
Grammar-Constrained Decoding for Structured NLP Tasks
without Finetuning

Saibo Geng,♢ Martin Josifoski,♢ Maxime Peyrard,∗♣ Robert West♢
♢EPFL ♣Université Grenoble Alpes, CNRS, Grenoble INP, LIG

{saibo.geng, martin.josifoski, robert.west}@epfl.ch, maxime.peyrard@univ-grenoble-alpes.fr

Abstract

Despite their impressive performance, large lan-
guage models (LMs) still struggle with reliably
generating complex output structures when not
finetuned to follow the required output for-
mat exactly. To address this issue, grammar-
constrained decoding (GCD) can be used to
control the generation of LMs, guaranteeing
that the output follows a given structure. Most
existing GCD methods are, however, limited to
specific tasks, such as parsing or code genera-
tion. In this work, we demonstrate that formal
grammars can describe the output space for a
much wider range of tasks and argue that GCD
can serve as a unified framework for structured
NLP tasks in general. For increased flexibil-
ity, we introduce input-dependent grammars,
which allow the grammar to depend on the in-
put and thus enable the generation of different
output structures for different inputs. We then
empirically demonstrate the power and flexi-
bility of GCD-enhanced LMs on (1) informa-
tion extraction, (2) entity disambiguation, and
(3) constituency parsing. Our results indicate
that grammar-constrained LMs substantially
outperform unconstrained LMs or even beat
task-specific finetuned models. Grammar con-
straints thus hold great promise for harnessing
off-the-shelf LMs for a wide range of struc-
tured NLP tasks, especially where training data
is scarce or finetuning is expensive. Code and
data: https://github.com/epfl-dlab/GCD.

1 Introduction

Pretrained language models (LMs) have achieved
impressive results across a range of tasks, such as
machine translation, summarization, and dialogue
generation (Brown et al., 2020; Touvron et al.,
2023). All of these models are pretrained on next-
token prediction task, encouraging researchers to
cast other NLP tasks in the same autoregressive
generation framework. By framing tasks as autore-
gressive generation, pretrained language models

∗Work done while at EPFL.

x = “Burundi
moved its capital
from Bujumbura to
Gitega”

LM
y = “[s] Burundi
 [r] capital
 [o] Gitega”

LEGEND:
x: input
y: output
$: end of sequence

S: root non-terminal
𝜀: empty string
𝛼: entities from KB
𝛽: relations from KB

Burundi GMThisDuring

capital alsohasmember

Gitega isa Bujumbura

t = 0

t = 1

t = 2

$isAirport nowt = 3

Grammar-constrained
decoding (GCD)

 : allowed tokens
 : forbidden tokens
→: decoding path

Grammar for closed information extraction (cIE):

S → (𝜀 | [s] 𝛼 [r] 𝛽 [o] 𝛼 S)
𝛼 = (Entity-1 | … | Entity-N), 𝛽 = (Relation-1 | … | Relation-M)

…

…

…

…

Figure 1: Grammar-constrained decoding (GCD), ap-
plied to the task of closed information extraction, where
the goal is to extract a list y of subject–relation–object
triplets from the input text x. Subjects and objects are
constrained to be Wikidata entities, relations to be a Wi-
kidata relation. During decoding, only valid token con-
tinuations compliant with the grammar are considered.
For simplicity, we omit the special marker symbols [s],
[r], and [o] in the schema of the generation process.

can be finetuned for specific tasks with minimal
modifications to the training process while still ben-
efiting from the advantages of pretraining. More
recently, the scaling of language models to larger
sizes has introduced notable in-context learning
capabilities (Brown et al., 2020; Radford et al.,
2019; Schick and Schütze, 2021), such that large
language models (LLMs) can quickly and effec-
tively adapt to new tasks even without finetuning,
when shown only few demonstrations as part of
their context.

Certain important tasks, however, such as closed
information extraction (cIE), entity disambiguation
(ED), or constituency parsing (CP), require the out-
put to follow a predefined format and adhere to

https://github.com/epfl-dlab/GCD

a restricted vocabulary (entities, relations, senses,
dependency labels, etc.). Whereas LMs excel at
generating free-form text, they are not specifically
designed for structured prediction tasks where only
a small subset of the output space is valid. Conse-
quently, structured prediction tasks present unique
challenges because constrained output spaces de-
mand both structural coherence and compliance
with a predefined vocabulary. For instance, Josi-
foski et al. (2023) have demonstrated that few-shot-
prompted large language models such as GPT-3.5
struggle with tasks such as cIE. This difficulty is
primarily due to the extensive output vocabulary,
which includes 2.7 million Wikidata entity names
and approximately 1,000 Wikidata relation names,
which is too vast to be conveyed with just a few
demonstration examples.

One way forward is to finetune LMs for spe-
cific tasks, which involves linearizing the desired
output format into a string format, thus enabling
training through standard next-token prediction.
For instance, De Cao et al. (2021) and Josifoski
et al. (2022) successfully applied this technique
to ED and cIE, respectively. However, this ap-
proach has limitations: it necessitates an expen-
sive finetuning pipeline for each new task, which
lacks flexibility and requires bespoke training data.
Orthogonally, constrained decoding (Tromble and
Eisner, 2006) is a technique that can be used
to enforce constraints on the output space of
an autoregressive language model during infer-
ence. Constrained decoding has been used in se-
mantic role labeling (Deutsch et al., 2019), con-
stituency parsing (Deutsch et al., 2019), code gen-
eration (Scholak et al., 2021), and entity disam-
biguation (De Cao et al., 2021). The constraints
have been expressed in the form of finite-state au-
tomata (Deutsch et al., 2019) or trie-based data
structures for fast lookup (De Cao et al., 2021).

In this work, we show that, for a much wider
range of NLP tasks, the respective output space can
be described with a formal grammar, giving rise
to a unified framework for structured NLP tasks.
Given an appropriately defined grammar, we use
an incremental parser to play the role of a com-
pletion engine, which determines the set of valid
next tokens given the current prefix. We integrate
this completion engine with a pretrained language
model to iteratively generate sequences that are
valid according to the grammar and plausible ac-
cording to the LM (cf. Fig. 1). From a practical

perspective, the grammar-constrained decoding
(GCD) framework allows researchers to focus on
writing the grammar while ignoring the implemen-
tation details of the constrained decoding process.
This is in contrast to previous work, where the con-
straints were expressed in the form of finite-state
automata or trie-based data structures, which re-
quire a significant engineering effort to implement.
We envision GCD to be as simple to use as regular
expressions, in the sense that the user can specify a
desired output structure in a declarative way, and
the LM-generated sequences will be guaranteed to
be valid. With the introduction of input-dependent
grammars, the scope of tasks that can be tackled
with GCD can be further extended to tasks such as
entity disambiguation and entity linking, where the
output space is not fixed but depends on the input.
We show that, by combining GCD with powerful
LLMs, we achieve remarkable improvements with
few-shot learning, even rivaling the performance of
finetuned task-specific models. This is particularly
exciting because it shows that LMs can be used to
solve a much wider range of structured tasks than
before, without the need for finetuning.

Our contributions can be summarized as follows:

1. We demonstrate that the output spaces of
many structured NLP tasks can be formulated
as formal languages, thus converting the tasks
into grammar-constrained decoding problems.
This formulation provides a unified frame-
work to tackle structured NLP tasks.

2. We introduce input-dependent grammars,
which extend the set of tasks that can be tack-
led with GCD. We show that this can be useful,
among others, for tasks such as ED and CP.

3. Through empirical experiments, we demon-
strate the effectiveness of GCD on three struc-
tured NLP tasks: cIE, ED, and CP. We show
that our method can achieve competitive re-
sults on cIE and ED without any finetuning.

2 Method

We now describe GCD and how it can constrain the
output of LMs at decoding time based on a formal
grammar. We first explain how to specify the output
spaces of various NLP tasks via formal grammars.
Then we show how an incremental parser can be
used as a completion engine to constrain the LM’s
generation process to produce grammatically valid
outputs only.

(1) Closed information extraction: see Fig. 1
(2)* Entity disambiguation: S → ℓ m[𝛼]r, where ℓ is left
context of mention m, r is right context, and 𝛼 is disjunction
of candidate entities for mention m
(3)* Constituency parsing: S → B0, 0; Bi, j→[𝛼 (Bi, j+1 | Ci,

j+1); Ci, j → xi (Ci+1, j | Ei+1, j); Cn,j → En, j; Ei, j+1 →](Ei, j | Bi, j);
En, j+1 →]En, j; En, 0 → 𝜀, where 𝛼 = (S|NP|VP|…)
(4)* Coreference resolution: Si → xi [(x1 | … | xn | ⊥)] Si+1;
Sn → 𝜀, where ⊥ means “no referent”
(5)* Part-of-speech tagging: Si → xi [(NOUN | VERB | ADJ |
…)] Si+1; Sn → 𝜀
(6)* Dependency parsing: Si → xi [(ROOT | NSUBJ | DOBJ |
…) (x1 | … | xn | ⊥)]Si+1; Sn → 𝜀, where ⊥ means “no head”
(7)* Word sense disambiguation: Si → xi [𝛼i] Si+1; Sn → 𝜀,
where 𝛼i is the disjunction of all WordNet glosses of word xi
(8)* Phrase chunking: S → B0; Bi → [Ci; Bn → 𝜀; Ci → xi
(Ci+1 | 𝛼] Bi+1); Cn → 𝛼], where 𝛼 = (NP | VP | PP | …)
(9)* Semantic role labeling: Same as phrase chunking,
but with 𝛼 = (TARGET | ARG0 | ARG1 | …)
(10)* Entity linking: Same as phrase chunking, but with 𝛼
the disjunction of all KB entity names (or ⊥ for “no entity”)
(11)* CCG parsing: Same as constituency parsing, but
with syntactic types (e.g., (S\NP)/NP)) instead of constituent
labels. Extra constraints ensure that nodes have at most
two children and that syntactic types combine correctly.
(12)* Question answering: S → [q][A]; A → (𝜀 | 𝛼 A),
where q is the question and 𝛼 the disjunction of all
vocabulary words
(13)* Extractive summarization: S → (𝜀 |[𝛼]S), where 𝛼 is
the disjunction of all sentences from input x
(14)* Semantic parsing with λ-calculus: A logical form is
a rooted tree, generated by a context-free grammar

Figure 2: Formal grammars for 14 structured NLP
tasks, highlighting the general applicability of grammar-
constrained decoding. All 14 grammars are context-free
(mostly regular). * marks input-dependent grammars.
Inputs x = ⟨x0, . . . ,xn−1⟩ are sequences of lexical units
(e.g., words); 0 ≤ i ≤ n− 1; single capital letters are
non-terminal symbols; S or S0 is the start symbol; ε is
the empty string; [and] are special terminal symbols.

2.1 NLP tasks as formal languages

The input x and output y of NLP tasks are typi-
cally sequences of tokens, x = ⟨x0, . . . ,xn−1⟩ and
y = ⟨y0, . . . ,ym−1⟩. Whereas the input x is usually
arbitrary, for many tasks the output y needs to fol-
low a specific structure. For instance, in informa-
tion extraction, y is required to consist of subject–
relation–object triplets (cf. Fig. 1). Since formal
languages provide a rigorous and complete frame-
work for describing the structure of any computable
set of object (according to the Church–Turing the-
sis), they offer a promising way to define the output
spaces of structured NLP tasks. In order to define
the formal languages corresponding to the output
spaces of structured NLP tasks, our framework re-
lies on formal grammars, a universal formalism that
can describe any formal language. For tractability,
we focus on the class of context-free grammars.

Token-level formal grammars. A formal gram-
mar G is defined as a tuple (V,Σ,P,S) where

• V is a finite set of non-terminal symbols,

• Σ is a finite set of terminal symbols,

• P is a finite set of production rules,

• S ∈V is the start symbol.

We illustrate the suitability of formal grammars
for specifying the output spaces of structured NLP
tasks in Fig. 2 using 14 common tasks as examples.

In our approach, the user first writes a formal
grammar G over characters. In order to obtain a
token-level grammar Gtok that can be used to con-
strain the direct output of LMs—token sequences—
we use the token set Σtok as terminal symbols and
apply the tokenizer to the sequences of terminal
symbols appearing in the rules P, obtaining the
token-level rules Ptok. This yields the token-level
grammar Gtok = (V,Σtok,Ptok,S), which describes
the same language as the character-level grammar
G. We then use an incremental parser (see below)
to decide whether a token sequence y is in the lan-
guage generated by Gtok.

Despite its simplicity, this approach has some
limitations. Widely used tokenization methods
such as BPE (Sennrich et al., 2016) allow the same
string to be tokenized in different ways. For ex-
ample, the string “[[[” can be tokenized as “[[
[”, “[[[” or “[[[”, all of which would be
detokenized to the original string “[[[”. To avoid
this ambiguity, we can add extra spaces between
the brackets in the grammar and force the single
bracket to be a token. This approach is, however,
not principled and relies on a specific tokenizer.
We therefore believe that a principled approach
for defining token-level grammars is an interesting
direction for future work.

Grammatical Framework. Since the token-level
grammar Gtok is tokenizer-dependent, there are in
general multiple token-level grammars for the same
grammar G. This one-to-many mapping from a
character-level grammar to a token-level grammar
is analogous to the one-to-many mapping from ab-
stract syntax trees to different programming lan-
guages. For this reason, we adopt Grammatical
Framework (GF) (Ranta, 2019) to define both the
grammar G and the token-level grammar Gtok. GF
is a meta-language for multilingual grammar appli-
cations, which allows us to define an abstract gram-
mar as well as concrete grammars for linearizing

abstract syntax trees into different tokenizer-spe-
cific “languages”. In our case, the abstract grammar
is the character-level grammar G and the concrete
grammars are the token-level grammars for differ-
ent tokenizers.

Input-dependent grammars (IDG). While the
output of many NLP tasks can be described by a
formal grammar, some tasks require a grammar that
is dependent on the input sequence. For example,
in entity dismbiguation, the output needs to be con-
strained to the set of entity candidates, which usu-
ally contains dozens of entity names semantically
related to the target mention in the input sequence.
In constituency parsing, outputs are parse trees
whose terminal nodes are the input tokens. These
two tasks both require a grammar that is dependent
on the input. Existing work has focused on using a
single grammar to constrain the decoding regard-
less of the input sequence. Whereas this is suitable
for tasks where the output space is independent of
the input sequence, such as code generation (Poesia
et al., 2022) or information extraction (Josifoski
et al., 2022) (cf. Fig. 1), 13 of the 14 tasks listed
in Fig. 2 (those with an asterisk) require an input-
dependent grammar.

2.2 Grammar-constrained decoding (GCD)

The LM decoding process produces tokens one by
one. To enforce the formal grammar, we intervene
during decoding by pruning the probability distri-
bution to include only the subset of tokens that are
allowed by the formal grammar. The subset of al-
lowed tokens is returned by an incremental parser,
which takes the partially generated sequence and
the formal grammar as inputs and returns the set
of next allowed tokens. The role of the parser can
be abstracted as a completion engine (Poesia et al.,
2022), which derives completion candidates from
the partial sequence and the formal grammar G. In
this work, we use the incremental parser of Gram-
matical Framework (Angelov, 2009) as the comple-
tion engine. This process is compatible with any
decoding algorithm, including greedy decoding,
beam search, top-k sampling, etc. GCD can also
be applied to any autoregressive language model,
provided that we have access to the distribution
over the vocabulary at each decoding step. Since
API-based services such as OpenAI do not provide
access to the distribution over the vocabulary, they
cannot be used with GCD.

2.3 Few-shot learning with GCD

To adapt a pretrained LM to a new task, one can
either finetune the LM on task-specific training
data or use few-shot learning if the LM is powerful
enough. In this work, we use GCD in conjunc-
tion with few-shot learning to adapt a pretrained
large LM (LLM) to new tasks. Instead of prompt-
ing the LLM to generate free-form text, we use
GCD to constrain the output to be grammatically
correct. This allows us to leverage the LLM’s few-
shot learning capability together with the grammar-
induced knowledge of the task’s output structure.

For the same task, we can use different grammars
to constrain the output of the LLM. For example,
in entity disambiguation, we can use a grammar
G1 that depends on the input sequence to constrain
the output to the input-specific candidate set, or
we could use a grammar G2 that is independent of
the input to constrain the output to be any valid
entity name. While both G1 and G2 can be used to
constrain the output of the LLM, G1 reduces the
search space more and thus is more effective.

3 Experimental setup

Although GCD can be applied to many tasks, we
concentrate on three tasks in order to showcase its
effectiveness: closed information extraction (cIE),
entity disambiguation (ED), and constituency pars-
ing (CP). The first two tasks are examples where
the output is restricted to a predefined set of en-
tities and relations, while the third is an example
of a task where the output is a complex tree struc-
ture. All three tasks are challenging for LLMs in
the few-shot setting, and we show that GCD can
significantly improve LLM performance.

3.1 Closed information extraction (cIE)

Task description. The goal of closed information
extraction (cIE) is to extract a comprehensive set of
facts from natural-language text. Formally, given
a knowledge base (KB) containing a collection of
entities E and a collection of relations R, the goal
is to extract the complete set yset ⊂ E ×R×E of
fact triplets from a given input text x.

Grammar. We implement the grammar shown in
Fig. 1. Outputs are sets yset of triplets represented
as structured sequences y of tokens. Each triplet
consists of a subject entity name, a relation name,
and an object entity name, each preceded by the
special marker [s], [r], or [o], respectively. For

instance, the two-triplet set yset = {(Witchita, cast
member, John Smith); (Witchita, instance of, film)}
is mapped to y = “[s] Witchita [r] cast member
[o] John Smith [s] Witchita [r] instance of [o]
film”. Entity and relation names are restricted to a
predefined set of entities (2.7M) and relations (888)
from the Wikidata KB (Vrandečić, 2012). The
grammar is context-free and allows an arbitrary
number of triplets to be generated, including zero.

Dataset and evaluation metric. We use the
SynthIE-text dataset (Josifoski et al., 2023), a syn-
thetic dataset generated by prompting GPT-3.5.
This dataset, in comparison to previous ones like
REBEL (Huguet Cabot and Navigli, 2021), is char-
acterized by its larger size, increased diversity, and
higher quality according to human ratings (Josi-
foski et al., 2023). The SynthIE-text dataset com-
prises 10K validation samples and 50K test sam-
ples. For the purpose of evaluating our method
in the few-shot scenario, we exclusively employ
the test data. We measure performance via triplet-
based micro-precision, recall, and F1-score, follow-
ing Josifoski et al. (2022).

3.2 Entity disambiguation (ED)

Task description. Entity disambiguation (ED) is
the task of identifying the exact entity from a pre-
defined knowledge base (e.g., Wikidata) referred
to by a mention demarcated by special tokens in
an input text. In certain cases, the input may also
contain a set of candidate entities to narrow the
search scope.

Grammar. We use grammar 2 of Fig. 2. Fol-
lowing De Cao et al. (2021), the output structure
consists of the mention followed by the inferred
entity name in square brackets. For instance, given
the input “There are two types of electricity: <ent>
DC </ent> and AC”, the output is represented
as “There are two types of electricity: <ent> DC
[Direct current] </ent> and AC”. The grammar is
regular and input-dependent. It forces the model to
generate the mention first, followed by an opening
square bracket, an entity name from the candidate
set, and finally a closing square bracket. The can-
didate set is mention-dependent and is provided in
the dataset. To demonstrate the benefits of using
an input-dependent grammar (IDG), we also exper-
iment with an input-independent grammar (IIG).
For such a grammar, the candidate set needs to be
the entire entity catalog of all entities (e.g., 470K

in the data of Le and Titov (2018)). The constraints
imposed by IIG are thus weaker than those of IDG.
Moreover, forcing the model via the IDG to repeat
the left context (e.g., “There are two types of elec-
tricity:”) may guide the model (via conditioning)
in generating the correct entity name.

Dataset and evaluation metric. For the ED
task, we employ six widely used datasets: AIDA-
CoNLL (Hoffart et al., 2011), MSNBC, ACE2004,
AQUAINT, CLUEWEB, and WIKI (Gabrilovich
et al., 2013; Guo and Barbosa, 2017). We use only
the test data to evaluate the effectiveness of our
method in a few-shot learning setting. To mea-
sure the performance of our approach, we employ
micro-accuracy as the evaluation metric. Further
details about the datasets and evaluation metric are
provided in Appendix D.

3.3 Constituency parsing (CP)

Task description. Constituency parsing (CP) is
the task of parsing a sentence into a constituency
parse tree capturing the syntactic structure of the
sentence.

Grammar. The output in CP must be a valid—but
not necessarily correct—constituency parse tree in
Penn Treebank format (Sekine and Collins, 2008).
A valid parse tree is defined as a tree that satisfies
the constraints of completeness (every word in the
sentence is included somewhere in the parse tree),
balanced brackets (every right bracket closes a pre-
viously unclosed left bracket, and every left bracket
is eventually closed by a right bracket), and label
consistency (the label of terminal and non-terminal
nodes is consistent with the Penn Treebank format).

To capture these constraints, we use grammar 3
of Fig. 2. The grammar reproduces the input, rep-
resented as a sequence x = ⟨x0, . . . ,xn−1⟩ of words,
in left-to-right order, interspersing it with node la-
bels and balanced brackets. In order to guarantee
balanced brackets, the non-terminals Bi, j count the
number of opened left brackets [using the sec-
ond subscript index j, and the rules ensure that the
number of closed brackets can never exceed the
number of previously opened brackets. As an ex-
ample, for the input x= “Nkurunziza leads Burundi
from Gitega”, one valid parse tree would be y =
“[S [NP Nkurunziza][VP leads [NP Burundi][PP
from [NP Gitega]]]]”.

Note that the grammar in this task needs to be
input-dependent due to the aforementioned com-

pleteness constraint. To demonstrate this, we
also experiment with an input-independent gram-
mar, a context-free grammar that recursively gen-
erates a parse tree of arbitrary size whose terminal
nodes are anonymized as XX. This grammar sat-
isfies the balanced-brackets and label-consistency
constraints, but not the completeness constraint. As
the grammar is context-free, it can generate a parse
tree with an arbitrary number of nodes, possibly
larger or smaller than the number of words in the
input, which would result in an invalid parse tree.

Dataset and evaluation metric. We use the test
split of Penn Treebank to evaluate the effective-
ness of our method in a few-shot learning setting.
Since we observed that the LLaMA models used in
our experiments struggle to generate fully correct
parse trees for long input sentences, both with and
without constraints, we use only sentences with
gold parse trees shorter than 64 tokens. We report
the bracketing F1-score returned by the PYEVALB
tool as our main evaluation metric. As we observed
that LLaMA without constraints often generates
invalid parse trees, we also report validity (the per-
centage of valid parse trees) as an additional metric.

3.4 LLMs and prompting

We utilize LLaMA (Touvron et al., 2023) and Vi-
cuna (Chiang et al., 2023) as backbone LMs, with-
out performing any finetuning on downstream tasks.
Concretely, we evaluate the LLaMA-{7B, 13B,
33B} and Vicuna-{7B, 13B} models. To construct
the prompt, we begin by randomly selecting sev-
eral data points from the training set and use them
to manually craft multiple prompts for each task.
For more details about the used prompts and the
decoding settings, see Appendices E and F.

4 Experimental results

Next, we present the results for each task, show-
ing that, whereas the unconstrained LLaMA and
Vicuna models perform poorly, the grammar-
constrained versions perform significantly better.
We also show input-dependent grammars to be cru-
cial for performance, as they allow the models to
adapt to the input and generate more accurate out-
puts. Out of the tested few-shot-prompted mod-
els, LLaMA-33B with input-dependent grammars
achieves the best performance on all tasks, even
rivaling finetuned models on cIE and ED.

Method Precision Recall F1

Weakly supervised
GenIE T5-base 49.6 ± 0.3 26.8 ± 0.2 34.8 ± 0.2

Few-shot unconstrained
LLaMA-7B 10.2± 0.5 14.3± 0.7 11.9± 0.5

LLaMA-13B 10.3± 0.6 17.0± 0.9 12.9± 0.6

LLaMA-33B 14.1± 1.0 23.1± 1.4 17.5± 1.0

Vicuna-7B 12.5± 0.2 16.7± 0.1 14.3± 0.2

Vicuna-13B 13.4± 0.2 15.2± 0.2 14.4± 0.2

Few-shot constrained
LLaMA-7B 27.9± 0.6 20.2± 0.5 23.5± 0.5

LLaMA-13B 36.2± 0.7 26.5± 0.5 30.6± 0.5

LLaMA-33B 39.3± 0.9 33.2± 0.8 36.0 ± 0.7

Vicuna-7B 25.4± 0.5 15.8± 0.3 19.5± 0.3

Vicuna-13B 38.7± 1.0 19.8± 0.8 26.1± 0.8

Table 1: Main results for closed information extrac-
tion (4 shots), in terms of precision, recall, and F1-score
(micro-averaged, with 90% confidence intervals) on the
SynthIE-text-small dataset (Josifoski et al., 2023). Best
results in bold. We report the GenIE model (Josifoski
et al., 2022) for the supervised setting.

4.1 Closed information extraction (cIE)

Results for cIE are reported in Table 1. Uncon-
strained LLaMA, even with few-shot demonstra-
tions, performs poorly on cIE. This is not surpris-
ing, since the cIE task requires generating valid
entity and relation names from a knowledge base
(Wikidata in our case). Although LLMs have been
exposed to Wikidata to a certain extent during pre-
training, they still struggle with generating accurate
entity and relation names contained in the KB. This
can be seen as a special case of the hallucination
problem, where the model generates entities and
relations not present in the KB.

We see a significant improvement when con-
straining the generation to only produce valid enti-
ties and relations. Notably, LLaMA-33B beats Gen-
IE T5-base (Josifoski et al., 2022), a state-of-the-
art autoregressive model specifically trained for the
cIE task on supervised data from the REBEL data-
set (Huguet Cabot and Navigli, 2021). In the table,
we refer to GenIE as weakly supervised because it
was not trained on the train split of SynthIE-text,
but on REBEL. We observe that the grammar-con-
strained LLaMA models balance precision vs. re-
call better than GenIE, achieving a higher F1-score.
While GenIE exhibits higher precision, its recall is
lower, implying that it misses many entities and re-
lations. This may be because GenIE was optimized
for the REBEL dataset and may have memorized
the entities and relations in the dataset. As domain-
specific training data is often scarce (Dunn et al.,

Method AIDA MSNBC AQUAINT ACE2004 CWeb WIKI Avg.

Supervised
Le and Titov (2018) 89.6 92.2 90.7 88.1 78.2 81.7 86.8
BLINK w/o candidate set 79.6 80.0 80.3 82.5 64.2 75.5 77.0
BLINK (Wu et al., 2020) 86.7 90.3 88.9 88.7 82.6 86.1 87.2
GENRE only AIDA data 88.6 88.1 77.1 82.3 71.9 71.7 80.0
GENRE (De Cao et al., 2021) 93.3 94.3 89.9 90.1 77.3 87.4 88.8
ReFinED w/o pretraining 88.2 92.3 86.8 90.6 75.1 74.5 84.6
ReFinED (Ayoola et al., 2022) 93.9 94.1 90.8 90.8 79.4 87.4 89.4

Few-shot unconstrained
LLaMA-7B 42.0 44.6 30.2 43.8 35.8 27.7 37.4
LLaMA-13B 48.1 50.2 36.2 47.5 40.7 37.2 43.3
LLaMA-33B 62.6 63.0 42.9 56.3 48.1 51.4 54.1

Few-shot constrained (IIG)
LLaMA-7B 56.3 57.3 61.6 54.6 50.5 47.0 54.5
LLaMA-13B 51.8 57.3 53.3 50.8 48.2 39.7 50.6
LLaMA-33B 69.8 73.3 74.9 71.7 61.6 57.6 68.2

Few-shot constrained (IDG)
LLaMA-7B 73.4 87.6 83.2 82.9 69.4 67.1 77.2
LLaMA-13B 75.8 86.6 82.4 84.2 68.1 68.1 77.5
LLaMA-33B 81.0 88.2 86.2 85.4 70.7 70.5 80.3

Table 2: Main results for entity disambiguation (4 shots), in terms of micro-accuracy. Width of 90% confidence
intervals is between 0.1 and 0.3 for all results. Best results in bold. IIG stands for “input-independent grammar”,
IDG for “input-dependent grammar”.

2022), this result highlights the potential for LLMs
to excel on cIE without finetuning.

4.2 Entity disambiguation (ED)

Results for ED are reported in Table 2. Whereas un-
constrained LLaMA models perform poorly, GCD
(either input-dependent [IDG] or input-independent
[IIG]) significantly improves the performance of
LLaMA. Although there is still a gap with respect
to the state-of-the-art model, GENRE (De Cao
et al., 2021), grammar-constrained LLaMA-33B
performs better than a version of GENRE trained
only on the AIDA dataset (without pretraining
on Wikipedia). Considering that many domain-
specific information extraction tasks have limited
data available (Dunn et al., 2022), the constrained
LLaMA models can thus be a good choice for
low-resource settings. Among the GCD-powered
LLaMA models, we observe that IDG performs
better than IIG, highlighting the benefits of using
an input-dependent grammar. The latter allows the
model to leverage an input-specific candidate set,
whereas an input-independent grammar can only
use the entire knowledge base as the candidate set.
We believe this flexibility is crucial for GCD to
achieve good performance on various tasks.

4.3 Constituency parsing (CP)

Results for CP are reported in Table 3. In con-
trast to the previous two tasks, the performance of
LLMs—with or without GCD—on constituency
parsing is much worse when compared to bespoke
methods. This is not surprising, as constituency
parsing requires syntactic understanding of the in-
put, as opposed to the other two tasks, which only
required semantic understanding. Through error
inspection, we found that, although the LLMs are
able to generate seemingly reasonable output, their
outputs are often syntactically incorrect. (For ex-
amples, see Appendix I.)

While overall, LLaMA models perform poorly
on CP, the GCD-powered LLaMA models still sig-
nificantly outperform the unconstrained LLaMA
models. Importantly, with an input-dependent
grammar, GCD guarantees that the generated out-
put is a valid constituency parse tree, which is not
the case with an input-independent grammar.

In conclusion, GCD substantially improves the
performance of LLMs on constituency parsing,
but performance still falls short of the F1-scores
achieved by supervised methods (95% and above).
We do not, however, rule out the possibility that
GCD might produce better results once the under-
lying LLMs become more powerful.

Method F1 Validity

Bespoke methods
Vinyals et al. (2015a) 92.1 98.5
Dyer et al. (2016) 93.3 100.0
Kitaev and Klein (2018) 95.6 100.0
Zhang et al. (2020) 95.7 100.0

Few-shot unconstrained
LLaMA-7B 28.1 54.3
LLaMA-13B 42.8 69.4
LLaMA-33B 42.9 64.2

Few-shot constrained (IIG)
LLaMA-7B 34.7 65.9
LLaMA-13B 45.4 80.3
LLaMA-33B 47.1 72.3

Few-shot constrained (IDG)
LLaMA-7B 45.8 100.0
LLaMA-13B 53.4 100.0
LLaMA-33B 54.6 100.0

Table 3: Main results for constituency parsing
(8 shots), in terms of bracketing F1-score and parse-
tree validity. For few-shot-prompted LLaMA models,
test set was restricted to gold parse trees shorter than
64 tokens, as LLaMA models perform poorly on longer
sentences. For bespoke methods, entire Penn Treebank
test set was used. Width of 90% confidence intervals is
between 4.0 and 6.0 for all F1-scores. Best results in
bold.

4.4 Latency

Incremental parsing imposes an additional over-
head on top of pure vanilla decoding. To quantify
this overhead, we report the latency of pure de-
coding and compare it to the added latency due to
enforcing grammar constraints in Table 4. Note
that GCD operates entirely on the CPU, not on the
GPU, so GCD latency is measured on a consumer
CPU. As shown in Table 4, the added latency from
GCD is negligible for the ED and CP tasks. For
cIE, GCD adds a modest additional latency com-
parable or inferior to the latency of pure decoding,
depending on the model used (cf. Appendix H for
more details).

5 Likelihood misalignment in GCD

In the cIE and CP tasks, regardless of model size,
the top generation is consistently an empty string
(technically, a string “$” consisting of the end-of-
sequence token only) and the second most likely
generation and subsequent generations are non-
empty output sequences. The issue is not unique
to a particular LLM, but emerges consistently. It
is also similar to an observation by Stahlberg and
Byrne (2019), who found that the most likely out-

Model/task Latency

Unconstrained LLaMA-7B 54
Unconstrained LLaMA-33B 87
Unconstrained LLaMA-65B 136
GCD overhead: cIE 69
GCD overhead: ED 1
GCD overhead: CP 4

Table 4: Per-token decoding latency (in milliseconds)
for unconstrained decoding (top 3 rows, measured on
A100 GPU), compared to overhead due to grammar-
constrained decoding (bottom 3 rows, measured on con-
sumer CPU).

put of neural machine translation models is usually
an empty string.

We hypothesize that the empty-string issue is
caused by a likelihood misalignment between the
grammar and the language model. We use the cIE
task as an example to illustrate the issue. In the
case of cIE, the first generated token must either be
the left-bracket token “[” or the end-of-sequence
token “$”. The latter denotes the situation where
no triplets can be extracted from the input. With
a beam size k ≥ 2, both “[” and “$” will be in-
cluded in the beam at the first step. Assume that
the likelihood of “[” is p and the likelihood of “$”
is q. Since “$” denotes the end of the sequence,
this generation is considered as a complete genera-
tion with a total likelihood of q. In the other beam,
the generation continues with “[” as the prefix, but
as the generation proceeds, the likelihood of the
generation may decrease below q.

Since LLMs such as LLaMA are trained to max-
imize the likelihood of human language, the struc-
ture imposed by the grammar may be unnatural
to the model, especially when the model is not
finetuned on the respective task. In the extreme
case, the correct ground-truth output could have
a likelihood lower than that of the empty string
“$”, resulting in the latter being returned as the top
generation. This intuition gives rise to a simple fix:
penalize the model for generating short strings, e.g.,
by adjusting the length normalization parameter α
in the length-adjusted sentence score S/mα, where
S is the unadjusted score for the sentence and m is
the number of tokens in the sentence. As shown in
Table 5, this fix indeed solves the problem.

We also observed that the empty-string issue can
be alleviated by using instruction-tuned models.
While, without applying the aforementioned length
normalization fix, LLaMA-13B always outputs the

Length normalization α 1.0 1.5 2.0 2.5 3.0 3.5

Top generation = “$”? ✓ ✓ ✓ × × ×

Table 5: Length normalization mitigates the empty-
string issue: larger α favors longer sequences and α= 0
means no effect (results for LLaMA-13B).

empty string “$” as its top generation on the cIE
task, the instruction-tuned version (Vicuna-13B)
outputs non-empty output as its top generation only
46% of the time. (The smaller Vicuna-7B, however,
still always outputs “$” as its top generation.)

6 Related work

Autoregressive structured prediction in NLP. It
has become popular to use autoregressive genera-
tive models for structured prediction tasks, as this
fits the training mode and specific strengths of lan-
guage models (Vinyals et al., 2015b; Athiwaratkun
et al., 2020; De Cao et al., 2021; Paolini et al.,
2021). For instance, Vinyals et al. (2015b) mod-
eled dependency parsing as a sequence generation
problem and leveraged LSTMs to tackle it effec-
tively. De Cao et al. (2021) proposed autoregressive
language models to address entity linking, entity
disambiguation, and document retrieval tasks.

Constrained decoding. For tasks where the out-
put needs to satisfy certain constraints, constrained
decoding has been proposed to guide the genera-
tion process to produce valid outputs. For instance,
Hokamp and Liu (2017); Hu et al. (2019); Post
and Vilar (2018) proposed lexically-constrained se-
quence decoding for generation tasks. Anderson
et al. (2017) extended the beam search algorithm
by pruning the search space based on constraints.
Scholak et al. (2021) leveraged an incremental pars-
ing technique to generate approximately valid SQL
queries. De Cao et al. (2021) addressed entity dis-
ambiguation with trie-based lexical constraints at
decoding time to force outputs to be valid entities.
Josifoski et al. (2022) addressed closed informa-
tion extraction by combining trie-based lexical con-
straints with state-based constraints to force the out-
put to be valid triplet sequences. Wang et al. (2023)
used Earley parser–based constraints to force out-
puts to lie in a domain-specific language.

Grammar-constrained decoding. Deutsch et al.
(2019) proposed a general framework for push-
down automata–based constraints and applied it to
parsing tasks, which is equivalent to CFG-based
constraints in terms of expressiveness. Yin and

Neubig (2017) proposed a grammar-powered neu-
ral architecture for general-purpose code genera-
tion. Shin et al. (2021) proposed to use grammar-
constraints to solve semantic parsing tasks with
GPT-3 and envisioned that a semantic parser can
be built by combining a large language model with
a carefully designed grammar. Roy et al. (2022) re-
leased a toolkit for grammar-constrained decoding
to generate valid meaning representations. Finally,
Stengel-Eskin et al. (2023) tested the ability of
LLMs to solve parsing task under ambiguity and
used grammar constraints to ensure the grammati-
cality of the output.

7 Conclusion

This work introduces grammar-constrained decod-
ing (GCD) for enhancing the few-shot performance
of LLMs on challenging structured NLP tasks. We
showed that many NLP tasks can be formulated as
formal grammars, and that GCD can enhance the
performance of LLMs on these tasks. With input-
dependent grammars, we further broaden the scope
of GCD to accommodate tasks where the set of
valid output structures is constrained by the given
input. Our experiments indicate that, whereas un-
constrained LLMs have difficulty tackling tasks
requiring structured outputs, GCD can significantly
bolster the performance of LLMs on such tasks. We
envision GCD as a swift and cost-efficient adapta-
tion strategy, allowing LLMs to generate reliable
structured outputs without the necessity for costly
and cumbersome finetuning. Given the fast pace
of LLM evolution, we anticipate the usefulness
of GCD for boosting pretrained LLMs to further
increase over time.

Best practices for GCD. We conclude with con-
siderations regarding the effective use of GCD.

1. GCD is more effective with larger LLMs.
When possible, use the largest available LLM.

2. Grammars should be as restrictive as possible.
Consider using input-dependent grammars.

3. While GCD is broadly applicable to many
tasks, it is not a silver bullet. Tasks that require
syntactic understanding of the input (e.g., con-
stituency parsing) are less suitable for GCD.

4. In the presence of task-specific training data,
finetuning a small model may still yield better
performance, at the cost of decreased conve-
nience (cf. Appendix A).

Limitations

Compatibility with API-based LLMs. GCD
works by modifying the decoding process of an
LLM. If the LLM is hosted in the cloud (as is the
case for OpenAI’s GPT series) and the API does
not provide user control over the decoding process,
GCD cannot be used.

Latency. The introduction of constraints into the
generation process increases latency. The extra
overhead of GCD is introduced by the completion
step where the next allowed token is determined
based on the current prefix and the grammar. The
speed of the completion step depends on the com-
plexity of the grammar and the parsing algorithm
of the underlying completion engine. In case the
grammar is simple, we do not observe a signifi-
cant increase in latency (the overhead is negligible
compared to the latency of the LM). However, in
case the grammar contains a large number (e.g.,
millions) of rules, such as the grammar for the cIE
task, the latency of the incremental parsing step
grows. (See results in Table 4.)

Acknowledgements

We thank Viktor Kunčak and Chris Wendler for
insightful discussions and suggestions, as well
as the Grammatical Framework community, espe-
cially Inari Listenmaa, for answering our questions.
We also thank Zheng Zhou and Yifei Li for their
help setting up the infrastructure for the experi-
ments. West’s lab is partly supported by grants
from Swiss National Science Foundation (200021_-
185043), Swiss Data Science Center (P22_08),
H2020 (952215), Microsoft Swiss Joint Research
Center, and Google, and by generous gifts from
Facebook, Google, and Microsoft.

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 936–
945, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Krasimir Angelov. 2009. Incremental parsing with par-
allel multiple context-free grammars. In Proceedings
of the 12th Conference of the European Chapter of
the ACL (EACL 2009), pages 69–76, Athens, Greece.
Association for Computational Linguistics.

Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason
Krone, and Bing Xiang. 2020. Augmented natu-
ral language for generative sequence labeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 375–385, Online. Association for Computa-
tional Linguistics.

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos
Christodoulopoulos, and Andrea Pierleoni. 2022. Re-
FinED: An efficient zero-shot-capable approach to
end-to-end entity linking. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Track, pages 209–
220, Hybrid: Seattle, Washington + Online. Associa-
tion for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. 2019.
A general-purpose algorithm for constrained sequen-
tial inference. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 482–492, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Alexander Dunn, John Dagdelen, Nicholas Walker,
Sanghoon Lee, Andrew S. Rosen, Gerbrand Ceder,
Kristin Persson, and Anubhav Jain. 2022. Structured
information extraction from complex scientific text
with fine-tuned large language models.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag
Subramanya. 2013. Facc1: Freebase annotation of
clueweb corpora, version 1 (release date 2013-06-26,
format version 1, correction level 0).

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention.

https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://aclanthology.org/E09-1009
https://aclanthology.org/E09-1009
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
http://arxiv.org/abs/2005.14165
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2010.00904
https://doi.org/10.18653/v1/K19-1045
https://doi.org/10.18653/v1/K19-1045
http://arxiv.org/abs/2212.05238
http://arxiv.org/abs/2212.05238
http://arxiv.org/abs/2212.05238
http://arxiv.org/abs/1602.07776
http://arxiv.org/abs/1602.07776
http://arxiv.org/abs/1704.04920
http://arxiv.org/abs/1704.04920

Zhaochen Guo and Denilson Barbosa. 2017. Robust
named entity disambiguation with random walks. Se-
mantic Web, 9:1–21.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 782–792, Edinburgh, Scotland, UK. Associa-
tion for Computational Linguistics.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick
Xia, Tongfei Chen, Matt Post, and Benjamin
Van Durme. 2019. Improved lexically constrained
decoding for translation and monolingual rewriting.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 839–850,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Bernal Jimenez Gutierrez, Nikolas McNeal, Clayton
Washington, You Chen, Lang Li, Huan Sun, and
Yu Su. 2022. Thinking about GPT-3 in-context learn-
ing for biomedical IE? think again. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 4497–4512, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Martin Josifoski, Nicola De Cao, Maxime Peyrard,
Fabio Petroni, and Robert West. 2022. GenIE: Gen-
erative information extraction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4626–4643,
Seattle, United States. Association for Computational
Linguistics.

Martin Josifoski, Marija Sakota, Maxime Peyrard, and
Robert West. 2023. Exploiting asymmetry for syn-
thetic training data generation: SynthIE and the
case of information extraction. arXiv preprint
arXiv:2303.04132.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder.

Phong Le and Ivan Titov. 2018. Improving entity link-
ing by modeling latent relations between mentions.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1595–1604, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
JIE MA, Alessandro Achille, Rishita Anubhai, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation be-
tween augmented natural languages. In ICLR 2021.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code genera-
tion from pre-trained language models.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Aarne Ranta. 2019. Grammatical framework: an inter-
lingual grammar formalism. In Proceedings of the
14th International Conference on Finite-State Meth-
ods and Natural Language Processing, pages 1–2,
Dresden, Germany. Association for Computational
Linguistics.

Subhro Roy, Sam Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin Van
Durme. 2022. Benchclamp: A benchmark for evalu-
ating language models on semantic parsing.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,

https://doi.org/10.3233/SW-170273
https://doi.org/10.3233/SW-170273
https://aclanthology.org/D11-1072
https://aclanthology.org/D11-1072
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://aclanthology.org/2022.findings-emnlp.329
https://aclanthology.org/2022.findings-emnlp.329
https://doi.org/10.18653/v1/2022.naacl-main.342
https://doi.org/10.18653/v1/2022.naacl-main.342
http://arxiv.org/abs/1805.01052
http://arxiv.org/abs/1805.01052
https://doi.org/10.18653/v1/P18-1148
https://doi.org/10.18653/v1/P18-1148
https://www.amazon.science/publications/structured-prediction-as-translation-between-augmented-natural-languages
https://www.amazon.science/publications/structured-prediction-as-translation-between-augmented-natural-languages
http://arxiv.org/abs/2201.11227
http://arxiv.org/abs/2201.11227
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/W19-3101
https://doi.org/10.18653/v1/W19-3101
http://arxiv.org/abs/2206.10668
http://arxiv.org/abs/2206.10668
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779

pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88(2):191–229.

Satoshi Sekine and Michael Collins. 2008. Evalb:
Bracket scoring program.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3356–
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

Elias Stengel-Eskin, Kyle Rawlins, and Benjamin Van
Durme. 2023. Zero and few-shot semantic parsing
with ambiguous inputs.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Roy Tromble and Jason Eisner. 2006. A fast finite-state
relaxation method for enforcing global constraints
on sequence decoding. In Proceedings of the Hu-
man Language Technology Conference of the NAACL,
Main Conference, pages 423–430, New York City,
USA. Association for Computational Linguistics.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015a. Gram-
mar as a foreign language.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015b. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, volume 28. Curran
Associates, Inc.

Denny Vrandečić. 2012. Wikidata: A new platform for
collaborative data collection. In Proceedings of the
21st International Conference on World Wide Web,
WWW ’12 Companion, pages 1063–1064, New York,
NY, USA. Association for Computing Machinery.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A.
Saurous, and Yoon Kim. 2023. Grammar prompting
for domain-specific language generation with large
language models.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast
and accurate neural CRF constituency parsing. In
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence. International
Joint Conferences on Artificial Intelligence Organi-
zation.

https://doi.org/https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/https://doi.org/10.1016/0304-3975(91)90374-B
http://nlp.cs.nyu.edu/evalb/
http://nlp.cs.nyu.edu/evalb/
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
http://arxiv.org/abs/2306.00824
http://arxiv.org/abs/2306.00824
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://aclanthology.org/N06-1054
https://aclanthology.org/N06-1054
https://aclanthology.org/N06-1054
http://arxiv.org/abs/1412.7449
http://arxiv.org/abs/1412.7449
https://proceedings.neurips.cc/paper_files/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.1145/2187980.2188242
http://arxiv.org/abs/2305.19234
http://arxiv.org/abs/2305.19234
http://arxiv.org/abs/2305.19234
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560

A Fine-tuning vs. GCD

It is worth considering whether to prefer fine-tuning
or GCD to adapt LLMs to structured prediction
tasks. Fine-tuning can be applied to either a small
model, such as T5 (Raffel et al., 2019), or directly
to a large model, like LLaMA (Touvron et al.,
2023). There are three crucial factors to take into
account:

1. availability of training data,
2. computational cost of fine-tuning, and
3. performance improvement.

Constrained decoding eliminates the need for train-
ing data and incurs only the computational cost of
running the LM, with small overhead coming from
the incremental parser. Fine-tuning a small model
is affordable and currently represents the state-of-
the-art (SOTA) approach for most structured pre-
diction tasks when training data is available (De
Cao et al., 2021; Jimenez Gutierrez et al., 2022).
However, it necessitates a substantial amount of
data. Although fine-tuning a large model is ex-
pensive, it is highly data-efficient (Brown et al.,
2020). However, recent advancements in efficient
fine-tuning of large models (Hu et al., 2021) have
significantly reduced the computational cost and
hardware requirements. We view GCD as a rapid
and cost-effective adaptation strategy that enables
LMs to produce reliable structured outputs without
the need for fine-tuning.

B Grammatical Framework

Grammatical Framework (GF) is a programming
language for multilingual grammar applications. It
is a special-purpose language for grammars, like
YACC, Bison, Happy, BNFC, but not restricted
to programming languages. It is a functional pro-
gramming language, like Haskell, Lisp, OCaml,
SML, Scheme, but specialized to grammar writing.
For example, the following is a GF grammar to
generate simple English sentences about food:
abstract Food = {

flags startcat = Comment ;
cat

Comment ; Item ; Kind ; Quality ;
fun

Pred : Item -> Quality -> Comment ;
This , That : Kind -> Item ;
Mod : Quality -> Kind -> Kind ;
Wine , Cheese , Fish : Kind ;
Very : Quality -> Quality ;
Fresh , Warm , Italian ,

}

Expensive , Delicious , Boring : Quality ;

Listing 1: The abstract syntax of the Food grammar.

B.1 Abstract Syntax vs. Concrete Syntax
Constrained decoding works by pruning the set
of allowed tokens-id at each decoding step. This
requires that both the grammar and the comple-
tion engine work at the token-id level. Since the
tokenization scheme of LMs are usually different
from each other, the grammar becomes dependent
on the tokenization scheme of the LM. This brings
two challenges: (1) the grammar needs to be re-
defined for each LM (tokenization scheme), and
(2) the debugging of the grammar is difficult be-
cause the grammar is defined at the token-id level.
We propose to decouple the grammar from the tok-
enization scheme of the LM by defining an abstract
grammar and a couple of concrete grammars. The
abstract grammar is defined at the text level, which
is human-readable and independent of the tokeniza-
tion scheme of the LM. The concrete grammars
are defined at the token-id level, which are depen-
dent on the tokenization scheme of the LM and
work with the completion engine. Once an abstract
grammar is defined, the concrete grammars can
be automatically translated from the abstract gram-
mar. This is similar to the process of compiling
a high-level programming language to a low-level
assembly language. The separation of the abstract
grammar and the concrete grammar is implemented
in GF. For example, the predication rule

Pred. Comment ::= Item "is" Quality

Listing 2: BNF Notation

now becomes two rules:
fun Pred : Item -> Quality -> Comment ;
lin Pred item quality = item ++

"is" ++ quality ;

Listing 3: Grammatical Framework Notation

All that matters in a linearization rule is that
it defines a string as a function of the variables
that it depends on. A GF grammar consists of two
parts: abstract syntax and concrete syntax.Below
is the concrete syntax of the aforementioned Food
grammar:

concrete FoodEng of Food = {
lincat

Comment , Item , Kind , Quality = Str ;
lin

Pred item quality = item ++ "is"
++ quality ;

This kind = "this" ++ kind ;

That kind = "that" ++ kind ;
Mod quality kind = quality ++ kind ;
Wine = "wine" ;
Cheese = "cheese" ;
Fish = "fish" ;
Very quality = "very" ++ quality ;
Fresh = "fresh" ;
Warm = "warm" ;
Italian = "Italian" ;
Expensive = "expensive" ;
Delicious = "delicious" ;
Boring = "boring" ;

}

Listing 4: The concrete syntax of the Food grammar.

And also the concrete syntax of the Food gram-
mar in Italian:

concrete FoodIta of Food = {
lincat

Comment , Item , Kind , Quality = Str ;
lin
Pred item quality = item ++ "e"

++ quality ;
This kind = "questo" ++ kind ;
That kind = "quel" ++ kind ;
Mod quality kind = kind ++ quality ;
Wine = "vino" ;
Cheese = "formaggio" ;
Fish = "pesce" ;
Very quality = "molto" ++ quality ;
Fresh = "fresco" ;
Warm = "caldo" ;
Italian = "italiano" ;
Expensive = "caro" ;
Delicious = "delizioso" ;
Boring = "noioso" ;

}

Listing 5: The concrete syntax of the Food grammar in
Italian.

B.2 Multilingual Grammars

A multilingual grammar is a system with one ab-
stract syntax and any number of concrete syntaxes.
While GF was originally designed for machine
translation, it happens to be well suited to han-
dle multi-tokenizations. Different large language
models have different tokenizers. For the same
sentence, their representations in token id space
are different. This phenomenon is very similar to
the multilingual grammar scenario, where the same
abstract syntax tree can be linearized into different
languages as shown in in the Food grammar.

B.3 Expressivity

Grammatical Framework (GF)’s incremental
parser, supports PMCFG (Parallel Multiple
Context-Free Grammars). PMCFG lies between
mildly context-sensitive and fully context-sensitive
grammars (Seki et al., 1991).

C IE Task Settings

We use the same KB as in (Josifoski et al., 2023),
which contains 2.7M entities and 888 relations
from the WikiData KG (Vrandečić, 2012). We
use SynthIE-text dataset (Josifoski et al., 2023), a
synthetic dataset for the IE task generated from
prompting GPT3.5 model. This dataset consists
of 10K validation and 50K test samples. It was
shown to have a better quality than the widely used
REBEL dataset (Huguet Cabot and Navigli, 2021).

D ED Task Settings

Dataset Preprocessing. Typically, solving the ED
task requires contextual information. However,
through our observations, we have noticed that the
performance of Language Models (LMs) tends to
degrade when exposed to long contexts. To miti-
gate this issue, we have limited the left and right
context surrounding the mention to only 10 tokens
each.

Out of Knowledge Base Mention. It’s important
to note that some of these datasets contain men-
tions that are not present in the knowledge base
(YAGO_KB) To ensure consistency and accuracy,
we filter out these mentions, exclusively utilizing
the ones that are available. We report the number of
data points whose target entity is not in the knowl-
edge base. These data points are filtered out in the
experiments with input-independent grammar.

• AIDA-CoNLL: 0 out of 4485

• ACE2004: 0 out of 257

• AQUAINT: 4 out of 727

• ClueWeb: 12 out of 11154

• MSNBC: 0 out of 656

• Wikipedia: 23 out of 6821

In the experiments with input-dependent gram-
mar, we also filter out the data points whose candi-
date set is empty.

• AIDA-CoNLL: 0 out of 4485

• ACE2004: 17 out of 257

• AQUAINT: 24 out of 727

• ClueWeb: 44 out of 11154

• MSNBC: 5 out of 656

• Wikipedia: 7 out of 6821

• UnseenMention(wikilinksNED): 114 out of
10000

Metrics. Many previous works (De Cao et al.,
2021; Ganea and Hofmann, 2017; Ayoola et al.,
2022) report the micro-averaged F1 score from Ger-
bil evaluation tool. In our approach, we always take
the top-1 prediction as the final prediction. Since
each mention is only associated with one target
entity, the micro-averaged F1 score is equivalent to
the accuracy in this case (accuracy = precision =
recall = F1) We report the accuracy as the evalua-
tion metric for the ED task and didn’t use Gerbil
evaluation tool.

E Prompt Construction

In this section, we provide more details on the
prompt construction process. The prompt used in
our experiments is composed of two parts:

1. instruction: a short sentence that describes the
task.

2. demonstration examples: a set of examples
that demonstrate the expected behavior of the
model.

We observe that the performance of the model is
sensitive to the wording of the instruction and the
format of the demonstration examples. To find
a good instruction and demonstration examples,
we first manually construct a set of instructions
and demonstration formats. Then, we randomly
sample a few demonstration examples from the
training set and manually check whether the model
can solve the task with the given instruction and
demonstration examples. This process helps us
find a good instruction and demonstration format,
thought probably not the best. Since our goal is
not to find the best instruction and demonstration
format, we didn’t spend too much time on this
process. Below, we provide more details on the
prompt construction process for each task.

E.1 Information Extraction
The instruction used is Extract the triples in
subject-collapsed format from texts below.
The demonstration examples are in the following
format: [input] -> [output], where the input

is a text and the output is a set of triples in subject-
collapsed format. A concrete example would be:
Vettaikaaran (2009 film) was originally
written in the Tamil language, with
B. Babusivan as the screenwriter. ->
[s] Vettaikaaran_(2009_film) [r] original
language of film or TV show [o]
Tamil_language [r] screenwriter [o] B._-
Babusivan [e]

E.2 Entity Disambiguation

We show two prompt construction methods for en-
tity disambiguation.

Prompt construction A. The instruction is
Disambiguate the entity surrounded by
[START_ENT] and [END_ENT] by giving the
correct entity name in the knowledge base.
We randomly select some demonstration examples
from the training set. We use the following for-
mat to represent the demonstration examples as
a string: [input] -> [mention] [[target
entity]], where the input is a text, the mention
is the entity mention surrounded by [START_ENT]
and [END_ENT], and the target entity is the entity
name in the knowledge base. A concrete exam-
ple of demo example representation would be: Eu
rejects [START_ENT] German [END_ENT] call
to boycott British lamb Peter Blackburn
Brussels 1996 08-̈> German [Germany] The
final prompt is a concatenation of the instruction
and the demonstration examples. A full prompt
with 2 demo examples would be:
Disambiguate the entity surrounded by
[START_ENT] and [END_ENT] by giving the
correct entity name in the knowledge base:
"Eu rejects [START_ENT] German [END_-
ENT] call to boycott British lamb Peter
Blackburn Brussels 1996 08" -> German [
Germany]; 16 other items that were put up
for auction by [START_ENT] Hendrix [END_-
ENT] s former girlfriend Kathy Etchingham
-> Hendrix [Jimi Hendrix]; lead with a
well struck header in the seventh minute
[START_ENT] Japan [END_ENT] then laid
siege to the Syrian penalty area for most
-> "

Prompt construction B. The instruction is:
Disambiguate the entity surrounded by
[START_ENT] and [END_ENT] by giving the
canonical entity name in the knowledge
base:. The demonstration examples are in the

following format: [input] -> [mention] [
[target entity]], where the input is a text,
the mention is the entity mention surrounded by
[START_ENT] and [END_ENT], and the target
entity is the canonical entity name in the knowl-
edge base. A concrete example of demo ex-
ample would be: "Eu rejects [START_ENT]
German [END_ENT] call to boycott British
lamb Peter Blackburn Brussels 1996 08
-> German : Canonical form [Germany
] A full prompt with 2 demo examples would
be: Disambiguate the entity surrounded by
[START_ENT] and [END_ENT] by giving the
canonical entity name in the knowledge
base: "Eu rejects [START_ENT] German
[END_ENT] call to boycott British lamb
Peter Blackburn Brussels 1996 08 -> German
: Canonical form [Germany] 16 other
items that were put up for auction by
[START_ENT] Hendrix [END_ENT] s former
girlfriend Kathy Etchingham -> Hendrix
: Canonical form [Jimi Hendrix] lead
with a well struck header in the seventh
minute [START_ENT] Japan [END_ENT] then
laid siege to the Syrian penalty area for
most -> "

Prompt used in each dataset We compare the
performance of the two prompts in each dataset
over the validation set. We select the prompt that
performs the best in each dataset. The prompt used
in each dataset is shown in Table 6.

Dataset Prompt

AIDA Prompt 1
MSNBC Prompt 2
AQUAINT Prompt 2
ACE2004 Prompt 2
CWEB Prompt 2
WIKI Prompt 1

Table 6: Prompt used in each dataset

E.3 Constiutency Parsing

The instruction is: Perform constituency
parsing on the provided sentences
in accordance with the Penn TreeBank
annotation guidelines.. The demonstration
examples are in the following format: [input] ->
[output], where the input is a text and the output
is the flattened constituency parse tree. A concrete
example would be:

The dollar weakened against most other
major currencies -> [(S (NP-SBJ (DT
The) (NN dollar)) (VP (VBD weakened
) (PP (IN against) (NP (RBS most) (
JJ other) (JJ major) (NNS currencies
)))))], where the corresponding parse tree
is shown in Listing 6.

Listing 6: parse tree with hierarchical indentation
(S

(NP−SBJ
(DT The)
(NN d o l l a r)

)
(VP

(VBD weakened)
(PP

(IN a g a i n s t)
(NP

(RBS most)
(J J o t h e r)
(J J major)
(NNS c u r r e n c i e s)

)
)

)
)

One variant of the prompt is to provide a rea-
soning chain with the demonstration examples. A
concrete example would be:
"The constituency parse tree is: (S (
NP-SBJ (NN Bond) (NNS prices)) (VP
(VBD were) (ADJP-PRD (RB barely) (
JJR higher))))
" "S: This stands for Sentence, the
top-level structure in the parse tree."
"NP-SBJ: This is the subject noun phrase
of the sentence, which is ’Bond prices’."
"NN: This stands for Noun, Singular or
Mass. In this case, the word ’Bond’ falls
into this category."
"NNS: This stands for Noun, Plural. The
word ’prices’ is an example of this."
"VP: This stands for Verb Phrase, which
in this case is ’were barely higher’."
"VBD: This stands for Verb, Past Tense.
The word ’were’ falls into this category."
"ADJP-PRD: This stands for Adjective
Phrase, used as a predicate. The phrase
’barely higher’ is an example of this."
"RB: This stands for Adverb. The word
’barely’ falls into this category."
"JJR: This stands for Adjective,
Comparative. The word ’higher’ falls into
this category.’"

SynthIE-text
Method Precision Recall F1

Few-shot Unconstrained
LLaMA-7B-sc (4 shots) 9.7 8.6 9.2
LLaMA-13B-sc (4 shots) 6.7 12.5 8.7
LLaMA-33B-sc (4 shots) 10.6 20.6 14.0

Few-shot Constrained
LLaMA-7B-sc (4 shots) 24.1 19.3 21.5
LLaMA-13B-sc (4 shots) 26.4 30.5 28.3
LLaMA-33B-sc (4 shots) 31.3 36.2 33.6

Table 7: Results for cIE with subject-collapsed lin-
earization.

SynthIE-text
Method Precision Recall F1

Supervised
GenIE T5-base-fe (Josifoski et al., 2022) 49.1 26.7 34.6

Few-shot Unconstrained
LLaMA-7B-feR (4 shots) 9.9 13.5 11.4
LLaMA-13B-feR (4 shots) 10.8 17.5 13.4
LLaMA-33B-feR (4 shots) 14.0 22.5 17.3
Vicuna-13B-feR (4 shots) 12.5 16.7 14.3

Few-shot Constrained
LLaMA-7B-feR (4 shots) 28.1 23.6 25.7
LLaMA-13B-feR (4 shots) 31.8 31.2 31.5
LLaMA-33B-feR (4 shots) 36.4 34.8 35.6
Vicuna-13B-feR (4 shots) 40.3 23.8 29.9

Table 8: Results for cIE with all relations added to
the prompt. feR stands for fully-expanded linearization
with relations added to the prompt.

F Decoding Settings

We employ constrained beam search during our ex-
periments, with a beam size of 2 and length penalty
of 1.0. Our choice of a small beam size is based on
our observation that larger beam sizes do not yield
significant improvement and may even result in de-
creased performance. In contrast, a beam size of 2
proves to be sufficient for achieving good results
while also being computationally efficient. When
evaluating the generated outputs, we select the most
probable non-empty generation as the output.

G Additional Experimental Results

G.1 Information Extraction

Subject-Collapsed Linearization. Subject-
collapsed linearization is a variant of linearization
where the subject is collapsed into the object. It
has the advantage of being more compact (token
efficient) than the fully-expanded linearization, but
it yields slightly lower performance, intuitively be-
cause it’s less explicit. Table 7 shows that the
constrained decoding approach brings a significant

improvement over the unconstrained decoding ap-
proach for LMs of all sizes. Compared with the
results in Table 7, the performance of the subject-
collapsed linearization is indeed lower than the
fully-expanded linearization.

Adding all relations to the prompt. With a
maximum context length of 2048 tokens, it’s not
possible to add all the millions of entities to the
prompt. However, we can add all the relations to
the prompt, which is a much smaller set (888 rela-
tions). One may wonder if adding all the relations
to the prompt would help the model to learn the
relation extraction task better. Because the model
can copy the relation from the prompt and this may
make the task easier. However, we find that adding
all the relations to the prompt does not help the
model to learn the relation extraction task better.
Table 8 shows that adding all the relations to the
prompt only brings a small improvement over the
baseline.

Constituency Parsing with Vicuna. We also eval-

Method Precision Recall Tag Accuracy Validity

Unconstrained
Vicuna-7B 13.5 12.7 27.8 42.2
Vicuna-13B 31.6 28.1 29.6 51.4

Constrained IIG
Vicuna-7B 17.4 16.3 30.5 54.3
Vicuna-13B 30.8 27.7 33.4 56.1

Constrained IDG
Vicuna-7B 35.6 31.9 41.4 100.0
Vicuna-13B 51.6 44.4 42.4 100.0

Table 9: Constituency parsing results with Vicuna. The
experiments setting is the same as in Table 3.

uate the constrained decoding approach on the con-
stituency parsing task with the instruction-tuned
model Vicuna. Table 9 shows Vicuna’s perfor-
mance is even worse than the LLaMA model.

H Latency

Here’s a concise table comparing the latency of
pure decoding to the additional delay introduced
by grammar constraints.

Latency for IE. We provide a measurement of la-
tency for IE task in Figure 3 and Figure 4. We con-
sider two large grammars, the WikiNER grammar
and the REBEL grammar. The WikiNER gram-
mar contains 279 K entities and 158 relations. The
REBEL grammar contains 5.9 M entities and 857
relations. Given the grammar, we randomly pick
the next token from the set of next allowed tokens

with the end-of-sentence token excluded to avoid
early termination. The incremental parsing step is
done on CPU and we do not use any optimization
techniques such as multi-threading.

Figure 3: latency of WikiNER grammar

Figure 4: latency of REBEL grammar

As shown in Figure 3s, the latency for WikiNER
grammar (0.05s) is comparable to the latency of the
LM on GPU. However, the latency for the REBEL
grammar (0.5s) is significantly higher than the la-
tency of the LM. We believe this can be largely
improved by using more appropriate incremental
parser and leave it as future work.

I Error Examples of Constituency
Parsing

Here we give examples of using LMs to perform CP
in a free-form generation setting. We show some
output examples1 of LLaMA-13B and Vicuna-13B
on CP on Penn Treebank (PTB). We see that while
instruction-tuned LMs (Vicuna-13B) can generate
seemingly reasonable parse trees, most of them
are not correct. On the other hand, base LMs
(LLaMA-13B) almost completely fail to follow

1The visualisation are made from https://chat.lmsys.
org/

the instruction. The generation on the left is from
Vicuna-13B and the generation on the right is from
LLaMA-13B. The majority of the erroneous output
sequences contain unbalanced brackets and length
mismatch(missing words or extra words from the
input sentence).

https://chat.lmsys.org/
https://chat.lmsys.org/

Figure 5: Example of 1 shot CP on PTB instance No.12 The golden parse tree is "(S (ADVP-TMP (RB Now))
(NP-SBJ (PRP we)) (VP (VBP ’re) (PP-LOC-PRD (IN at) (NP (NP (DT the) (NN bottom)) (PP (IN
of) (NP (DT the) (NN heap)))))))" The generation from Vicuna-13B is not correct, but it still looks like a
reasonable parse tree. The generation from LLaMA-13B fails to follow the instruction.

Figure 6: Example of 1 shot CP on PTB instance No.12 The golden parse tree is "(S (ADVP-TMP (RB Now)) (
NP-SBJ (PRP we)) (VP (VBP ’re) (PP-LOC-PRD (IN at) (NP (NP (DT the) (NN bottom)) (PP (IN of) (
NP (DT the) (NN heap)))))))" The generation from Vicuna-13B looks reasonable, but its bracketing is actually
unbalanced. The generation from LLaMA-13B fails to follow the instruction.

Figure 7: Example of 1 shot CP on PTB instance No.12 The golden parse tree is "(S (ADVP-TMP (RB Now)) (
NP-SBJ (PRP we)) (VP (VBP ’re) (PP-LOC-PRD (IN at) (NP (NP (DT the) (NN bottom)) (PP (IN of) (
NP (DT the) (NN heap)))))))" The generation from Vicuna-13B is a valid tree structure, but it is not the same
as the golden parse tree. The generation from LLaMA-13B fails to follow the instruction.

Figure 8: Example of 1 shot CP on PTB instance No.29 The golden parse tree is "(S (ADVP-TMP (RB Now)) (
NP-SBJ (NNS producers)) (VP (VBP hope) (SBAR (S (NP-SBJ (NNS prices)) (VP (VBP have) (VP (VBN
hit) (NP (NN bottom))))))))" The generation from Vicuna-13B has wrong words(some missing, some extra)
and wrong bracketing. The generation from LLaMA-13B fails to follow the instruction.

Figure 9: Example of 1 shot CP on PTB instance No.29 from another sampling The golden parse tree is "(S (
ADVP-TMP (RB Now)) (NP-SBJ (NNS producers)) (VP (VBP hope) (SBAR (S (NP-SBJ (NNS prices))
(VP (VBP have) (VP (VBN hit) (NP (NN bottom))))))))" The generation from Vicuna-13B has wrong
words(some missing, some extra) and wrong bracketing. The generation from LLaMA-13B fails to follow the
instruction.

Figure 10: Example of 1 shot CP on PTB instance No.86(long sentence) This is a long sentence. The golden
parse tree is "(SINV (S-TPC-2 (S (NP-SBJ (DT The) (JJ overall) (ADJP (CD 0.9) (NN %)) (NN increase))
(VP (VBZ is) (ADJP-PRD (JJ serious)) (PP (IN in) (NP (PRP itself))))) (CC but) (S (SBAR-NOM-SBJ (
WHNP-1 (WP what)) (S (VP (VBZ is) (ADJP-PRD (RB even) (JJR worse))))) (VP (VBZ is) (SBAR-PRD
(IN that) (S (PP (VBG excluding) (NP (NN food) (CC and) (NN energy))) (NP-SBJ (DT the) (NN
producer) (NN price) (NN index)) (ADVP-TMP (RB still)) (VP (VBD increased) (PP-EXT (IN by) (NP (
CD 0.7) (NN %))))))))) (VP (VBD said)) (NP-SBJ (NP (NNP Gordon) (NNP Richards)) (NP (NP (DT
an) (NN economist)) (PP-LOC (IN at) (NP (NP (DT the) (NNP National) (NNP Association)) (PP (IN of
) (NP (NNP Manufacturers))))))))" The generation from Vicuna-13B has wrong words(some missing, some
extra) and wrong bracketing. The generation from LLaMA-13B is not a valid parse tree, e.g. the last constituent
NNP doesn’t have a corresponding word.

