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Abstract—TIn this paper, we address the problem of prescribed-
time formation tracking under collision avoidance for a first-
order multi-intelligent system with a directed spanning tree
communication topology. By introducing a time-varying function,
a new null-space-based of the prescribed-time behavioral control
algorithm is proposed for driving all followers to approach the
dynamic leader within a prescribed time and guaranteeing no
collision among followers. The algorithm can be pre-specified
with parameters designed for the user and is independent of
the initial conditions or controller parameters. In particular, the
velocities of the newly designed behaviors, as an important part
of the algorithm, complete the tasks within the prescribed time
in a distributed manner respectively. We design a new Lyapunov
candidate function and analyze the prescribed-time convergence
of the closed-loop system under behavioral conflicts. Finally, the
effectiveness of the algorithm is verified by simulation examples
with four agents.

Index Terms—Prescribed-time stability, collision avoidance,
directed communication, formation tracking control

I. INTRODUCTION

ULTI-AGENT Systems (MAS) have become an inte-

gral part of contemporary technological advancements,
impacting a myriad of fields such as robotics[1], automated
vehicles[2], aerospace[3] and more. MAS consist of multiple
interacting agents working collectively to achieve common
objectives, thereby demonstrating enhanced efficiency, flexi-
bility, and robustness compared to single-agent systems. The
coordinated effort of these agents facilitates complex task
execution, surpassing the capabilities of individual agents.
Formation control, as an important part of the functionality
of MAS, is a pivotal subset that ensures agents maintain a
desired formation while navigating dynamic environments[4].
Formation control is paramount in MAS as it enables a
group of agents to coordinate their movements, maintaining
specific geometric patterns or formations[5]. This coordination
is essential for applications like autonomous vehicle platoons,
satellite formations, and robotic swarms, where precise align-
ment and spacing between agents are crucial for achieving
overarching goals. However, the practical deployment of MAS
in real-environmental scenarios introduces the challenge of
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collision avoidance. As agents maneuver through environ-
ments with varying obstacles and other agents, the risk of
collisions becomes a significant concern. Ensuring the safety
and efficiency of MAS operations necessitates the integration
of robust collision avoidance mechanisms within formation
control strategies.

Various methodologies have been developed to address
the collision avoidance problem in formation control. Com-
mon approaches include the model predictive control (MPC)
method[6], artificial potential field (APF) method[7], null-
space-based (NSB) behavioral control method[8], and rein-
forcement learning (RL)[9]. Each of these approaches has its
own merits and limitations. The MPC method, for instance,
is known for its predictive capabilities and optimal control
performance but suffers from high computational demands,
making it less practical for real-time applications. The APF
method, while simpler and computationally efficient, lacks
predictive abilities for collision avoidance and obstacle cir-
cumvention. RL, on the other hand, relies heavily on extensive
model training and learning, which may not always be feasible
or reliable in dynamic environments.

Among these methods, NSB stands out for its predic-
tive capabilities and effective multi-task coordination, leading
to its widespread application in robots. This method miti-
gates the drawbacks of other approaches by projecting low-
priority behaviors into the null space of high-priority behav-
iors that achieve collision avoidance and formation control
simultaneously[10].

Research in MAS formation control has evolved to address
the stability requirements of these systems. Traditionally,
stability in MAS was focused on asymptotic stability[11],
where the system’s state converges to a desired equilib-
rium point over time. However, the increasing demand for
rapid and reliable convergence has shifted the focus towards
prescribed-time stability[12]. Unlike finite-time[13] and fixed-
time stability[14], where convergence time is influenced by
initial conditions or controller parameters, prescribed-time
stability allows for the convergence time to be arbitrarily
specified off-line, providing a more predictable and reliable
framework for formation tracking.

Despite the advancements in prescribed-time stability,
achieving this stability in the presence of collision and
obstacle avoidance remains a challenging problem. Current
research[15-19] has made significant strides in formation con-
trol and collision avoidance, yet there is a notable gap in stud-
ies addressing prescribed-time formation control integrated
with collision avoidance mechanisms. This gap highlights the



need for innovative approaches that ensure MAS can achieve
prescribed-time stability while effectively navigating dynamic
environments and avoiding collisions.

The central problem addressed in this paper is the de-
sign of some behavioral functions that enables agents to
achieve prescribed-time formation tracking under multi-task
combinations, including collision avoidance. This problem
is compounded by the inherent challenges of task conflicts,
maintaining system stability, and ensuring bounded control
inputs. To address these challenges, this paper proposes a novel
control strategy that bases on null-space-based behavioral
control and introduces switching mechanisms to achieve the
desired objectives. The contributions of this paper are threefold
as follow.

1) Two distinct behavior velocities using the time scale func-
tions, is designed to realize the completion of sub-task goals
within prescribed-time frames. This approach ensures that each
sub-task is accomplished in a timely manner, contributing to
the overall prescribed-time stability of the system.

2)We incorporate a gain switching mechanism into the
formation velocity design, guaranteeing system stability when
task conflicts. This mechanism allows the system to dynam-
ically adjust its behavior in response to changing conditions,
maintaining stability and performance.

3)Compared with [20-22], which are fixed-time frame
works, a prescribed-time control strategy based on behavior
projection of the null space is developed, facilitating formation
tracking control with inter-agents collision avoidance.

The rest of the paper is organized as follows. Section
IT provides preliminary concepts and system description. In
Section III, we first design two behavioral velocities capable
of completing the sub-tasks at the prescribed time separately
under the estimation of a set of observers, followed by
designing a control strategy based on the null-space projec-
tion of the behaviors to complete the composite task in the
prescribed time. Section IV provides simulation results in
two-dimensional space to demonstrate the effectiveness of the
proposed method. Finally, Section V concludes the paper.

Notation: I,, denote the n-dimension identity matrix. R”
and R™*™ are the sets of n x 1 real vectors and n x n real
matrix, respectively. ||-|| denotes the Euclidean norm. sign(-)
is the sign function of vector. For simplicity of presentation,
the symbol (¢) is omitted throughout this paper when there is
no confusion, e.g., p;(t) is simplified as p;.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Graph theory

We model the communication network of the N followers
by a directed graph G = {V,&}, where V = {1,...,N}
denotes the set of nodes representing the N followers, £ =
{(3,7)]i,5 € YV} € N x N stands for the set of edge. and
A = [a;j] € RV*N js the adjacency matrix representing
the connection strength between followers, where a;; > 0 if
(4,%) € € and a,; = 0 otherwise. Moreover, we assumed that
there are no self-loops, i.e., a;; = 0. G has a directed spanning
tree rooted at node k if there exists a node k such that all the

remaining nodes can access the signal of node £ via a directed
path. Define the in-degree matrix D := diag {d;,ds,...,d,}
and the Laplacian matrix £ = D — A as the degree ma-
trix and Laplacian matrix of graph G, respectively, where
d; = Z?:ﬂij for © € V . Besides, the auxiliary matrix
A’ = diag {a1(n+1); G2(N+1)s - - -» AN (N+1) } I8 introduced to
present the communication connection between the leader and
followers, where a;(ny11) > 0 if and only if the i-th follower

can access leader’s information directly.

Assumption 1. The directed graph G has a directed spanning
tree rooted at the leader.

B. Problem formulation

Consider the first-order MAS containing N follower and
one leader. The dynamic model of the follower ¢ is

Pi = u; +wi,i €V (D

where p; € R", u; € R™ and w; are the position states, control
input and disturbance of the follower ¢, respectively. n is the
states’ dimension and w; represents the uncertainty. We take
n = 2 in the following content. The leader, labeled as i =
N + 1, is described as follows:

DN+1 = UN+1, 2

where pyy1 € R?, vy41 € R™ and uy4; € R™ are the posi-
tion, velocity states, control input of the leader, respectively.

Assumption 2. The disturbance of followers w;,¥Vi € V and
the input of leader uny1 remains bounded with |w;|] <
01,Vi €V and ||lunt1| < o9, respectively.

To realize the prescribed-time formation, the following time-
varying scale function is constructed:

)"
m(t) = {(tHTt) t € [to,to +1T)

3)
1, t e [t0+lT,OO)

where h > 1, [ is a positive integer, to and T are initial time
an(d) pre-assigned constant, respectively. It can })e found that
n(t) h n(t) _

Zi(t) = Gorr—p for t € [to,to +17T), and Zi(t) = 0 when
t > to + IT. Meanwhile, ;" (¢t)(m > 0) is monotonically

decreasing on [to,to + IT") with lim,_,; 47— 1, " (t) = 0.

C. Lemma and definition

Lemma 1. [23] Under Assumption 1, there exists a ma-
trix P = diag{p1,...,pn} > 0 such that Q = PH +
HTP is positive define, where p,...,pn are determined by
[p1,.- ., pn]T = (HT) "1y, where H = L+ A'.

Consider the following system
m(t) = g(t>x(t))7xto = t(to), “4)

where z(t) € R™ is the status, and g : Ry, x R, = R,, is a
nonlinear function, x () is the initial status.

Definition 1. [24] For system (4), as for a nonempty closed
set S, if there exists a settling time function T'(z) : R™ — T*



satisfying x(t) € S,¥t > T(xg), where T* is a positive
constant that can be set arbitrarily and is not time-dependent,
then the nonempty closed set S of system (4) is called
prescribed-time stable.

Lemma 2. [25] For system (4), if there exists a Lyapunov
Sfunction V (x) satisfying
eV(z) < — (C+ km(t)> V(x),t € [to,to +1T)
m(t)
where n; is defined in (3), ¢ > 0 and k > 0 are constants.
Then, we can obtain the solution as

V(z) < nl*k(t)e*c(t’tO)V(wo), t € [to,to+1T)
V(z)=0,t € [to+ 1T, 0)

meaning that the origin of system (4) is globally prescribed-
time stable with the prescribed-time to + T.

III. MAIN RESULTS

In practice, the condition that all follower acquire the
leader state is demanding, and according to Assumption 1, the
follower needs to effectively observe the leader state within a
prescribed period of time. Therefore, the following distributed
observation strategy is designed:

- m .

pi = afe+ )G — ysign(Gp), (5)
. N+1 Ay A

where ¢ € V, (p = ijl a;;(p; — Pj). P; is observed states

of leader in agent i, py1 = pyy1. ¢ > 0, o > ;\maiw(P) and

v > o9 are user-selectable parameters. 7 (t) is defined in (3).

Lemma 3. [26] Under the observation of (5), and supposed
that Assumption 1 and 2 holds, the followers in MAS described
by (1) and (2) can estimate leader’s states accurately within
the prescribed time Ty, = 27T, i.e., limy>ty 127 Pi — PN+1 =
0,Vi e V.

In this paper, NSB methods are used so that agents can
realize formation tracking under collision avoidance. First, two
behavior velocities are designed to guarantee the prescribed-
time formation and prescribed-time collision-avoidance. Then,
the formation velocity is projected onto the obstacle avoidance
velocity to form a desired velocity to ensure a prescribed time
convergence under task conflict.

Before introduce collision avoidance behavior velocity, we
assume that the size of follower ¢ is represented by a circle
with center p; and radius 7;. We define the collision avoidance
behavior function as
RelPi—rill-zij ri; < Hpi _p;‘H <R
R, otherwise

fio:

where R < max||d; — J,||, r; = r; +r;, J; is the offset from
the follower ¢ to the leader, p; is the position of the nearest
follower.

The collision avoidance behavior velocity is designed as

Vio = J} (Cio + kzﬁ)f + kysign(fio) ©6)
2

where ¢;, > 0, kio > 1, ky > 01, fio = R — fio is the
collision avoidance behavior error for follower 7 and J,, =
JE (JioJE) ™t with

T

g Ofio _ {—R%m, ri; <llpi =Pl <R
L = ie

Op; 0, otherwise

R—|lp;—p; |l
where ©; = e llPi—p] -z —t
vi=¢ C Mpi=pill—r;0%
The formation behavior velocity is designed as

vy = T Wig1fig + i) + kusign(fir)
Tl [Wipafig + Pl + kosign(fip)

R—r

i

s ifJZ‘O = O,Vt > to
, otherwise

(7
where vi1 = (cif + kif22), tipa = (cig + kif 1), iy > 0,
kiy > 1. k. is given in (6). fif = p; + 0; — p;, and J); =
TL(Jig IT) ™" with

Ip;
Tif = o
' opi
With the null space projection between the formation track-

ing and collision avoidance behavior, the desired input for
follower ¢ is obtained by using (7) and (6) as

= I

wi = vio + (In — J1 Jio)vig (8)

With the desired input design, the following theorem is de-
rived.

Theorem 1. For systems (1), with the observer (5) and
the the prescribed-time control protocol (8), the prescribed-
time formation tracking with collision avoidance problem is
completed within the prescribed time T = 3T.

Proof. Define the following Lyapunov function candidate as:
1 1 oz
Vi = Sviofio + 57is fip fis ©)

where v;¢ > 0 and «;, > 0. Then, we prove in two case.
Case 1. If ||p; — p}|| > R,Vt > to,i € Valways holds.
We have JL J;; = 0,Vt > to,i € V. Then, the derivative of
V; is

Vi = = Yio fioJiowi + %ffzrj[ﬁz — Jip(wi + w;)]
72 = .z
= —yirlcir + kif%)ﬁl}fif — Yig [ [kwsign(fig) — wil
N2\ 7T 7
< —igleir + kif%)fgffif

< — 2cis + ki 2V, (10)
2
where JiTO and k,, > o1 applied. With Lemma 2, we have ||p; —
PN+1 — ;]| = 0,Vt > ¢t + 2T under R > max ||§; — J;|| and
Di = pN+1, VE > to + T for all followers, and collision don’t
happen since ||p;—p}|| > R,Vt > to,i € V. Then, we consider
the boundedness of input w;, u; = v;o + (I, — JZ-TOJiO)’Uif =
—kif —c. o (t—to) F s

vif = (cig+hkipgmna)n, Fecirlt t) f; ¢ (to) +pi is bounded
with the boundedness of (c;f + kif %7’]2)77; Fif and Ds.



Fig. 1: Communication graph topology.

Case 2. the tasks are conflicting, i.e., there exist a moment
t* < to+ 2T satisfying ||p;(t*) — p; (¢t*)]] < R, we divide the
proof into two steps.

Step 1. Vt € [to, to +2T)

We refined V; as V; = %%’o ffo since the collision avoidance
is more urgent than formation tracking, and (10) becomes

Vi = — Yio fiodio(u; + w;)
= — Yiofiodio(Vio + w;)
) 7

< Cio + klO iy
2( n %)V,

S - ’Yio(cio + kio@
2

where J;, (I, — JT Jio) = 0 is applied. With Lemma 2
we have ||p; — p1|| = 0,vt > to+ 27, and u; =
‘]T (Cw + kw. )flo ( - JT zo)[(czf + klfn3 )flf +
pl} < J (Czo + k102T772)772 e ~Cio(t=t" )ff(t*) + (In -
Ji w)[(czf—i— kif 773)(f,f(t*) + R —r;) + p;] is boundedness.

Step 2. Yt > ty + 2T When the conflict is over, we have
t > 1o+ 2T, V; is redesigned as (9), (10) becomes

Vi < —(cip + kif@)vi-
13

According to Lemma 2 and 3, we have the formation tracking
is realized within the prescribed time 7' = 37'. The analysis
of the boundedness of u; is similar to the Case 1. Thus, we
have u; is bounded Vt > t. O]

IV. SIMULATION

This section provides a simulation example to verify the
validity of the theoretical results. We consider a directed com-
munication multi-agent system with four followers (indexed
from 1 to 4) and a leader (indexed at 5), whose directed
communication graph consists of a minimum spanning tree
rooted at the leader, as shown in Fig. 1.

Each follower and the leader are modeled by (1) and
(2), respectively. The disturbance of follower ¢ is set as
w; = [sin(t) cos(t)] and the leader’s input is set as ug =
[5sin(%),5cos(t3E)]T. The initial states and the offset from
the follower to the leader of agents are

4l
ol
> 0l
s
=0 = |eader
= follower1
4+ follower2
—<— follower3
~—p— follower4
2 o 2 4 s 8 10 1
X
Fig. 2: Formation trajectories.
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Fig. 3: Formation tracking errors ||p; — po — d;||.
0) = [0,0]T
WO=00T
p1(0) = [0.5,0.3] .
T 52 = [7170]
p2(0) = [0,0.3] B T
T 53 - [03 _1]
p3(0) = [0.4,-0.2]] _ T
T 54 - [05 ]‘] N
p4(0) = [-0.3,—0.4]",

The design parameters of the proposed algorithm in (5)-(8)
are selected as tp = 0s, « = 13, c =13, T = 1s, v = 3,
Cio = 1.8, ki = 2.5, R=0.5,1r; = 0.1, ky, =2, ¢;y = 4.2
and k;y = 3.

The simulation results are presented in Figs. 2-5. As can
be seen in Fig. 2, the followers tracked the leader forming
a square for cruising. Fig. 3 shows the formation tracking
errors of followers, which verifies the formation tracking errors
converged to zero within the prescribed time ty 4+ 37 = 3s.
The control inputs are illustrated in Fig. 4, we can find that
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Fig. 4: Control inputs u; (t).
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Fig. 5: Distances between agents and obstacles.

the inputs are bounded throughout the time interval, and they
track the velocity of leader uy within a prescribed time.
Fig. 5 depicts the distances between followers, verifying the
distances between followers are always greater than r. All
the above results demonstrate the effectiveness of the control
algorithm (8).

V. CONCLUSION

In this paper, we study the problem of prescribed-time
formation tracking with collision avoidance for first-order
multi-intelligent body networks with directed graphs. Based
on the idea of behavioral control, two behaviors are designed
to guarantee the predefined time formation and predefined
time collision avoidance, respectively, and a control algorithm
based on the null-space projection of the behaviors is proposed
to successfully solve the formation tracking problem with
collision avoidance. The stability of the closed-loop system
is proved by constructing a new set of Lyapunov functions.

The effectiveness of the proposed algorithm is verified by
simulation examples.
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