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ABSTRACT

Intraoperative hypotension (IOH) is a common complication of general anesthe-
sia and is strongly associated with adverse outcomes such as myocardial injury
and increased mortality. Despite its significance, IOH prediction is hindered by
event sparsity and the challenge of integrating heterogeneous static attributes and
dynamic physiological signals. In this paper, we propose a multimodal language
model framework IOHFuseLM. To accurately identify and differentiate sparse hy-
potensive events, we leverage a two-stage training strategy. The first stage involves
domain adaptive pretraining on IOH physiological time series augmented through
diffusion methods, thereby enhancing the sensitivity to patterns associated with
hypotension. Subsequently, task fine-tuning is performed on the original clinical
dataset to further enhance the ability to distinguish normotensive from hypotensive
states. To enable multimodal fusion for each patient, we align structured clinical de-
scriptions with the corresponding physiological time series at the token level. Such
alignment enables the model to capture individualized temporal patterns alongside
their corresponding clinical semantics. In addition, we transform static patient at-
tributes into structured text to enrich personalized information. Experiments on two
intraoperative datasets and one arrhythmia dataset demonstrate that IOHFuseLM
outperforms baselines in IOH identification and generalizes effectively to abnor-
mal heartbeat detection, underscoring its potential as a versatile solution across
physiological domains. Our code is publicly available to promote reproducibility
at https://anonymous.4open.science/r/IOHFuseLM-C5A4.

1 INTRODUCTION

Intraoperative hypotension (IOH) is a common complication during surgery and has been associated
with adverse postoperative outcomes (Kouz et al., 2020; Johnson et al., 2016), including myocardial
injury (Van Waes et al., 2016) and increased mortality (Wijnberge et al., 2021). Given its high
prevalence and substantial implications (Wesselink et al., 2018), the development of accurate IOH
prediction models has become a critical objective in perioperative monitoring (Saasouh et al., 2024).

Conventional approaches to IOH prediction primarily rely on physiological features such as arterial
blood pressure (Hatib et al., 2018), and increasingly incorporate deep learning models to capture
temporal dependencies in time series data (Lee et al., 2021). These methods typically leverage
convolutional neural networks to extract local series patterns (Jeong et al., 2024), or employ recurrent
and attention-based architectures to model sequential dynamics (Kwon et al., 2018), achieving mod-
erate performance gains. However, most existing methods either focus exclusively on physiological
time series (Jeong et al., 2019; Cheng et al., 2024) or adopt simple feature-level fusion strategies
by concatenating static patient attributes (Lu et al., 2023), without fully modeling the semantic and
contextual complexity of individual patients.

Recent advances in deep learning for time series forecasting have led to notable progress across
diverse domains, with models such as LSTM (Graves & Graves, 2012), Transformer-based (Zhang &
Yan, 2023; Liu et al., 2023; Wang et al., 2024), and MLP-based architectures (Zeng et al., 2023; Yi
et al., 2023) demonstrating strong capabilities in modeling temporal dynamics. Beyond deterministic
models, diffusion-based generative approaches are effective for time series analysis (Yuan & Qiao,
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Patient B Late onset IOH with abrupt drop.Patient A Early onset IOH with short duration. Patient C Multiple IOH phases with prolonged fluctuations.

(a) IOH events are sparse and heterogeneous.

Age: 38  Sex: Female  Surgery: Abdominal surgery Age: 57  Sex: Female  Surgery: Abdominal surgery Age: 47  Sex: Male  Surgery: Urologic surgeryPatient BPatient A Patient C

(b) MAP patterns vary with static attributes.

Figure 1: (a) IOH events are sparse and exhibit substantial inter patient variability in onset time,
duration, and waveform morphology. (b) MAP series vary significantly across static attributes
including age groups, genders and surgery types.

2024; Liu et al., 2024a) and data augmentation via realistic sample synthesis (Trabucco et al., 2023).
More recently, language models (Zhou et al., 2023; Jin et al., 2023) have expanded the field of time
series forecasting by enabling cross-modal representation learning and effectively aligning textual
and temporal features.

Despite substantial progress, predicting IOH remains challenging (Yang et al., 2024). As shown in
Figure 1 (a), IOH events are sparse, brief, and highly variable in onset time, waveform morphology,
and temporal dynamics. Figure 1 (b) further shows that MAP fluctuations vary significantly across
patients due to factors such as age and type of surgery, making it difficult for models to generalize
across diverse populations. Effective IOH modeling thus requires capturing critical temporal patterns
while jointly integrating static patient attributes (Temesgen et al., 2021).

To address the challenge posed by sparse IOH events, we propose a multimodal language model
framework IOHFuseLM, which integrates static patient attributes with dynamic physiological series.
The training process consists of two stages. First, domain adaptive pretraining is conducted on a
dataset augmented with a diffusion strategy to capture a diverse range of fine-grained patterns. This
is followed by task fine-tuning using a customized loss function that improves the sensitivity to
IOH-related abnormalities. Static attributes are transformed into clinically informed descriptions,
enabling cross-modal alignment through token level interaction for precise semantic fusion.

Our main contributions are summarized as follows:

• We propose IOHFuseLM, a novel multimodal language model framework for IOH prediction.
The model is trained using a two-stage paradigm: domain adaptive pretraining on a diffusion-
augmented physiological dataset, followed by task fine-tuning on real intraoperative records.

• We develop a clinically informed multimodal fusion strategy that aligns static patient context
with temporal physiological series by converting patient attributes into structured clinical
text and aligning it at the token level with physiological series.

• Experiments on three real-world clinical datasets, including a curated dataset of raw intraop-
erative blood pressure recordings, demonstrate that our method consistently outperforms
competitive baselines and shows potential for generalizability across clinical scenarios.

2 RELATED WORK

Intraoperative Hypotension Forecasting. Modeling intraoperative arterial pressure has emerged
as a key strategy for early prediction of intraoperative hypotension (IOH), enabling timely clinical
interventions and improved patient safety. Early efforts primarily focused on high fidelity arterial
pressure series, leading to the development of the Hypotension Prediction Index (Hatib et al., 2018).
Subsequent machine learning approaches, including ensemble methods (Cherifa et al., 2020) and
gradient boosting techniques (Kendale et al., 2018), integrated both preoperative and intraoperative
variables. However, these models often treated each data point in isolation, overlooking the intrinsic
temporal dependencies. To address this limitation, deep learning architectures, including recurrent
neural networks (Jeong et al., 2019) and attention-based models (Lu et al., 2023), were introduced to
better capture sequential patterns. More recently, interpretable models (Ritter et al., 2023; Hwang
et al., 2023) have improved clinical utility, although they still depend on predefined features and
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structured inputs. Meanwhile, the frequency-domain perspective (Moon et al., 2024) has also
been explored. While existing IOH prediction methods have made considerable progress, most
are grounded in either biomarker identification or deep learning models that lack the capacity to
align patient specific clinical narratives with the evolving temporal dynamics of physiological series.
Despite progress, existing IOH prediction methods still lack the capacity to bridge multimodal
disparities and effectively model personalized, temporally evolving risk patterns.

Time Series Forecasting. Time series forecasting plays a pivotal role in many domains. Classical
statistical models, including ARIMA (Ariyo et al., 2014), often struggle to capture the complex
dynamics of physiological series with high dimensionality and nonlinearity. Deep learning models,
such as long short term memory networks (Graves & Graves, 2012) and gated recurrent units (Dey
& Salem, 2017), have demonstrated strong capabilities in modeling temporal dependencies over
extended time horizons by leveraging gated mechanisms. In recent years, Transformer-based archi-
tectures (Zhou et al., 2021; Wu et al., 2021) have achieved notable progress in time series forecasting.
For instance, PatchTST (Nie et al., 2022) introduces patch-level embeddings, providing a princi-
pled approach to tokenizing time series. MLP-based models (Zeng et al., 2023; Ekambaram et al.,
2023) and CNN-based models (Luo & Wang, 2024; Wang et al., 2023) have also shown competitive
performance, effectively capturing temporal dependencies.

In addition to architectural advancements, generative modeling has emerged as a promising paradigm
for time series forecasting, with diffusion-based approaches gaining increasing attention. Recent
models (Tashiro et al., 2021; Shen & Kwok, 2023) effectively capture complex temporal dynamics
by iteratively denoising noise-perturbed series through learned reverse processes. At the same time,
large language models have exhibited increasing potential in time series modeling (Zhou et al.,
2023; Jin et al., 2023; Pan et al., 2024). Through pretraining and instruction tuning, LLMs are
capable of generalizing forecasting capabilities across a wide range of tasks and domains, thereby
enabling more flexible and adaptive series understanding. These advancements establish a solid
foundation for developing unified and generalizable time series forecasting frameworks that combine
high representational capacity with strong adaptability to the intricate dynamics characteristic of IOH
prediction scenarios.

3 PRELIMINARIES

Threshold

Historical Window

Warning Window

Monitoring Window
Predicted Window

Normotensive Segment

IOH Segment?

P5P4 P6 P7 P8 P9 P10P3 P2 P1 

S2 (Colorectal) S3 (Transplantation)S1 (Vascular)

P1 , P2 , P3       P4 , P5      P6 , P7 , P8

Training Set

P9

Validation Set

P10

Testing Set

Figure 2: Top: Temporal segmentation for IOH
prediction. The MAP curve is divided into histor-
ical window (orange), warning window (purple),
and monitoring window (red). Bottom: Patients
are split by procedure into training, validation,
and test sets to ensure subject independence and
prevent data leakage.

Definition of Intraoperative Hypotension. In-
traoperative hypotension (IOH) is defined accord-
ing to clinically established thresholds. An IOH
event is identified when the mean arterial pres-
sure (MAP) remains below 65 mmHg for at least
one continuous minute (Sessler & Khanna, 2018;
Sessler et al., 2019). Systolic blood pressure (SBP)
and diastolic blood pressure (DBP) denote the
maximum and minimum pressures within a car-
diac cycle, respectively. The MAP (Meaney et al.,
2000), a critical indicator of cardiac output and
systemic vascular resistance (Magder, 2018), is
calculated as:

MAP =
SBP + 2× DBP

3
, (1)

Series Instance Construction. Given a histor-
ical window of length L, the model predicts a
future MAP series of length T , as illustrated in
Figure 2. To prevent label leakage and enable
realistic forecasting, instances with historical win-
dows overlapping IOH episodes are excluded. To
mitigate class imbalance and capture temporal dynamics, we adopt an adaptive slicing strategy:
negative instances are sampled at regular intervals ∆Normal to reduce redundancy, while positive
instances linked to IOH are sampled more frequently at intervals ∆IOH to ensure adequate coverage
of critical transitions.
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Surgery Aware Subject Splitting. To ensure realistic generalization, we employ a subject indepen-
dent split by assigning each patient exclusively to the training, validation, or test set, as shown in
Figure 2. Patients are grouped according to their surgery type, and each group is assigned to only
one data partition. This stratification helps maintain a balanced distribution of surgery types across
splits, thus mitigating any distributional shifts caused by surgery specific hypotension risks. This
strategy also prevents the memorization of subject-specific patterns and reflects real world deployment
scenarios. Moreover, it enables a clear separation of static attributes and temporal waveform data
across splits, which facilitates model generalization to unseen individuals.

IOH Event Evaluation. The ground-truth label for each timestamp is assigned based on whether
the subsequent one-minute MAP series remains continuously below 65 mmHg. A predicted IOH
event is assigned if more than 60% of the forecasted MAP values within the same one-minute window
fall below this threshold. Model performance is evaluated using pointwise and instance-level metrics
to capture the effectiveness in detecting IOH events.

4 METHODOLOGY

In this section, we describe the framework IOHFuseLM for intraoperative hypotension (IOH) pre-
diction. As shown in Figure 3, the framework consists of four components: personalized clinical
description generation, multi-scale trend-residual diffusion augmentation, domain adaptive pretrain-
ing, and task fine-tuning. IOHFuseLM is built on GPT-2 architecture (Radford et al., 2019).

4.1 PERSONALIZED CLINICAL DESCRIPTION GENERATION

To incorporate static features effectively, we propose a template-guided Personalized Clinical Descrip-
tion Generation (PCDG) module that fuses physician recommendations, institutional expertise, and
the literature to produce structured patient-specific descriptions. By leveraging curated clinical
knowledge and retrospective studies (Maleczek et al., 2024; Saasouh et al., 2024), the module yields
individualized narratives that model cross attribute semantics with domain alignment, minimizing
feature engineering and projection-induced modality gaps. Details are provided in Appendix D.

For each patient pj , the personalized clinical description is defined as:

dj = ϕ(aj , gj , sj). (2)

Here, ϕ represents GPT-4o, which generates dj from the static attributes (aj , gj , sj) under a prede-
fined medical template. To improve clinical relevance, the tokenizer is augmented with hormone-
and surgery-related terms. For patient j, define Tj as the set of MAP physiological series instances.
Accordingly, the paired dataset is defined as:

X1 =
{
(dj ,xi)

∣∣ j ∈ [N ], xi ∈ Tj
}
. (3)

4.2 MULTI-SCALE TREND-RESIDUAL DIFFUSION AUGMENTATION

To alleviate the challenge of scarce IOH cases, which hampers accurate modeling of hemodynamic
series, we propose the Multi-Scale Trend Residual Diffusion Augmentation (MTRDA) module.
This approach enhances the representation and generation of sparse MAP series, particularly those
containing IOH events. MTRDA improves the ability to learn both broad temporal patterns and
fine-grained variations within hypotensive intervals.

Adaptive smoothing is initially performed on the MAP series defined over the historical window
to extract underlying trends. Specifically, we employ a set of centered sliding average filters with
predefined odd-length window kernels S = {w1, w2, . . . , w|S|}. For each scale ws ∈ S, the
smoothed series x(s)

i is computed as:

x
⟨s⟩
i,t =

1

ws

⌊ws/2⌋∑
τ=−⌊ws/2⌋

xi.t+τ , (4)

where ⌊·⌋ denotes the floor operator. Boundary values are handled via symmetric padding. The final
multiscale trend estimate is obtained by averaging across all scales:

4
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Figure 3: Illustration of our framework. MTRDA decomposes MAP series into multi-scale, and
enhances IOH historical series via diffusion-based augmentation. IOH domain adaptive pretraining
aligns the augmented IOH series and clinical descriptions through dual-masked cross-attention under
a self-supervised objective. Task fine-tuning incorporates labeled normotensive and IOH series with
an IOH-specific MSE loss to refine event detection.

xi,trend =
1

|S|

|S|∑
s=1

x
⟨s⟩
i , (5)

xi,residual = xi,1:l − xi,trend, (6)

where xi,trend and xi,residual represent the trend and residual components of the series, respectively.
Short windows capture rapid fluctuations indicative of oscillatory patterns, while long windows reveal
sustained trends linked to patient status. This multiscale smoothing strategy preserves structural
patterns X trend

i across temporal levels and facilitates early IOH detection. The residual component
ri retains detailed variations reflecting subtle physiological dynamics.

To enhance the residual component xi,residual by preserving the overall MAP trend while enriching
fine-grained fluctuations, MTRDA incorporates a diffusion-based generative mechanism that learns
to reconstruct and refine the residual series through iterative denoising.

x
(k)
i,residual =

√
ᾱk x

(0)
i,residual +

√
1− ᾱk ϵ, (7)

where k denotes the diffusion step, ᾱk denotes the cumulative product of the noise schedule coeffi-
cients, and ϵ ∼ N (0, I) is standard Gaussian noise.

LELBO = Exi,residual,k

∥∥∥x(0)
i,residual − fθ

(
x
(k)
i,residual, k

)∥∥∥2 . (8)

The diffusion augmentation network fθ comprises three modules. During training, the embedding
module encodes the residual series into a high-dimensional latent space using multilayer perceptrons
and learnable positional encodings, with diffusion step k integrated via sinusoidal encodings (Ho
et al., 2020; Gu et al., 2022) and Adaptive Layer Normalization (AdaLN) (Guo et al., 2022). The
encoded features are passed to a lightweight denoising decoder composed of stacked linear layers
and normalization blocks, which iteratively refine the residual series while reducing computational
overhead. A projection layer then maps the refined representation back to the residual space and
combines it with the trend component xi,trend to generate the output and compute the training loss.
Further details of the augmentation network are provided in Appendix C, and the formal derivation is
presented in Appendix I. For each original series, initial noise is sampled from a Gaussian distribution
and passed through the trained network fθ together with the trend component xi,trend, generating H

augmented MAP series. These are denoted as X ′ = {x′(1), . . . ,x′(H)} and preserve both transient
anomalies and subtle fluctuations. We then construct the extended dataset as:

X2 = X1 ∪
{(

dj ,x
′(h)
i,1:l ⊕ xi,l+1:l+t

)
| j ∈ [N ], xi ∈ Tj , h ∈ [H]

}
. (9)

This reconstruction process captures fine-grained residual patterns within the historical IOH window,
thereby enhancing the fidelity and informativeness of sparse IOH series.

5
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4.3 DOMAIN ADAPTIVE PRETRAINING

Pretraining has demonstrated effectiveness in time series analysis (Ma et al., 2024). Our objective
is to empower a language model to comprehend temporal IOH dynamics, while enabling cross-
modal fusion between physiological time series and patient-specific clinical descriptions. To harness
this potential in IOH forecasting, we propose a domain adaptive pretraining strategy that aligns
personalized clinical context with IOH patterns.

Specifically, each input pair (x̂i, dj) is sampled from X2. To enable modality alignment, the MAP
series x̂i is segmented into fixed-length patches of size p, which are linearly projected into MAP
patch tokens. A random masking ratio R is applied to the resulting tokens to enhance representation
learning. The corresponding clinical description dj is tokenized using expanded language model
tokenizer, yielding the text token Ti with a maximum length of η.

To enable selective fusion of patient-specific textual and physiological features, we construct a
patient-specific attention mask Mi. Specifically, we define two binary vectors: the first is a vector
1 l+t

p
, whose length matches the number of series tokens, with all elements set to active. The second

is a binary vector mi of length η, corresponding to the text token Ti, where active elements represent
valid tokens and inactive elements represent padding positions. Additionally, we define an all-active
vector 1η of length η. These masks are combined using elementwise logical conjunction to form the
joint attention mask Mi, defined as:

Mi = 1 l+t
p

· (1η −mi)
⊤
, (10)

Attention(Q,K,V ) = softmax
(
QK⊤
√
d

− λ ·Mi

)
V , (11)

where λ is a large constant to suppress attention to semantically misaligned regions. We adopt the
token level alignment mechanism (Liu et al., 2024b), which aligns the text token Ti with the patch
token of series x̂i. The query matrix Q is derived from the tokenized and projected text tokens
Ti, while the key and value matrices K and V are obtained from the corresponding MAP series
tokens. The resulting representations are concatenated with the series tokens and processed by a
pretrained language model, followed by a projection linear layer to predict the IOH related MAP
series. The model is optimized to minimize the mean squared error (MSE) on the masked positions
of the time-series tokens.

This pretraining strategy enables the model to learn semantically meaningful interactions between
the IOH related MAP series and the corresponding static patient features. It also facilitates modality
alignment between IOH series and patient specific information, thereby providing a stronger language
model foundation for subsequent hypotension prediction.

4.4 TASK FINE-TUNING

To adapt the pretrained model to the downstream IOH prediction task, the task fine-tuning stage
further refines the representations learned after domain adaptive pretraining, thereby enhancing the
ability to distinguish IOH patterns from normotensive fluctuations.

Each input pair (dj ,xi) ∈ X1 is first processed to derive token level representations that capture
instance-specific semantic and physiological characteristics. These representations are integrated
with the corresponding series embeddings and then passed to the pretrained model. During task
fine-tuning, the series embedding and output projection layers are reinitialized for task adaptation,
while all other parameters are initialized from the domain adaptive pretraining stage and jointly
optimized to improve temporal sensitivity to IOH dynamics.

To enhance sensitivity to IOH abnormalities, an additional loss term is introduced for the timestamps
of IOH series, defined as the MSE on those timestamps and weighted by a hyperparameter ρ. The
total IOH loss function is given by:

Loss = MSEnormal + ρ · MSEIOH, (12)

where MSEnormal and MSEIOH represent the mean squared errors computed over normotensive and
hypotensive series, respectively. This task fine-tuning strategy encourages the model to attend to subtle
temporal variations indicative of IOH, thereby enhancing predictive performance and facilitating
timely clinical intervention.

6
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We use two clinical intraoperative hypotension (IOH) datasets. Clinical IOH Dataset.
The dataset includes intraoperative records from 6,822 patients, featuring MAP time series resampled
at 6 and 10 seconds from arterial blood pressure waveforms, together with patient attributes such
as age, gender, and surgery type. After preprocessing, 1,452 recordings were retained. VitalDB
Dataset. (Lee et al., 2022) This dataset originally consisted of 6,388 ABP recordings. After filtering
out low-quality samples, 1,522 recordings were retained for downstream experiments. Both datasets
are split by patient into training, validation, and test sets in a 3:1:1 ratio. We use a 15-minute historical
window and prediction horizons of 5, 10, and 15 minutes, guided by clinical evidence on IOH
predictability (Awad et al., 2022). To further demonstrate the generalization of our framework across
diverse scenarios, we validated its generalizability on the MIT-BIH Arrhythmia Dataset (Moody &
Mark, 2001), a widely used benchmark for abnormal heartbeat detection. Detailed preprocessing
steps and dataset statistics are provided in Appendix A.

Baselines. We compare our method against six representative time series forecasting models.
These include the MLP-based DLinear (Zeng et al., 2023), the Transformer-based PatchTST (Nie
et al., 2022), and the frequency domain enhanced Fredformer (Piao et al., 2024). We also include
HMF (Cheng et al., 2024), a model specifically designed for intraoperative hypotension prediction,
along with two language model-based approaches: GPT4TS (Zhou et al., 2023), built on GPT-2, and
TimeLLM (Jin et al., 2023), based on LLaMA2-7B (Touvron et al., 2023).

Implementation. To assess IOH prediction performance, we report Mean Squared Error (MSE)
and Mean Absolute Error (MAE) on hypotensive timestamps. Discriminative ability is measured by
the Area Under the ROC Curve (AUC), and Recall reflects early warning effectiveness. All models
are trained with the Adam optimizer (Kingma & Ba, 2014), using a batch size of 8 and an initial
learning rate of 0.0001 with a decay factor of 0.75. Experiments are conducted on a NVIDIA RTX
4090 GPU and a server equipped with eight Tesla A100 GPUs. To ensure result reliability, we report
averages over three independent runs. Full training configurations are provided in Appendix B.

5.2 RESULTS AND DISCUSSION

Table 1: Performance comparison of different models on the Clinical IOH and VitalDB datasets under
varying sampling rates. The best result for each metric is indicated in bold.

Dataset Historical Window Sampling (s) Model MSEIOH MAEIOH Recall AUC

Clinical IOH

150 6

DLinear 178.6592 10.9190 36.61% 0.6406
PatchTST 122.2292 8.5687 63.09% 0.6948
Fredformer 99.0389 7.7170 59.98% 0.6985
HMF 114.6592 8.3079 50.76% 0.6737
GPT4TS 119.0686 8.4467 59.37% 0.6991
TimeLLM 133.2503 9.2422 46.58% 0.6687
IOHFuseLM 88.9192 7.4921 74.00% 0.7130

90 10

DLinear 127.0857 8.6489 51.49% 0.6933
PatchTST 125.5609 8.8750 56.84% 0.7044
Fredformer 103.5407 8.0945 53.17% 0.6935
HMF 121.1721 8.7806 51.40% 0.6853
GPT4TS 91.4255 7.4369 62.68% 0.7309
TimeLLM 118.6838 8.7864 50.45% 0.6913
IOHFuseLM 87.6147 7.3933 74.46% 0.7425

VitalDB 300 3

DLinear 92.2800 7.3100 33.48% 0.6300
PatchTST 99.3965 7.6942 52.62% 0.6443
Fredformer 69.5776 6.0244 49.94% 0.6640
HMF 76.5757 6.5151 49.73% 0.6501
GPT4TS 61.7742 5.5824 57.39% 0.6885
TimeLLM 82.3817 7.0517 30.36% 0.6068
IOHFuseLM 58.3511 5.1251 70.10% 0.7086
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Main Results. We conduct comprehensive experiments on the Clinical IOH dataset and VitalDB
dataset. Results are summarized in Table 1. Experimental results highlight key differences among
baseline models. The moderate performance of DLinear reflects limitations in capturing complex
temporal dynamics using simple linear decomposition. PatchTST excels in recall and AUC by
segmenting series into semantically meaningful patches. Fredformer improves performance by
reducing frequency bias but struggles with the high variability of IOH events. HMF extracts temporal
features using sliding windows but lacks semantic modeling of baseline blood pressure associated
with surgery type, leading to poor generalization across procedures. GPT4TS performs well on high-
frequency data, capturing short physiological trends effectively. The fixed parameters of TimeLLM
limit its adaptability to distribution shifts in MAP series. IOHFuseLM outperforms others in sparse
and high-variability settings by aligning static patient attributes with MAP series and augmenting
sparse data with realistic signals, effectively addressing IOH sparsity and variability.

Performance varies distinctly across datasets and sampling rates. VitalDB, with higher IOH event
density, generally yields better metrics, particularly for IOHFuseLM, which excels at fine granularity,
demonstrating strong temporal pattern extraction capabilities. Clinical IOH, characterized by sparser
events, presents greater modeling challenges, yet IOHFuseLM consistently maintains strong perfor-
mance across coarser sampling intervals. These results emphasize adaptability and the effectiveness
of its multimodal context integration and data augmentation strategies.

Ablation Results. The following ablated variants are evaluated:

• IOHFuseLM1: Excludes the clinical description dj , only modeling the MAP time series.

• IOHFuseLM2: Utilizes the original GPT-2 tokenizer without vocabulary expansion.
• IOHFuseLM3: Conducts domain adaptive pretraining exclusively on the original dataset X1,

omitting any diffusion-based augmentation.
• IOHFuseLM4: Removes the domain adaptive pretraining stage and directly applies task fine-tuning

on the downstream IOH prediction task.

We conduct a detailed ablation study on the Clinical IOH dataset sampled at 10-second intervals,
using a historical window of 15 minutes and predicted horizons of 5, 10, and 15 minutes. Table 2
summarizes the impact of removing each key component from IOHFuseLM. The results confirm
that every component is essential for addressing the challenges discussed above. Removing static
attributes degrades performance by eliminating personalized priors that help identify MAP trends
and variability, reducing the ability to detect abnormal patterns and generalize across populations
and surgery types. Excluding the expanded tokenizer weakens the ability to associate clinical
terminology with physiological patterns, diminishing cross-modal representation learning. Using
only the original dataset X1 for domain adaptation pretraining, instead of the MTRDA dataset,
reduces sensitivity to rare and short-duration IOH episodes, demonstrating the benefit of synthetic
variability in mitigating data sparsity. Finally, omitting the domain adaptation pretraining stage leads
to consistent performance degradation across all metrics, confirming that prior exposure to IOH
patterns enhances generalization under limited supervision.

Table 2: Ablation study of model components on the Clinical IOH dataset.

Dataset Model Variant MSEIOH MAEIOH Recall AUC

Clinical IOH

IOHFuseLM 87.6147 7.3933 74.46% 0.7425
IOHFuseLM1 87.6824 7.4604 68.62% 0.7215
IOHFuseLM2 95.4979 7.8967 69.42% 0.7287
IOHFuseLM3 107.7359 8.3523 67.78% 0.7213
IOHFuseLM4 98.1118 7.9061 67.85% 0.7192

Transfer Results. To evaluate the generalization ability, we conducted transfer learning experiments
on a newly curated cohort of patients with surgical durations between 600 and 1000 seconds, sampled
every 6 seconds. The historical and predicted windows were set to 3 and 5 minutes, respectively. The
model was pretrained on the Clinical IOH dataset and tested under the settings, focusing on adult
patients aged 18–65 years. As shown in Table 3, transfer learning substantially improved performance
across all metrics, particularly in recall and AUC. These gains indicate enhanced sensitivity to IOH
events and better discrimination under demographic and procedural variability. The results highlight
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the effectiveness of domain adaptive pretraining and personalized context integration in enabling
effective generalization across diverse clinical scenarios. Further analyses of practicality and field
deployment are provided in Appendices G and H.
Table 3: Performance comparison with and without transfer learning on the Clinical IOH dataset.

Transfer Setting Historical Window Predicted Window MSEIOH MAEIOH Recall AUC

Without Transfer Learning 30 50 216.4261 14.2554 0.00% 0.5000
Transfer Learning 30 50 97.9322 9.0675 17.65% 0.5805

Generalization Evaluation to Rare Clinical Events. To examine the adaptability of our framework
beyond intraoperative hypotension, we applied IOHFuseLM to abnormal heartbeat prediction using
the MIT-BIH Arrhythmia dataset. The decision threshold was determined by Youden’s J statistic to
balance recall and specificity. As shown in Table 4, IOHFuseLM achieves lower MSE and MAE and
higher recall and AUC than baselines. These results demonstrate that the proposed structure-aware
and anomaly-sensitive design enables robust detection of sparse, clinically significant events across
diverse physiological domains. With a consistent architecture requiring only minor task-specific
adjustments, the framework shows scalability to broader medical forecasting tasks.

Table 4: Performance comparison on abnormal heartbeat detection.
IOHFuseLM HMF TimeLLM

Model MSE MAE Recall AUC Thres. MSE MAE Recall AUC Thres. MSE MAE Recall AUC Thres.

Values 1.1397 0.7676 0.3431 0.5961 0.0129 1.2022 0.8422 0.3234 0.5854 0.0121 1.1642 0.7950 0.3298 0.5718 0.0122

Visual Evidence for domain Adaptive Pretraining. To qualitatively evaluate the effect of domain
adaptive pretraining, we visualize MAP forecasts under two representative IOH patterns: one with a
gradual decline and the other with a rapid decline. As shown in Figure 4, we compare models trained
with and without pretraining using the same total series length l+ t, where the l are set to 50 ,100 and
150, respectively. In both patterns, the models with pretraining produce predictions that more closely
follow the ground truth, especially in their ability to capture downward trends in blood pressure. This
advantage is particularly clear in the rapid-decline scenario, where models without pretraining tend
to respond more slowly and deviate further from actual MAP values. When the historical length l
is sufficiently long, for example 150, the pretrained model produces stable and accurate forecasts,
benefiting from richer temporal context and more reliable trend estimation. This suggests that the
proposed pretraining method enhances the model sensitivity to temporal changes and improves its
ability to recognize IOH-specific patterns. Appendix F provides additional visualization details.

(a)
Pretrained Without Pretrained Pretrained Without Pretrained

(b)

Figure 4: Qualitative comparison of models with and without domain adaptive pretraining under two
representative IOH patterns: (a) gradually declining MAP; (b) rapidly declining MAP.

6 CONCLUSION

In this work, we introduced IOHFuseLM, a multimodal framework for sparse intraoperative hypoten-
sion (IOH) prediction that integrated static patient attributes with dynamic physiological time series
data. Evaluations on two real world intraoperative datasets showed that IOHFuseLM consistently
outperformed competitive baselines, with particularly strong performance under coarse sampling
and sparse event conditions. The proposed approach achieved higher recall and area under the curve
(AUC) by effectively capturing patient-specific variability and extracting features with rich temporal
and semantic content. Compared to previous methods that relied solely on physiological series or
used simple feature concatenation, IOHFuseLM demonstrated better flexibility and generalization
through data augmentation during pretraining and structured integration of patient attributes. These
results suggest that the model can support personalized and timely clinical monitoring, which may
help facilitate early intervention, improve hemodynamic stability during surgery, and reduce the
risk of postoperative complications. Moreover, results on MIT-BIH Arrhythmia dataset confirm its
applicability to abnormal heartbeat detection and to broader sparse-event critical prediction tasks.
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7 ETHICS STATEMENT

This study uses two de-identified intraoperative hypotension (IOH) datasets and one publicly available
arrhythmia dataset. The Clinical IOH dataset was collected under institutional ethical approval and
de-identified according to HIPAA Safe Harbor standards. The VitalDB dataset is released under its
official CC BY-NC-SA 4.0 license, and the MIT-BIH Arrhythmia dataset is a widely used community
benchmark. No new human or animal experiments were conducted.

8 REPRODUCIBILITY STATEMENT

We make significant efforts to ensure reproducibility. Details of dataset preprocessing, training proce-
dures, hyperparameters, and evaluation metrics are provided in the main paper and Appendices A–E.
We make our anonymized source code available at https://anonymous.4open.science/
r/IOHFuseLM-C5A4. We also provide the preprocessed VitalDB and MIT-BIH Arrhythmia
datasets in the supplementary materials.
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A DATASET DETAILS

A.1 INTRAOPERATIVE HYPOTENSION PREDICTION DATASET

Table 5: Statistics of the VitalDB and Clinical IOH datasets under varying sampling settings.

Dataset Sampling (s) Historical Window Predicted Window Train Val Test Surgeries N IOHtrain

Clinic-IOH

6 150
50 2749 852 884

28 1452 135

100 3348 937 1138
150 4507 1578 1804

10 90
30 10765 3236 3481
60 12334 3752 4227
90 13320 4166 4609

VitalDB 3 300
100 18172 2308 2299

12 1522 2026200 27031 3635 3356
300 38479 5201 4647

Table 5 summarizes the key statistics of the two intraoperative hypotension (IOH) datasets used in this
study: Clinical IOH and VitalDB. For each dataset, we list the sampling frequency, historical length l,
predicted horizon t, and the number of training, validation, and test samples. The table also includes
the number of unique patients (N ) and surgeries, along with the number of IOH events identified
in the training set (IOHtrain) according to our clinical threshold definition. Clinical IOH Dataset.
This dataset consists of intraoperative data collected from 6,822 patients undergoing anesthesia. It
contains high-resolution arterial blood pressure (ABP) waveforms sampled at 100 Hz and structured
patient information including age, gender, and surgery type. To accommodate different temporal
resolutions, ABP waveforms were processed into MAP series and resampled at 6,s and 10,s intervals.
Segments shorter than 1,000 seconds were discarded, yielding 1,452 valid recordings for analysis.
Data acquisition was approved by the institutional ethics committee. VitalDB Dataset. Derived from
the public VitalDB repository, this dataset initially included 6,388 intraoperative recordings with
ABP values sampled every 3 seconds. We excluded recordings with more than 20% missing data in
the observation window. After filtering, 1,522 high-quality samples remained for downstream tasks.
Data Splitting and Forecasting Settings. Both datasets are split into training, validation, and test
subsets using a 3:1:1 ratio, preserving temporal consistency without shuffling. Each model ingests a
fixed 15-minute historical MAP window and predicts MAP trajectories over future horizons of 5, 10,
or 15 minutes. These predicted lengths are chosen based on prior clinical research demonstrating
their practical relevance for IOH risk forecasting (Awad et al., 2022). The Clinical IOH dataset was
de-identified under the HIPAA Safe Harbor method by removing all 18 identifiers. The VitalDB
dataset is publicly available under the CC BY-NC-SA 4.0 license, allowing unrestricted use for
research. All physiological time-series data are processed exclusively within locally trained models
such as GPT-2 and LLaMA, without any exposure to external services. Physiological time series
were not transmitted through any external services and all processing was conducted locally.

A.2 ABNORMAL HEARTBEAT DETECTION DATASET

Table 6: Statistics of the MIT-BIH Arrhythmia dataset.

Metric
Train Validation Test

Sampling Points Total Instances Abnormal Sampling Points Total Instances Abnormal Sampling Points Total Instances Abnormal

MIT-BIH Arrhythmia 15,349,248 14,977 4,473 6,769,664 6,608 2,650 5,900,544 5,759 1,410

As shown in Table 6, the MIT-BIH Arrhythmia dataset consists of 48 dual-lead ECG recordings,
each lasting approximately 30 minutes, collected from 47 subjects. The signals were sampled at
360 Hz with 11-bit resolution and an amplitude range of ±10 mV. In total, more than 110,000
heartbeats were manually annotated by clinical experts, covering categories such as normal beats,
ventricular beats, fusion beats, and other arrhythmias. Data Splitting and Forecasting Settings. In
the preprocessing stage, we extracted fixed-length heartbeat segments centered on R-peaks, where
each segment contained 128 samples before the peak and 128 samples after the peak, resulting in
256 samples per beat for both ECG leads. Heartbeats annotated as normal (N) were labeled 0, and
all arrhythmic types were labeled 1, with segments containing invalid annotations or out-of-range
indices excluded. The dataset was divided into training, validation, and test sets in a 28:10:10 ratio.
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Input sequences were built with a sliding window of three consecutive beats followed by one target
beat. This task used only sequential ECG signals, providing a controlled setting to evaluate the
effectiveness of the augmentation, pretraining, and fine-tuning procedures.

B EXPERIMENT DETAILS

Table 7: Hyperparameter configurations across different datasets and settings.

Dataset Sampling (s) Predicted Window Pretrain LR Finetune LR H E ∆Normal ∆IOH

CH-OBPB 6
50 10−4 10−5 4 5

150 2100 10−5 5 × 10−5 4 5
150 10−4 10−4 3 2

CH-OBPB 10
30 10−4 10−4 5 2

20 160 10−5 5 × 10−5 4 4
90 5 × 10−5 10−4 1 5

VitalDB 3
100 3 × 10−5 10−4 3 2

150 10200 5 × 10−5 10−4 4 2
300 10−5 10−4 5 2

Table 7 summarizes the hyperparameter configurations used across different datasets and experi-
mental settings. Specifically, it includes the predicted window length t, learning rates for domain
adaptive pretraining and task fine-tuning, the number of augmented series H , the GPT Layers E, a
hyperparameter denoting the count of stacked Transformer encoder layers in the GPT-2 architecture
adopted by our framework, as well as the sampled intervals ∆Normal and ∆IOH. Our framework is
based on GPT-2. The batch size is fixed at 4 for pretraining and 8 for fine-tuning. The pretraining
masking ratio R is set to 0.2, and the hyperparameter ρ of IOH loss is set to 10. The diffusion
process utilizes K = 50 steps with a cosine variance schedule (Rasul et al., 2021) from β1 = 10−4

to βK = 0.5. Most baseline models and our proposed method are evaluated on a NVIDIA RTX 4090
GPU to ensure a fair comparison under practical deployment settings. However, due to substantial
memory requirements of TimeLLM, which is based on the LLaMA 7B language model, both training
and inference for this model are conducted on a server equipped with NVIDIA A100 GPUs.

C DESIGN OF MULTI-SCALE TREND-RESIDUAL DIFFUSION AUGMENTATION

As shown in the Figure5, the diffusion augmentation network fθ is implemented as a lightweight
denoising module for residual series refinement. Given the noisy residual input x(k)

i,residual, the network
first projects it into a latent space using a multilayer perceptron (MLP) with hidden size d, where
positional information is injected through learnable embeddings and sinusoidal encodings of the
diffusion step k, fused via Adaptive Layer Normalization (AdaLN). The latent features are then
processed by a stack of N decoder blocks, each combining a linear projection, AdaLN, and a
feed-forward sublayer with residual connections. This structure enables stable training and efficient
denoising while avoiding the computational overhead of heavy convolutional or attention-based
modules. The final linear projector maps the refined representation back to the residual space,
yielding x̂

(0)
i,residual, which is combined with the multi-scale trend to reconstruct the augmented MAP

series. This streamlined design effectively captures fine-grained fluctuations in the residual series
while maintaining computational efficiency, enabling the generation of realistic IOH augmentations.

Different 

Kernel Size Multi-Scale Trend

-
Adding 

Noise

Embed.

Diffusion Augmentation Network

Residual Sereis

IOH  Series
k

Denoising

Decoder
Projector ⊕

MSE

MTRDA
Coarse

Fine

AdaLN

N

MLP Add&Norm

Preserving Multi-scale Features

Figure 5: Overview of the proposed Multi-Scale Trend-Residual Diffusion Augmentation (MTRDA).
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D PROMPT FOR PERSONALIZED CLINICAL DESCRIPTION GENERATION

Age Gender Surgery

GPT 4o

PCDG Prompt Design

# LLMs Text

Patient is in the () age group. 

At this stage, () hormones 

influence vascular tone.

Hemodynamic compliance 

and compensation are ().

It is classified as a () surgery.

The estimated blood loss 

during surgery is ().

Figure 6: Illustration of the PCDG (Personal-
ized Clinical Description Generation) prompt de-
sign. The framework integrates static attributes
into structured templates, which GPT-4o con-
verts into concise clinical narratives.

To generate patient-specific clinical narratives, we
design a structured prompt that guides GPT-4o
to produce medically grounded descriptions. The
prompt integrates static attributes such as age, gen-
der, and surgery type with domain-informed tem-
plates, as illustrated in Figure 6. The resulting text
provides a personalized semantic representation
for multimodal fusion in the forecasting pipeline.

Prompt Template:

The age of patient is {age of
patient}, gender is {gender
of patient}, and the type of
surgery is {surgery type of
patient}. Please provide the
answer directly, separated by
commas, without any spaces in
between, removing the parentheses
when responding. Without any
explanations or additional content.
The patient belongs to the () age
group, whose vascular compliance
and cardiovascular compensatory
capacity are (). At this time,
() hormones act on the blood
vessels. This surgery is a ()
type of surgery, and the blood
loss is usually ().

This prompt in Personalized Clinical Description Generation (PCDG) balances consistency with
clinical variability by incorporating patient-specific attributes. It is tokenized with an extended
vocabulary covering physiological and surgical terms, enabling the model to embed static medical
context into prediction.

E HYPERPARAMETER SENSITIVITY

Table 8: Performance of the model under different historical and predicted lengths.

t
l = 30 l = 60 l = 90

MSEIOH MAEIOH Recall AUC MSEIOH MAEIOH Recall AUC MSEIOH MAEIOH Recall AUC

30 120.85± 11.18 8.98± 0.67 0.482 0.6852 101.09± 9.34 8.28± 0.64 0.5743 0.7288 43.29± 8.64 4.65± 0.20 0.7205 0.7729
60 72.73± 13.06 6.75± 0.90 0.8191 0.7596 65.70± 12.91 6.03± 0.82 0.7822 0.7444 82.07± 11.10 6.88± 0.77 0.8012 0.7693
90 56.93± 5.44 5.88± 0.48 0.8368 0.7184 85.45± 2.79 7.45± 0.45 0.7619 0.7318 91.16± 15.48 7.25± 0.69 0.7976 0.7642

To assess the sensitivity of the model to varying historical and predicted horizons, we evaluate
performance across different combinations of historical length l and predicted length t. As shown
in Table 8, increasing the historical length generally improves performance across all metrics. The
setting with l = 90 and t = 30 achieves the best overall results, with the lowest prediction error,
indicating that a longer temporal context enhances short-term IOH risk forecasting. In contrast,
extending the predicted length leads to a moderate decline in accuracy, reflecting the increased
difficulty of long-range forecasting in clinical settings.

We conduct a sensitivity analysis on the Clinic IOH dataset under 10-second sampling resolution to
evaluate the impact of key hyperparameters. As shown in Figure 7, the results indicate that model
performance is moderately sensitive to the fine-tuning learning rate, while the pretraining learning
rate exhibits greater stability. Varying the number of GPT layers shows that moderate depth achieves
better generalization, whereas excessive depth may lead to overfitting. Additionally, appropriate levels
of data augmented by MTRDA consistently improve performance, though excessive augmentation
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Figure 7: Parameter sensitivity analysis on the Clinic IOH dataset.

can introduce distributional noise and degrade accuracy. These findings highlight the importance of
balanced model capacity and augmentation strategies for stable performance.

F VISUALIZATION

IOHFuseLM

Fredformer

TimeLLM

HMF

GPT4TS

PatchTST

DLinear

Figure 8: Visual comparison of MAP prediction results across different models.
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F.1 MODEL PREDICTION VISUALIZATION

Figure 8 presents a visual comparison of seven models under the 6-second sampling granularity, with
a historical window length l = 150 and a predicted horizon t = 150. Each row corresponds to one
model and each column represents a distinct IOH case. It can be observed that our proposed model
consistently identifies hypotensive risks across all three representative IOH events, demonstrating
both precise forecasting accuracy and effective event discrimination. In contrast, among the baseline
models, only Fredformer correctly identifies the third IOH event, while the others fail to capture the
hypotensive onset in this scenario.

F.2 AUGMENTATION VISUALIZATION
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Figure 9: Examples of augmented MAP series of MTRDA under different sampling frequencies.

Figure 9 presents representative examples of MAP time series augmented by the proposed MTRDA
framework under two different sampling frequencies. The augmented series preserve the trends
extracted through multiscale smoothing and simultaneously introduce fine-grained variations that
enrich the temporal structure of the original series. In particular, the augmented outputs retain
the essential characteristics of hypotensive episodes while reducing noise, reflecting the ability of
MTRDA to reconstruct physiologically meaningful patterns through trend-residual decomposition
and diffusion-based enhancement. These results confirm the effectiveness of MTRDA in improving
the representation quality of sparse IOH series under varying temporal resolutions.

G ANALYSIS UNDER HETEROGENEOUS SAMPLING FREQUENCIES

In real-world clinical practice, different hospitals and monitoring devices often adopt heterogeneous
sampling frequencies, resulting in varied temporal resolutions of intraoperative arterial pressure
recordings. To examine the adaptability of IOHFuseLM to such practical discrepancies, we conducted
additional experiments under both finer and coarser sampling settings, as well as transfer evaluations
simulating deployment in low-resolution environments.

G.1 PERFORMANCE UNDER FINER AND COARSER SAMPLING RATES

We first evaluated the Clinical IOH dataset with alternative sampling granularities of 3 seconds and
12 seconds. As shown in Table 9, IOHFuseLM consistently outperforms all baselines, demonstrating
strong adaptability to both fine-grained and coarse-grained temporal resolutions.
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Table 9: Performance comparison under different sampling resolutions.

Model
3-second 12-second

MSEIOH MAEIOH Recall (%) AUC MSEIOH MAEIOH Recall (%) AUC

DLinear 154.70 9.29 52.62 0.6938 187.13 11.51 17.18 0.5409
PatchTST 107.18 7.82 66.29 0.7093 168.06 10.57 30.55 0.5650
Fredformer 105.40 7.86 55.92 0.6985 151.31 10.18 22.32 0.5443
HMF 116.52 7.93 61.47 0.7173 180.86 11.40 13.40 0.5235
GPT4TS 115.32 8.20 59.42 0.7064 159.68 10.36 26.62 0.5642
IOHFuseLM 103.69 7.39 70.12 0.7251 136.22 9.57 36.14 0.5730

G.2 LOW-RESOLUTION TRANSFER EVALUATION

To emulate clinical scenarios with sparse or low-quality monitoring, we designed a low-resolution
transfer evaluation. Specifically, each 12-second sampling point was duplicated to emulate a 6-
second sampling interval, thereby reducing information density while preserving sequence length.
We considered two experimental settings: (i)Transfer: training on high-fidelity data and testing on
degraded low-resolution inputs; (ii)Non-transfer: both training and testing on low-resolution inputs.
Results in Table 10 show that IOHFuseLM demonstrates strong robustness under both scenarios,
with particularly notable generalization in the transfer setting, achieving the highest recall and AUC
among all baselines.

Table 10: Performance comparison under the Low-Resolution Transfer Evaluation.

Model
Transfer Non-transfer

MSEIOH MAEIOH Recall (%) AUC MSEIOH MAEIOH Recall (%) AUC

DLinear 161.85 10.20 39.30 0.6019 194.69 11.84 22.95 0.5573
PatchTST 120.92 8.81 52.87 0.6329 170.04 10.70 44.04 0.6061
Fredformer 135.67 9.60 38.68 0.6026 152.91 10.28 33.69 0.5862
HMF 135.81 9.57 41.00 0.6096 163.14 10.75 23.66 0.5529
GPT4TS 113.12 8.44 50.23 0.6370 159.35 10.35 41.51 0.6143
IOHFuseLM 106.54 6.84 76.76 0.6637 136.52 9.34 48.95 0.5985

These results confirm that IOHFuseLM maintains superior performance under heterogeneous sam-
pling conditions, highlighting its adaptability to diverse clinical environments. Importantly, the
transfer evaluation demonstrates that training on high-fidelity data enables effective generalization
to degraded inputs, underscoring the practical utility for deployment across hospitals with varying
acquisition protocols.

H PRACTICAL DEPLOYMENT AND BROADER IMPACTS

Figure 10: Training and inference efficiency comparison between IOHFuseLM and HMF.

By complementing physiological time series with structured patient descriptions, our framework
enables more personalized and context-aware clinical event recognition in settings where signal-
only models are often insufficient. This multimodal design positions IOHFuseLM as a promising
blueprint for developing robust and adaptive monitoring systems that are more closely aligned
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with patient-specific risk profiles. To further evaluate its practical deployability, we compared the
computational efficiency of IOHFuseLM with HMF (Cheng et al., 2024), a representative baseline
for IOH prediction. As shown in Figure 10, IOHFuseLM consistently achieves faster training and
inference across different configurations on both the VitalDB and Clinical IOH datasets. These results
demonstrate not only its strong modeling capability but also its computational efficiency, suggesting
that the framework can be integrated into real-time clinical workflows. In time-critical environments
such as intraoperative monitoring, such efficiency gains have the potential to translate into more
reliable and actionable clinical decision support.

Beyond computational efficiency, IOHFuseLM has been developed with practical deployment in
mind. Its input requirements are minimal, relying on real-time MAP series derived from arterial
blood pressure and structured patient attributes that are already routinely collected by anesthesia
monitors, enabling seamless integration with existing perioperative information systems. In addition,
the model exhibits stable performance across different sampling rates and levels of event sparsity,
underscoring its robustness under heterogeneous monitoring conditions. Its relatively low memory
footprint and short inference latency further enhance its suitability for deployment on standard
hospital hardware, without the need for specialized accelerators. Finally, while the present study
focuses on IOH prediction, the same framework has also demonstrated transferability to related tasks
such as arrhythmia detection, indicating its potential extensibility to a broader range of critical care
monitoring applications.

I DERIVATION OF MULTI-SCALE TREND–RESIDUAL DIFFUSION
AUGMENTATION

We provide a rigorous derivation for the Multi-Scale Trend–Residual Diffusion Augmentation
(MTRDA) module in a single narrative.

We begin with the decomposition of the historical MAP series xi,1:l ∈ Rl. For each odd-length
window ws ∈ S, a centered moving-average operator Sws

with symmetric padding is defined. The
multiscale trend estimate is expressed as

xi,trend =
1

|S|

|S|∑
s=1

Sws
xi,1:l, (13)

while the residual is obtained as

xi,residual = xi,1:l − xi,trend. (14)

Equivalently, letting S̄ = 1
|S|

∑
s Sws

, we have xi,trend = S̄xi,1:l and xi,residual = (I − S̄)xi,1:l.
Since S̄ is symmetric and row-stochastic, the residual subspace captures high-frequency fluctuations
while the trend subspace preserves the baseline.

Defining r
(0)
i := xi,residual, the forward diffusion process follows the DDPM formulation:

q(r
(k)
i | r(k−1)

i ) = N
(√

αkr
(k−1)
i , βkI

)
, (15)

q(r
(k)
i | r(0)i ) = N

(√
ᾱkr

(0)
i , (1− ᾱk)I

)
, (16)

with αk = 1− βk and ᾱk =
∏k

j=1 αj . This implies the reparameterization

r
(k)
i =

√
ᾱk r

(0)
i +

√
1− ᾱk ϵ, ϵ ∼ N (0, I). (17)

The exact reverse posterior given r
(0)
i is Gaussian:

q(r
(k−1)
i | r(k)i , r

(0)
i ) = N

(
mk(r

(0)
i , r

(k)
i ), β̃kI

)
, (18)

where the mean is

mk(r
(0), r(k)) =

√
ᾱk−1βk

1− ᾱk
r(0) +

√
αk(1− ᾱk−1)

1− ᾱk
r(k). (19)
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The parametric reverse process in MTRDA is defined as

pθ(r
(k−1)
i | r(k)i , ci) = N

(
µθ(r

(k)
i , k, ci), σ

2
kI

)
, (20)

where ci includes conditioning on the trend component and local patch statistics.

The conditional ELBO for log pθ(r
(0)
i | ci) decomposes into KL terms:

LELBO = −
K∑

k=1

Eq

[
DKL

(
q(r

(k−1)
i | r(k)i , r

(0)
i ) ∥ pθ(r

(k−1)
i | r(k)i , ci)

)]
+ const. (21)

Choosing σ2
k = β̃k reduces each KL term to an MSE between posterior and model means:

LELBO ≡ −
K∑

k=1

1

2σ2
k

Eq

∥∥∥mk(r
(0)
i , r

(k)
i )− µθ(r

(k)
i , k, ci)

∥∥∥2
2
+ const. (22)

Adopting the x0-prediction parameterization, we let

µθ(r
(k), k, c) = akr

(k) + bk rθ(r
(k), k, c), (23)

where
ak =

√
αk(1−ᾱk−1)

1−ᾱk
, bk =

√
ᾱk−1βk

1−ᾱk
.

The ELBO then reduces to

min
θ

K∑
k=1

wk Er(0),k,ϵ

∥∥∥r(0) − rθ(r
(k), k, c)

∥∥∥2
2
, r(k) =

√
ᾱkr

(0) +
√
1− ᾱk ϵ, (24)

which matches the simplified denoising loss described in the main text.

Finally, the augmented sequence is reconstructed as

x̂i,1:l = xi,trend + r̂
(0)
i , (25)

where r̂
(0)
i is sampled from the trained denoising network fθ. In expectation, the reconstruction

preserves the baseline trend while enriching the residual component with fine-grained fluctuations,
ensuring that the generated MAP series capture both stability and informative variability.

J THE USE OF LARGE LANGUAGE MODELS

Large language models were used as auxiliary tools for paper polishing, primarily to improve fluency
and readability. Their role was limited to linguistic refinement and did not affect the experimental
results or conclusions.

21


	Introduction
	Related Work
	Preliminaries
	Methodology
	Personalized Clinical Description Generation
	Multi-Scale Trend-Residual Diffusion Augmentation
	Domain Adaptive Pretraining
	Task Fine-tuning

	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Dataset Details
	Intraoperative Hypotension Prediction Dataset
	Abnormal Heartbeat Detection Dataset

	Experiment Details
	Design of Multi-Scale Trend-Residual Diffusion Augmentation
	Prompt for Personalized Clinical Description Generation
	Hyperparameter Sensitivity
	Visualization
	Model Prediction Visualization
	Augmentation Visualization

	Analysis under Heterogeneous Sampling Frequencies
	Performance under Finer and Coarser Sampling Rates
	Low-Resolution Transfer Evaluation

	Practical Deployment and Broader Impacts
	Derivation of Multi-Scale Trend–Residual Diffusion Augmentation
	The use of large language models

