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Abstract
Discourse analysis allows us to attain high-001
level inferences of a text document beyond the002
sentence-level. However, currently the perfor-003
mance of discourse models is very low on texts004
outside of the training distribution’s coverage.005
There is need for a measure that can inform006
us to what extent our model generalizes from007
the training to the test sample when these sam-008
ples may be drawn from distinct distributions.009
While this can be estimated via distribution010
shift, we argue that this does not directly cor-011
relate with change in the observed error of a012
classifier (i.e. error-gap). Thus, we propose to013
use a statistic from the theoretical domain adap-014
tation literature which can be directly tied to015
error-gap. We study the bias of this statistic as016
an estimator of error-gap both theoretically and017
through a large-scale empirical study of over018
2400 experiments on 6 discourse datasets from019
domains including, but not limited to: news,020
biomedical texts, TED talks, Reddit posts, and021
fiction. Our results not only motivate our pro-022
posal and help us to understand its limitations,023
but also provide insight on the properties of dis-024
course models and datasets which improve per-025
formance in domain adaptation. For instance,026
we find that non-news datasets are slightly eas-027
ier to transfer to than news datasets when the028
training and test sets are very different. We029
plan to release our code as a Python package030
to allow practitioners to make more informed031
model and dataset choices.032

1 Introduction033

Computational approaches to discourse aim to034

learn inferences in text and a representation of the035

structure of discourse. Discourse parsing models036

are trained on a dataset annotated based on a dis-037

course framework, where two textual units are iden-038

tified that exhibit some discourse relation, and the039

type of discourse relation is labeled. Discourse040

parsing has been shown to be helpful in several041

downstream NLP tasks (Marcu, 1999, 2000; Bha-042

tia et al., 2015; Narasimhan and Barzilay, 2015;043

Figure 1: Solid/hollow shapes indicate training/test set,
while circles/squares indicate the correct labels. (A)
Vertical shift is easily identified, but the classifier (dot-
ted line) does well on both domains. (B) In the feature
space, shift is imperceptible, but the classifier assigns
the incorrect relation label to each point in the test set.
In both, identifiable shift does not correlate with the
classifier’s ability to correctly predict the discourse rela-
tion

Cohan et al., 2018). However, in other cases, dis- 044

course relations have also been found not to im- 045

prove, or even to hurt, the performance of many of 046

these downstream tasks (Zhong et al., 2020). There 047

are several hypothesized reasons for this. For one, 048

due to the difficulty of the annotation task, datasets 049

labeled with these discourse relations are typically 050

small, and the most widely used datasets consist 051

only of text from news articles. In general, the 052

performance of discourse models trained on these 053

datasets is very low and even slight domain shift 054

has been shown to worsen the performance (Atwell 055

et al., 2021). When deciding on a model to use, it is 056

important to select one which can generalize well 057

between the training and test samples. The same 058

holds true for the dataset; it is important to train on 059

a dataset that allows the model to transfer well to 060

the test set. 061

To estimate the extent of a model’s generalizabil- 062

ity on a particular train/test pair, common proposals 063

suggest using two-sample statistics which capture 064

distributional shift in the feature space (Rabanser 065

et al., 2019). However, the working hypothesis of 066

this paper is that changes in feature-distribution 067
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do not necessarily equate to changes in a classi-068

fier’s error; i.e., from train to test sample. Figure 1069

captures this idea by illustrating some examples070

in simple 2D-space where domain shift may occur071

without high error, and vice versa.072

Motivated by this hypothesis, we look to exist-073

ing theoretical domain adaptation literature. We074

propose to use a statistic which has not only been075

designed to incorporate information about the clas-076

sifier we would like to transfer, but has also been077

shown (theoretically) to directly relate to model078

performance on the test set. Namely, we consider079

a slight generalization of the source-guided dis-080

crepancy (Kuroki et al., 2019) which we call the081

h-discrepancy defined for any classifier h (we in-082

troduce and define this metric in Section 4). We083

provide (novel) theoretical analysis of the errors of084

this statistic in estimating adaptation performance085

and, based on this, hypothesize this statistic will086

correlate more substantially with the classifiers’087

generalization ability than the two-sample statistics088

previously mentioned. We support this hypothesis089

by illustrating these correlations across several dif-090

ferent widely-used discourse datasets (described in091

Section 3). We also provide a detailed empirical092

analysis of the estimation error of this statistic in093

predicting adaptation performance using a regres-094

sion model. In doing so, we provide interesting095

insights on the effect of various properties of differ-096

ent discourse models/datasets on performance in097

domain adaptation, which we enumerate in Section098

6. We expand on these contributions next.099

First, we contribute a new theoretical analysis100

to characterize the bias of the h-discrepancy as101

an estimator of performance in domain adaptation.102

Although this discrepancy is typically biased, we103

provide upper and lower bounds on this bias and104

interpret them to provide insight on the use of this105

statistic in practice. In particular, we show that a106

small h-discrepancy often means the practitioner107

can be confident in transferring the model from108

the train- to the test-set. Our theoretical analysis109

motivates our hypothesis that the h-discrepancy110

should outperform common two-sample statistics.111

Next, we empirically study the aforementioned112

hypothesis. We compare correlation of the h-113

discrepancy with performance in domain adap-114

tation against correlation of various two-sample115

statistics across multiple discourse datasets. As we116

are aware, this large-scale comparison has never117

been done for discourse relation classification.118

We also perform a regression analysis of the esti- 119

mation errors of the h-discrepancy as an estimator 120

for domain adaptation performance. This analy- 121

sis not only allows us to understand the properties 122

and pitfalls of our estimator, but also to gain more 123

insight about how different types of datasets, gen- 124

res, feature representations, and models influence 125

domain adaptation performance. 126

Lastly, we plan to release our code for calculat- 127

ing h-divergence as a Python package, so that other 128

practitioners can easily make use of it for their own 129

model setups and datasets. 130

2 Related Work 131

2.1 Discourse and Domain Shift 132

Computational analysis of discourse has been the 133

focus of several shared tasks (Xue et al., 2015, 134

2016), and there have been several discourse- 135

annotated corpora for multiple languages (Zeyrek 136

and Webber, 2008; Meyer et al., 2011; Danlos et al., 137

2012; Zhou and Xue, 2015; Zeyrek et al., 2020). 138

However, discourse models have been shown not 139

to perform well under even gradual domain shift 140

(Atwell et al., 2021), which may be the result of the 141

limited timeframe and distribution of the articles 142

contained in the most commonly used discourse 143

datasets, the Penn Discourse Treebank (Miltsakaki 144

et al., 2004; Prasad et al., 2008; Webber et al., 2019) 145

and the RST (Carlson et al., 2003). These datasets 146

are both made up of Wall Street Journal articles 147

spanning a three-year period, and thus do not con- 148

tain much variation with respect to linguistic distri- 149

bution. 150

Several works have quantified domain shift in the 151

context of natural language processing, mostly in 152

the task of sentiment analysis. For instance, Plank 153

and Van Noord (2011) use word frequencies and 154

topic models to measure domain similarity, while 155

Wu and Huang (2016) use sentiment graphs. 156

Blitzer et al. (2007) and Elsahar and Gallé (2019) 157

use H-divergence to analyze a sentiment classifi- 158

cation task on the Amazon Reviews dataset, while 159

Ruder et al. (2017) use H-divergence to select the 160

source datasets for transfer. However, none of these 161

works have studied the h-discrepancy we study 162

here, nor have they studied this with respect to 163

discourse parsing. 164

To the best of our knowledge, no works have yet 165

studied the correlation of statistics from the theo- 166

retical domain adaptation literature with the adapta- 167

tion performance of discourse parsers. This is espe- 168
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cially true given the wide array of different datasets169

and distributional shifts we consider as well as the170

theoretical and empirical tools we propose to con-171

duct our study. Both our novel theoretical result172

(Theorem 1) and our large-scale regression analy-173

sis (Section 5), provide new, practical insights on174

domain-shift in discourse parsing.175

2.2 Domain Adaptation Theory176

Statistics that relate to domain adaptation perfor-177

mance have long been studied in the theoretical178

literature. Kifer et al. (2004); Ben-David et al.179

(2007, 2010a) initiate this investigation with a180

modification of the total variation distance (the H-181

divergence) that depends on the set of classifiers H;182

this statistic can be directly related to adaptation183

performance through a finite-sample bound. Man-184

sour et al. (2009) extend this discussion from clas-185

sification error to general loss functions. Certain186

two-sample statistics can also be related to adapta-187

tion performance through finite sample bounds, but188

only under stringent assumptions on the space of189

classifiers and the computation of the two-sample190

statistic (Fukumizu et al., 2009; Gretton et al., 2012;191

Long et al., 2015; Redko et al., 2020). Assump-192

tions, in general, play a large role in successful193

domain adaptation. In fact, common adaptation194

algorithms can actually worsen performance if im-195

portant assumptions are not met (Zhao et al., 2019).196

Different assumptions have led to diverse theo-197

ries disjoint from the H-divergence, including the198

proposals of Lipton et al. (2018), Johansson et al.199

(2019), and Tachet des Combes et al. (2020). Under200

certain strict and untestable assumptions, it is even201

possible to derive unbiased estimators of adapta-202

tion performance (Sugiyama et al., 2007; You et al.,203

2019). We later discuss our own assumptions on204

the ideal-joint error λ which are typical when us-205

ing the H-divergence and its descendants. We find206

this assumption to be more mild than those in other207

mentioned works. In any case, this assumption208

has been shown to be necessary for the adaptation209

algorithms we study (Ben-David et al., 2010b).210

3 Methods211

Data In Table 1, we describe the discourse212

datasets we use. For information on the distinc-213

tions between these frameworks, see Appendix A.214

Data splitting For each individual dataset, we215

randomly split the dataset in half based on 3 differ-216

ent seeds. For example, PDTB 2.0 (10K examples)217

Dataset Genre Label
schema

Intra-
sent

RST (Carlson et al., 2003) News RST Yes
PDTB 2.0 (Prasad et al.,
2008)

News PDTB No

PDTB 3.0 (Webber et al.,
2019)

News PDTB Yes

BioDRB (Ramesh and Yu,
2010)

Bio PDTB No

TED-MDB (Zeyrek et al.,
2020)

TED
talks

PDTB Yes

GUM (Zeldes, 2017) Multiple RST Yes

Table 1: Characteristics of each discourse dataset used
in our study. The "multiple" domains in the GUM
corpus are as follows: Academic, Biography, Fiction,
Interview, News, Reddit, Travel, and How-to guides.
For the datasets with the PDTB label schema, we use
only the top-level sense labels (Expansion, Contingency,
Comparison, and Temporal). We use the top-level RST
classes for the datasets with the RST label schema, and
map the GUM corpus classes to the RST classes using
Braud et al. (2017).

is randomly split into to disjoint sets of about 5K 218

examples. This allows us to test variability in the 219

transfer from source to target datasets as well as 220

test transfer in case of within-distribution shifts. 221

Features To encode argument pairs, we concate- 222

nate and tokenize them using the BERT (Devlin 223

et al., 2018) tokenizer. We then feed these tokens 224

through the pretrained base BERT model and ex- 225

periment with two different ways of capturing the 226

model output: using the pooled output, e.g. the out- 227

put of the [CLS] token, and averaging the hidden 228

states. We will refer to these encodings as P-BERT 229

and A-BERT respectively. We also experiment 230

with encoding our argument pairs using Sentence- 231

BERT (Reimers and Gurevych, 2019) which we 232

will refer to as S-BERT. 233

Experiments Each data point in all of our re- 234

sults (e.g., when computing correlation or doing 235

regression analysis) corresponds to a particular ex- 236

periment done on a source (train) dataset S and 237

target (test) dataset T using a classifier h. The clas- 238

sifier h is trained on the source S and evaluated on 239

target T . This is meant to mimic a common domain 240

adaptation scenario in which the NLP practitioner 241

would like to transfer a pre-trained discourse classi- 242

fication model to a new unlabeled dataset (i.e., this 243

is discussed again in Section 4). For each exper- 244

iment, h is trained using a standard optimization 245

procedure to have low error on S. We discuss this 246

procedure and its competitiveness with respect to 247
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the state-of-the-art in Section 5. To account for248

variability introduced by this procedure, we test 3249

random seeds (i.e., producing 3 different models).250

The pair S and T are taken from the set of data251

splits outlined previously using each of the differ-252

ent BERT representations. We restrict the pair to253

have a common set of discourse labels. For exam-254

ple, we only transfer from S using the PDTB label255

schema to T using the same schema. We discuss256

specific (S, T ) pairs in detail in Appendix B. Ac-257

counting for each pair and each random seed for258

model training, the number of (S, T, h) triples we259

study totals more than 2400.260

4 Quantifying Meaningful Domain Shift261

Identifying and quantifying domain shift is a classi-262

cal problem. Perhaps, the most widely used mech-263

anism for this task is the two-sample test; i.e., a264

test designed to indicate difference of distribution265

between two samples. We begin this section by266

discussing a few of the statistics used in these tests.267

We observe a common problem in using these statis-268

tics to predict adaptation performance, and follow-269

ing this, discuss the aforementioned h-discrepancy.270

4.1 Common Two-Sample Test Statistics271

We now informally discuss some common statis-272

tics used in two-sample tests. These statistics can273

be easily adapted to infer adaptation performance274

under the assumption that changes in distribution275

perfectly correlate with changes in error. As men-276

tioned earlier, we do not agree with this hypothesis.277

Still, these types of statistics serve as a good point278

of comparison. In our experiments, we compute279

each of these statistics using the PyTorch library280

torch_two_sample (Cruceru et al., 2020).281

• FRS: (Friedman and Rafsky, 1979) counts282

edges from S to T in a graph representation.283

• Energy: (Székely and Rizzo, 2013) compares284

dissimilarity of points within/across S and T .285

• MMD: (Gretton et al., 2012) compares simi-286

larity of points within/across S and T .287

• BBSD: (Lipton et al., 2018) applied MMD to288

softmax output (i.e., scores) of classifier h.289

For more computational details, see Appendix D.290

The important thing is to understand the shortcom-291

ing of these approaches which we discuss next.292

A Common Problem The majority of these293

statistics share the common trait that they were294

originally designed to test differences in feature295

distribution – not differences in hypothesis error. 296

As such, while we do expect them to be sensitive 297

to changes in error – in so far as changes in feature 298

distribution relate to changes in error – we have no 299

theoretical reason to expect this should be the case. 300

As we saw in Figure 1, these two changes can be 301

very different: large changes to the distribution of 302

features may not hurt performance in every case 303

and imperceptible changes to the distribution of 304

features can have large impact when the labeling 305

function changes. In fact, most of these statistics 306

do not even incorporate information about the clas- 307

sifier we use for inference. While BBSD does, we 308

are not aware of any theoretical arguments linking 309

it to adaptation performance in the same way as the 310

h-discrepancy (discussed next). 311

4.2 Identifying the Change that Matters 312

Contrary to those statistics described above, the 313

statistic we give in this section is directly related 314

to adaptation performance by theoretical means. 315

Before beginning our description of this metric, we 316

need to formalize our mathematical setup and a 317

particular notion of adaptation performance. 318

Mathematical Setup We measure adaptation per- 319

formance through the error-gap which is defined: 320

321
∆h(S,T) = |RS(h)−RT(h)| (1) 322

where S is a sample and T is a distribution – both 323

over a space X ×Y . In this paper, X is usually the 324

space of real-valued vectors (i.e., BERT represen- 325

tations for argument pairs) and Y corresponds to 326

a set of possible discourse labels. h is a classifier 327

h : X → Y and the risk RD(h) is defined for distri- 328

bution T as RT(h) = Pr(h(X̃) ̸= Ỹ ), (X̃, Ỹ ) ∼ 329

T. For sample S = (Xi, Yi)
n
i=1, we instead write 330

RS(h) = n−1
∑

i 1[h(Xi) ̸= Yi] where 1[·] is the 331

indicator function. To compute each statistic which 332

we would like to use to infer the error-gap, we as- 333

sume access to the mentioned sample S drawn i.i.d 334

from some distribution S. We also assume access 335

to a new unlabeled sample TX = (X̃i)
m
i=1 drawn 336

i.i.d from the X -marginal TX of the distribution 337

T. In general, we do not know whether T ̸= S or 338

T = S, but may have reason to suspect T ̸= S. 339

Roadmap In the next part, we give the statistic 340

we would like to use to predict adaptation perfor- 341

mance. We then quantify its bias as an estimator for 342

the error-gap with a theoretical result. We also pro- 343

pose a technique to study the relationship between 344
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this statistic and the error-gap empirically through345

a regression analysis. Finally, we show how this346

technique can be used to study the impact certain347

attributes of a model or dataset have on error-gap.348

Source-Guided Discrepancy The source-guided349

discrepancy was proposed by Kuroki et al. (2019)350

with a similar conceptualization given indepen-351

dently by Zhang et al. (2019). These statistics352

improve upon a long history of domain adaptation353

statistics (Kifer et al., 2004; Blitzer et al., 2007;354

Ben-David et al., 2007, 2010a), specifically, by in-355

corporating information on the source-labels. We356

consider a generalization of the source-guided dis-357

crepancy which we call the h-discrepancy, defined358

for any classifier h. For samples S and TX , a binary359

label space Y , a space of classifiers H over X ×Y ,360

and any1 fixed classifier h ∈ H, it is defined as:361

D = maxg∈H|RU (g)−RV (g)| where

U = ((Xi, h(Xi))
n
i=1, V = ((X̃i, h(X̃i))

m
i=1,

(2)362

and recall, SX = (Xi)i and TX = (X̃i)i. In the363

binary case, Kuroki et al. (2019) show that this may364

be approximated by learning a classifier (i.e., g)365

which agrees with h on the source sample SX and366

disagrees with h on the target sample TX . Their367

procedure extends naturally to the multi-class case368

as well, but we must disambiguate between the369

possible ways in which g can disagree with h. In370

our experiments, we do so by training g to pick the371

next most likely label according to the scores of h.372

Theoretical Motivation Here, we provide our373

primary motivation for the h-discrepancy as an es-374

timator of error-gap. Our result makes use of the375

work of Crammer et al. (2007), Ben-David et al.376

(2010a), and Kuroki et al. (2019). It distinguishes377

itself from these finite-sample bounds in that it ex-378

plicitly concerns itself with the bias of D as an es-379

timator of error-gap. Proof is given in Appendix E.380

Theorem 1. Let Y be a binary space and let H381

be a subset of classifiers in YX . Then, for any382

realization of S, for all h ∈ H,383

−ET [λ] ≤ ET [D]−∆h(S,T) ≤ ET [D] (3)384

where λ = minh′∈HRS(h
′) + RT (h

′) is called385

the ideal-joint error.386

Notice, when E[λ] is small and E[D] is also387

small we know the bias must be small because it388

1The source-guided discrepancy originally proposed by
Kuroki et al. (2019) considers only one particular h.

is “sandwiched” between these two. In this situa- 389

tion, the practitioner can very confidently transfer 390

h from S to T . In practice we cannot compute 391

λ since it requires labels from T , but we often 392

do expect E[λ] to have small magnitude. As first 393

observed by Ben-David et al. (2010a) (i.e., con- 394

cerning a similar term), λ will be small whenever 395

there is any classifier in H which does well on S 396

and T simultaneously. This is not an overly strong 397

requirement as neural-networks, for example, have 398

been shown to perfectly fit even random labeling 399

(Zhang et al., 2016). Thus, we are primarily con- 400

cerned with the positive bias of D. When E[D] 401

is larger, the positive bias of D can also be larger. 402

Intuitively, D might have more “false positives” 403

where it reports a high value but the error-gap is 404

actually comparatively small. In this sense, it is a 405

conservative statistic. It plays things on the “safe 406

side.” So, while D will possibly have some bias, 407

it is at least described by the above bounds. As 408

we are aware, the two-sample statistics discussed 409

previously do not have such a description. 410

Regression Analysis of Errors of D From The- 411

orem 1, we do not expect the random estimation 412

error D − ∆h(S,T) to be zero. So, in our ex- 413

perimentation, we propose to study this quantity 414

through a regression analysis. Namely, suppose 415

X ∈ RN×p is some fixed, non-singular design 416

matrix whose rows each represent one of N ex- 417

periments and whose columns represent one of p 418

features for each experiment. An experiment cor- 419

responds to an (S, T, h) triple as disucssed in Sec- 420

tion 3. The features are dependent on properties of 421

the datasets and models used in each experiment 422

as well as realizations of h-discrepancy, ideal-joint 423

error, and training error. Then, we assume 424

Y = Xβ + ϵ (4) 425

where the randomness in the outcome Y comes 426

from the error-terms ϵi
i.i.d.∼ N(0, σ2), σ > 0. The 427

response Y = (Di−∆h(S,T)i)Ni=1 are the realiza- 428

tions of the error across the N experiments.2 We 429

give details of the design matrix X in Appendix F; 430

it is selected manually using domain knowledge 431

and to best meet the model assumptions model. 432

Model diagnostics are also provided in Appendix F. 433

Regression analysis is particularly useful be- 434

cause standard techniques allow us to understand 435

and isolate the impact of individual columns (i.e., 436

features) in X on the estimation errors of D. In 437

2We do not have access to T, so we use sample T instead.
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particular, we can use this model to determine the438

expected change in estimation error as a function of439

a particular feature, while controlling (i.e., holding440

constant) all other features in X:441

E[Yi | Xi = x]−E[Yi | Xi = x′] (5)442

where x is any setting of the features and x′ is iden-443

tical to x except every component involving the444

feature of interest is modified (e.g., increased) sys-445

tematically. For a specific example using Eq. (5),446

consider inspecting the change in estimation error447

as a function of increase in h-discrepancy (control-448

ling for all other features). In this case, Eq. (5)449

evaluates to a polynomial3 in the coefficients β450

and components of x′, so we can estimate this re-451

sult in an unbiased manner using the OLS estimate452

β̂ = (XTX)−1XTY. To empirically validate our453

theoretical analysis, we might check if this poly-454

nomial is an increasing, positive function; i.e., be-455

cause our theory predicts increases in the expected456

h-discrepancy allow for increases in bias.457

Regression Analysis of Error-Gap Given X458

and β, rearranging Eq. (4) lets us also write459

∆h(S,T)i = Di −Xiβ + ϵi (6)460

where Xi is the ith row of X; i.e., the features of the461

ith experiment. Similar to before, this type of anal-462

ysis lets us draw interesting insights. In particular,463

we can isolate the impact of features in X on the464

error-gap. Since our design matrix X controls for465

training error, the error-gap can be interpreted to act466

as a measure of performance in domain adaptation467

(DA). Those features which are positively associ-468

ated with error-gap can be said to be worse for DA.469

Likewise, those with negative association are “bet-470

ter” for DA. As before, we isolate the impact of471

a feature by checking the change in error-gap as472

a function of change in this feature (i.e., similar473

to Eq. 5). In Appendix G Example 2, we use this474

technique to compare the impact of different BERT475

representations on error-gap, while also controlling476

for the other features in X.477

5 Results478

5.1 Analysis of Transfer Error479

Comparison to Other Work Our experimental480

setup produces results comparable to current dis-481

course models. In Appendix C, Figure 3 shows the482

distribution of the error rates when transferring on483

3For details, please see Appendix G, Example 1.

within- and out-of-distribution datasets. To validate 484

whether our setup is comparable to other discourse 485

parsing models, we compare error rates to cur- 486

rent implicit sense classifiers; e.g., Kishimoto et al. 487

(2020) who achieve an error rate of ≈ 0.38 under a 488

comparable setup. Our PDTB within-distribution 489

results often improve upon this. 490

Error Analysis Across Genres Fiction and How- 491

To Guides are the most difficult to transfer to, while 492

Academic Journals and Biographies are the easiest. 493

Figure 4 in Appendix C shows the error rates for 494

multi-source adaptation on the GUM corpus across 495

S-BERT, P-BERT, and A-BERT. Although the er- 496

ror rates differ across these three representations, 497

the relative order of the GUM corpus domains with 498

respect to transfer error is fairly consistent across 499

all of them. For all three, the highest mean error 500

rate occurred in the How-to Guide and Fiction do- 501

mains, and the lowest mean error rate occurred in 502

the Academic and Biography domains. 503

5.2 Analysis of Correlations 504

In Table 2, we show linear and rank correlation 505

of each statistic with the error-gap. This tests the 506

ability of each statistic to discern scenarios where 507

domain adaptation performance may be either good 508

or bad. In practice, a statistic with good rank cor- 509

relation can be used in model-selection or (source) 510

dataset selection. A statistic with good linear corre- 511

lation may also be used and will be more easy to 512

interpret since we expect changes in the statistic to 513

be proportional to changes in the error-gap. 514

Comparison of Statistics h-discrepancy is con- 515

sistently, most strongly correlated with error-gap. 516

The overarching trend is that the h-discrepancy is 517

far better than every other statistic with regards to 518

both types of correlation. In fact, the linear correla- 519

tions are not much worse than the rank correlations 520

(in some cases they are even better). This validates 521

our opening hypothesis that domain-shift does not 522

always correlate with domain adaptation perfor- 523

mance (i.e., error-gap). It is important to also con- 524

sider the classifier we use. Still, BBSD – another 525

statistic that relies on the classifier – is also some- 526

what ineffective compared to the h-discrepancy. 527

Importantly, despite depending on the classifier, 528

BBSD was still designed with identification of 529

feature-distribution shift in mind. In some sense, 530

this observation validates our theoretical motiva- 531

tions for the h-discrepancy (i.e., Theorem 1) which 532

directly relates it to error-gap. Our results indicate 533
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Spearman (Rank) Correlation Pearson (Linear) Correlation
Split FRS Energy MMD BBSD h-disc FRS Energy MMD BBSD h-disc
All 0.5394 0.6059 0.5051 0.4054 0.8299 0.4986 0.4396 0.3413 0.4004 0.7628

PDTB 0.5451 0.6359 0.5472 0.4746 0.8265 0.5295 0.4704 0.3709 0.4274 0.7642
RST 0.2166 0.3059 -0.0011 0.2087 0.7625 0.2853 0.1660 -0.1605 0.1677 0.7599

News 0.5262 0.6356 0.5507 0.5759 0.8517 0.7079 0.6302 0.5558 0.5386 0.8890
Other 0.3760 0.4517 0.2767 0.1737 0.8386 0.3420 0.2791 0.1760 0.2051 0.7072

WD 0.0884 0.5735 -0.0324 0.2368 0.7890 0.1075 0.5831 -0.0515 0.4853 0.9519
OOD 0.4597 0.5249 0.3917 0.2813 0.7666 0.4342 0.3909 0.2761 0.3745 0.6976

Table 2: Correlations with error-gap for each statistic. Data splits indicate the subset of data used. h-discrepancy
consistently yields the largest correlation with error-gap; i.e., difference in Pearson correlations are all significant at
level α = 0.001 using test of Steiger (1980) implemented by Diedenhofen and Musch (2015).

Figure 2: (Left, 1-4) Expected change in error-gap when changing properties of the dataset or model. Shown as a
function of discrepancy and controls for all other features of the experiment. Reference category is indicated in title.
(Right, 5-6) Expected change in estimation error of h-discrepancy shown as a function of λ (5th) and discrepancy
(6th). Left assumes use of A-BERT and FCN on a GUM non-news target, but trends are consistent in other cases.

that, at least for the task of discourse parsing, h-534

discrepancy is the most effective statistic to use535

with regards to predicting error-gap.536

Additional Trends Experiments using RST label537

schemas and non-news targets show very low cor-538

relation between distributional shift and error-gap.539

If we look at particular experiment subsets, we also540

see some interesting trends. First, most statistics541

are better correlated with error-gap datasets that542

use the PDTB label schema than those that use543

the RST label schema. The difference is less pro-544

nounced for the h-discrepancy than for the other545

statistics, suggesting that it is especially important546

to use statistics tied directly to the error-gap when547

working with datasets that use the RST schema.548

The same is true when the test dataset is comprised549

of news articles instead of other types of text.550

The h-discrepancy has highest linear correlation551

on similar distributions. We observe much stronger552

linear correlation between the h-discrepancy and553

error-gap on within-distribution adaptation scenar-554

ios (WD) as compared to out-of-distribution adap-555

tation scenarios (OOD). We believe this is because556

the h-discrepancy is typically small when S and T557

follow a similar distribution. As Theorem 1 notes,558

the bias of the h-discrepancy as an estimator for559

error-gap can be near zero if both E[D] and E[λ]560

are small; i.e., we expect the linear correlation of a 561

nearly unbiased estimator to be fairly high. 562

5.3 Regression Analysis of Estimation Error 563

Figure 2 shows expected change in estimation error 564

of h-discrepancy (used as an estimator for error- 565

gap). Trend lines indicate expected change as a 566

function of the ideal joint error λ and the discrep- 567

ancy D compared to the case where each is 0.4 568

Trend lines are computed using a similar technique 569

for regression analysis as described in Appendix G 570

Example 1. The key takeaway is that these em- 571

pirical results are consistent with our theoretical 572

discussion surrounding Theorem 1. As λ increases, 573

the estimation error decreases. Similarly, Theo- 574

rem 1 shows us that we incur the possibility of 575

negative bias when λ is large. As D increases, the 576

estimation error does the same. Theorem 1 agrees 577

here too, predicting the possibility of positive bias 578

proportional to the discrepancy D. 579

5.4 Regression Analysis of Error-Gap 580

Figure 2 also shows expected change in error-gap 581

when modifying categorical features of the exper- 582

iment; e.g., use of S-BERT vs. A-BERT. Trend 583

lines indicate expected change as a function of 584

4Note, if both are 0 in expectation, D is unbiased.
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h-discrepancy and are computed using a similar585

technique for regression analysis as described in586

Appendix G Example 2. Since we control for train-587

ing set error, positive changes in error-gap indicate588

a setting is better for domain adaptation, while neg-589

ative indicates the opposite.590

BERT Features S-BERT is better for similar591

train and test sets, while A-BERT is better for more592

divergent sets. As a function of discrepancy, S-593

BERT is better for DA when the discrepancy is594

small. As the difference between the train and test595

set increases, the reference category (i.e., A-BERT)596

is better for DA. Comparing P-BERT to A-BERT597

we do not see large differences; marginally, A-598

BERT is better as the domain divergence increases.599

These results are consistent with typical rules of600

thumb on model complexity. A more complex fea-601

ture representation (i.e., from S-BERT or P-BERT)602

is beneficial when the training and test distributions603

align, but allows for the possibilty of overfitting604

when discrepancy increases.605

Classifier Linear classifiers perform marginally606

worse than neural-networks. In general, the FCN607

appears to be slightly better for domain adaptation.608

Possibly, this is due to increased modelling capac-609

ity. This benefit wanes as the discrepancy between610

the training/test sample increases. As before, this611

may be explained by overfitting, as overfitting and612

class imbalance are known problems in discourse613

parsing (Atwell et al., 2021).614

News Test Set It is slightly harder to transfer to615

news datasets. We consider a “news” corpus to be616

any of PDTB, RST, or the news domain of GUM.617

When the target (test) dataset consists of news texts,618

we see adaptation performance consistent with non-619

news targets for small discrepancy. As the discrep-620

ancy between training and test set grows, the non-621

news targets are actually better suited for domain622

adaptation. That is, it is slightly easier to transfer623

to a non-news target. Possibly, this is related to the624

length and complexity of news texts.625

Dataset A more variable label schema results in626

a more difficult task, even when adding variability627

during training. In general, we see that the GUM628

dataset presents a more challenging adaptation task629

than the other datasets. This is sensible due to630

the larger selection of domains present in GUM.631

Assuming this larger selection induces increased632

variability in the annotations for each domain, we633

should expect larger error-gap when doing adap- 634

tation. Based on our results, increased variability 635

at train-time does not seem to counteract this is- 636

sue, because adaptation experiments in the GUM 637

corpus are all multi-source (i.e., see Appendix B 638

for more details). For PDTB, as the discrepancy 639

increases, performance is more similar to GUM. 640

On the other hand, RST presents the easiest adap- 641

tation task. This is expected as all test sets in the 642

RST splits should follow the same distribution as 643

the training set because both sets are drawn from 644

the same news corpus (see Appendix B). The con- 645

tinued improvement as discrepancy decreases does 646

not make as much sense. Likely, this is due to a 647

lack of experiments with large discrepancy in RST, 648

since all RST experiments are within-distribution. 649

6 Conclusion 650

In the experiments above, we find several interest- 651

ing results relevant to the field of discourse analy- 652

sis. For one, analysis of the correlations indicates 653

that, for datasets with the RST labeling schema, 654

the statistics not tied directly to error-gap are very 655

weakly correlated with error-gap. This also holds 656

for non-news targets, and indicates that the h- 657

discrepancy is especially useful in these cases. 658

Additionally, our regression analysis provides 659

the following insights, all of which may be useful 660

to future discourse researchers: (1) more variability 661

in the labeling schema appears to make domain 662

adaptation more difficult, even if the training set 663

contains a similar level of variability; (2) S-BERT 664

is better than A-BERT when domains are similar, 665

but A-BERT outperforms S-BERT when the do- 666

mains further diverge; (3) non-news texts are easier 667

to adapt to than news texts. 668

This is the first computational and empirical 669

study that looks at distribution shifts across dif- 670

ferent discourse datasets and evaluates the perfor- 671

mance of various models under these shifts. This 672

is also the first work that examines the efficacy of 673

different two-sample tests for predicting the error- 674

gap when compared to a metric that is theoretically 675

tied to error gap. Future work can extend these 676

results by using the h-discrepancy metric to pre- 677

dict the error-gap for other NLP tasks or for other 678

components needed for discourse parsing, such as 679

constructing the RST dataset. We hope practition- 680

ers will find both our insights and our code useful 681

for model/dataset selection. 682
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A Dataset Descriptions934

A.1 Frameworks935

The Penn Discourse Treebank (Miltsakaki et al.,936

2004; Prasad et al., 2008; Webber et al., 2019) is937

a dataset that consists of Wall Street Journal arti-938

cles labeled with shallow discourse relations, or939

relations that occur only between two argument940

spans with no additional context needed. It con-941

sists of several different types of coherence rela-942

tions: explicit, implicit, AltLex, EntRel, and NoRel.943

Explicit discourse relations are ones in which a con-944

nective between the arguments provides some indi-945

cation of the correct discourse sense label. Implicit946

discourse relations, the main ones that we will be947

focusing on in this paper due to the difficulty of948

classifying them, are ones in which a connective949

can be inserted that indicates the correct sense.950

The RST Discourse Treebank (Carlson et al.,951

2003) is a corpus containing Wall Street Journal952

articles annotated in the style of Rhetorical Struc-953

ture Theory, where a document is split into elemen-954

tary discourse units (EDUs) and relations made955

up of these EDUs form a tree structure. The RST956

Discourse Treebank does not differentiate between957

explicit and non-explicit discourse relations, nor958

does it label discourse connectives.959

B Adaptation Scenarios960

For experiments involving PDTB label schema, we961

consider single-source domain adaptation. Specifi-962

cally, single-source adaptation involves simply pair-963

ing one data split S with another T ; for instance,964

the first half of the TED-MDB and the second half965

of the BioDRB. Or, the first half of BioDRB and the966

second half of BioDRB. The former allows us to967

investigate scenarios with significant domain-shift968

while the latter allows us to investigate scenarios969

where there is likely less domain-shift. The former970

also allows us to investigate variability arising from971

a particular sample (i.e., data split).972

For experiments involving RST label schema,973

we used both single-source and multi-source do-974

main adaptation setups. We use the multi-source975

setup for domains in the GUM corpus. Here, T976

is derived from a single domain and S from all of977

the other domains contained in the corpus (i.e., S978

would contain 7 of the GUM domains and T would979

contain the remaining one). Although we continue980

to split the domains in half, we only use one of981

the halves for our experiments in order to prevent982

samples from the target distribution from appearing 983

in the source. We use the single-source setup for 984

RST itself. Here, S is one split of RST while T is 985

another. So, the multi-source setup within the RST 986

style allow us to test cases with larger domain-shift, 987

while the single-source setup within the RST style 988

allow us to test much smaller domain-shift. 989

C Model Training and Transfer Results 990

Optimization Parameters We use SGD on an 991

NLL loss with momentum set to 0.9 to train all 992

of our models. We use a batch size of 250. We 993

start training with a learning of 1× 10−2 for 100 994

epochs and then train for another 50 epochs using 995

a learning rate of 1× 10−3. If a model achieves a 996

training error lower than 5×10−4, we stop training. 997
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Figure 3: Transfer error within and out of distribution for each dataset
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Figure 4: Transfer error for each topic within the GUM corpus
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D Two-Sample Statistics998

Here, we describe in detail the common two-999

sample statistics listed in Section 4 and studied1000

in Section 51001

Friedman-Rafsky Test Statistic The Friedman-1002

Rafsky Test Statistic R (Friedman and Raf-1003

sky, 1979) is computed by forming a minimum-1004

spanning tree (MST) using the pooled sample1005

P = (Xi | (Xi, Yi) ∈ S) +c (X̃i | X̃i ∈ TX)1006

of marginal features. Here, +c is the concatenation1007

operation. To form the tree, we form a weighted1008

graph GP by treating each point Zi ∈ P as ver-1009

tex and assigning an edge between each pair of1010

vertices whose weight is the distance between the1011

data-points. When X = Rd for some d, this is1012

usually the Euclidean distance or L2 norm. The1013

MST is then precisely the MST of GP . The statis-1014

tic R is computed as the number of edges whose1015

endpoints originally belonged to the same sample.1016

For example, R increases by 1 for each edge whose1017

endpoints both originally belong to TX . Likewise,1018

R increases by 1 for each edge whose endpoints1019

are both the features of points in S. When end-1020

points originally belonged to distinct samples, R1021

remains unmodified. We report modified statistic1022

below which is normalized to account for sample1023

size Rnormed = R/(n + m − 2). Since the size1024

of the MST is n + m − 1 and there is always at1025

least one edge between S and TX , this statistic has1026

a maximum value of 1.1027

Energy Statistic Given samples S and TX as1028

before, the energy statistic may be computed as1029

below1030

E =
2

nm

∑
i,j

||Xi − X̃j || −
1

n2

∑
i,j

||Xi −Xj ||

− 1

m2

∑
i,j

||X̃i − X̃j ||
(7)1031

where || · || gives the Euclidean norm (distance).1032

Originally proposed by Székely and Rizzo (2013),1033

the statistic is motivated by Newton’s potential en-1034

ergy between heavenly bodies. Intuitively, it is1035

fairly easy to understand as a comparison of dis-1036

similarity within samples and across samples. If1037

the dissimilarity across samples (i.e., the first term)1038

is much higher than the dissimilarity within sam-1039

ples, then the two samples are likely drawn from1040

different distributions.1041

Maximum Mean Discrepancy (MMD) Given1042

samples S and TX as before, the MMD statistic1043

(Gretton et al., 2012) may be computed as below 1044

M =

∑
i̸=j K(Xi, Xj)

n(n− 1)
+

∑
i ̸=j K(X̃i, X̃j)

m(m− 1)

− 2

nm

∑
i,j

K(Xi, X̃j)

(8) 1045

where K : X × X → R≥0 is the kernel for some 1046

RKHS. In our experiments, we use an Gaussian 1047

RBF kernel and select σ to be an approximate5 1048

median distance of the pooled sample as done by 1049

Rabanser et al. (2019). Intuitively, K behaves as 1050

a similarity metric between points in X and, in 1051

this sense, the MMD statistic compares samples in 1052

much the same way that the energy statistic does. 1053

Rather than dissimilarity, the MMD statistic looks 1054

at similarity of points within and across samples, 1055

modifying the order of the summands appropriately 1056

to retain direct proportionality with the difference 1057

in samples. 1058

5Specifically, we use a smaller random sample of 100 data
points to compute this median.
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E Proof of Theorem 11059

Proof. We use the triangle inequality of classifica-1060

tion error (Crammer et al., 2007; Ben-David et al.,1061

2007). For any realization of the sample S and1062

any distribution T over X × Y , for any classifiers1063

h, h′ ∈ H, we have61064

RT(h)−RS(h) ≤ RS(h
′) +RT(h

′)

+ |RS(h, h
′)−RT(h, h

′)|
(9)1065

where for T over X × Y we have1066

RT(h, h
′) = Pr

X̃∼TX

(h(X̃) ̸= h′(X̃)) (10)1067

and for S = (Xi, Yi)
n
i=1 we have1068

RS(h, h
′) = n−1

n∑
i=1

1[h(Xi) ̸= h′(Xi)]. (11)1069

Interchanging roles of T and S in Eq. (9) and1070

using the definition of the absolute value, we see1071

∆h(S,T) ≤RS(h
′) +RT(h

′)

+ |RS(h, h
′)−RT(h, h

′)|.
(12)1072

For brevity, for any distribution D, set1073

ξ(D) = |RS(h, h
′)−RD(h, h

′)|. (13)1074

Then, using the common “addition of zero” trick,1075

we arrive at1076

∆h(S,T) ≤ RS(h
′) +RT(h

′)

−RT (h
′) +RT (h

′) + ξ(T)
− ξ(T ) + ξ(T )

(14)1077

Then, by monotonicity and linearity of the expecta-1078

tion we have1079

∆h(S,T) ≤ ET

[
RS(h

′) +RT (h
′)
]

+ET

[
ξ(T )

]
+RT(h

′)−ET

[
RT (h

′)
]

+ ξ(T)−ET

[
ξ(T )

]
.

(15)1080

6A full derivation of Eq. (9) may be found in the proof
of Theorem 2 of Ben-David et al. (2010a). In general, the
relationship holds for any pair of distributions (i.e., not just
a sample and a distribution). Our re-use of this result – for a
sample and a distribution – relies on the fact that the sample S,
itself, defines a unique empirical distribution over X × Y by
assigning equal probability to each point in S. The expectation
for this empirical distribution is precisely the sample average,
so the definition of RS coincides for both the sample and the
empirical distribution. So, Eq. (9) holds in our case as well.

Let us consider some of these terms individually. 1081

Using linearity of expectation and the correspon- 1082

dence between probability and the expectation of 1083

an indicator function, we have 1084

ET

[
RT (h

′)
]
= E

[
m−1

m∑
i=1

1[h(X̃i) ̸= Ỹi]

]

= m−1
m∑
i=1

E
[
1[h(X̃i) ̸= Ỹi]

]
= m−1

m∑
i=1

Pr
(X̃i,Ỹi)∼T

(
h(X̃i) ̸= Ỹi

)
= m−1

m∑
i=1

RT(h)

= RT(h).

(16)

1085

Additionally, we have 1086

ET

[
ξ(T )

]
= ET

[
|RS(h, h

′)−RT (h, h
′)|
]

≥ |RS(h, h
′)−E

[
RT (h, h

′)
]
|

= ξ(T).
(17)

1087

Here, the second line follows by Jensen’s Inqual- 1088

ity and linearity of the expectation. The last line 1089

follows using a similar derivation as in Eq. (16). 1090

Then, 1091

ξ(T)−ET [ξ(T )] ≤ 0 (18) 1092

and 1093

RT(h
′)−ET

[
RT (h

′)
]
= 0. (19) 1094

Using these two facts in conjunction with Eq. (15) 1095

yields 1096

∆h(S,T) ≤ ET

[
RS(h

′) +RT (h
′)
]

+ET

[
ξ(T )

]
.

(20) 1097

Using h as in Eq. (2) to define the statistic D, for 1098

any h′ ∈ H, we know ξ(T ) ≤ D (i.e., by defini- 1099

tion of max). So, monotonicity and linearity of 1100

expectation implies ET [ξ(T )] ≤ ET [D]. For an 1101

appropriate choice of h′, we then have 1102

∆h(S,T) ≤ ET

[
λ
]
+ET

[
D
]
. (21) 1103

Rearranging terms gives the lowerbound and the 1104

upperbound follows immediately from the fact that 1105

∆h(S,T) is non-negative. 1106

1107
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Figure 5: Quantile-Quantile plot. Red line shows ideal:
sample quantiles should be the same as the theoretical
quantiles of a normal distribution with same variance.

F Regression Diagnostics1108

Normal Errors Assumption Here, we give di-1109

agnostics for the regression model used to analyze1110

data in the main text. Primarily, we would like to1111

check the assumptions that our error terms (i.e.,1112

ϵ) are all identically and independently normally1113

distributed. The Jarque-Bera (JB) test uses a statis-1114

tic based on the skew and kurtosis of the observed1115

errors to study this hypothesis. Assuming the resid-1116

uals are i.i.d. normal, the probability of observing1117

a JB statistic as extreme as observed is ≈ 0.25. So,1118

we fail to reject the hypothesis that the residuals1119

are i.i.d normal at significance level α = 0.05. The1120

assumption that error terms are normal distributed1121

may also be visually checked using the qq-plot, his-1122

togram of errors, and the residual plots contained in1123

Figures 5, 6, and 7, respectively. We do not see par-1124

ticularly strong evidence that the residuals are not1125

i.i.d. normal. Albeit, some patterning in the resid-1126

ual plots and skew in the histogram of residuals1127

may be of concern.1128

Other Possible Assumptions In any case, even if1129

the normality assumption does not hold, our analy-1130

sis can still be interpreted using more loose assump-1131

tions. The most important assumption is that the1132

error terms all have mean 0. Empirically, we find1133

this to be the case with the average residual being1134

≈ 2.4 × 10−15. In fact, Figure 7 shows the line-1135

of-best fit through the residuals (which is typically1136

close to the zero line). As long as the assumption1137

that the error terms have common mean 0 is true,1138

the OLS estimates we use for the coefficients will1139

be unbiased. The only possible short-coming of the1140

Figure 6: Histogram of realized error terms. Horizontal
axis shows value of error term, while vertical axis shows
count.

OLS estimate is that it could have larger variance 1141

than some other estimate. In our analysis, we are 1142

most concerned with the unbiased property of our 1143

coefficient estimates, but a larger variance in our 1144

estimator decreases our confidence that this particu- 1145

lar experiment produces estimates close to the truth. 1146

Either way, under our relaxed assumption of only a 1147

common mean 0 in the errors, we can expect our 1148

analysis in the main text to reveal the truth across 1149

repeated experiments. 1150

G Regression Analysis Examples 1151

In this section, we give detailed examples (i.e., Ex- 1152

ampled 1 and 2) to clarify how we compute esti- 1153

mates in Figure 2. As noted, we use the unbiased 1154

OLS estimate β̂ = (XTX)−1XTY in place of β 1155

as is standard. 1156

Example 1. Let column j of X contain the real- 1157

izations of the h-discrepancy for each experiment 1158

and let column k contain the train error. Suppose 1159

column ℓ is the (element-wise) product of columns 1160

k and j, column q is the square of column j, and 1161

column r is the product of columns q and k. Then, 1162

controlling for all other features in X, the expected 1163

change in estimation error per δ > 0 increase in 1164

the h-discrepancy is 1165

E[Yi | Xi = x]−E[Yi | Xi = x′] = βjδ + βℓδ

+ βq(δ
2 + 2δxj) + βr(δ

2xk + 2δxjxk)
(22) 1166

where x′ is a fixed row-vector of features and x is 1167
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Dep. Variable: est. error R-squared: 0.944
Model: OLS Adj. R-squared: 0.944
Method: Least Squares F-statistic: 1949.

Prob (F-statistic): 0.00
Log-Likelihood: 3347.1

No. Observations: 2428 AIC: -6650.
Df Residuals: 2406 BIC: -6523.
Df Model: 21

coef std err t P> |t| [0.025 0.975]

Intercept -0.0206 0.034 -0.606 0.545 -0.087 0.046
hspace[T.lin] -0.0239 0.006 -3.817 0.000 -0.036 -0.012
group[T.pdtb] 0.0536 0.016 3.340 0.001 0.022 0.085
group[T.rst] 0.0600 0.018 3.256 0.001 0.024 0.096
bert[T.pooled] 0.0034 0.006 0.601 0.548 -0.008 0.015
bert[T.sentence] 0.0250 0.009 2.872 0.004 0.008 0.042
news[T.notnews] -0.0029 0.010 -0.289 0.773 -0.022 0.017
train_error 0.3262 0.080 4.054 0.000 0.168 0.484
lamb -0.0150 0.048 -0.312 0.755 -0.109 0.079
hdisc 0.1545 0.081 1.906 0.057 -0.004 0.313
bert[T.pooled]:hdisc -0.0313 0.009 -3.622 0.000 -0.048 -0.014
bert[T.sentence]:hdisc -0.1370 0.013 -10.600 0.000 -0.162 -0.112
hspace[T.lin]:hdisc 0.0194 0.009 2.159 0.031 0.002 0.037
group[T.pdtb]:hdisc -0.0210 0.021 -1.002 0.316 -0.062 0.020
group[T.rst]:hdisc 0.0671 0.028 2.410 0.016 0.013 0.122
news[T.notnews]:hdisc 0.0320 0.013 2.529 0.012 0.007 0.057
hdisc:train_error 1.9665 0.196 10.052 0.000 1.583 2.350
np.power(hdisc, 2) 0.4831 0.052 9.323 0.000 0.381 0.585
train_error:np.power(hdisc, 2) -1.6867 0.152 -11.074 0.000 -1.985 -1.388
lamb:train_error -0.5861 0.122 -4.803 0.000 -0.825 -0.347
np.power(lamb, 2) -0.1346 0.071 -1.892 0.059 -0.274 0.005
train_error:np.power(lamb, 2) 0.4043 0.100 4.029 0.000 0.208 0.601

Omnibus: 2.707 Durbin-Watson: 1.548
Prob(Omnibus): 0.258 Jarque-Bera (JB): 2.718
Skew: -0.046 Prob(JB): 0.257
Kurtosis: 3.136 Cond. No. 463.

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 3: Full description of the regression model including all features, estimated coefficients, and relevant tests
for diagnosis and inference. Tests involving standard errors (std err) are only valid if the model errors follow
the assumed distribution. We believe most variables are self-explanatory, but we do provide some assistance to
reader: lamb corresponds to λ, hdisc corresponds to the h-discrepancy, train_error corresponds to the error on the
source sample, np.power(⋄, 2) corresponds to the square of the feature ⋄, presence of : indicates a multiplication
of features (i.e., an interaction-term), and hspace corresponds to the type of classifier used (i.e., linear model or
fully-connected network).
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Figure 7: Residual plots. Vertical axes show realized error terms, while horizontal axes show value of some feature
that may or may not be in our design matrix. Significant patterns may indicate a missing term in our model. While
some patterning may exist, we choose not to include additional terms for reason of interpretability and to meet other
(quantifiable) model assumptions.

defined by1168

xp =



x′
p + δ if p = j,

x′
k(x

′
j + δ) if p = ℓ,

(x′
j + δ)2 if p = q,

x′
k(x

′
j + δ)2 if p = r,

x′
p else

. (23)1169

If this function of δ is positive, we know increasing1170

the h-discrepancy increases the bias as suggested1171

by our theory.1172

Example 2. Let column j of X be 1 if we use S-1173

BERT representations and 0 otherwise. Let column1174

k of X indicate use of P-BERT in the same way1175

and suppose the reference category7 for the BERT1176

representations is A-BERT. Let column ℓ of X con-1177

tain discrepancy Di for each experiment and let1178

column q be the element-wise product of columns1179

j and ℓ; i.e., interaction terms. Then, controlling1180

for all other features in X, the expected increase1181

in error-gap using S-BERT instead of A-BERT is1182

E[Di −Yi | Xi = x]−E[Di −Yi | Xi = x′]

= −(βj + βqDi)
(24)1183

7In regression, the reference is the single category from
any group of categories which is not explicitly included in X.
It serves as a point of comparison for the other categories. For
technical reasons, a point of comparison is typically needed to
analyze impact of categorical features (i.e., so X is full rank).

where x′ is a fixed row-vector of features such that 1184

x′
ℓ = Di and x′

j = x′
k = 0. The row-vector x is 1185

defined by xr = {1 if r = j, x′
ℓ if r = q, x′

r else}. 1186

When this function of Di is positive, we know using 1187

S-BERT is expected to increase the error-gap. 1188
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