

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

THE DATA MANIFOLD UNDER THE MICROSCOPE

Anonymous authors

Paper under double-blind review

ABSTRACT

A significant gap exists between theory and practice in deep learning. One example is given by generalization and approximation error bounds, which are often derived for overly simplified models or yield guarantees that are too loose to be informative. Many such bounds rely on the manifold hypothesis and depend on geometric regularity properties, including intrinsic dimension, curvature, and reach of the data manifold or target functions. To make progress on improving these bounds, one needs detailed insight into data manifold geometry and suitable benchmarks on simple datasets. However, existing datasets and analysis tools typically fall into two extremes: analytically defined manifolds with precisely known geometry but limited realism, or real-world datasets where bounds are assessed only through downstream performance and geometric properties can be estimated only coarsely and with hard-to-quantify error.

To address this lack of simple yet realistic datasets and accompanying geometric tools, we introduce a benchmarking framework for studying data geometry. We repurpose and extend the dSprites and COIL-20 datasets with additional transformation dimensions and finer sampling resolution. This enables accurate finite-difference estimates of geometric quantities such as curvature, reach, and volume, yielding a flexible benchmark for evaluating manifold learning methods. As illustrative applications, we assess two established manifold learning bounds by Genovese et al. and Fefferman et al., and analyze how manifold geometry evolves across network layers in β -VAEs. Our results highlight both the limitations of existing bounds and the value of controlled benchmarks for guiding future theoretical developments.

1 INTRODUCTION

Deep learning has become the dominant paradigm for a broad range of tasks, and in recent years generative models in particular such as variational autoencoders (VAEs) (Kingma & Welling, 2013), diffusion models (Ho et al., 2020), and modern masked or autoencoding architectures (He et al., 2022) have seen striking empirical success. A common way to interpret this success is through the manifold hypothesis (Cayton et al., 2005): high-dimensional data often concentrate near low-dimensional manifolds, and learning amounts to finding useful parameterizations of them. Many modern models can thus be viewed as procedures for fitting or approximating data manifolds, whether explicitly, as in latent-variable models (Arvanitidis et al., 2017), or implicitly, as in denoising and score-based flows (Horvat & Pfister, 2021).

While appealing, it remains unclear how networks fit manifolds in practice. Classical results such as Genovese et al. (2012) on minimax rates for manifold estimation, Fefferman et al. (2016) on testing the manifold hypothesis, or more recent work on approximation of Sobolev classes on manifolds (Tan et al., 2024) highlight the role of geometric quantities like curvature, reach, or sampling density in learning. Yet in realistic data these quantities are rarely observable: the data-generating process is unknown, the intrinsic dimension is uncertain (Campadelli et al., 2015), and sampling can be irregular (Shroff et al., 2011; Sedghi et al., 2020). As a result, theoretical guarantees often rely on constants that cannot be directly checked or measured.

This creates two complementary needs. On the theoretical side, sharper and more data-adaptive bounds are desirable, or at least a clearer picture of when existing bounds are informative. On the empirical side, there is a lack of benchmarks that balance realism with geometric control: synthetic manifolds are too simple, while real-world datasets obscure the geometry entirely.

To narrow this gap, we introduce a framework that constructs low-dimensional image families sampled densely along controlled transformation axes (e.g., rotation, translation, scale), and provides efficient finite-difference estimators for geometric measures such as curvature, reach, and volume. Coupled with an experimental pipeline for probing manifold fitting methods (e.g., β -VAEs), our framework enables systematic tests of how theory and practice align. While in this paper we illustrate its use through generative models and manifold-fitting bounds, the framework is general and can support investigations in other settings, such as discriminative learning or benchmarking geometric measure approximation methods. Our contributions are the following:

- A reproducible framework of adapted low-dimensional datasets with dense, axis-aligned sampling, plus an experimental pipeline for probing modern generative and representation models.
- A suite of efficient finite-difference estimators for pointwise and global geometric quantities such as the curvature, reach, or the volume of manifolds.
- Empirical studies that demonstrate how the framework can be used to test theoretical bounds and trace how learned representations reshape data geometry.

2 RELATED WORK

Manifold Analysis: Following the manifold hypothesis (Cayton et al., 2005), many works analyze the geometry of data and learned representations. Early results on inferring topological structure from samples include guarantees for homology recovery (Niyogi et al., 2008). Studies on VAEs and β -VAEs (Kingma et al., 2019; Higgins et al., 2017) show that learned latent spaces often exhibit limited curvature (Arvanitidis et al., 2017; Shao et al., 2018). Geometric invariants—curvature, tangent spaces, and reach—have been used to study robustness and disentanglement (Aamari et al., 2019; Berenfeld et al., 2022; Birdal et al., 2021), though outcomes depend strongly on dataset, architecture, and estimator (Brahma et al., 2015; Kaufman & Azencot, 2023). Recent representation-learning approaches explicitly impose manifold structure via learned charts (Schonsheck et al., 2019). Connections to expressive power have also been explored through manifold topology (Yao et al., 2024a).

Manifold Fitting Bounds: Genovese et al. (2012) established the minimax rate $O(n^{-2/(2+d)})$, later shown optimal by Kim & Zhou (2015), though the corresponding estimator is computationally infeasible. Yao & Xia (2019) handled unbounded noise via projection, yielding $O(\sigma^2 \log(1/\sigma))$ Hausdorff error for sample size $O(\sigma^{-(d+3)})$. Neural estimators (Yao et al., 2023; 2024b) offer scalable alternatives at the cost of weaker guarantees. Earlier complexity results for testing the manifold hypothesis (Narayanan & Mitter, 2010) relate geometry, dimension, and sample efficiency more explicitly.

A complementary line of work uses reach as a structural primitive. Fefferman et al. (2016) introduced a geometric approach based on preserving reach, with noisy-data extensions reducing complexity from double- to single-exponential (Fefferman et al., 2018; 2020). However, these guarantees depend on unknown geometric parameters such as reach and volume. For example, the constants in Yao & Xia (2019) scale as τ^{-2} , illustrating a recurring issue: theoretical bounds often require prior knowledge of quantities that can only be estimated from the manifold itself.

Geometric Property Estimation: Recent work develops estimators and sample complexity bounds for reach and related quantities (Aamari et al., 2019; Berenfeld et al., 2022; Aamari et al., 2023), though empirical validation remains challenging due to the lack of ground-truth geometric data. Similar progress exists for curvature estimation: scalar curvature estimators with nonasymptotic guarantees (Aamari & Levraud, 2019; Gawlik & Neunteufel, 2025), methods for the second fundamental form and Ricci curvature (Acosta et al., 2023; Samal et al., 2018), and tangent-space estimators with provable accuracy (Cheng & Chiu, 2016; Cazals & Pouget, 2005). These results extend the classical geometric recovery literature (Niyogi et al., 2008).

Overall, theory provides strong asymptotic guarantees, but empirical understanding is hindered by the absence of datasets with exact geometric ground truth. Our framework addresses this gap by combining dense, axis-aligned sampling with finite-difference estimators, enabling controlled evaluation of geometric quantities and systematic tests of how theoretical bounds behave under realistic approximations.

108

3 BACKGROUND AND DEFINITIONS

109

110

Datasets as Manifolds: The manifold hypothesis suggests that high-dimensional datasets often
111 concentrate near low-dimensional manifolds. We focus on datasets where the number of intrinsic
112 factors of variation d is small and fixed, and where these factors are explicitly known. Each dataset
113 is modeled as a union of smooth d -dimensional manifolds embedded in \mathbb{R}^D , possibly with bound-
114 ary. Typically, each of the k semantic classes in the dataset corresponds to a separate connected
115 component of this union.

116 For this work, we restrict attention to simple topologies in which each manifold factors into cyclic
117 and non-cyclic directions. Concretely, every manifold is assumed to be homeomorphic to $[0, 1]^r \times$
118 $(S^1)^s, r + s = d$, so that some coordinates vary over a compact interval while others wrap around
119 a circle. This setting captures many common synthetic datasets. A canonical example is *dSprites*,
120 a collection of 64×64 grayscale images of objects (square, ellipse, heart) undergoing controlled
121 transformations such as scaling, rotation, and translation. The manifold of a class in this dataset is
122 homeomorphic to $[0, 1]^3 \times S^1$ and is embedded into \mathbb{R}^{4096} .

123 To obtain discrete datasets from this continuous geometric picture, we impose a grid structure. Let
124 n_l be the number of sampled values along the l -th dimension, so that the total number of grid points
125 is $n = \prod_{l \leq d} n_l$. We define

126
$$G = \left\{ \left(\frac{j_1}{n_1}, \dots, \frac{j_r}{n_r}, 2\pi \frac{j_{r+1}}{n_{r+1}}, \dots, 2\pi \frac{j_d}{n_d} \right) \mid 0 \leq j_\ell < n_\ell \right\}, \quad (3.1)$$
127

128 where the first r coordinates sample $[0, 1]$ uniformly and the last s coordinates sample S^1 uniformly.
129 For each class $i \leq k$, we define a mapping, $u_i : G \rightarrow M_i$, that associates each grid point with a
130 dataset element obtained by applying the corresponding transformations. The image $u_i[G]$ provides
131 a discrete parametrization of the manifold M_i , and by cutting along cyclic directions one obtains
132 discrete patches of M_i . The complete discretized dataset is then

133
$$X_G = \bigcup_{i \leq k} u_i[G]. \quad (3.2)$$
134

135

Geometric Measures: We focus on three geometric quantities describing the local and global struc-
136 ture of a manifold: *volume*, *scalar curvature*, and *reach*. For completeness, we recall the definitions
137 of the Riemannian metric and the objects needed to introduce these quantities.

138

Definition 3.1 (Riemannian metric). A Riemannian metric g on a d -dimensional differentiable man-
139 ifold M assigns to each point $p \in M$ an inner product g_p on the tangent space $T_p M$. If M is em-
140 bedded in \mathbb{R}^D , the ambient Euclidean metric induces a Riemannian metric by restriction. In local
141 coordinates $u : U \rightarrow M$, the metric matrix is

142
$$g_{ij}(x) = \langle \partial_i u(x), \partial_j u(x) \rangle_{\mathbb{R}^D}. \quad (3.3)$$
143

144

Definition 3.2 (Volume element and volume). On a Riemannian manifold (M, g) with local coor-
145 dinates (u^1, \dots, u^d) , the natural volume element is

146
$$dV = \sqrt{\det(g)} du^1 \wedge \dots \wedge du^d. \quad (3.4)$$
147

148 The volume of a region $R \subset M$ is then

149
$$\text{Vol}(R) = \int_{u^{-1}(R)} \sqrt{\det(g)} dx^1 \dots dx^d. \quad (3.5)$$
150

151 Throughout, we use Einstein summation notation: free upper and lower indices in the same term are
152 implicitly summed, e.g. $g^{ij} Ric_{ij} = \sum_{i,j} g^{ij} Ric_{ij}$.

153

Definition 3.3 (Notions of curvature). The curvature of (M, g) is encoded in the Riemann tensor

154
$$R^i_{jkl} = \partial_k \Gamma^i_{jl} - \partial_l \Gamma^i_{jk} + \Gamma^i_{kr} \Gamma^r_{jl} - \Gamma^i_{lr} \Gamma^r_{jk}, \quad (3.6)$$
155

156 where the Christoffel symbols are

157
$$\Gamma^i_{jk} = \frac{1}{2} g^{ir} (\partial_j g_{rk} + \partial_k g_{rj} - \partial_r g_{jk}). \quad (3.7)$$
158

159 Contracting yields the Ricci tensor $Ric_{ij} = R^r_{irj}$ and the scalar curvature $R = g^{ij} Ric_{ij}$.

162 **Definition 3.4** (Reach). For a closed set $A \subset \mathbb{R}^D$, the *medial axis* is the set of points with more
 163 than one nearest neighbor in A . The *reach* of A is the distance to its medial axis:
 164

$$165 \quad \tau_A = \inf_{p \in A} d_{\ell^2}(p, \text{Med}(A)). \quad (3.8)$$

166 Here d_{ℓ^2} is the Euclidean distance: $d_{\ell^2}(p, q) = \|p - q\|_2$, and for a set A , $d_{\ell^2}(p, A) =$
 167 $\inf_{q \in A} d_{\ell^2}(p, q)$. Intuitively, τ_A is the largest radius such that every point within distance $< \tau_A$
 168 of A has a unique nearest neighbor in A . For a compact d -dimensional submanifold $M \subset \mathbb{R}^D$, the
 169 reach can be expressed as
 170

$$171 \quad \tau_M = \inf_{p \neq q \in M} \frac{\|p - q\|^2}{2 d_{\ell^2}(q - p, T_p M)}, \quad (3.9)$$

172 where $d_{\ell^2}(v, T_p M)$ is the distance of a vector v to the tangent space at p .
 173

174 In our applications, we consider both *global* quantities (total volume, the scalar curvature integral¹,
 175 global reach) and their *local* counterparts (volume element, pointwise scalar curvature, and local
 176 reach estimators as in Aamari et al. (2019)).
 177

178 **Definition 3.5** (Hausdorff distance). Let $A, B \subset \mathbb{R}^D$ be non-empty subsets. The *Hausdorff distance*
 179 between A and B is

$$180 \quad H(A, B) = \max \left\{ \sup_{a \in A} d_{\ell^2}(a, B), \sup_{b \in B} d_{\ell^2}(b, A) \right\}. \quad (3.10)$$

183 If M is the ground-truth data manifold and \hat{M} a learned approximation (e.g., via an autoencoder),
 184 then $H(M, \hat{M})$ expresses the largest geometric error, i.e. how far the manifolds can be from each
 185 other at any single point.
 186

187 **Manifold Fitting and Bounds:** Manifold learning is closely connected with generative modeling:
 188 in both cases, high-dimensional data are assumed to lie near a low-dimensional manifold. Generative
 189 models typically learn a mapping between the data manifold in \mathbb{R}^D and a lower-dimensional
 190 latent space where semantic factors of variation are disentangled and sampling is easier. If the en-
 191 coder-decoder network is sufficiently regular (locally \mathcal{C}^1 or \mathcal{C}^2), then composing the encoder with
 192 the manifold charts u_i yields a parametrization of the latent manifold. Each data point is mapped
 193 to its latent representation, and decoding corresponds to projecting back onto the estimated data
 194 manifold.

195 We focus on two theoretical results that provide bounds on the error of manifold fitting in terms
 196 of sample size, intrinsic dimension, and geometric properties of the manifold. Before stating these
 197 results, we define the normal fiber of radius r at a point $p \in M$ as $L_r(p) = T_p^\perp M \cap B_D(p, r)$, where
 198 $T_p^\perp M$ is the space orthogonal to the tangent space at p and $B_D(p, r)$ is the D -dimensional ball of
 199 radius r centered at p . Intuitively, this fiber is a $(D - d)$ -dimensional ball extending away from the
 200 manifold at p .

201 **Minimax manifold estimation bound:** Genovese et al. (2012) establish minimax rates for estimat-
 202 ing a manifold from samples corrupted by small normal noise. Their result shows that the intrinsic
 203 dimension d alone governs the difficulty of estimation.

204 **Theorem 1** (Genovese et al. (2012)). Let $\mathcal{M}(\tau)$ be the class of compact, smooth, boundaryless
 205 d -dimensional manifolds embedded in \mathbb{R}^D with reach at least τ . For each $M \in \mathcal{M}(\tau)$, let Q_M be
 206 the distribution of $Y = \xi + Z$, where ξ is uniformly distributed on M and Z is uniformly distributed
 207 on the normal fiber of radius σ at ξ . Let $\mathcal{Q} = \{Q_M \mid M \in \mathcal{M}(\tau)\}$. For an n -sample estimator
 208 $\hat{M} : \mathbb{R}^n \rightarrow \mathcal{M}$, define the minimax risk

$$209 \quad R_n(\mathcal{Q}) = \inf_{\hat{M}} \sup_{Q \in \mathcal{Q}} \mathbb{E}_Q[H(\hat{M}, M)], \quad (3.11)$$

210 where $H(\cdot, \cdot)$ denotes the Hausdorff distance. Then there exist constants $C_1, C_2 > 0$ such that
 211

$$212 \quad C_1 \left(\frac{1}{n} \right)^{\frac{2}{2+d}} \leq R_n(\mathcal{Q}) \leq C_2 \left(\frac{\log n}{n} \right)^{\frac{2}{2+d}}. \quad (3.12)$$

213 ¹The integral of the scalar field defined by the scalar curvature R on M over the volume of M , i.e. $\int_M R dV$.
 214

Figure 1: From a low-dimensional seed we produce dense, regular grids via analytic parametrizations or systematic transforms; central finite differences recover geometric estimators such as reach and curvature enabling validation of manifold-fitting bounds.

This result shows that the sample complexity depends exponentially on the intrinsic dimension d , but not on the ambient dimension D . Intuitively, the distributions Q_M correspond to sampling a point on M and perturbing it orthogonally within its reach. In our setting, an estimator \widehat{M} may be interpreted as a neural network (e.g., an autoencoder) that outputs a fitted manifold.

Testing the manifold hypothesis: Fefferman et al. (2016) introduce a testing framework for the manifold hypothesis. Their analysis relates the required number of samples to two geometric parameters of the manifold: its volume and its reach. Assuming a manifold M satisfying the hypothesis exists, they derive the following upper bound on the Hausdorff distance between the true and estimated manifolds:

$$R_n(Q) \leq C_1 \frac{V^{1/d}}{\tau} \left(\frac{1}{n} \right)^{1/d}. \quad (3.13)$$

Further details on the derivation of this bound are provided in Appendix A.

4 METHODS AND FRAMEWORK

We construct controlled synthetic manifolds of low intrinsic dimension ($d = 1\text{--}4$) sampled on regularly spaced grids. Dense sampling enables stable finite-difference approximations of partial derivatives, allowing accurate computation of the induced metric, volume element, curvature tensors, and reach. This framework provides a setting to empirically assess theoretical manifold-fitting bounds and a reproducible dataset suite for validating geometric estimators.

Datasets with a dense grid structure: We consider two complementary approaches for constructing low-dimensional datasets with a grid structure.

For manifolds with an explicit mathematical description, we use known parametrizations to generate a regular grid of points. For image-based or domain-specific datasets, we extend existing data by systematically applying transformations (translations, rotations, scalings). Sampling all combinations of these transformations yields a structured grid analogous to the analytic manifold case.

Although grid sampling provides dense coverage, it may not be uniform with respect to the intrinsic geometry. To obtain more uniform subsets, we use two strategies:

- Iterative farthest-point sampling on the grid, selecting maximally separated points.
- Sampling according to the volume form, either by weighting grid points proportionally or, when analytic expressions exist, by using inverse transform sampling across dimensions via numerical integration. This becomes computationally demanding as d increases.

For experiments, we construct a fixed test set by selecting a uniformly distributed subset of grid points. The remaining points form the training set, with varying training sizes. This ensures clear train/test separation while keeping the test set sufficiently representative for approximating Hausdorff and average distances between manifolds. We compute the geometric measures on the full dataset.

270 **Computation of geometric measures:** To estimate geometric quantities such as the volume element,
 271 scalar curvature, and reach, we use finite-difference approximations of partial derivatives on
 272 the dense grid. We assume C^3 regularity for estimating the reach and volume and C^5 regularity for
 273 estimating scalar curvature, enabling second-order finite-difference approximations of the required
 274 first- and third-order derivatives.

275 Given a parametrization $u : \mathbb{R}^d \rightarrow \mathbb{R}^D$, the central difference approximation
 276

$$277 \quad f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2) \quad (4.1)$$

279 extends coordinate-wise. For example,

$$281 \quad D_{h,i}^c u(x) = \frac{u(x_1, \dots, x_i + h, \dots, x_d) - u(x_1, \dots, x_i - h, \dots, x_d)}{2h}, \quad (4.2)$$

283 gives a second-order accurate estimate of the i th partial derivative. Products of such approximations
 284 yield $g_{ij} = \langle u_{,i}, u_{,j} \rangle + O(h^2)$, so all smooth metric-dependent quantities (volume form, Christoffel
 285 symbols, curvature tensors, scalar curvature) inherit $O(h^2)$ accuracy. These intermediate tensors are
 286 available within the framework for downstream analysis. Thus $\hat{V} - V = O(h^2)$ and $\hat{R} - R = O(h^2)$.
 287 For the reach, we use the estimator of Aamari et al. (2019), which on an equidistant grid of spacing
 288 h satisfies

$$289 \quad |\hat{\tau} - \tau| = O(h). \quad (4.3)$$

290 We validate these estimators on manifolds with known closed-form geometric quantities, including
 291 2- and 3-dimensional ellipsoids, hyperboloids, and 4-spheres in various ambient spaces. Across all
 292 tested cases, relative errors are typically below 10^{-2} , confirming that finite differences on dense
 293 grids provide highly accurate geometric approximations.

294 Comparison to general estimation methods:

295 General estimators of curvature and reach from point clouds, such as those of Aamari et al. (2023)
 296 for reach and Aamari & Levraud (2019) for curvature, operate in far broader settings than ours. They
 297 must infer derivatives from unstructured samples via sophisticated interpolations, leading to optimal
 298 but more complex rates, nontrivial constants, and substantial computational overhead. No publicly
 299 available implementations currently exist.

300 On a d -dimensional grid with n points, spacing is $h = n^{-1/d}$. Our reach estimate therefore satisfies

$$302 \quad |\hat{\tau} - \tau| = O(h) = O(n^{-1/d}),$$

304 which matches the lower bound and is slightly sharper than the $O((\log n/n)^{1/d})$ rate of Aamari
 305 et al. (2023) for C^3 manifolds.

306 For scalar curvature, our intrinsic finite-difference estimator gives

$$308 \quad |\hat{R} - R| = O(h^2) = O(n^{-2/d}).$$

310 The bound of Aamari & Levraud (2019) is $O((\log n/n)^{3/d})$ for C^5 manifolds, which is slightly
 311 better. This gap is due to our intrinsic computation of the Riemann curvature tensor, which requires
 312 third-order derivatives. An extrinsic formulation via the second fundamental form would reduce the
 313 derivative order and yield optimal rates. This is a natural extension for future work.

314 Our aim is not to compete with general estimators. Instead, the controlled grid setting provides
 315 a straightforward and reproducible way to compute geometric quantities at near-optimal accuracy.
 316 The resulting measures serve as reliable benchmarks and unit tests for developing and analyzing
 317 more general methods on unstructured data.

319 5 APPLICATIONS

321 **Datasets:** Our experimental setup employs two types of datasets: (i) toy manifolds with explicit
 322 mathematical parametrizations for analytical validation, and (ii) adapted versions of established
 323 image datasets (dSprites Matthey et al. (2017) and COIL-20 Nene et al. (1996)) that provide controlled
 324 settings for empirical evaluation. Table 1 summarizes the key characteristics of each dataset.

The toy manifolds serve as analytically tractable benchmarks with known closed-form geometric properties. For the image datasets, we modified the original sampling schemes to better suit geometric computations: dSprites was regenerated with reduced resolution but improved anti-aliasing, while COIL-20 was extended with additional transformations including scale and orientation. Both datasets employ dense grid sampling with margin oversampling on non-cyclic dimensions to enable finite difference computations of geometric measures. Detailed specifications are in Appendix B.

Manifold fitting methods: We consider two complementary approaches to fit manifolds to the datasets: a geometric method, *Manifold Moving Least Squares* (MMLS) (Sober & Levin, 2020) , and a deep learning method, the β -VAE autoencoder (Higgins et al., 2017).

MMLS: MMLS, Sober & Levin (2020), is a local manifold approximation method in which, for each query point, a neighborhood is weighted by a kernel function and a d -dimensional affine space together with a local polynomial are fitted by weighted least squares. The projection onto the approximated manifold is then obtained by projecting onto the fitted d -plane and evaluating the polynomial correction, yielding a flexible higher-order local model of the manifold.

In our setting, the ambient dimension is too high to reliably estimate local polynomials. We therefore customize the procedure by restricting the fit to the weighted d -plane alone. There are more details on the method and our usage in Appendix C.1.

β -VAE: The β -VAE, Higgins et al. (2017), provides a learning-based approach. It maps input data into a low-dimensional latent space and reconstructs them, with the reconstruction lying on a learned manifold. The reconstruction distance can thus be interpreted as the distance to this manifold. As the input dimensionality is too small for meaningful bottlenecks in toy datasets, we employ β -VAE only for image datasets (dSprites, COIL-20). For more details, refer to Appendix C.1

Sampling protocol: For both methods, a fixed test set of 500 uniformly spread points is used. On the toy datasets, training sets range from 5–500 points, and each experiment is repeated 20 times. On dSprites and COIL-20, data ratios range from 0.01 up to 1.0, with three repetitions per setup.

The motivation for considering both methods is that MMLS directly fits a manifold in the original data space, whereas β -VAE learns a latent manifold with richer semantic structure. Together, they provide complementary views of manifold fitting performance.

Error Bounds evaluation: We now turn to the first application of manifold fitting: the empirical evaluation of theoretical bounds on approximation error. Recall from section 3 that Genovese et al. provide an upper and lower bound depending only on the intrinsic dimension, while Fefferman et al. derive a sharper upper bound that additionally incorporates the reach and volume of the manifold. For the fitting methods (MMLS, β -VAE), each dataset (toy, dSprites, COIL-20), and a range of intrinsic dimensions, we fit manifolds for multiple training set sizes. As distance metric we use the Hausdorff distance between the fitted and the true manifold.

Comparing to bounds: To estimate the constants appearing in the theoretical upper and lower error bounds, we avoid attempting to compute these constants directly. Instead, we determine them empirically by aligning the theoretical shapes of the bounds with the observed error curve.

The theoretical bounds scale like $C_1 n^{-2/(2+d)}$ and $C_2 (\log n/n)^{-2/(2+d)}$, which suggests that the true error curve should be well approximated by a power law of the form $R_n \sim C n^{-g(d)}$. Taking logarithms yields a linear model $\log R_n \sim -A \log n + \log C$. We therefore regress $(\log n_j, \log \hat{R}_{n_j})$ for a sequence of sample sizes n_j covering the fractions $\{0.01, 0.02, 0.05, 0.1, \dots, 1.0\}$ of the test

Table 1: Dataset characteristics and parametrizations used in our experiments:

Dataset	d	D	Factors	Range	Components
Circle	1	2	θ	$[0, 2\pi]$	1
Two moons	1	2	θ	$[0, 2\pi]$	2
Sphere	2	3	θ, ϕ	$[0, 2\pi] \times [0, \pi]$	1
Torus	2	3	θ, ϕ	$[0, 2\pi] \times [0, 2\pi]$	1
dSprites	4	4096	scale, orientation, pos. x, pos. y	see Appendix B	3
COIL-20	3	4096	horiz. orient., scale, img. orient.	see Appendix B	20

Figure 2: Fitting bounds on dSprites for different dimensions utilizing MMLS.

dataset. Each experiment is repeated three times, and the empirical values \hat{R}_{n_j} used for the fit are the pointwise averages. The regression provides estimates \hat{A} and \hat{C} , giving a fitted curve $\hat{R}_n^{\text{fit}} = \hat{C}n^{-\hat{A}}$. We then use this fitted curve to select constants for the upper and lower theoretical bounds. For each n_j , we compute the 0.99 percentile of the fitted values $\hat{R}_{n_j}^{\text{fit}}$. The upper bound constant is chosen as the smallest value for which the bound stays above these percentiles; the lower bound constant is chosen as the largest value for which the bound stays below them. This procedure yields stable and reproducible constants while preserving the theoretical scaling behavior. For more details and plots related to the logarithmic regression fitting, please look at the appendix sub-section C.2.

Results: We present three representative comparisons:

- **Cross-dataset** (Figure 4): curves for sphere, torus, COIL-20 and dSprites using MMLS.
- **Cross-dimension** (Figure 2): curves for dSprites with intrinsic dimensions $d = 1, 2, 3, 4$, again using MMLS.
- **Cross-model** (Figure 3): comparison of MMLS and β -VAE on 4D dSprites.

The main observations are: (i) Fefferman’s bounds, which explicitly exploit reach and volume, yield significantly tighter upper envelopes than dimension-only bounds. (ii) For toy datasets, the empirical curves initially follow the upper rate $(\frac{\log n}{n})^{1/d}$ but then approach the lower rate $(\frac{1}{n})^{1/d}$ as sample size grows. (iii) For image datasets (COIL-20, dSprites), the behavior is reversed: curves start closer to the lower bound and move upward with larger n . We actually notice that this behavior is correlated with the increase of scalar curvature magnitude on the datasets which captures their complexity. One potential line of investigation could be to check if the $\log n$ factor on the upper bounds can be connected with curvature or reach.

Figure 3: Bounds for MMLS & β -VAE on dSprites (4D)

Figure 4: Fitting bounds for MMLS on from left to right Sphere, Torus, COIL-20 and dSprites.

Figure 5: Evolution of volume, scalar curvature, and reach of the manifold across layers of a β -VAE, shown for both dSprites and COIL-20:

Manifold analysis: In the second application, we analyze how geometric properties of data manifolds evolve through the layers of a β -VAE using the dSprites (4D) and COIL-20 (3D) datasets. For each layer we compute the manifold volume, integrated scalar curvature (with positive and negative parts separated), reach, and the average distance between class manifolds (Figure 5).

We observe that curvature systematically increases while reach decreases in deeper layers, indicating that the intermediate manifolds become progressively more intricate and approach self-intersections. At the same time, average distances between class manifolds grow closer to the latent space, suggesting that as semantic information strengthens, the network prioritizes class separation over preserving low-level visual transformations.

6 DISCUSSION

We presented a framework for constructing dense manifolds and accurately estimating their geometric properties, enabling controlled studies of manifold fitting. We illustrated two use cases: assessing existing manifold fitting bounds via log-log scaling fits, and analyzing how data geometry evolves across layers of a β -VAE. Both revealed how geometric structure influences learning.

The main strength of this framework is its ability to provide ground truth geometric quantities that are otherwise inaccessible or unreliable. Unlike real datasets, where assumptions cannot be verified, or simple analytic manifolds, which lack representational richness, our synthetic constructions balance realism and control. This makes them well-suited for probing theoretical assumptions, validating estimators, or stress-testing bounds under controlled perturbations.

Several limitations should nonetheless be emphasized:

- The framework can analyze only manifolds of low dimension, up to 4–5. It is therefore intended for benchmarking and understanding rather than analyzing arbitrary datasets.
- It currently supports manifolds with simple topology, $[0, 1]^r \times (S^1)^s$. Extending this is possible but comes with additional implementation complexity.

Future work could address these limitations in several directions. Expanding the dataset suite to include richer transformations, occlusions, more diverse topologies, and additional modalities (e.g., text or audio) would broaden applicability. Another possibility is to evaluate existing geometric estimators, e.g. for curvature or reach, by comparing them against the more accurate finite-difference values on the test manifolds. The framework could also be used to study discriminative bounds, where classifiers effectively fit functions on manifolds, and to quantify how geometric fidelity interacts with generalization.

Finally, large language models (LLMs) were used to polish the writing of this paper. All scientific ideas, results, and analyses are original.

486 REFERENCES
487

488 Eddie Aamari and Clément Levraud. Stability and minimax optimality of tangential delaunay com-
489 plexes for manifold reconstruction. *Discrete & Computational Geometry*, 59:923–971, 2018.

490 Eddie Aamari and Clément Levraud. Non-asymptotic rates for manifold, tangent space, and curva-
491 ture estimation. *Annals of Statistics*, 47:177–204, 02 2019. doi: 10.1214/18-AOS1685.

492 Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and Larry Wasser-
493 man. Estimating the reach of a manifold. *Electronic Journal of Statistics*, 13(1):1359 – 1399,
494 2019. doi: 10.1214/19-EJS1551. URL <https://doi.org/10.1214/19-EJS1551>.

495 Eddie Aamari, Clément Berenfeld, and Clément Levraud. Optimal reach estimation and metric
496 learning. *The Annals of Statistics*, 51(3):1086–1108, 2023.

497 Antonio G Ache and Micah W Warren. Ricci curvature and the manifold learning problem. *Ad-
498 vances in Mathematics*, 342:14–66, 2019.

499 Francisco Acosta, Sophia Sanborn, Khanh Dao Duc, Manu Madhav, and Nina Miolane. Quantifying
500 extrinsic curvature in neural manifolds. In *Proceedings of the IEEE/CVF Conference on Computer
501 Vision and Pattern Recognition*, pp. 610–619, 2023.

502 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
503 data representations in deep neural networks. *Advances in Neural Information Processing Sys-
504 tems*, 32, 2019.

505 Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature
506 of deep generative models. *arXiv preprint arXiv:1710.11379*, 2017.

507 Iskander Azangulov, George Deligiannidis, and Judith Rousseau. Convergence of diffusion models
508 under the manifold hypothesis in high-dimensions. *arXiv preprint arXiv:2409.18804*, 2024.

509 Randall Balestrieri, Sébastien Paris, and Richard Baraniuk. Max-affine spline insights into deep
510 generative networks. *arXiv preprint arXiv:2002.11912*, 2020.

511 Ronen Basri and David Jacobs. Efficient representation of low-dimensional manifolds using deep
512 networks. *arXiv preprint arXiv:1602.04723*, 2016.

513 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
514 representation. *Neural computation*, 15(6):1373–1396, 2003.

515 Clément Berenfeld, John Harvey, Marc Hoffmann, and Krishnan Shankar. Estimating the reach of a
516 manifold via its convexity defect function. *Discrete & Computational Geometry*, 67(2):403–438,
517 2022.

518 Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension, persistent
519 homology and generalization in neural networks. *Advances in neural information processing
520 systems*, 34:6776–6789, 2021.

521 Paul S Bradley and Olvi L Mangasarian. K-plane clustering. *Journal of Global optimization*, 16:
522 23–32, 2000.

523 Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep learning works: A manifold
524 disentanglement perspective. *IEEE transactions on neural networks and learning systems*, 27
525 (10):1997–2008, 2015.

526 Matthew Brand. Charting a manifold. *Advances in neural information processing systems*, 15, 2002.

527 Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
528 jardins, and Alexander Lerchner. Understanding disentangling in β -vae. *arXiv preprint
529 arXiv:1804.03599*, 2018.

530 Paola Campadelli, Elena Casiraghi, Claudio Ceruti, and Alessandro Rozza. Intrinsic dimension
531 estimation: Relevant techniques and a benchmark framework. *Mathematical Problems in Engi-
532 neering*, 2015(1):759567, 2015.

540 Gunnar Carlsson. Topology and data. *Bulletin of the American Mathematical Society*, 46(2):255–
 541 308, 2009.

542

543 Lawrence Cayton et al. Algorithms for manifold learning. *Univ. of California at San Diego Tech.
 544 Rep*, 12(1-17):1, 2005.

545

546 Frédéric Cazals and Marc Pouget. Estimating differential quantities using polynomial fitting of
 547 osculating jets. *Computer aided geometric design*, 22(2):121–146, 2005.

548

549 Siu-Wing Cheng and Man-Kwun Chiu. Tangent estimation from point samples. *Discrete & Com-
 550 putational Geometry*, 56(3):505–557, 2016.

550

551 Jaewoong Choi, Junho Lee, Changyeon Yoon, Jung Ho Park, Geonho Hwang, and Myungjoo Kang.
 552 Do not escape from the manifold: Discovering the local coordinates on the latent space of gans.
 553 *arXiv preprint arXiv:2106.06959*, 2021.

554

555 Manfredo Perdigao Do Carmo and J Flaherty Francis. *Riemannian geometry*, volume 2. Springer,
 556 1992.

557

558 Piotr Dollár, Vincent Rabaud, and Serge Belongie. Learning to traverse image manifolds. *Advances
 559 in neural information processing systems*, 19, 2006.

560

561 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 562 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 563 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 arXiv:2010.11929*, 2020.

564

565 Herbert Federer. Curvature measures. *Transactions of the American Mathematical Society*, 93(3):
 566 418–491, 1959.

567

568 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
 569 *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.

570

571 Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev, Matti Lassas, and Hariharan Narayanan. Fit-
 572 ting a putative manifold to noisy data. In *Conference On Learning Theory*, pp. 688–720. PMLR,
 573 2018.

574

575 Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev, Matti Lassas, and Hariharan Narayanan. Re-
 576 construction and interpolation of manifolds. i: The geometric whitney problem. *Foundations of
 577 Computational Mathematics*, 20(5):1035–1133, 2020.

578

579 Evan Gawlik and Michael Neunteufel. Finite element approximation of scalar curvature in arbitrary
 580 dimension. *Mathematics of Computation*, 94(356):2685–2722, 2025.

581

582 Christopher R Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman. Mini-
 583 max manifold estimation. *The Journal of Machine Learning Research*, 13(1):1263–1291, 2012.

584

585 Luca Grementieri and Rita Fioresi. Model-centric data manifold: The data through the eyes of the
 586 model. *SIAM Journal on Imaging Sciences*, 15(3):1140–1156, 2022.

587

588 Quanquan Gu, Zhenhui Li, and Jiawei Han. Linear discriminant dimensionality reduction. In *Ma-
 589 chine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
 590 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I* 11, pp. 549–564. Springer, 2011.

591

592 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 593 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
 vision and pattern recognition*, pp. 16000–16009, 2022.

594

595 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 596 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 597 constrained variational framework. In *International conference on learning representations*, 2017.

594 Jeffrey Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, and David Kriegman. Clustering
 595 appearances of objects under varying illumination conditions. In *2003 IEEE Computer Society*
 596 *Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.*, volume 1, pp. I–I.
 597 IEEE, 2003.

598 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 599 *neural information processing systems*, 33:6840–6851, 2020.

600 Christian Horvat and Jean-Pascal Pfister. Denoising normalizing flow. *Advances in neural informa-*
 601 *tion processing systems*, 34:9099–9111, 2021.

602 Daniel N Kaslovsky and François G Meyer. Non-asymptotic analysis of tangent space perturbation.
 603 *Information and Inference: a Journal of the IMA*, 3(2):134–187, 2014.

604 Ilya Kaufman and Omri Azencot. Data representations’ study of latent image manifolds. In *Inter-*
 605 *national Conference on Machine Learning*, pp. 15928–15945. PMLR, 2023.

606 Bobak Kiani, Jason Wang, and Melanie Weber. Hardness of learning neural networks under the
 607 manifold hypothesis. *Advances in Neural Information Processing Systems*, 37:5661–5696, 2024.

608 Arlene K. H. Kim and Harrison Zhou. Tight minimax rates for manifold estimation under hausdorff
 609 loss. *Electronic Journal of Statistics*, 9:1562–1582, 07 2015. doi: 10.1214/15-EJS1039.

610 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 611 *arXiv:1312.6114*, 2013.

612 Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations*
 613 *and Trends® in Machine Learning*, 12(4):307–392, 2019.

614 Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothe-
 615 sis. *Psychometrika*, 29(1):1–27, 1964.

616 David Levin. The approximation power of moving least-squares. *Mathematics of computation*, 67
 617 (224):1517–1531, 1998.

618 David Levin. Mesh-independent surface interpolation. In *Geometric modeling for scientific visual-*
 619 *ization*, pp. 37–49. Springer, 2003.

620 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
 621 of objective landscapes. *arXiv preprint arXiv:1804.08838*, 2018.

622 Didong Li, Minerva Mukhopadhyay, and David B Dunson. Efficient manifold approximation with
 623 spherelets. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 84(4):1129–
 624 1149, 2022.

625 Tong Lin and Hongbin Zha. Riemannian manifold learning. *IEEE transactions on pattern analysis*
 626 *and machine intelligence*, 30(5):796–809, 2008.

627 Yaron Lipman, Daniel Cohen-Or, and David Levin. Error bounds and optimal neighborhoods for mls
 628 approximation. In *Proceedings of the fourth Eurographics symposium on Geometry processing*,
 629 pp. 71–80, 2006.

630 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L Caterini, and Jesse C
 631 Cresswell. Deep generative models through the lens of the manifold hypothesis: A survey and
 632 new connections. *arXiv preprint arXiv:2404.02954*, 2024.

633 Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
 634 Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using
 635 local intrinsic dimensionality. *arXiv preprint arXiv:1801.02613*, 2018.

636 Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
 637 testing sprites dataset. <https://github.com/deepmind/dsprites-dataset/>, 2017.

638 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 639 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

648 Kitty Mohammed and Hariharan Narayanan. Manifold learning using kernel density estimation and
 649 local principal components analysis. *arXiv preprint arXiv:1709.03615*, 2017.
 650

651 Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis.
 652 *Advances in neural information processing systems*, 23, 2010.

653 Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia object image library (coil-20).
 654 Technical Report Technical Report CUUCS-005-96, Columbia University in the City of New York,
 655 1996.
 656

657 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
 658 with high confidence from random samples. *Discrete & Computational Geometry*, 39(1):419–
 659 441, 2008.

660 Umut Ozertem and Deniz Erdogmus. Locally defined principal curves and surfaces. *The Journal of
 661 Machine Learning Research*, 12:1249–1286, 2011.
 662

663 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
 664 dimension of images and its impact on learning. *arXiv preprint arXiv:2104.08894*, 2021.

665 Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
 666 ding. *science*, 290(5500):2323–2326, 2000.
 667

668 H. Murase S.A. Nene, S.K. Nayar. Columbia Object Image Library (COIL-20). In *Technical Report,
 669 Department of Computer Science, Columbia University CUUCS-005-96*, Feb 1996a.
 670

671 H. Murase S.A. Nene, S.K. Nayar. Columbia Object Image Library (COIL-100). In *Technical
 672 Report, Department of Computer Science, Columbia University CUUCS-006-96*, Feb 1996b.
 673

674 Areejit Samal, RP Sreejith, Jiao Gu, Shiping Liu, Emil Saucan, and Jürgen Jost. Comparative
 675 analysis of two discretizations of ricci curvature for complex networks. *Scientific reports*, 8(1):
 676 8650, 2018.
 677

678 Stefan Schonsheck, Jie Chen, and Rongjie Lai. Chart auto-encoders for manifold structured data.
 679 *arXiv preprint arXiv:1912.10094*, 2019.
 680

681 Mahlagha Sedghi, George Atia, and Michael Georgiopoulos. A multi-criteria approach for fast and
 682 outlier-aware representative selection from manifolds. *arXiv preprint arXiv:2003.05989*, 2020.
 683

684 Ali Sekmen and Bahadir Bilgin. Manifold-based approach for neural network robustness analysis.
 685 *Communications Engineering*, 3(1):118, 2024.
 686

687 Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative
 688 models. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 689 Workshops*, pp. 315–323, 2018.
 690

691 Nitesh Shroff, Pavan Turaga, and Rama Chellappa. Manifold precis: An annealing technique for
 692 diverse sampling of manifolds. *Advances in Neural Information Processing Systems*, 24, 2011.
 693

694 Barak Sober and David Levin. Manifold approximation by moving least-squares projection (mmls).
 695 *Constructive Approximation*, 52(3):433–478, 2020.
 696

697 Hong Ye Tan, Subhadip Mukherjee, Junqi Tang, and Carola-Bibiane Schönlieb. Blessing of di-
 698 mensionality for approximating sobolev classes on manifolds. *arXiv preprint arXiv:2408.06996*,
 699 2024.
 700

701 Rong Tang and Yun Yang. Adaptivity of diffusion models to manifold structures. In *International
 702 Conference on Artificial Intelligence and Statistics*, pp. 1648–1656. PMLR, 2024.
 703

704 Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
 705 nonlinear dimensionality reduction. *science*, 290(5500):2319–2323, 2000.
 706

707 Tony Metger WonKwang Lee. Beta-vae. <https://github.com/1Konny/Beta-VAE>, 2018.
 708

702 Jiachen Yao, Mayank Goswami, and Chao Chen. A theoretical study of neural network expressive
 703 power via manifold topology. *arXiv preprint arXiv:2410.16542*, 2024a.
 704

705 Zhigang Yao and Yuqing Xia. Manifold fitting under unbounded noise. *arXiv preprint*
 706 *arXiv:1909.10228*, 2019.
 707

708 Zhigang Yao and Yuqing Xia. Manifold fitting under unbounded noise. *Journal of Machine Learning*
 709 *Research*, 26(45):1–55, 2025.
 710

711 Zhigang Yao, Jiaji Su, Bingjie Li, and Shing-Tung Yau. Manifold fitting. *arXiv preprint*
 712 *arXiv:2304.07680*, 2023.
 713

714 Zhigang Yao, Jiaji Su, and Shing-Tung Yau. Manifold fitting with cyclegan. *Proceedings of the*
 715 *National Academy of Sciences*, 121(5):e2311436121, 2024b.
 716

717 Zhenyue Zhang and Hongyuan Zha. Nonlinear dimension reduction via local tangent space align-
 718 ment. In *International Conference on Intelligent Data Engineering and Automated Learning*, pp.
 719 477–481. Springer, 2003.
 720

721 Zhenyue Zhang and Hongyuan Zha. Principal manifolds and nonlinear dimensionality reduction via
 722 tangent space alignment. *SIAM journal on scientific computing*, 26(1):313–338, 2004.
 723

724 A BOUNDS FROM TESTING THE MANIFOLD HYPOTHESIS FEFFERMAN ET AL. 725 (2016)

726 Fefferman et al. (2016) provide a testing framework for the manifold hypothesis. Their result
 727 connects the number of samples to geometric parameters of the manifold, namely its volume and
 728 reach. Here we present a fuller version of their result which implies the bound mentioned in the
 729 main text.
 730

731 **Theorem 2** (Fefferman et al. (2016)). There exists an algorithm which, given samples from a
 732 distribution P and $\varepsilon > 0$, distinguishes with probability at least $1 - \delta$ between the following two
 733 cases:
 734

- 735 • There exists $M \in G(d, CV, \tau/C)$ such that $\mathcal{L}(M, P) \leq C\varepsilon$.
- 736 • There does not exist $M \in G(d, V/C, \tau C)$ such that $\mathcal{L}(M, P) \leq \varepsilon/C$.

737 Here $G(d, V, \tau)$ denotes the class of d -dimensional manifolds of volume $\leq V$ and reach $\geq \tau$. The
 738 required sample size is
 739

$$740 n = \frac{N_p \ln^4(N_p/\varepsilon) + \ln(\delta^{-1})}{\varepsilon^2}, \quad N_p = V \left(\frac{1}{\tau^d} + \frac{1}{\tau^{d/2} \varepsilon^{d/2}} \right). \quad (\text{A.1})$$

743 Assuming that such a manifold M exists, the result yields an upper bound on the Hausdorff distance
 744 between the true and estimated manifolds:
 745

$$746 R_n(\mathcal{Q}) \leq \frac{C_1}{\tau} \left(\frac{V}{n} \right)^{1/d}. \quad (\text{A.2})$$

750 B DATASETS

751 B.1 DSPRITES

752 For the original dataset check Matthey et al. (2017). Some example images can be seen in figure 6
 753 and a projection of dataset to 3D with PCA in 7. One can notice how the projections of the manifolds
 754 of the different classes are enveloped.
 755

756

Parameters:

757

758

- Image shape: 64×64
- Shape: 3 values (square, ellipse, heart)
- Scale: 16 values linearly spaced in $[0.5, 1]$
- Orientation: 16 values in $[0, 2\pi]$
- Position X: 16 values in $[0, 1]$
- Position Y: 16 values in $[0, 1]$
- Total: 196,608 images (3×16^4)

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

Figure 6: Example images of the heart class of dSprites.

787

B.2 COIL-20

788

789

For the original dataset check Nene et al. (1996). Some example images can be seen in figure 8 and a projection of dataset to 3D with PCA in 9. Again one can notice how the classes are enveloped.

790

791

792

Parameters:

793

794

795

796

797

798

799

800

801

802

803

804

B.3 GEOMETRIC MEASURES ON PROJECTIONS

805

806

807

808

809

Below we also provide two 3D plots where the geometric measures are plotted on the hear class of dSprites 10 and on the duck class of COIL-20 11. The absolute scalar curvature, is simply the absolute value of the point-wise scalar curvature. One can notice in both datasets that the absolute scalar curvature aligns well with the reach while the usual scalar curvature is much more noisy. This indicates that the different transforms have an intense impact on the change of curvature direction of each other.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 7: PCA projection of the dSprites dataset.

Figure 8: Example images of the duck class of COIL-20. Note the resizing and the additional yz-rotation and size transforms.

```

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```

Classes

Figure 9: PCA projection of the COIL-20 dataset.

Figure 10: PCA projection of the COIL-20 dataset.

C MANIFOLD FITTING

Here we provide details on the way we setup and run the experiments for the manifold fitting use case of our framework. This included details on the datasets used, the fitting models and the way we estimate the bound curves.

Figure 11: PCA projection of the COIL-20 dataset.

C.1 FITTING METHODS

THE FITTING PROCESS AND DATA SELECTION

Most manifold-fitting methods estimate local structures on M —such as tangent d -planes, tubular neighborhoods, or charts—from which a reconstructed manifold \widehat{M} is obtained. Evaluating the fit ideally requires computing the Hausdorff distance $H(M, \widehat{M})$. A direct numerical approximation demands dense, uniformly distributed point sets on both M and \widehat{M} , together with exhaustive nearest-neighbor searches, which is computationally prohibitive.

For simple analytic manifolds, uniform coverage can be obtained through explicit parametrizations, either via grids or by uniform volume sampling. For more complex datasets, curated sampling is often needed to empirically cover the space. To avoid evaluating the full Hausdorff distance, one can use the projection operators provided by the fitting methods: for each point $p \in M$, let \widehat{p} be its projection onto \widehat{M} . The projection error $\|p - \widehat{p}\|_2$ serves as a surrogate for $d_{\ell^2}(p, \widehat{M})$, and $H(M, \widehat{M})$ is approximated by the maximum error over a dense reference set on M .

Toy manifolds. Our procedure is:

- Construct a dense, approximately uniform reference set $Y = \{y_i\}_{i \leq n_{\text{test}}} \subset M$.
- Uniformly sample n points $X = \{x_i\}_{i \leq n} \subset M$ for fitting.
- Fit the chosen manifold-fitting method on X .
- Project Y to \widehat{Y} and compute the pointwise errors $\|y_i - \widehat{y}_i\|_2$ and their maximum.

The dense reference set Y is generated either directly via a grid in a closed-form parametrization or by drawing a large uniform sample $S = \{s_i\}_{i \leq N} \subset M$ and selecting n_{test} centroids $C = \{c_i\} \subset M$ that minimize the Sinkhorn loss between C and S . All uniform sampling steps rely on closed-form sampling formulas tailored to each manifold.

Image manifolds. The procedure mirrors the synthetic case:

- Select a dense subset $Y = \{y_i\}_{i \leq n_{\text{test}}} \subset X_G$ from the grid X_G .
- Uniformly sample $X = \{x_i\}_{i \leq n} \subset X_G \setminus Y$ for fitting.
- Fit the manifold-fitting method on X .
- Project Y to \widehat{Y} and compute $\|y_i - \widehat{y}_i\|_2$ and their maximum.

Dense subset selection is performed by a maximal-distance sub-sampling algorithm. Uniform sampling on the grid uses a discrete distribution obtained by normalizing the per-point volume element. Projection is geometric for MMLS and via reconstruction for the β -VAE.

MANIFOLD MOVING LEAST SQUARES (MMLS)

MMLS Sober & Levin (2020) is a projection-based manifold fitting method. Given sample points $Y = \{y_i\}_{i \leq N} \subset \mathbb{R}^D$ drawn from an unknown manifold M , the algorithm estimates a fitted manifold \widehat{M} and provides a projection operator that maps any nearby point p to \widehat{M} . A key ingredient is

972 a kernel θ that assigns similarity weights based on point–point distances, enabling smooth local
 973 approximations.
 974

975 The procedure consists of two stages:

976 • **Local affine fitting.** For a query point $p \in \mathbb{R}^D$ close to M , find an affine subspace H and
 977 a point $q \in B_D(p, \frac{\tau}{2})$ that minimize

$$978 \sum_{i \leq N} d_{\ell^2}(y_i, H)^2 \theta(\|y_i - q\|_2),$$

981 subject to $p - q \perp H$, where τ denotes the reach of M . This step provides a locally
 982 estimated tangent space.
 983

984 • **Local polynomial reconstruction.** With q and H fixed, fit a multivariate polynomial $g : \mathbb{R}^d \rightarrow \mathbb{R}^D$ by solving

$$985 \sum_{i \leq N} \|g(\text{proj}_H(y_i)) - y_i\|_2^2 \theta(\|y_i - q\|_2),$$

987 where $\text{proj}_H(y_i)$ is the orthogonal projection onto H . This serves as a local analogue of
 988 the exponential map, taking coordinates in the tangent space $T_q \widehat{M}$ and mapping them to
 989 \widehat{M} . The final projection of p is then $g(p)$.
 990

991 The method originates from the Moving Least Squares framework for hypersurfaces Levin (2003)
 992 and was later extended to arbitrary embedded manifolds Sober & Levin (2020). Other techniques
 993 exist (e.g., Zhang & Zha (2004) and the constructions used in Fefferman et al. (2016; 2018); Gen-
 994 ovese et al. (2012)), but these are typically more intricate or tailored to dimensionality reduction
 995 rather than direct manifold fitting.

996 **Implementation for our experiments.** We apply MMLS using the dense grid subset Y as the
 997 reference set and the uniformly sampled points X as queries. Each $x \in X$ is projected onto \widehat{M} as
 998 follows:

1000 • Identify the k nearest neighbors $\mathcal{N}_x = \{y_{i_1}, \dots, y_{i_k}\} \subseteq Y$.
 1001 • Compute distances $\|x - y_{i_m}\|_2$ for all neighbors and assign weights via an isotropic Gaus-
 1002 sian kernel with bandwidth σ :

$$1003 \quad w_m = \exp\left(-\left(\frac{\|x - y_{i_m}\|_2}{2\sigma}\right)^2\right).$$

1006 • Estimate q as the weighted average of \mathcal{N}_x . Estimate the affine space H by performing
 1007 weighted PCA on \mathcal{N}_x with weights w_m .
 1008 • Project x orthogonally onto H . In place of the full polynomial stage in Sober & Levin
 1009 (2020), we use a degree-1 (local linear) approximation.

1011 Hyperparameters.

1012 • $k = 5$ for toy manifolds and $k = 2^{d+1}$ for image manifolds.
 1013 • Gaussian kernel bandwidth: $\sigma = 1.0$.

1015 β -VAE

1017 We use the reference implementation from WonKwang Lee (2018), which provides two standard
 1018 architectures: model **B** from Higgins et al. (2017) and model **H** from Burgess et al. (2018). Both
 1019 operate on 64×64 images and differ mainly in channel width and bottleneck design.

1020 Model B.

1022 Encoder: Conv $32 \times 4 \times 4$ (stride 2),
 1023 FC $256 \rightarrow 256 \rightarrow 2z_d$.

1024 Decoder: FC $z_d \rightarrow 256 \rightarrow 256 \rightarrow 512$, followed by Deconv layers mirroring the encoder (stride 2).
 1025

All layers use ReLU activations.

1026 **Model H.** Encoder: Conv $32 \times 4 \times 4$ (stride 2), $32 \times 4 \times 4$ (stride 2), $64 \times 4 \times 4$ (stride 2), $64 \times$
 1027 4×4 (stride 2), $256 \times 4 \times 4$ (stride 1), FC $2z_d$.
 1028

1029 Decoder: FC $z_d \rightarrow 256$, followed by Deconv layers reversing the encoder (strides 1 and 2).
 1030

1031 All layers use ReLU activations.
 1032

1033 **Objective.** Model **H** uses the standard ELBO with a strengthened KL term:
 1034

$$\mathcal{L} = \text{recon} + \beta D_{\text{KL}}, \quad \beta > 1.$$

1035 Model **B** follows the capacity-controlled formulation:
 1036

$$\mathcal{L} = \text{recon} + \gamma |D_{\text{KL}} - C|,$$

1038 where C is annealed linearly from 0 to C_{max} .
 1039

1040 **Hyperparameters.**

1041

- $\beta = 4, \gamma = 100, C_{\text{max}} = 20$.
- Learning rate: 5×10^{-4} (dSprites), 10^{-4} (COIL-20).
- Batch size: 64.
- Latent dimension: $z_d = 10$.
- Optimizer: Adam with $\beta_1 = 0.9, \beta_2 = 0.999$.
- Architecture choice: model B for dSprites, model H for COIL-20.
- Training budget: up to 10^6 iterations or 10^5 epochs.
- Early stopping when training loss does not improve for 0.5% of max epochs.

1052 These settings closely follow WonKwang Lee (2018), with minimal tuning for stable convergence.
 1053 After training on the dense set Y , the decoder is used to reconstruct the test points X .
 1054

1055 **C.2 BOUND CURVES**

1056 **THE DIFFICULTY OF COMPUTING THE BOUNDS' CONSTANTS**

1058 The constants appearing in most bounds papers are unfortunately hard to compute but most impor-
 1059 tantly very large to be practical. The reason is because the authors goal is to derive the bounds in
 1060 terms of complexity and not to optimize those constants. To demonstrate how this looks like, we
 1061 track how such a constant appears in one of the bounds. Take the lower bound by Genovese et al.
 1062 (2012), this is:
 1063

$$C_1 \left(\frac{1}{n} \right)^{\frac{2}{2+d}} \leq R_n(\mathcal{Q}). \quad (\text{C.1})$$

1067 We will use some notation from the paper, if the reader wishes to understand the details, the afore-
 1068 mentioned paper should be consulted. To derive this bound, the authors use Le Cam's lemma, which
 1069 bounds the supremum of errors of an estimator \widehat{M} by the discrepancy between any two estimators
 1070 M_0, M_1 (see proof of theorem 1, section 3.2 in Genovese et al. (2012)):
 1071

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n} [H(M, \widehat{M})] \geq H(M_0, M_1) \|Q_0^n \wedge Q_1^n\|.$$

1075 Note that the manifolds are all in $\mathcal{M}(\kappa)$, where κ is the reach of the true data manifold (this is
 1076 usually denoted by τ , but the authors use κ in their paper) and a value $0 < \sigma < \kappa$ is selected as
 1077 a limit below the reach for the support of the considered distributions. Then the distribution space
 1078 is $\mathcal{Q} = \mathcal{Q}(\kappa, \sigma) = \{Q_M | M \in \mathcal{M}(\kappa)\}$ where Q_M is the density on $M \oplus \sigma$ defined by uniformly
 1079 sampling a point p on M and then sampling a point orthogonally to M at p up to distance σ , or to
 be precise, on the fiber of size σ at p , $L_\sigma(p) = T_p(M)^\perp \cap B_D(p, \sigma)$.

Now selecting M_0, M_1 in a way that they differ as much as possible, given the constraint they should belong in $\mathcal{M}(\kappa)$, yields the following inequality:

$$H(M_0, M_1) \|Q_0^n \wedge Q_1^n\| = H(M_0, M_1)(1 - \frac{1}{2} \int |q_0 - q_1|^{2n} \geq \frac{\gamma}{2} (1 - c\gamma^{\frac{d+2}{2}})^{2n}.$$

Then setting γ to $n^{-\frac{2}{d+2}}$ leads to the bound, because for large enough n :

$$\frac{\gamma}{2} (1 - c\gamma^{\frac{d+2}{2}})^{2n} = \left(\frac{1}{n}\right)^{\frac{2}{d+2}} \frac{1}{2} (1 - \frac{c}{n})^{2n} \sim \left(\frac{1}{n}\right)^{\frac{2}{d+2}} \frac{1}{2} e^{-c}$$

. The constant c now comes from theorem 6 of the paper where the distance between the density functions q_0, q_1 of Q_0, Q_1 is $\int |q_0 - q_1| = O(\gamma^{\frac{d+2}{2}})$. Tracing this to the proof of the theorem, in section 7.2, one notices that this comes from the following inequality near the end of the proof:

$$V(S_0 - S_1) \leq C \sigma^{D-d-1} \sqrt{4\gamma\kappa - \gamma^2}^d \gamma,$$

where the constant C accounts for the coefficients of the volumes of the d - and $D-d-1$ balls involved in the product set containing $S_1 - S_0$ and the distortion involved in the product, thus:

$$C = c_1(\kappa, \sigma) \omega_d \omega_{D-d-1}.$$

1080

Using Steiner's formula, one can bound $c_1(\kappa, \sigma)$ by $(1 - (\frac{\sigma}{\kappa})^2)^{-\frac{d}{2}}$. By symmetry, one gets the same inequality for $V(S_1 - S_0)$. If one additionally uses the approximation $\sqrt{4\gamma\kappa - \gamma^2} = 2\sqrt{\kappa\gamma} + o(\gamma)$ and assumes γ is small enough we get:

$$V(S_0 \circ S_1) \leq 2C \sigma^{D-d-1} \sqrt{4\gamma\kappa - \gamma^2}^d 2\gamma \leq \left[\left(1 - \left(\frac{\sigma}{\kappa}\right)^2\right)^{-\frac{d}{2}} 2^{d+2} \omega_d \omega_{D-d-1} \kappa^{\frac{d}{2}} \sigma^{D-d-1} \right] \gamma^{\frac{d+2}{2}}$$

Finally, lemma 4 connects distributions q_M on $M \oplus \sigma$ with the volume density on the same set, u_M by: 1026

$$q_M \leq (1 + \frac{\sigma}{\kappa})^d \omega_d u_M,$$

integrating which we get:

$$\int |q_0 - q_1| \leq 2 (1 + \frac{\sigma}{\kappa})^d \omega_d \frac{V(S_0 \circ S_1)}{V(M \oplus \sigma)}.$$

We can use the tubular bound $V(M \oplus \sigma) \geq V(M) \omega_{D-d} \sigma^{D-d} (2 - (1 - \frac{\sigma}{\kappa})^{D-d})$ and end up with the following explicit formula for C_1 :

$$C_1 = \frac{1}{2} e^{-c}$$

where

$$c = 2^{d+3} \frac{\kappa^{\frac{d}{2}}}{\sigma^{D-d}} \frac{(1 - (\frac{\sigma}{\kappa})^2)^{-\frac{d}{2}} (1 + \frac{\sigma}{\kappa})^d}{2 - (1 - \frac{\sigma}{\kappa})^{D-d}} \frac{\omega_d \omega_{D-d-1}}{\omega_{D-d}}$$

Takeaways

- There are hidden dependencies of C_1 on σ, κ, D, d and on n , if n is small.

1134

- While estimating a formula for C_1 we needed to use separate bounds which make C_1 potentially much smaller than it could actually be. Additionally, one needs to select a value for $0 < \sigma < \kappa$, which makes the computation of C_1 also a bit arbitrary.
- The lower bound we presented has the simplest derivation of the constant. The two upper bounds we consider are more complicated and involve the use of more intermediate inequalities which make the corresponding constants too large.

1140

1141 ESTIMATING THE BOUNDS' CONSTANTS

1142

1143 Based on the obstacles on directly computing the constants of the bounds, we decided to select them instead based on the values of the empirical curve. The idea is to simply place the upper bounds 1144 so that they just touch the empirical curve from above and the lower bounds so that they just touch the empirical curve from below. To get more reliable results, we first fit a curve on the empirical 1145 curve and use this to place the bounding curve. The selection of the curves family for the empirical 1146 curve is based on the observation that the formulas related to bounds depend exponentially on the 1147 dimension and multiplicatively on the constant for example looking at the Genovese et al. upper and 1148 lower bounds:

1149

1150

$$C_1 \left(\frac{1}{n} \right)^{\frac{2}{2+d}} \leq R_n(\mathcal{Q}) \leq C_2 \left(\frac{\log n}{n} \right)^{\frac{2}{2+d}}. \quad (\text{C.2})$$

1151

1152 It is reasonable thus to assume that the real error curve can be well approximated by a formula of 1153 the form:

1154

1155

$$R_n \sim C \left(\frac{1}{n} \right)^{g(d)},$$

1156

1157 which can be written in terms of logarithms as:

1158

1159

$$\log R_n \sim -g(d) \log n + \log C = -A \log n + \log C.$$

1160

1161 With this assumption, we use the logarithms of the empirical curve values $\{(\log n_j, \log \hat{R}_{n_j})\}_{j \in J}$, 1162 where $\{n_j \mid j \in J\} \subseteq [0, N]$ is an increasing sequence of number of samples of the total N dataset 1163 points, to fit the above regression. This way we get estimates \hat{A} , \hat{C} of A and C . Then we get the 1164 resulting fitted empirical curve:

1165

1166

$$\hat{R}_n^{fit} = \hat{C} \left(\frac{1}{n} \right)^{\hat{A}}.$$

1167

1168 Finally, using the values of \hat{R}_n^{fit} , we set the values of constants of the lower/upper bounds to be the 1169 largest/smallest constants such that the corresponding bounds are below/above the 0.99 percentile of 1170 the values of \hat{R}_n^{fit} on the experiment values $\{n_j\}_{j \in J}$. In our experiments, those values correspond 1171 to the

1172

$$[0.01, 0.02, 0.05, 0.1, \dots, 1.0]$$

1173

1174 fractions of the dataset of N points. Finally, note that for each percentage the experiment is repeated 1175 three time and the empirical curve used her is their point-wise average.

1176

1177 ANALYSIS OF THE FITTED EMPIRICAL CURVES

1178

1179 To provide a better understanding on the way we select the upper and lower bounds, we display a 1180 version of figures 4, 3 and 2 including the fitted empirical curve as a blue dotted line in figures 14, 1181 13 and 12.

1182

1183 Furthermore, we include figures 17, 16 and 15 with the regression line on the logarithmic values of 1184 the empirical curves, residual plots on the fitted values, QQ plots and also the values of R^2 . Those 1185 are again available for all three ablations present in the main paper. Most fits look reasonably good, 1186 with the exception of the β -VAE plot which is a bit noisy and the low values on the sphere and 1187 torus where on very low numbers of points, 5-20, there seems to be a need for a second, less steep 1188 function which to model them.

1189

Figure 12: Fitting bounds on dSprites for different dimensions utilizing MMLS.

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

Figure 13: Fitting bounds for MMLS & β -VAE on dSprites (4D)

Figure 14: Fitting bounds for MMLS on from left to right Sphere, Torus, COIL-20 and dSprites.

Figure 15: Regression evaluation on dSprites for different dimensions utilizing MMLS.

Figure 16: Regression evaluation for MMLS & β -VAE on dSprites (4D)

