., 2005): high-dimensional data often concentrate near low-dimensional
manifolds, and learning amounts to finding useful parameterizations of them. Many modern models
can thus be viewed as procedures for fitting or approximating data manifolds, whether explicitly,
as in latent-variable models(Arvanitidis et al., 2017), or implicitly, as in denoisers and score-based
flows(Horvat & Pfister, 2021).

While appealing, it remains unclear how networks fit manifolds in practice. Classical results such as
Genovese et al. (2012) on minimax rates for manifold estimation, Fefferman et al. (2016) on testing
the manifold hypothesis , or more recent work on approximation of Sobolev classes on manifolds
(Tan et al., 2024) highlight the role of geometric quantities like curvature, reach, or sampling density
in learning. Yet in realistic data these quantities are rarely observable: the data-generating process
is unknown, the intrinsic dimension is uncertain(Campadelli et al., 2015), and sampling can be
irregular(Shroff et al., 2011; Sedghi et al., 2020). As a result, theoretical guarantees often rely on
constants that cannot be directly checked or measured.

This creates two complementary needs. On the theoretical side, sharper and more data-adaptive
bounds are desirable, or at least a clearer picture of when existing bounds are informative. On the
empirical side, there is a lack of benchmarks that balance realism with geometric control: synthetic
manifolds are too simple, while real-world datasets obscure the geometry entirely.

To narrow this gap, we introduce a framework that constructs low-dimensional image families sam-
pled densely along controlled transformation axes (e.g., rotation, translation, scale), and provides
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efficient finite-difference estimators for geometric measures such as curvature, reach, and volume.
Coupled with an experimental pipeline for probing manifold fitting methods (e.g., β-VAEs), our
framework enables systematic tests of how theory and practice align. While in this paper we illus-
trate its use through generative models and manifold-fitting bounds, the framework is general and
can support investigations in other settings, such as discriminative learning, where geometry plays a
role. Our contributions are the following:

• A reproducible framework of adapted low-dimensional datasets with dense, axis-aligned
sampling, plus an experimental pipeline for probing modern generative and representation
models.

• A suite of efficient finite-difference estimators for pointwise and global geometric quanti-
ties such as the curvature, reach, or the volume of manifolds.

• Empirical studies that demonstrate how the framework can be used to test theoretical
bounds and trace how learned representations reshape data geometry.

2 RELATED WORK

Manifold Analysis: Following the manifold hypothesis (Cayton et al., 2005), many works analyze
the geometry of data and learned representations. Studies on VAEs and β-VAEs (Kingma et al.,
2019; Higgins et al., 2017) report that latent manifolds are often relatively flat (Arvanitidis et al.,
2017; Shao et al., 2018). Geometric invariants such as curvature, tangent spaces, and reach have been
used to probe robustness and entanglement (Aamari et al., 2019; Berenfeld et al., 2022; Birdal et al.,
2021), though results vary strongly with dataset, architecture, and estimator (Brahma et al., 2015;
Kaufman & Azencot, 2023). Our work continues this line of research, but focuses on controllable
datasets where geometric measures can be estimated more accurately.

Manifold Fitting Bounds: Genovese et al. (2012) established the minimax rate O(n−2/(2+d)) de-
pending only on intrinsic dimension d, proven optimal by Kim & Zhou (2015), though their estima-
tor requires intractable non-convex optimization. Aamari & Levrard (2019) achieved Õ(n−k/(k+d))
rates for k-smooth manifolds with noise, while Yao & Xia (2019) handled unbounded noise via
projection, achieving O(σ2 log(1/σ)) Hausdorff error. Neural approaches (Yao et al., 2023; 2024)
trade guarantees for efficiency. The geometric approach of Fefferman et al. (2016) preserves struc-
tural properties via reach, with extensions to noisy data (Fefferman et al., 2018; 2020) improving
complexity from double- to single-exponential. A key challenge across these methods is their de-
pendence on unknown geometric parameters. Bounds typically scale with quantities such as reach
τ or volume V , which must be specified a priori; e.g., the sample complexity in Yao & Xia (2019)
includes a factor τ−2 hidden in the constant. Since such quantities are rarely known in practice and
can be very small, this creates a circular dependency: estimating the manifold requires geometric
information that is only available from the manifold itself.

Geometric Property Estimation: To address this, recent work develops estimators for reach and
related quantities (Aamari et al., 2019; Berenfeld et al., 2022), though validation without ground
truth remains difficult. Hardness results (Kiani et al., 2024) and positive findings such as the ”bless-
ing of dimensionality” for Sobolev approximation (Tan et al., 2024) further underscore the subtle
role of geometry in learning. In deep models, learned manifolds often deviate from intrinsic geom-
etry: e.g., flat latent spaces (Shao et al., 2018), model-specific distortions (Grementieri & Fioresi,
2022), or global warping in GANs (Choi et al., 2021). Estimator choice itself can drive contradictory
conclusions (Kaufman & Azencot, 2023).

Overall, theory provides good asymptotic rates, but empirical understanding is limited: synthetic
data offer tractability but lack realism, while real datasets obscure geometry. Our framework ex-
tends prior manifold analyses by combining dense, axis-aligned sampling with finite-difference es-
timators, enabling accurate ground-truth evaluation of geometric quantities and systematic tests of
how theoretical bounds behave under realistic approximations.
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3 BACKGROUND AND DEFINITIONS

Datasets as Manifolds: The manifold hypothesis suggests that high-dimensional datasets often
concentrate near low-dimensional manifolds. In this paper, we focus on datasets where the number
of intrinsic factors of variation d is small and fixed, and where these factors are explicitly known.
Each dataset is modeled as a union of smooth d-dimensional manifolds embedded in RD, possibly
with boundary. Typically, each of the k semantic classes in the dataset corresponds to a separate
connected component of this union.

For the purposes of this work, we restrict attention to simple topologies in which each manifold
factors into cyclic and non-cyclic directions. Concretely, every manifold is assumed to be homeo-
morphic to

[0, 1]r × (S1)s, r + s = d, (3.1)

so that some coordinates vary over a compact interval while others wrap around a circle. This setting
captures many commonly used synthetic datasets. A canonical example is dSprites, a collection of
64 × 64 grayscale images of objects (square, ellipse, heart) undergoing controlled transformations
such as scaling, rotation, and translation. The manifold of a class of this dataset is homeomorphic
to [0, 1]3 × S1 and exists in R4096

To obtain discrete datasets from this continuous geometric picture, we impose a grid structure.
Specifically, we consider

G =
{(

j1
n1

, . . . , jr
nr

, 2π jr+1

nr+1
, . . . , 2π jd

nd

) ∣∣∣ 0 ≤ jℓ < nℓ

}
, (3.2)

where the first r coordinates sample [0, 1] uniformly and the last s coordinates sample S1 uniformly.
For each class i ≤ k, we define a mapping

ui : G → Mi (3.3)

that associates each grid point with a dataset element obtained by applying the corresponding trans-
formations. The image ui[G] provides a discrete parametrization of the manifold Mi, and by cutting
along cyclic directions one obtains discrete patches of Mi. The complete discretized dataset is then

XG =
⋃
i≤k

ui[G]. (3.4)

Geometric Measures: Critical to the analysis of a manifold are a few geometric quantities that
describe its local and global structure. In this work, we focus on the volume, the scalar curvature,
and the reach. For completeness, we first recall the definitions of the Riemannian metric and related
objects needed to introduce these quantities.
Definition 3.1 (Riemannian metric). A Riemannian metric g on a d-dimensional differentiable man-
ifold M assigns to each point p ∈ M an inner product gp on the tangent space TpM . If M is em-
bedded in RD, the ambient Euclidean metric induces a Riemannian metric by restriction. In local
coordinates u : U → M , the metric matrix is

gij(x) = ⟨∂iu(x), ∂ju(x)⟩RD . (3.5)

Definition 3.2 (Volume element and volume). On a Riemannian manifold (M, g) with local coor-
dinates (u1, . . . , ud), the natural volume element is

dVol =
√

det(g) du1 ∧ · · · ∧ dud. (3.6)

The volume of a region R ⊂ M is then

Vol(R) =

∫
u−1(R)

√
det(g) dx1 · · · dxd. (3.7)

Definition 3.3 (Notions of curvature). The curvature of (M, g) is encoded in the Riemann tensor

Ri
jkl = ∂kΓ

i
jl − ∂lΓ

i
jk + Γi

krΓ
r
jl − Γi

lrΓ
r
jk, (3.8)
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where the Christoffel symbols are

Γi
jk = 1

2g
ir(∂jgrk + ∂kgrj − ∂rgjk). (3.9)

Contracting yields the Ricci tensor Ricij = Rr
irj and finally the scalar curvature

R = gijRicij . (3.10)

Definition 3.4 (Reach). For a closed set A ⊂ RD, the medial axis is the set of points with more
than one nearest neighbor in A. The reach of A is the distance to its medial axis:

τA = inf
p∈A

d(p,Med(A)). (3.11)

Intuitively, τA is the largest radius such that every point within distance < τA of A has a unique
nearest neighbor in A. For a compact d-dimensional submanifold M ⊂ RD, the reach can be
expressed as

τM = inf
p̸=q∈M

∥p− q∥2

2 d(q − p, TpM)
, (3.12)

where d(v, TpM) is the distance of a vector v to the tangent space at p.

In our applications we consider both global quantities (total volume, scalar curvature integral, global
reach) and their local counterparts (volume element, pointwise scalar curvature, and local reach
estimators as in Aamari et al. (2019)). These quantities will also serve as the basis for efficient
finite-difference approximations introduced later.
Definition 3.5 (Hausdorff distance). Let A,B ⊂ RD be two non-empty subsets. The Hausdorff
distance between A and B is defined as

H(A,B) = max
{

sup
a∈A

inf
b∈B

∥a− b∥ , sup
b∈B

inf
a∈A

∥b− a∥
}
. (3.13)

In words, H(A,B) measures how far two sets are from coinciding by quantifying the worst-case
pointwise deviation: every point of A must lie within distance H(A,B) of some point of B, and
vice versa.

This metric is particularly natural for manifold fitting. If M denotes the ground-truth data manifold
and M̂ a learned approximation (e.g. from an autoencoder), then H(M, M̂) expresses the largest
geometric error: the maximum distance that a single point on either manifold can have from the
other. Thus, a small Hausdorff distance guarantees that the two manifolds are close everywhere, not
just on average.

Manifold Fitting and Bounds: Manifold learning is closely connected with generative modeling:
in both cases, one assumes that high-dimensional data lie near a low-dimensional manifold. Gen-
erative models typically learn a mapping between the data manifold in RD and a latent space of
lower dimension, where semantic factors of variation are disentangled and sampling is easier. If the
encoder–decoder network is sufficiently regular (locally C1 or C2), then composing the encoder with
the manifold charts ui yields a parametrization of the latent manifold. In practice, each data point is
mapped to its latent representation, and decoding corresponds to projecting back onto the estimated
data manifold.

We focus on two theoretical results that provide bounds on the error of manifold fitting, expressed
in terms of the sample size, intrinsic dimension, and geometric quantities of the manifold.

Minimax manifold estimation bound: Genovese et al. (2012) establish minimax rates for estimat-
ing a manifold from samples corrupted by small normal noise. The result shows that the intrinsic
dimension d alone governs the difficulty of estimation.
Theorem 1 (Genovese et al. (2012)). Let M be the class of compact, smooth, boundaryless d-
dimensional manifolds embedded in RD. For each M ∈ M, let QM be the distribution of Y =
ξ + Z, where ξ is uniformly distributed on M and Z is uniform on a normal fiber of radius σ at ξ.
For an n-sample estimator M̂ : Rn → M, define the minimax risk

Rn(Q) = inf
M̂

sup
Q∈Q

EQ[H(M̂,M)], (3.14)

4
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Original
Dataset

Compute
Manifold
Measures
via finite
differences

Granular Datasets Versions

Reach

...

Volume

Dataset
Expansion

Figure 1: From a low-dimensional seed we produce dense, regular grids via analytic parametriza-
tions or systematic transforms; central finite differences recover geometric estimators such as reach
and curvature enabling validation of manifold-fitting bounds.

where H(·, ·) is the Hausdorff distance. Then there exist constants C1, C2 > 0 such that

C1

(
1

n

) 2
2+d

≤ Rn(Q) ≤ C2

(
log n

n

) 2
2+d

. (3.15)

This result shows that the sample complexity depends exponentially on the intrinsic dimension d, but
not directly on the ambient dimension D. Intuitively, the distributions QM correspond to sampling
a point on M and perturbing it orthogonally within the reach of the manifold. In our context,
an estimator M̂ can be thought of as a neural network (e.g., an autoencoder) that outputs a fitted
manifold.

Testing the manifold hypothesis: Fefferman et al. (2016) provide a testing framework for the mani-
fold hypothesis. Their result connects the number of samples to geometric parameters of the man-
ifold, namely its volume and reach. Assuming that a manifold M which satisfies the hypothesis
exists, the following upper bound on the Hausdorff distance between the true and estimated mani-
folds emerges:

Rn(Q) ≤ C1
V

1
d

τ

(
1

n

) 1
d

. (3.16)

A more comprehensive version of the background can be found in the appendix A.

4 METHODS AND FRAMEWORK

We construct controlled synthetic manifolds of low intrinsic dimension (d = 1–4) sampled on regu-
larly spaced grids. Dense sampling enables stable finite-difference approximations of partial deriva-
tives, allowing accurate computation of the induced metric, volume element, curvature tensors, and
reach. This framework provides a setting to empirically assess theoretical manifold-fitting bounds
and a reproducible dataset suite for validating geometric estimators.

Datasets with a dense grid structure: We consider two complementary approaches to construct
datasets of low intrinsic dimension with a grid structure.

For manifolds with an explicit mathematical description, we use known parametrizations to generate
a regular grid of points. For image-based or domain-specific datasets, we extend existing data by
systematically applying transformations (e.g., translations, rotations, scalings). Sampling all possi-
ble combinations of transforms yields a structured grid analogous to the toy manifold case.

While grid sampling provides dense coverage, it is not necessarily uniform with respect to the un-
derlying manifold geometry. To obtain more uniform subsets, we employ two strategies:

• Iterative farthest-point sampling on the grid, ensuring that selected points are maximally
separated.

• Sampling with respect to the volume form: either by weighting grid points and sampling
proportionally, or—when analytic formulas are available—by using inverse transform sam-
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pling iteratively across dimensions with numerical integration and inversion. The latter,
however, becomes computationally expensive as dimension grows.

For experiments, we fix a test set by selecting a uniformly spread fraction of grid points. The
remaining points are used for training, with varying training set sizes. This procedure ensures a
clear train/test separation while keeping the test set representative enough to approximate Hausdorff
and average distances between manifolds.

Computation of Geometric Measures: To estimate geometric quantities such as the volume ele-
ment, scalar curvature, and reach, we rely on finite difference approximations of partial derivatives
on a dense grid.

Given a parametrization u : Rd → RD, the central difference approximation

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (4.1)

extends naturally to each coordinate direction. For instance, we define

Dc
h,iu(x) =

u(x1, . . . , xi + h, . . . , xd)− u(x1, . . . , xi − h, . . . , xd)

2h
, (4.2)

which provides second-order accurate estimates of the partial derivatives. Products of such approx-
imations yield

gij = ⟨u,i, u,j⟩+O(h2), (4.3)

ensuring that all quantities depending smoothly on the metric (volume element, Christoffel symbols,
Riemann and Ricci curvature tensors, scalar curvature) inherit O(h2) error. These intermediate
tensors are also made available in the framework for further study.

For the volume element and scalar curvature, standard Taylor expansion arguments imply that the
relative error decreases quadratically with grid spacing:

V̂ − V = O(h2), (4.4)

R̂−R = O(h2). (4.5)

For the reach, we adopt the estimator of Aamari et al. (2019), which, when applied to an equidistant
grid of spacing h, also yields

|τ̂ − τ | = O(h2). (4.6)

All three estimators have been tested on families of manifolds with known closed-form quantities,
including 2- and 3-dimensional ellipsoids, hyperboloids, and 4-spheres embedded in various ambient
spaces. Across these cases, the relative error of our estimates is typically below 10−2, confirming
that finite differences on dense grids provide highly accurate approximations.

5 APPLICATIONS

Datasets: Our experimental setup employs two types of datasets: (i) toy manifolds with explicit
mathematical parametrizations for analytical validation, and (ii) adapted versions of established im-
age datasets (dSprites Matthey et al. (2017) and COIL-20 Nene et al. (1996)) that provide controlled
settings for empirical evaluation. Table 1 summarizes the key characteristics of each dataset.

The toy manifolds serve as analytically tractable benchmarks with known closed-form geometric
properties. For the image datasets, we modified the original sampling schemes to better suit geo-
metric computations: dSprites was regenerated with reduced resolution but improved anti-aliasing,
while COIL-20 was extended with additional transformations including scale and orientation. Both
datasets employ dense grid sampling with margin oversampling on non-cyclic dimensions to enable
finite difference computations of geometric measures. Detailed specifications are in Appendix B.

Manifold fitting methods: We consider two complementary approaches to fit manifolds to the
datasets: a geometric method, Manifold Moving Least Squares (MMLS) (Sober & Levin, 2020) ,
and a deep learning method, the β-VAE autoencoder(Higgins et al., 2017).

6
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MMLS: MMLS is a simple and robust method for locally projecting points onto an approximated
manifold. Intuitively, it can be seen as averaging tangent spaces in local neighborhoods and project-
ing points onto these planes. In our experiments, we use six nearest neighbors and a Gaussian kernel
with bandwidth σ = 1.0. MMLS is applied to all datasets, and for the toy datasets it serves as the
primary fitting method.

β-VAE: The β-VAE provides a complementary, learning-based approach. It maps input data into a
low-dimensional latent space and reconstructs them back, with the reconstruction lying on a learned
manifold. The reconstruction distance can thus be interpreted as the distance to this manifold. As the
input dimensionality is too small for meaningful bottlenecks in toy datasets, we employ β-VAE only
for image datasets (dSprites, COIL-20). The main hyperparameters are latent dimension z = 10 and
β = 4, with models trained using batch size 64 and learning rate 5× 10−4.

Sampling protocol: For both methods, a fixed test set of 500 uniformly spread points is used. On
the toy datasets, training sets range from 5–500 points, and each experiment is repeated 20 times.
On dSprites and COIL-20, data ratios range from 0.01 up to 1.0, with three repetitions per setup.

The motivation for considering both methods is that MMLS directly fits a manifold in the original
data space, whereas β-VAE learns a latent manifold with richer semantic structure. Together, they
provide complementary views of manifold fitting performance.

Reach ...Volume

Sample iidFine-
Granular
Dataset

Fit
Manifold

Analyse
Manifold
Properties

Figure 2: Experimental setup for error bound estimation.

Error Bounds evaluation: We
now turn to the first applica-
tion of manifold fitting: the em-
pirical evaluation of theoretical
bounds on approximation error.
Recall from sub-section 3 that
Genovese et al. provide an up-
per and lower bound depending
only on the intrinsic dimension,
while Fefferman et al. derive a
sharper upper bound that addi-
tionally incorporates the reach
and volume of the manifold.

Experimental setup: For the fitting methods (MMLS, β-VAE), each dataset (toy, dSprites, COIL-
20), and a range of intrinsic dimensions, we fit manifolds for multiple training set sizes. As distance
metric we use the Hausdorff distance between the fitted and the true manifold. Concretely, given a
test point on M, its projection is defined as the weighted projection under MMLS or as the recon-
struction under β-VAE. For each size, we thus obtain results of distance versus sample size.

Comparing to bounds: To compare with theoretical rates, we regress log(dist) against log(n),
motivated by the fact that both theoretical bounds decay exponentially in 1/n or log n/n, which are
asymptotically close. This yields an empirical exponential fit, around which we place the bounds:
the upper bound constant is set just above the fitted curve (99th quantile) and the lower bound just
below (1st quantile). For Fefferman’s upper bound, volume and reach are used to refine the constant,
while in the β-VAE case these quantities are estimated on the latent manifold.

Results: We present three representative comparisons:

Table 1: Dataset characteristics and parametrizations used in our experiments:
Dataset d D Factors Range Components
Circle 1 2 θ [0, 2π] 1
Two moons 1 2 θ [0, 2π] 2
Sphere 2 3 θ, ϕ [0, 2π]× [0, π] 1
Torus 2 3 θ, ϕ [0, 2π]× [0, 2π] 1

dSprites 4 4096 scale, orientation, pos. x, pos. y see Appendix B 3
COIL-20 3 4096 horiz. orient., scale, img. orient. see Appendix B 20
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Figure 3: Fitting bounds for different datasets utilizing MMLS.

• Cross-dataset (Figure 5): curves for the sphere, torus, 3D COIL-20 and 4D dSprites using
MMLS.

• Cross-dimension (Figure 3): curves for dSprites with intrinsic dimensions d = 1, 2, 3, 4,
again using MMLS.

• Cross-model (Figure 4): comparison of MMLS and β-VAE on 4D dSprites.
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The main observations are: (i) Fef-
ferman’s bounds, which explicitly
exploit reach and volume, yield sig-
nificantly tighter upper envelopes
than dimension-only bounds. (ii) For
toy datasets, the empirical curves ini-
tially follow the upper rate

(
logn
n

)1/d
but then approach the lower rate(
1
n

)1/d
as sample size grows. This

suggests that an intermediate func-
tion, interpolating between log n and
1, might more faithfully capture the
transition. (iii) For image datasets
(COIL-20, dSprites), the behavior is reversed: curves start closer to the lower bound and move
upward with larger n.

Overall, these results demonstrate that empirical manifold fitting can recover the qualitative behavior
of theoretical approximation bounds, while highlighting that constants—and sometimes even the
effective regime—depend sensitively on manifold geometry and the choice of fitting method.

Manifold analysis: In the second application, we analyze how geometric properties of data mani-
folds evolve through the layers of a β-VAE using the dSprites (4D) and COIL-20 (3D) datasets. For
each layer we compute the manifold volume, integrated scalar curvature (with positive and negative
parts separated), reach, and the average distance between class manifolds (Figure 6).

We observe that curvature systematically increases while reach decreases in deeper layers, indicating
that the intermediate manifolds become progressively more intricate and approach self-intersections.
At the same time, average distances between class manifolds grow closer to the latent space, suggest-
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Figure 6: Evolution of volume, scalar curvature, and reach of the manifold across layers of a β-VAE,
shown for both dSprites and COIL-20:

ing that as semantic information strengthens, the network prioritizes class separation over preserving
low-level visual transformations. This shift may explain why the β-VAE struggles to converge: its
latent manifold emphasizes semantic clustering at the cost of geometric distortion, whereas methods
such as MMLS, which operate directly in data space, do not exhibit the same trade-off.

6 DISCUSSION

We presented a framework for constructing dense synthetic manifolds and accurately estimating
their geometric properties, enabling controlled studies of manifold fitting and learning. Our ap-
plications illustrated two use cases: assessing the behavior of existing manifold learning bounds
via log–log scaling fits, and analyzing how data geometry evolves across layers of a β-VAE. Both
revealed insights into how geometry influences learning, such as the trade-off between increasing
intra-class complexity and improved inter-class separation.

The main advantage of this framework lies in its ability to provide ground truth geometric quantities
that are otherwise inaccessible. In contrast to real datasets, where assumptions cannot be verified, or
simple analytic manifolds, which lack representational richness, our synthetic constructions strike a
balance between realism and control. This makes them particularly suitable for probing theoretical
assumptions, validating estimators, and stress-testing bounds under controlled perturbations.

At the same time, several limitations should be emphasized. The framework currently handles only
manifolds with simple topology and relatively low intrinsic dimension. Dense grid sampling and
finite-difference estimation do not easily extend to higher dimensions or to manifolds with complex
connectivity. Moreover, the present experiments focus primarily on generative models in unsuper-
vised settings, and do not yet capture the full range of discriminative or semi-supervised tasks.

Future work could address these limitations in multiple ways. Expanding the dataset suite to cover
richer transformations and more diverse topologies would broaden applicability. Another direction
is to evaluate methods that approximate geometric measures, for example by comparing local PCA-
or kernel-based estimators of curvature and reach against ground truth. Likewise, the framework
could be used to study discriminative bounds, where classifiers effectively fit functions on manifolds,
and to quantify how geometric fidelity interacts with generalization. Beyond bounds, one could also
apply it to study robustness, transfer learning, or the geometry of learned latent spaces in larger-scale
architectures.

Finally, we note that large language models (LLMs) were used to polish the writing of this paper. All
scientific ideas, results, and analyses are original; the LLMs contributed only to improving clarity
and readability of the text.
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A EXPANDED BACKGROUND AND DEFINITIONS

A.1 DATASETS AS MANIFOLDS

The manifold hypothesis suggests that high-dimensional datasets often concentrate near low-
dimensional manifolds. In this paper, we focus on datasets where the number of intrinsic factors of
variation d is small and fixed, and where these factors are explicitly known. Each dataset is modeled
as a union of smooth d-dimensional manifolds embedded in RD, possibly with boundary. Typically,
each of the k semantic classes in the dataset corresponds to a separate connected component of this
union.

For the purposes of this work, we restrict attention to simple topologies in which each manifold
factors into cyclic and non-cyclic directions. Concretely, every manifold is assumed to be homeo-
morphic to

[0, 1]r × (S1)s, r + s = d, (A.1)

so that some coordinates vary over a compact interval while others wrap around a circle. This setting
captures many commonly used synthetic datasets. A canonical example is dSprites, a collection of
64 × 64 grayscale images of objects (square, ellipse, heart) undergoing controlled transformations
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such as scaling, rotation, and translation. These transformations can be viewed as a restricted subset
of the special similarity group

SSim(n) = Rn ⋊ (R+ × SO(n)). (A.2)

To obtain discrete datasets from this continuous geometric picture, we impose a grid structure.
Specifically, we consider

G =
{(

j1
n1

, . . . , jr
nr

, 2π jr+1

nr+1
, . . . , 2π jd

nd

) ∣∣∣ 0 ≤ jℓ < nℓ

}
, (A.3)

where the first r coordinates sample [0, 1] uniformly and the last s coordinates sample S1 uniformly.
For each class i ≤ k, we define a mapping

ui : G → Mi (A.4)

that associates each grid point with a dataset element obtained by applying the corresponding trans-
formations. The image ui[G] provides a discrete parametrization of the manifold Mi, and by cutting
along cyclic directions one obtains discrete patches of Mi. The complete discretized dataset is then

XG =
⋃
i≤k

ui[G]. (A.5)

A.2 GEOMETRIC MEASURES

Critical to the analysis of a manifold are a few geometric quantities that describe its local and global
structure. In this work, we focus on the volume, the scalar curvature, and the reach. For complete-
ness, we first recall the definitions of the Riemannian metric and related objects needed to introduce
these quantities.

Definition A.1 (Riemannian metric). A Riemannian metric g on a d-dimensional differentiable
manifold M assigns to each point p ∈ M an inner product gp on the tangent space TpM . If M is
embedded in RD, the ambient Euclidean metric induces a Riemannian metric by restriction. In local
coordinates u : U → M , the metric matrix is

gij(x) = ⟨∂iu(x), ∂ju(x)⟩RD . (A.6)

Definition A.2 (Volume element and volume). On a Riemannian manifold (M, g) with local coor-
dinates (u1, . . . , ud), the natural volume element is

dVol =
√

det(g) du1 ∧ · · · ∧ dud. (A.7)

The volume of a region R ⊂ M is then

Vol(R) =

∫
u−1(R)

√
det(g) dx1 · · · dxd. (A.8)

Definition A.3 (Notions of curvature). The curvature of (M, g) is encoded in the Riemann tensor

Ri
jkl = ∂kΓ

i
jl − ∂lΓ

i
jk + Γi

krΓ
r
jl − Γi

lrΓ
r
jk, (A.9)

where the Christoffel symbols are

Γi
jk = 1

2g
ir(∂jgrk + ∂kgrj − ∂rgjk). (A.10)

( Contracting yields the Ricci tensor Ricij = Rr
irj and finally the scalar curvature

R = gijRicij . (A.11)

The scalar curvature governs the deviation of small geodesic balls from Euclidean volume:

Vol(BM(p, ε))

Vol(BRd(0, ε))
= 1− R

6(n+ 2)
ε2 +O(ε3). (A.12)
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Definition A.4 (Reach). For a closed set A ⊂ RD, the medial axis is the set of points with more
than one nearest neighbor in A. The reach of A is the distance to its medial axis:

τA = inf
p∈A

d(p,Med(A)). (A.13)

Intuitively, τA is the largest radius such that every point within distance < τA of A has a unique
nearest neighbor in A. For a compact d-dimensional submanifold M ⊂ RD, the reach can be
expressed as

τM = inf
p̸=q∈M

∥p− q∥2

2 d(q − p, TpM)
, (A.14)

where d(v, TpM) is the distance of a vector v to the tangent space at p.

In our applications we consider both global quantities (total volume, scalar curvature integral, global
reach) and their local counterparts (volume element, pointwise scalar curvature, and local reach
estimators as in Aamari et al. Aamari et al. (2019)). These quantities will also serve as the basis for
efficient finite-difference approximations introduced later.
Definition A.5 (Hausdorff distance). Let A,B ⊂ RD be two non-empty subsets. The Hausdorff
distance between A and B is defined as

H(A,B) = max
{

sup
a∈A

inf
b∈B

∥a− b∥ , sup
b∈B

inf
a∈A

∥b− a∥
}
. (A.15)

In words, H(A,B) measures how far two sets are from coinciding by quantifying the worst-case
pointwise deviation: every point of A must lie within distance H(A,B) of some point of B, and
vice versa.

This metric is particularly natural for manifold fitting. If M denotes the ground-truth data manifold
and M̂ a learned approximation (e.g. from an autoencoder), then H(M, M̂) expresses the largest
geometric error: the maximum distance that a single point on either manifold can have from the
other. Thus, a small Hausdorff distance guarantees that the two manifolds are close everywhere, not
just on average.

A.3 MANIFOLD FITTING AND BOUNDS

Manifold learning is closely connected with generative modeling: in both cases, one assumes that
high-dimensional data lie near a low-dimensional manifold. Generative models typically learn a
mapping between the data manifold in RD and a latent space of lower dimension, where semantic
factors of variation are disentangled and sampling is easier. If the encoder–decoder network is
sufficiently regular (locally C1 or C2), then composing the encoder with the manifold charts ui

yields a parametrization of the latent manifold. In practice, each data point is mapped to its latent
representation, and decoding corresponds to projecting back onto the estimated data manifold.

We focus on two theoretical results that provide bounds on the error of manifold fitting, expressed
in terms of the sample size, intrinsic dimension, and geometric quantities of the manifold.

MINIMAX MANIFOLD ESTIMATION BOUND GENOVESE ET AL. (2012)

Genovese et al. Genovese et al. (2012) establish minimax rates for estimating a manifold from
samples corrupted by small normal noise. The result shows that the intrinsic dimension d alone
governs the difficulty of estimation.
Theorem 2 (Genovese et al. Genovese et al. (2012)). Let M be the class of compact, smooth,
boundaryless d-dimensional manifolds embedded in RD. For each M ∈ M, let QM be the distri-
bution of Y = ξ + Z, where ξ is uniformly distributed on M and Z is uniform on a normal fiber of
radius σ at ξ. For an n-sample estimator M̂ : Rn → M, define the minimax risk

Rn(Q) = inf
M̂

sup
Q∈Q

EQ[H(M̂,M)], (A.16)

where H(·, ·) is the Hausdorff distance. Then there exist constants C1, C2 > 0 such that

C1

(
1

n

) 2
2+d

≤ Rn(Q) ≤ C2

(
log n

n

) 2
2+d

. (A.17)
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This result shows that the sample complexity depends exponentially on the intrinsic dimension d, but
not directly on the ambient dimension D. Intuitively, the distributions QM correspond to sampling
a point on M and perturbing it orthogonally within the reach of the manifold. In our context,
an estimator M̂ can be thought of as a neural network (e.g., an autoencoder) that outputs a fitted
manifold.

TESTING THE MANIFOLD HYPOTHESIS FEFFERMAN ET AL. (2016)

Fefferman et al. Fefferman et al. (2016) provide a testing framework for the manifold hypothesis.
Their result connects the number of samples to geometric parameters of the manifold, namely its
volume and reach.
Theorem 3 (Fefferman et al. Fefferman et al. (2016)). There exists an algorithm which, given
samples from a distribution P and ε > 0, distinguishes with probability at least 1 − δ between the
following two cases:

• There exists M ∈ G(d,CV, τ/C) such that L(M,P ) ≤ Cε.

• There does not exist M ∈ G(d, V/C, τC) such that L(M,P ) ≤ ε/C.

Here G(d, V, τ) denotes the class of d-dimensional manifolds of volume ≤ V and reach ≥ τ . The
required sample size is

n =
Np ln4(Np/ε) + ln(δ−1)

ε2
, Np = V

(
1

τd
+

1

τd/2εd/2

)
. (A.18)

Assuming that such a manifold M exists, the result yields an upper bound on the Hausdorff distance
between the true and estimated manifolds:

Rn(Q) ≤ C1

τ

(
V

n

)1/d

. (A.19)

B DATASET PARAMETER DETAILS

dSprites parameters:

• Image shape: 64× 64

• Shape: 3 values (square, ellipse, heart)
• Scale: 16 values linearly spaced in [0.5, 1]

• Orientation: 16 values in [0, 2π]

• Position X: 16 values in [0, 1]

• Position Y: 16 values in [0, 1]

• Total: 196,608 images (3× 164)

COIL-20 parameters:

• Image shape: 64× 64

• Objects: 20 objects from original COIL-20
• Horizontal orientation: 18 values in [0, 2π]

• Scale: 16 values linearly spaced in [0.5, 1]

• Image orientation: 16 values in [0, 2π]

• Total: 92,160 images (20× 18× 162)
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