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ABSTRACT

Safe Reinforcement Learning (Safe RL) aims to ensure safety when an RL agent
conducts learning by interacting with real-world environments where improper
actions can induce high costs or lead to severe consequences. In this paper, we
propose a novel Safe Skill Planning (SSkP) approach to enhance effective safe RL
by exploiting auxiliary offline demonstration data. SSkP involves a two-stage pro-
cess. First, we employ PU learning to learn a skill risk predictor from the offline
demonstration data. Then, based on the learned skill risk predictor, we develop
a novel risk planning process to enhance online safe RL and learn a risk-averse
safe policy efficiently through interactions with the online RL environment, while
simultaneously adapting the skill risk predictor to the environment. We conduct
experiments in several benchmark robotic simulation environments. The experi-
mental results demonstrate that the proposed approach consistently outperforms
previous state-of-the-art safe RL methods.

1 INTRODUCTION

Reinforcement Learning (RL) empowers the development of intelligent agents and the training of
decision systems, making it highly suitable for real-world applications. As RL continues to find
broader use in real-world scenarios, concerns regarding the safety of RL systems have become more
noticeable. These safety concerns have been particularly highlighted in human-centric domains,
such as autonomous driving (Wen et al., [2020), helicopter manipulation (Koppejan & Whiteson)
2011)), and human-related robotic environments (Brunke et al.,[2021), where significant risks can be
associated with taking improper actions, leading to severe consequences.

Safe Reinforcement Learning (Safe RL) focuses on the development of RL systems while adhering
to predefined safety constraints (Garcia & Fernandez, [2015) and reducing the associated risk. In
Safe RL, in addition to optimizing a reward function (Sutton & Barto| [2018)), an additional cost is
often assigned to evaluate the safety of actions taken by the RL agent; the RL agent aims to maxi-
mize the reward signal while ensuring a low cost (Altman, |1999; Hans et al., 2008). Conventional
Safe RL methods aim to maximize cumulative rewards through interactions with online environ-
ments (Achiam et al., [2017; [Tessler et al., 2019; Thomas et al., [2021), which often incur nontrivial
costs in the learning process. More recently, researchers have recognized the value of learning from
offline data, a practice that avoids potential damage to online physical environments (Xu et al., 2022}
Liu et al.,2023). Reinforcement Learning from Demonstration (LfD) seeks to accelerate RL training
by initially pre-training the RL agent using an offline dataset of demonstrations, which has demon-
strated effective performance for standard RL tasks (Argall et al., 2009} Brys et al.,|2015). Recent
research has started to exploit the potential of LfD in the context of Safe RL, aiming to incorporate
the safety-related information from the demonstration data to improve the training of safe policies
in online environments (Thananjeyan et al.| [2021). Our research endeavors to further advance safe
RL in this intriguing direction.

In this paper, we introduce a novel Safe Skill Planning (SSkP) approach to enhance effective safe
online RL by exploiting the offline demonstration data. Skill learning is a commonly used technique
for LfD, allowing the RL agent to learn high-level representations of action sequences from offline
demonstrations (Pertsch et al., [2021). In SSkP, we first employ a skill model to capture the high
level behaviour patterns in the offline demonstrations as latent skills, and learn a skill risk predic-
tor through Positive-Unlabeled (PU) learning on the demonstration data. The skill risk predictor
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estimates the level of risk associated with executing a skill-based action sequence in a given state.
Subsequently, we use the skill risk predictor to evaluate the safety of an RL agent’s exploration
behaviors (skills), and develop a novel risk planning process to enhance safe exploration and facili-
tate the efficient learning of a safe policy through interactions with online RL environments, while
adapting the skill risk predictor to these online environments in real-time. We conduct experiments
in various robotic simulation environments (Thomas et al., {2021} built on Mujoco (Todorov et al.,
2012). The experimental results demonstrate that our proposed approach produces superior per-
formance over several state-of-the-art safe RL methods, such as Recovery RL (Thananjeyan et al.,
2021), CPQ (Xu et al.l 2022) and SMBPO (Thomas et al.| 2021). Our main contributions can be
summarized as follows:

* We propose an innovative skill risk prediction methodology for extracting safe decision
evaluation information from offline demonstration data and facilitating safe RL in online
environments with planning.

* We devise a simple but novel risk planning process aimed at generating safer skill deci-
sions by leveraging skill risk prediction, thereby enhancing safe exploration and learning
in online RL environments.

* The proposed method SSkP demonstrates state-of-the-art safe RL performance.

2 RELATED WORKS

Safe RL  Safe Reinforcement Learning (Safe RL) is the study of optimizing decision-making for
RL systems while ensuring compliance with safety constraints. It aims to strike a balance between
exploration for learning and the avoidance of actions that could result in harmful or undesirable out-
comes (Garcia & Fernandez, 2015)). |Altman| (1999) first introduced the formulation of Constrained
Markov Decision Processes (CMDPs) to frame the Safe RL problem. Subsequent research in (Hans
et al., 2008)) introduced strict constraints that prohibit safety violations within a single exploration
trajectory. [Thomas et al.| (2021)) developed a Safe Model-Based Policy Optimization (SMBPO)
method, aiming to learn a precise transition model that prevents unsafe states during exploration
by penalizing unsafe trajectories. Recent studies have highlighted the significance of incorporat-
ing offline data into Safe RL. |Xu et al.| (2022) introduced Constrained Penalized Q-learning (CPQ),
which employs a cost critic to learn constraint values during exploration. They further penalize the
Bellman operator in policy training to stop the update of the policy for potentially unsafe states. In
another endeavor, Thananjeyan et al.| (2020) proposed the Safety Augmented Value Estimation from
Demonstrations (SAVED) approach, facilitating the learning of a safety density model from offline
demonstration data. They utilize the cross-entropy method (Botev et al., 2013) for planning safe
exploration, balancing task-driven exploration with cost-driven constrained exploration. Their more
recent work introduced a Recovery RL approach (Thananjeyan et al., [2021), learning a recovery
policy from offline demonstration data. This method ensures a recovery policy’s safety by leverag-
ing demonstration data, while also learning a recovery set to evaluate state safety. During online
training, a task policy is learned when states are deemed safe, switching to the recovery policy when
the RL agent encounters potentially unsafe situations.

Skill-based RL. Reinforcement Learning from Demonstration (LfD), also known as Imitation
Learning, focuses on enhancing online RL training by leveraging an expert demonstration dataset
(Argall et al 2009; Brys et al.,[2015). [Thrun & Schwartz| (1994) introduced skill learning to LfD,
enabling RL agents to learn reusable high-level skills from action sequences within offline demon-
stration data. In more recent research, Pertsch et al.| (2021) presented the SPiRL framework, which
leverages deep latent models to learn skill representations. The policy is trained using the skill
model in conjunction with a variant of Soft Actor-Critic (SAC) (Haarnoja et al.,|2018)) to accelerate
RL in downstream tasks. Furthermore, recent work has demonstrated the integration of skill learn-
ing into offline safe RL (Slack et al., [2022), which learns a safety variable posterior from offline
demonstration data and subsequently enhances online safe policy training.

Positive-Unlabeled Learning In contrast to traditional supervised learning that relies on labeled
positive and negative examples, Positive-Unlabeled (PU) learning addresses scenarios where data
cannot be strictly categorized as positive or negative. Notably, |[Du Plessis et al.| (2014; 2015)’s
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Figure 1: The framework of the proposed method, SSkP, which learns a skill risk predictor from
the offline demonstration data and then deploys it to enhance online safe RL through risk planning.
During the skill risk predictor learning stage, SSkP assembles PU data and trains a decision risk
predictor P (c|s¢, z¢) based on a skill model, which produces skill prior gy (-|s;) and skill decoder
pu(a¢]z¢). In the online safe policy learning stage, a risk planning process is deployed to generate
and choose safer skill decisions based on the skill risk predictor P¢(c|s¢, 2;). The generated skill
z¢ is decoded by the skill decoder p, (at|z;) into an action sequence a; to interact with the online
environment. Rewards are collected from online interactions to learn the safe skill policy mp(2¢|st).

previous work introduced an unbiased estimation of the true negative loss, making PU learning
feasible. [Jain et al.| (2016) and |Christoffel et al| (2016) extended this research by enhancing the
accuracy of practical PU classifier training through positive class prior estimation. |Kiryo et al.
(2017) proposed a large-scale PU learning approach that addresses overfitting by introducing non-
negative constraints and a relaxed slack variable. In recent developments,|Xu & Denil| (2021)) applied
PU learning to Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) in RL,
which learns an optimized reward function from the expert demonstration dataset to improve RL
performance in offline training.

3 PROBLEM SETTING

The safe RL problem is typically framed as a Constrained Markov Decision Process (CMDP) (Alt-
man, |1999), denoted as M = (S, A, T,R,C,~), where S represents the state space, A is the action
space, T : S x A — & defines the transition dynamics, R : S x A — R is the reward function,
and v € (0, 1) is the discount factor. The additional cost function C : § x A — R is introduced to
account for safety violations during RL exploration. Hence an exploration trajectory within CMDP
can be expressed as 7 = (s0,00,70,C0,- -+, 5¢,t,Tt, Ct, - - -, S|7|+1). We adopt the strict setting
that the safe RL agent will terminate a trajectory when encountering safety violation and inducing a
nonzero cost (¢; > 0) (Hans et al., 2008)). The goal of safe RL is to efficiently learn a good policy =
that maximizes expected discounted cumulative reward while incurring minimal costs.

To facilitate safe RL in online environments, we presume the availability of a small demonstration
dataset, denoted as D, which provides prior information regarding safety violations during explo-
ration: Dy = {...,(---,8¢,a¢,¢,-++),...}. The demonstration data can be gathered by either
human experts or a trained safe RL agent (Thananjeyan et al., [2021). A method that can effec-
tively exploit such demonstration data is expected to accelerate safe RL in online environments with
smaller costs.

4 METHOD

The main framework of the proposed Safe Skill Planning (SSkP) approach is presented in Figure[]
which has two stages: skill-risk predictor learning and safe RL with risk planning. Towards the
goal of facilitating efficient safe RL, SSkP first exploits the prior demonstration data to extract
reusable high-level skills and learn a skill risk predictor through PU learning. Then by devising a
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risk planning process based on the skill risk predictor, the online RL agent is guided to pursue risk-
averse explorations and efficiently learn a skill policy in online environments that can maximize
the expected reward with minimal costs. We further elaborate these two stages in the following
subsections.

4.1 SKILL RISK PREDICTION FROM DEMONSTRATIONS

Conventional safe RL methods entail the learning of a safe policy through direct interaction with the
online environment, which often incur considerable costs in the exploration based learning process.
Learning from demonstration (LfD) offers a means to accelerate the online RL process and reduce
the cost by pre-training on an offline demonstration dataset. This pre-training phase is more effi-
cient in terms of time and cost compared to the resource-intensive online environment. Skill-based
learning stands as a prominent approach in LfD (Pertsch et al.| [2021). It learns reusable skills as
generalizable high level representations of action sequences from offline demonstrations, which can
be used to guide the RL agent to explore in a safe manner for downstream online tasks. Inspired by
the principles of LfD, we aim to extract skill-based safety-related insights from the demonstration
dataset Dy, which can be utilized to assess the safety of reinforcement decisions and enhance the
ensuing online safe RL. In particular, we propose to learn a skill risk predictor P (c|s¢, 2;) from the
demonstration data that can evaluate the safety of a skill-based decision, z;, on a given state s;.

To support skill-based learning, we first adopt the deep skill model from a previous work (Pertsch
et al, |2021) to learn skills as latent representations of observed action sequences. This skill model
consists of three key components: a skill encoder network g, (2¢|a;), responsible for encoding an
action sequence a; = {ay,...,a;+g—1} with length H into a high-level skill z;; a skill decoder
network p, (a;|z;), which decodes the skill z; back into the action sequence a;; and a skill prior
network gy (2¢|s;), which generates the skill decision for a given state s,. After being trained on the
demonstration data D, the components of the skill model can be deployed to facilitate subsequent
learning processes.

4.1.1 LEARNING SKILL RISK PREDICTOR VIA PU LEARNING

The demonstration data provides valuable insights for safe exploration of the environment. How-
ever, estimating risk predictors for skill-based behaviors in the context of safe exploration poses a
persistent challenge due to two primary reasons. First, the demonstration data, whether collected by
a human expert or a fully trained safe RL agent, often contain very limited actual examples of safety
violations, due to the finite trajectory lengths and limited skill horizons. Second, while a decision
made in a given state may not result in immediate safety violations, it could lead to a close prox-
imity to safety violations. Treating such decisions as strictly safe examples can be problematic. To
tackle these issues, we propose the utilization of Positive-Unlabeled (PU) learning, a technique that
can bypass the strict differentiation of safe decisions from unsafe ones and alleviate the scarcity of
unsafe examples.

Specifically, we collect the positive and unlabeled decision examples for PU learning as follows.
At a timestep ¢, if the current trajectory 7 actually encounters a safety violation within the next
steps when the RL agent is projected to select skill z; at state s;, then we collect such state-skill pair
(8¢, z¢) as positive unsafe examples. Conversely, all other state-skill decision pairs that do not lead to
immediate risks are collected as unlabeled examples. For states near the termination of trajectories,
the corresponding action sequences have lengths that are insufficient (less than the horizon H) to
encode skills. We hence utilize the skill prior network ¢ (z;|s;) from the skill model to produce the
skill decision z; for each given state s; in the demonstration data, instead of using the encoder.

Let DP = (s?, 2') represent the set of positive examples of state-skill decision pairs, and D" =
(s, z') represent the unlabeled set. We learn the skill risk predictor P;(c|s;, z;) as a binary clas-
sifier parameterized with {, measuring the probability of selecting skill z; at state s; leading to a
safety violation with risk ¢ > 0. We compute the true positive loss on the PU training data as the
negative mean log-likelihood of the positive examples in D?:

Lp (D?) = —E(s, 2y~ pr[log(P(c = 1]s, 2))], (1)

while the difficulty lies in computing the true negative loss without confirmed negative examples. To
bypass this problem, unbiased estimation of the true negative loss using PU data has been developed
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Algorithm 1 Risk Planning
Initialize: (p0,02) < qy(-|st)
Procedure:
1: fori=1,2,...,N, do
2: Sample skills {7} from N'(ps; 1, diag(o? ,))
3:  Calculate p; = P (c = 1|s¢, 27) for Ny skills
4:  Compute (p;,07?) using the selected top-k skills with lowest risk predictions in {p; };V: 1
5
6

: end for
: Sample skill z; from N (py,, diag(o; )

in the literature (Du Plessis et al., [2015;12014):
LY, (D" U DP) = L} (D) — ALY, (D) @)

where ) represents the positive class prior, which can be estimated using positive and unlabeled
data (Jain et al., [2016; |Christoffel et al., |2016)); L(I)gc (D) denotes the negative expectation of the

log-likelihood of the given data D being negative, such that:
Lp. (D) = =E(, z)~pllog(l — P(c = 1]s, 2))]. 3)

To further improve the estimation of the true negative loss, in the recent PU learning literature, |[Kiryo
et al.|(2017) introduce an additional constraint to the estimation of L(I)Dc (D* U DP), ensuring that the

loss remains non-negative: L(}DC (D) — )\L(I)gc (DP) > 0. To provide tolerance and reduce the risk

of overfitting, a non-negative slack variable & > 0 is also introduced to relax the constraint, which
leads to the following PU loss we adopted for training our skill risk predictor:

LB (DP, D*) = AL, (D) + max(~€, L (D") = ALY, (D?)) @

By minimizing this PU loss on the demonstration data, we obtain a pre-trained skill risk predic-
tor Pe(c|st, z¢), which will be deployed in the online RL stage to screen the skill decisions and
accelerate safe policy learning.

4.2 ONLINE SAFE RL WITH RISK PLANNING

In the online safe policy learning stage, our objective is to facilitate the learning of a safe policy
by leveraging the safe skill knowledge learned from the offline demonstration data, encoded by the
skill prior network gy (-|s¢), the decoder network p,, (-|z;), and, in particular, the skill risk predictor
PC(C‘S,:, Zt).

4.2.1 RISK PLANNING

The pre-trained skill risk predictor Pe(c|s, z;) encodes safe decision evaluation information ex-
tracted from the demonstration data, providing an essential capacity for pre-assessing the safety
of potential skill-based decisions before executing them in online environments. Specifically,
P¢(c = 1|st, z¢) can quantify the likelihood that the RL agent will encounter safety violation by
following the action sequence encoded by skill z; at state s;. We have, therefore, developed a
simple heuristic risk planning process that leverages the skill risk predictor to choose safer skill de-
cisions to follow. This process is expected to reduce the potential for encountering safety violations
and enhance the safety of online RL learning.

Specifically, we evaluate and choose skill-based decisions at a given state s; from an iteratively
self-enhanced Gaussian distribution \'(u, diag(o?)) that has a diagonal covariance matrix. At the
start, we sample Ny skills from the current safe policy function 74 (+|s;) at state s; such that {27 ~
mo(+|s¢), 7 = 1--- Ny}, and use these skill vectors to calculate the mean and covariance of an
initial Gaussian distribution N'(po, diag(e3)). Then in each i-th iteration, we sample N skills
Z = {27} jvzl from the current Gaussian distribution N'(p; 1, diag(o?_;)) and evaluate their safety

using the skill risk predictor p; = P¢(c|st, z7). We choose the top-k safe skills Zj, with the lowest
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Algorithm 2 Online Safe Policy Learning

Input: skill prior gy (-|s), decoder p, (-|z), skill risk predictor P (c|s, z), DP and D"
Initialize: data buffer D, skill policy network 7y (z|s)
Procedure:

1: for each episode do

2:  Randomly start from a state sg, sett =0

3:  for every H environment steps do

4: z; < Risk_Planning(mg(+|s¢), Pe(c|st, 2))

5: Sample a; = a;.44g—1 from decoder p,, (-|z;)

6: Execute a;: stop current trajectory 7 when ¢>0
7 Collect reward 7; and get next state sy

8 Add {s¢, z¢, Tt, s } to D with t'= t+min(H, |7])

9: Collect decision pairs P as in Eq.(7)

10: If ¢ > 0 then: AddPto D? else: Add P to D* end if

11: If ¢ > 0 or reached max episode-steps  then break out end if
12: t=1t

13:  end for

14:  Update predictor P (c|s, z) by minimizing Eq.
15:  Update policy network 6 following the skill-based SAC method on D.
16: end for

predicted risk probabilities from Z to update the Gaussian distribution for the next iteration:

1
pi= o Zzezk z, (5)

1 .
P =Y diag((z - p)(z - p)") ©

After a total number of NV, iterations, an optimized skill decision z; with low predicted risk is
sampled from the final refined distribution NV (g, diag(ajzvp)). The procedure of this planning
process is also summarized in Algorithm |1} This risk planning procedure is essentially a cross-
entropy method (CEM) (Botev et al.| [2013; Rubinstein} [1997)), specifically employed in this context
as a zeroth-order solver to tackle the non-convex optimization problem (Amos & Yarats, 2020)
of argmin, P:(c = 1|sq, ), facilitating effective selection of safe skills based on the skill risk
predictor. By gradually adjusting the Gaussian distribution towards safer decision skill regions, we
expect to reliably identify a safe skill to deploy after a sufficient number of iterations.

4.2.2 ONLINE SAFE POLICY LEARNING

By utilizing the pre-learned skill knowledge and the proposed risk planning process, we aim to
efficiently learn a skill-based safe policy network my(z|s) through iterative interactions with an
online RL environment, which maximizes the expected discounted reward while minimizing the
costs incurred by safety violations. Specifically, at the current state s;, we first select an optimized
skill, z;, using the risk planning process. This skill, z;, is then decoded into an action sequence,
a; = ag.t4 y—1, using the skill decoder p,, (+|2;). The RL agent interacts with the online environment
to reach next state s, by taking this sequence of actions, adhering to the behavior patterns of the
pre-learned skills. Such skill-based planning and decision making are more efficient to carry on as
well than single actions. During the interaction process, the RL agent collects cumulative reward

signals 7, = Zf_l r; from the environment and monitors the cost signal ¢, which will become
positive (¢ > 0) when encountering safety violation. The trajectory will be terminated with safety
violation without executing the whole sequence of actions. Without safety violation, the next state
reached from s; will be sy = sy 5. The skill-based transition data, D = {(s¢, z¢, 7+, s¢/)}, are
collected from the online interactions to train the safe skill policy 7y (). Meanwhile the state-skill
decision pairs are collected as PU examples in a similar way as on the demonstrations, such that

P ={(st,2t), (si,z2~qyp(-]s:))]i € {t+1:t —1}}. (7
These are then integrated with the existing PU data to continuously adapt the skill risk predictor to

the online environment in real-time, enhancing and accelerating the online safe RL policy learning.
The full procedure of the proposed online safe RL learning is presented in Algorithm 2]
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Figure 2: The figures present instances of failure in each environment where safety constraints are
violated. From left to right: Ant, Cheetah, Hopper, Humanoid.

In this work, we deploy a skill-based Soft Actor-Critic (SAC) algorithm (Haarnoja et all, [2018)
to learn the skill policy network mg(-) on the collected data D, which enforces behavior cloning
by replacing the entropy regularizer in the optimization objective of SAC with a KL-divergence
regularizer, K L(mp(+]s), g (+]s)), between the skill policy network 7 (-|s) and the pre-trained prior
network ¢y, (-|s) (Pertsch et al., 2021).

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

RL Environments We conducted experiments with four benchmark robotic simulation environ-
ments, namely, Ant, Cheetah, Hopper, and Humanoid, utilizing a customized variant of the MuJoCo
physics simulator (Todorov et all, 2012) as introduced in (Thomas et all, 2021). In these environ-
ments, the RL agent halts upon encountering a safety violation. In the Ant and Hopper environments,
a safety violation occurs when the robot topples over. In the Cheetah environment, a violation takes
place when the robot’s head hits the ground. In the Humanoid environment, the human-like robot
violates the safety constraint when its head falls to the ground. Figure [2] presents some instances
of failure in these environments. The RL agent is trained to maximize cumulative rewards while
adhering to the safety constraint.

Comparison Methods We compare our proposed SSKP approach with three state-of-the-art safe
RL methods: CPQ (Xu et al.|[2022)), SMBPO (Thomas et al.l 2021}, and Recovery RL
2021). CPQ is a constraints penalized Q-learning method. It learns from offline demonstration
data, and penalizes the Bellman operator during policy training when encountering unsafe states.
SMBPO is a model-based method that relies on an ensemble of Gaussian dynamics-based transition
models. It penalizes trajectories that lead to unsafe conditions and avoids unsafe states under specific
assumptions. Recovery RL first learns a recovery policy from the offline demonstration data with
the objective of minimizing safety violations. During online training, the agent takes actions to
maximize the reward signal in safe situations and falls back on the recovery policy to reduce safety
violations if necessary.

Implementation Details A fixed horizon length H = 10 for skill action sequences is used in the
experiments. The dimension of the skill vectors is set as 10. The PU risk predictor, skill decoder,
and policy network employ standard MLP architectures, while the skill prior incorporates an MLP
with a Gaussian output layer. The skill encoder utilizes an LSTM with linear output. Following
prior work on PU learning (Xu & Denill, 2021), the slack variable £ is set to 0. For risk planning,
we used Ny = 512, k = 64, and N, = 6. For comparison, we used the official implementations of
Recovery RL (Thananjeyan et al [2021)) and SMBPO (Thomas et all,[2021). The implementation
of CPQ is adapted from the OSRL repository (Liu et al.| 2023)). In the case of Recovery RL, both
offline and online components are enabled. As for CPQ (Xu et al.| [2022), the agent is pre-trained on
the same offline dataset we collected and then trained in the same manner in online environments.
All results are collected over a total of 10 online timesteps.

5.2 EXPERIMENTAL RESULTS

The comparison results for our proposed SSkP method and the other three safe RL methods in four
robotic simulation environments are presented in Figure [3] We used a similar evaluation strategy
as the one in (Thomas et al, 2021). The results for all the methods are collected over the same
total of 10° online timesteps. As the goal is to maximize the expected reward while minimizing the
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Table 1: Comparison results in terms of the ratio between Per-timestep Reward (PtR) and #Viola-
tions (PtR/A#V (x10?)). This metric reflects the cost-sensitive sample efficiency of online safe RL.

Ant Cheetah Hopper Humanoid
SSkP 23.54 173.72 8.86 0.72
Recovery RL 13.12 146.30 7.10 0.71
CPQ 11.80 92.25 6.21 0.38
SMBPO 28.68 147.00 5.74 0.69
— SSkP Recovery RL — CPQ — SMBPO

Figure 3: This figure presents the performance of each comparison method in terms of the average
episode reward vs. the total number of safety violations encountered during online training within a
fixed total number of timesteps on all four environments: Ant, Cheetah, Hopper, and Humanoid. The
results represent the averages over three runs, with the shadow indicating the standard deviations.

safety violation costs, we present the performance of each method in terms of its average episode
reward versus the total number of safety violations encountered. Specifically, the x-axis depicts
the cumulative safety violations encountered by the RL agent throughout the entire online training
process, while the y-axis reflects the average episode rewards with the increasing of numbers of
violations. These plots effectively illustrate the trade-off between reward maximization and risk
(safety violation) minimization. A higher average episode reward with the same number of safety
violations indicates better performance in policy learning with the same cost.

We can see that across all four environments, CPQ exhibits an initial advantage with a higher start-
ing point and eventually halts with a very low average episode reward. This demonstrates that CPQ
failed to learn a good policy function within the total 10® online timesteps. Although it only encoun-
tered a lower total number of violations, the inability to effectively perform RL failed the ultimate
goal. This can be attributed to that CPQ pre-trains its policy on the offline demonstration dataset.
In contrast, both our proposed SSkP and Recovery RL do not rely on policy learning from offline
demonstrations. SSkP learns the skill model and the skill risk predictor from the offline demon-
stration data and deploys them to support the online safe RL policy learning. SSkP outperforms
Recovery RL in all four environments, producing much higher average rewards with lower numbers
of safety violations. SSKP also largely outperforms SMBPO in a similar way in three out of the four
environments, except for the Ant environment; in Ant, SMBPO demonstrates a similar inability as
CPQ in terms of learning a good policy to maximize the expected reward. Overall, the proposed
SSkP method produces the most effective performance in all the four environments, outperforming
the other comparison methods. This validates the effectiveness of SSkP for advancing safe RL by
exploiting offline demonstrations.

To provide a quantitative measure for the performance of an online safe RL agent throughout the
entire online learning process, we further introduce a new metric to compute the ratio between the
Per-timestep Reward (PtR) and the total number of safety Violations (#V), denoted as PtR/#V. PtR
is calculated by dividing the cumulative episode reward across the entire online training duration by
the total number of timesteps, which indicates the sample efficiency of the RL agent. Specifically, let
E represent the total number of episodes, . denote the episode reward at episode e, T' denote the

total number of timesteps. Then PtR is computed as E;E:l R./T. By further computing the ratio
between PtR and the total number of safety violations, PtR/#V takes the safety into consideration
and can be used as a cost-sensitive sample efficiency metric for safe RL, which can capture the
tradeoff between the learning efficiency of the safe RL agent and the cost of encountering safety
violations. The objective of safe RL is to maximize the reward while minimizing safety violation
costs, naturally favoring a larger PtR/#V ratio value. We calculated the average PtR/#V values over
three runs for all the comparison methods in all the four experimental environments, and reported the
comparison results in Table where the PtR/#V numbers are scaled at 103 for clarity of presentation.
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Figure 4: The ablation study results in two environments: Ant and Hopper by comparing three
methods: SSkP—the proposed approach; SSkP-NP—the variant that replaces risk planning with a
naive planning process; and SSkP-w/o-RP—the variant that drops risk predictor and risk planning
from SSkP. Each plot displays the average reward vs. the total number of safety violations encoun-
tered during online training within a fixed total number of timesteps. The results are averages of
three runs.

Notably, under the PtR/#V metric, our SSkP method outperforms all the other comparison methods
in three out of the total four environments, except for the Ant environment, where SSkP produced
the second-best result. The comparison method, CPQ, that has been shown to fail to learn in the
figures, produces poor PtR/#V values in all the environments. Particularly in Cheetah and Hopper,
SSkP produces notable performance gains over all the other methods. These results again validate
the superior efficiency and efficacy of our SSkP for online safe RL.

5.3 ABLATION STUDY

The main contribution of the proposed SSkP approach lies in devising two novel components: the
risk planning component and the skill risk predictor. We conducted an ablation study to investigate
their impact on the performance of SSkP.

The risk planning component in SSKP iteratively improves the safety of skills by leveraging the skill
risk predictor, aiming to generate and deploy the most effective safe skill decision. To investigate
the extent to which the proposed risk planning process enhances safe policy learning performance,
we introduced an alternative naive planning baseline as a comparison. Naive planning samples N,
skills using the current safe policy mg(-|s;) at the given state s;, evaluates them using the current
skill risk predictor, and selects the best skill with the lowest predicted risk in a single iteration. We
denote the variant of SSkP with naive planning instead of the proposed risk planning as SSkP-NP.

The SSkP-NP variant nevertheless still leverages the skill risk predictor. To further investigate the
impact of the skill risk predictor, we introduced another variant, SSkP-w/0-RP, which drops the skill
risk predictor learning and deployment from both the offline and online learning stages. Conse-
quently, risk planning that depends on skill risk assessment is also disabled in the online RL stage,
while the skill decisions are produced directly by the skill policy function.

We compared the proposed full approach SSkP with the two variants, SSkP-NP and SSkP-w/o-
RP, in the Ant and Hopper environments, and the experimental results are presented in Figure [4]
The curves in the figure reveal that our proposed SSkP with risk planning clearly outperforms the
ablation variant SSkP-NP with naive planning in both environments. In the Hopper environment,
SSkP-NP exhibits a very brief faster improvement during the early training stage but experiences a
subsequent decline. Our proposed full approach SSkP produces a much better policy function that
achieves substantially much higher average episode reward than SSkP-NP with smaller cost—the
number of safety violations. This validates the contribution put forth by the proposed risk planning
process. We also note that by eliminating the skill risk predictor and consequently the entire risk
planning, the variant SSkP-w/0-RP, while still leveraging the offline demonstration data through
the skill model, experiences a substantial performance decline compared to SSkP-NP. The results
validate the significant contribution of the proposed skill risk prediction methodology, which is the
foundation of the proposed safe RL method SSkP.
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6 CONCLUSION

In this paper, we introduced a Safe Skill Planning (SSkP) method to address the challenge of online
safe RL by effectively exploiting a prior demonstration dataset. First, we deployed a deep skill model
to extract safe behavior patterns from the demonstrations and proposed a novel skill risk predictor for
decision safety evaluation, which is trained through PU learning over the state-skill pairs. Second,
by leveraging the risk predictor, we devised a new and simple risk planning process to iteratively
identify reliable safe skill decisions in online RL environments and support online safe RL policy
learning. We compared the proposed method with several state-of-the-art safe RL methods in four
benchmark robotic simulation environments. The experimental results demonstrate that our method
yields notable improvements over previous online safe RL approaches.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning (ICML), 2017.

Eitan Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.

Brandon Amos and Denis Yarats. The differentiable cross-entropy method. In International Con-
ference on Machine Learning (ICML), pp. 291-302. PMLR, 2020.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009.

Zdravko I Botev, Dirk P Kroese, Reuven Y Rubinstein, and Pierre L’Ecuyer. The cross-entropy
method for optimization. In Handbook of statistics, volume 31, pp. 35-59. Elsevier, 2013.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 2021.

Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E Taylor, and Ann
Nowé. Reinforcement learning from demonstration through shaping. In International Joint Con-
ference on Artificial Intelligence (IJCAI), 2015.

Marthinus Christoffel, Gang Niu, and Masashi Sugiyama. Class-prior estimation for learning from
positive and unlabeled data. In Asian Conference on Machine Learning (ACML), 2016.

Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama. Convex formulation for learning from
positive and unlabeled data. In International Conference on Machine Learning (ICML), 2015.

Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama. Analysis of learning from positive and
unlabeled data. Advances in Neural Information Processing Systems (NeurlPS), 2014.

Javier Garcia and Fernando Ferndndez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research (JMLR), pp. 1437-1480, 2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning (ICML), 2018.

Alexander Hans, Daniel Schneegall, Anton Maximilian Schifer, and Steffen Udluft. Safe explo-
ration for reinforcement learning. In ESANN, 2008.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in Neural
Information Processing Systems (NeurIPS), 2016.

Shantanu Jain, Martha White, and Predrag Radivojac. Estimating the class prior and posterior from
noisy positives and unlabeled data. Advances in neural information processing systems (NeurIPS),
29, 2016.

10



Under review as a conference paper at ICLR 2025

Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and Masashi Sugiyama. Positive-unlabeled
learning with non-negative risk estimator. Advances in Neural Information Processing Systems
(NeurlIPS), 2017.

Rogier Koppejan and Shimon Whiteson. Neuroevolutionary reinforcement learning for generalized
control of simulated helicopters. Evolutionary intelligence, 2011.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe reinforcement
learning. arXiv preprint arXiv:2306.09303, 2023.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning (CoRL), 2021.

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research (EJOR), 99(1):89-112, 1997.

Dylan Z Slack, Yinlam Chow, Bo Dai, and Nevan Wichers. SAFER: Data-efficient and safe re-
inforcement learning via skill acquisition. In Decision Awareness in Reinforcement Learning
Workshop at ICML 2022, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations (ICLR), 2019.

Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAllister, Joseph E Gon-
zalez, Sergey Levine, Francesco Borrelli, and Ken Goldberg. Safety augmented value estima-
tion from demonstrations (saved): Safe deep model-based rl for sparse cost robotic tasks. IEEE
Robotics and Automation Letters, 5(2):3612-3619, 2020.

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery rl: Safe
reinforcement learning with learned recovery zones. IEEE Robotics and Automation Letters,
2021.

Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
future. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning. Advances in
neural information processing systems (NeurIPS), 7, 1994.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on intelligent Robots and Systems (IROS), 2012.

Lu Wen, Jingliang Duan, Shengbo Eben Li, Shaobing Xu, and Huei Peng. Safe reinforcement
learning for autonomous vehicles through parallel constrained policy optimization. In IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020.

Danfei Xu and Misha Denil. Positive-unlabeled reward learning. In Conference on Robot Learning
(CoRL), 2021.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized g-learning for safe offline
reinforcement learning. In AAAI Conference on Artificial Intelligence (AAAI), 2022.

A ALTERNATIVE EVALUATION OF EXPERIMENTAL RESULTS

We have introduced an alternative evaluation of our experimental results in Section simultane-
ously presenting sample efficiency curves and violation curves. This approach offers an intuitive
understanding of the overall performance of our safe RL agent, illustrating performance and safety
metrics across environmental steps. The results are illustrated in Figure [5] Notably, on the Ant,
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curves illustrating episode rewards v.s. the total number of environmental steps across four environ-
ments. Bottom: Violation curves illustrating the total number of violations v.s. the total number of
environmental steps across four environments. The results are averages of three runs.
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Figure 6: Risk prediction probability changes, Vp; = p; — pg, along the planning iteration number
1 from the initial average risk prediction probability py. The results are the averages computed with
the risk planning procedure on 100 randomly sampled states s;.

Hopper, and Humanoid environments, our SSkP demonstrates superior performance based on sam-
ple efficiency curves, while on the Cheetah environments, SSkP exhibits comparable performance
to Recovery RL and SMBPO. These findings highlight SSkP’s robust performance across environ-
ments, even in the absence of explicit safety constraints. Although CPQ displays the lowest cumula-
tive violations compared to other methods, it fails to achieve acceptable episode rewards, indicating
its incapacity to learn an effective policy while following safety constraints. For the Cheetah, Hop-
per, and Humanoid environments, as the number of environmental steps increases, SSKP exhibits
comparable safety violations with the second-best comparison method (excluding CPQ), while out-
performing comparison methods in terms of episode rewards.

B FURTHER STUDY OF RISK PLANNING PROCESS

The ablation study above validated the contribution of the proposed risk planning procedure towards
our overall safe RL approach, SSkP. In this subsection, we further study the efficacy of the risk
planning procedure in Algorithm T]as a zeroth-order solver for the non-convex optimization problem
of argmin, P;(c = 1|s;, z) by presenting the changes in the predicted risk probabilities of the
sampled skills along the Gaussian distribution refinement iterations.

Specifically, in each experimental environment, given the trained risk predictor P;(-) and a sampled
state s;, we conduct risk planning with N, = 6 refinement iterations. From each Gaussian distri-
bution N (p;, diag(o?)), along the iterations i € {0,1,---, N,}, we sample N; skills {27 }évzl and
calculate the average of their predicted risk probabilities, p; = N% Z;V P(c = 1]s, 27). To em-
phasize the effect of reducing risks of the sampled skills, we report the changes of the average risk
probability from the initial iteration 0; i.e., we record Vp; = p; — Py for each iteration i. We repeat

this risk planning process over 100 randomly sampled states {s; }, and report the average results in
Figurel6for all the four experimental environments. We can see with the increase of the risk planning

12



Under review as a conference paper at ICLR 2025

Table 2: The table presents experimental results of SSkP on Ant and Hopper environments in
terms of the ratio between Per-timestep Reward (PtR) and #Violations (PtR/#V (x10?)) at various
proportions of the total offline data size. The results are averages over three runs.

Proportion of Offline Data 1.0 0.5 0.2 0.1
Ant 23.54 19.30 15.09 10.06
Hopper 8.86 7.96 6.17 4.94

iterations, —Vp; becomes larger and hence p; becomes smaller, indicating the sampled skills from
each current Gaussian distribution are safer than previous iterations. Overall, the results validate
that the risk planning process can effectively find safer skills z by minimizing P¢(c = 1|s¢, 2).

C SENSITIVITY OF OFFLINE DATA SI1ZE

To investigate the sensitivity of the offline data size, we conducted an experiment on Ant and Hopper
environments using various proportions of the original offline demonstration data. Specifically, we
tested ratios relative to the original size of the offline data, including 1.0, 0.5, 0.2, and 0.1. We
report the metric of the ratio between Per-timestep Reward (PtR) and #Violations (PtR/#V (x103))
as detailed in our main paper, and present the results in Table [2]

It’s evident that the PtR/#V decreases as we decrease the size of the offline data. Initially, there’s a
slight performance drop when half of the offline data is used, and this decline persists with further
reductions in data size. This sensitivity is more notable in the ant environment, where there’s a low
total number of violations. The performance on the Ant environment drops by more than half when
only 10% of the offline data is utilized. However, even with an extremely small offline data size, the
performance on Hopper remains acceptable.
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