
Under review as a conference paper at ICLR 2021

LSP : ACCELERATION AND REGULARIZATION OF
GRAPH NEURAL NETWORKS VIA LOCALITY SENSI-
TIVE PRUNING OF GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have emerged as highly successful tools for
graph-related tasks. However, real-world problems involve very large graphs, and
the compute resources needed to fit GNNs to those problems grow rapidly. More-
over, the noisy nature and size of real-world graphs cause GNNs to over-fit if not
regularized properly. Surprisingly, recent works show that large graphs often in-
volve many redundant components that can be removed without compromising
the performance too much. This includes node or edge removals during inference
through GNNs layers or as a pre-processing step that sparsifies the input graph.
This intriguing phenomenon enables the development of state-of-the-art GNNs
that are both efficient and accurate. In this paper, we take a further step towards
demystifying this phenomenon and propose a systematic method called Locality-
Sensitive Pruning (LSP) for graph pruning based on Locality-Sensitive Hashing.
We aim to sparsify a graph so that similar local environments of the original graph
result in similar environments in the resulting sparsified graph, which is an es-
sential feature for graph-related tasks. To justify the application of pruning based
on local graph properties, we exemplify the advantage of applying pruning based
on locality properties over other pruning strategies in various scenarios. Exten-
sive experiments on synthetic and real-world datasets demonstrate the superiority
of LSP, which removes a significant amount of edges from large graphs without
compromising the performance, accompanied by a considerable acceleration.

1 INTRODUCTION

Graph neural networks have become extremely popular for tasks involving graph-data. The majority
of architectures employ varieties of message-passings, such as Graph Convolutional Networks (Kipf
& Welling, 2016), Graph Isomorphism Networks (Xu et al., 2018) and more (Wu et al., 2020). These
architectures propagate belief information from nodes of a graph through adjacencies in order to
generate representations that depend on wide graph environments. This property makes them well
suited for learning tasks such as node classification (Bhagat et al., 2011; Zhang et al., 2018), link
prediction (Kumar et al., 2020) and graph classification (Kriege et al., 2020; Cai et al., 2018).

Although the aforementioned architectures have demonstrated great success, recent research has
shown considerable limitations of GNNs. First, more complex architectures tend to be computation-
ally demanding. For instance, Graph Attention Networks (GATs) (Veličković et al., 2017) whose
neighborhood aggregation mechanism employ computations of self-attentions to assign weights for
neighboring nodes. Second, this methodology of neighborhood aggregation leads to an exponen-
tially growing amount of information originating from exponentially growing neighborhoods that
needs to be encoded within fixed-size node representation vectors, a phenomenon referred as over-
squashing (Alon & Yahav, 2020). Furthermore, the varying number of nodes participating in each
node’s neighborhood leads to a highly varying amount of information that needs to be encoded
within a fixed-length code, a phenomenon that we call the varying neighborhoods. Note that many
other architectures (e.g., CNNs, MLPs, and RNNs) do not encounter this since they only accept
fixed-size inputs or produce outputs with varying sizes that correspond to the input size. GNNs
break this correspondence due to their neighborhood aggregation methodology. These phenomena
become very prominent as the depth of the neighborhood grows, which limits our ability to develop

1

Under review as a conference paper at ICLR 2021

Figure 1: Illustration of consistent pruning versus non-consistent pruning. On the left, the input
consists of a graph with two highlighted environments whose topology is similar because the cen-
tral nodes have the same set of neighbors. In this case, consistent pruning results with a graph
that preserves the similarity between these environments while non-consistent pruning, e.g., ran-
dom removal of edges, results with dissimilar environments. On the right, the two highlighted
environments have dissimilar topologies because the central nodes have different sets of neighbors.
Consistent pruning is likely to preserve this dissimilarity, while random might bring the similarity
between them closer.

deep GNNs. We further discuss these phenomena and provide explanations on how pruning edges
could help mitigating them in Section 4.4.2.

A popular approach for tackling these problems is to apply some transformation or augmentation
to the input graph. One prominent approach is Graph Sparsification (Hu & Lau, 2013; Spielman
& Teng, 2008; Spielman & Srivastava, 2008; Calandriello et al., 2018) in order to accelerate GNNs
by removing nodes and edges from a graph under the constraint of preserving the predictive perfor-
mance (Rong et al., 2019; Srinivasa et al., 2020; Ye & Ji, 2021; Hamilton et al., 2017). In fact, Faber
et al. (2021) showed that very often a significant amount of edges can be removed without degrading
the performance of a model, which raises a concern regarding the usage of popularly used bench-
marks. They claimed that those tasks can be virtually solved through node features only, implying
that the graph topology has limited contribution and edges can be safely disregarded.

Motivated by the above discussion, we argue that graph sparsification can greatly improve the per-
formance of GNNs in tasks where the graph topology is significant. Moreover, we argue that sparsi-
fication that is based on local properties of a graph is more in-line with the prevailing methodology
of GCNs, as opposed to approaches that rely on global topologies, such as spectral methods. There-
fore, we introduce Locality Sensitive Pruning, a new algorithm for edges pruning based on locality
sensitive hashing (LSH) (Shakhnarovich et al., 2008). As a result, pruned graphs are qualified with
structure dynamics that alleviate the ability to distinguish between different graphs and mitigate the
computation burden. More importantly, similar environments of the input graph result in similar en-
vironments in the sparsified graph while dissimilar environments result in dissimilar environments
in the sparsified graph with high probability, as depicted in Figure 1. Consequently, we preserve
the ability to distinguish between environments of the graph that were distinguishable prior to the
sparsification process.

2 RELATED WORK

Graph Convolutional Networks (GCNs) were introduced by Kipf & Welling (2016) and has
been widely adopted for solving tasks involving graphs, such as node classification (Bhagat et al.,
2011; Zhang et al., 2018), link prediction (Kumar et al., 2020), graph classification (Kriege et al.,
2020; Cai et al., 2018), and more. The most basic form uses simple aggregation functions to obtain
a node representation as a function of its neighbors, such as average and summation. Later, the
model was extended to more complex architectures which introduce more sophisticated aggregation
functions. For instance, Graph attention Networks (GATs) (Veličković et al., 2017) use dot-products
based attention to calculate weights for each edge. Additionally, Corso et al. (2020) argued that

2

Under review as a conference paper at ICLR 2021

the aggregation layers are unable to extract enough information from the nodes’ neighbourhoods in
a single layer, resulting in a limited expressive power and learning abilities. To address this, they
proposed Principal Neighbourhood Aggregation for Graph Nets (PNA) which combines multiple
aggregators to improve the performance of the graph neural networks.

Graph Sparsification aims to approximate a graph on the same set of vertices and edges (Benczur
& Karger, 2002). Much research has been done in this field and several algorithms were proposed,
including spectral sparsifiers (Spielman & Teng, 2008; Calandriello et al., 2018; Chu et al., 2020),
sampling via Metropolis algorithms (Hübler et al., 2008), and others (Sadhanala et al., 2016). In
the context of training graph neural networks, the motivation is twofold: 1. accelerate training by
performing fewer message-passing operations, and 2. regularization. For the former, Srinivasa et al.
(2020) propose FastGAT, a spectral sparsifier based on effective-resistance (Spielman & Srivastava,
2008) for acceleration of GATs. Specifically, they aim to accelerate GATs by constructing a sampled
graph with far fewer edges for each attention head within the network. Chen et al. (2018) proposed
FastGCN which samples vertices and edges through importance sampling and thus reduces the graph
size. Another line of works (Rong et al., 2019; Chen et al., 2020; Hasanzadeh et al., 2020; Zheng
et al., 2020; Luo et al., 2021; Kim & Oh, 2020; Ye & Ji, 2021) perform graph sparsification to
achieve regularization, with the aim to prevent over-smoothing and overfitting (Li et al., 2018).

Locality-sensitive hashing (LSH) is a widely used technique for finding pairs of similar items
in a large set efficiently. It has been successfully applied for accelerating the Transformer model
(Vaswani et al., 2017) by mitigating the burden of computing pair-wise attentions as demonstrated
by the Reformer (Kitaev et al., 2020). This is done by approximation of attention computations based
on locality-sensitive hashing, which replaces theO(L2) factor in attention layers withO(L · logL).

3 PRELIMINARIES

3.1 GRAPH CONVOLUTIONAL NETWORKS (GCNS)

A graph is a 2-tuple G = (V,E) where V is a set of nodes and E ⊆ V × V is a set of undirected
edges connecting pairs of nodes. We consider the setting in which each node v is associated with a
feature vector xv ∈ Rd. The adjacency matrix of G, denoted by A ∈ {0, 1}|V |×|V |, associates each
edge ei,j = (vi, vj) ∈ E with an entryAi,j indicating that ei,j ∈ E. The number of edges connected
to a node vi (also known as the degree of vi) is denoted by di =

∑
j Ai,j . We defineD as a diagonal

matrix where Di,i = di and 0 elsewhere. For what follows, we consider the Graph Convolutional
Network (GCN) model from Kipf & Welling (2016). This model is recursively defined as

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (1)

where Ã = A+ I is the adjacency matrix of the undirected graph G with additional self-loops,
obtained by adding the identity matrix I , W (l) is a weight matrix associated with the lth layer of
the model, and σ(·) is some non-linear activation function. The notation H(l) relates to the result of
the lth layer of the model, which is also the input to the l + 1 layer. The input to the first layer is
H(0) = [x1, . . . , x|V |]

ᵀ ∈ R|V |×d. We intend to accelerate the training and inference of this model
by reducing the input size.

3.2 LOCALITY SENSITIVE HASHING (LSH)

The Locality Sensitive Hashing algorithm is designed to approximate distances between vectors
in a high-dimensional space in a lower dimensional space. It is widely applicable in fields like
data mining and machine learning, and is particularly useful for tasks such as approximate nearest
neighbors. This algorithm relies on the existence of a family H of hash functions mapping Rd to
some universe U . The definition of LSH is as follows.

Definition 1 A family of hash functionsH is called (R, c, P1, P2)-sensitive if for any p, q ∈ Rd

• d(p, q) ≤ R⇒ Ph∈RH[h(q) = h(p)] ≥ P1,

• d(p, q) ≥ cR⇒ Ph∈RH[h(q) = h(p)] ≤ P2.

3

Under review as a conference paper at ICLR 2021

An interesting hash functions family satisfies the constraint that P1 > P2. In our work, we utilize
LSH by mapping feature vectors of graph edges into integers, namely “buckets”, so that similar
features are mapped into the same buckets. Then, the hash of a set of edges, consisting of edges in
a neighborhood of a node, is the bucket with the minimal hash value, which is referred as MinHash.
When applied to numerous sets, this process results with the same minimal buckets for similar edge
sets. Consequently, by choosing to keep edges that correspond to the MinHash values, we aim to
preserve the similarities of different graph regions.

4 LOCALITY SENSITIVE PRUNING

This section introduces the methodology of Locality Sensitive Pruning (LSP). Additionally, we pro-
vide a complexity analysis of the algorithm and address its limitations. Finally, we discuss the
advantages of pruning edges from graphs and the prominent advantages of LSP over other methods.

4.1 OVERVIEW

Our aim is to modify the topology of a graph so that similar regions result in a similar, yet con-
sistently sparsified structure. For this purpose, we base our approach on locality sensitive hashing
that assigns signatures to edges so that similar edges are assigned with the same signature. Then,
we specify MinHash as a rule for choosing which edges to keep; that is, the edges that make up
the sparsified graph. In MinHash, the selected edges correspond to signatures that are mapped to
minimal hash values using pseudo-random hash functions. These psuedo-random hash functions are
used across all graph regions, and thus similar regions of the original graph result in similar regions
in the resulting sparsified graph.

The procedure of sparsifying a graph using LSP is as follows. Given a graph G = (V,E),
LSP constructs a new graph G′ = (V,E′) where E′ ⊂ E. We assume every edge (i, j) ∈ E
is associated with an attribute ei,j ∈ Rd, and the set of k pseudo-random functions
H = {hz|∀z ∈ [k] : hz : Rd → R} maps d-dimensional vectors into scalars under the locality-
sensitive-hashing criteria (see Section 4.2 for more details on the choice of these functions). For
each node u ∈ V , we compute the hash values for all the edges connecting u with its neighbors
Nu = {v ∈ V |(u, v) ∈ E}. Then, we base our choice of edges using the MinHash rule, that is,
edges whose hashes are mapped to the minimal value among all the other edges. The overview of
our sparsification method is described in Algorithm 1.

Algorithm 1 Locality Sensitive Pruning

Input: G = (V,E) . The input graph
H = {h1, ..., hk} . A set of k locality-sensitive hashing (LSH) functions mapping edge

attributes to scalars
Output: A sparsified graph G′ = (V,E′)
E′ ← ∅
for u ∈ V do

Eu ← ∅
for i ∈ [k] do

vmin ← argminv∈Nu
hi(eu,v) . Apply MinHash

Eu ← Eu ∪ {(u, vmin)}
end for
E′ ← E′ ∪ Eu

end for
return G′ = (V,E′)

Note that LSP assumes the existence of edge attributes. However, many real-world problems incor-
porate only node attributes. In these cases, we construct edge attributes from the nodes connected to
its ends, as we describe in Appendix A.

4

Under review as a conference paper at ICLR 2021

4.2 THE CHOICE OF LSH FUNCTIONS

The description of LSP does not define a specific family of hash functions. This is because different
datasets contain attributes with different nature. Consequently, this requires choosing appropriate
hashing methodologies for each dataset. In the following, we present two common choices for hash
functions that we use in our experiments (Section 5). We refer the readers to (Paulevé et al., 2010)
for a review of other LSH function choices.

Binary signatures A LSH function that uses binary signatures is a composition h = h2 ◦ h1 of a
binary signature mapping h1 : Rd → {0, 1}d and a hashing functions h2 : {0, 1}d → N that maps
binary signatures to integers. Specifically, we define h1 as a thresholding function which is associ-
ated with a random vector w (with each wi ∼ N(0, 1)) that determines the threshold for each entry
of an input vector x. Formally, the thresholding is performed by comparing the entries of x and w:

h1(x)i =

{
1, xi > wi

0, otherwise
. (2)

Then, h2 maps the result to integers using the well-known message-digest algorithm (Rivest, 1992)
and bin it into one of m bins by finding the remainder of the division by m. In our experiments
(which will be presented in Section 5), we refer to this method as LSP − T .

Random Projections A LSH hashing function that uses random projections (Shakhnarovich et al.,
2008) aims to project inputs so that similar vectors result in proximate projections, and their quan-
tization result in the same values. Let w be some random vector with each wi ∼ N(0, 1). This
random projection divides input vectors into bins of length l using the hash function defined by

hw,b(x) =

⌊
〈x,w〉+ b

l

⌋
. (3)

Here, b is a random variable sampled from the uniform distribution b ∼ U [0, l]. The inner-product
〈x,w〉 is the projected value of x onto the direction w, which is then shifted by the offset value b
and quantized into l length bins. In our experiments, we refer to this method as LSP − P .

4.3 ANALYSIS

Complexity The procedure of LSP is performed as a preprocessing step prior to the whole training
phase due to its determinism. The pruned graph does not change between training episodes and
thus should be performed only once. Assuming the dimensionality of each edge attribute is d, the
complexity of computing each hash value is O(d) given that the hash function families proposed
in Section 4.2 are used (note that this statement is valid for other common hash function families).
Each of the k hash functions computers |E| hash values, one for each edge. In total, the running time
complexity of LSP is O(k|E|d). The space complexity is O(1), because this only requires iterating
over edges and keeping the minimal hash value, which requires a constant amount of memory.

Limitations We base LSP on the assumption that the topology of the input graph plays a signif-
icant role in the learning procedure. For this reason, in problems where the graph topology is less
meaningful, we do not expect a significant advantage of pruning using LSP over its rival, such as
random removal of edges.

4.4 BENEFITS OF USING LSP

In the following, we present the beneficial reasons for pruning edges. While many claims are valid in
general, that is, they are applied to other pruning methods other than LSP, we begin with advantages
that are particular for LSP.

4.4.1 ADVANTAGES OF PRUNING USING LOCAL ENVIRONMENTAL CHARACTERISTICS

Several graph-related tasks, including node-classification among them, rely on the composition of
the neighborhoods. This results from the core methodology of GCNs which aggregates information

5

Under review as a conference paper at ICLR 2021

from a node’s local environment. Consequently, we want our pruned graph to preserve local prop-
erties of the original graph. For demystifying the necessity to specifically consider local properties
for pruning, we exemplify a node classification scenario in which consistent pruning that preserves
similarities between neighborhoods is necessary for successfully predicting the node classes.

Example 2 This example is illustrated in Figure 2. Consider a node classification scenario con-
sisting of 2 classes. The criterion for a node to belong to class 1 is being a neighbor of both nodes
1, 4 ∈ V . Similarly, the criterion for a node to belong to class 2 is being a neighbor of both nodes
2, 3 ∈ V . Notice that for each environment on the left, there’s a corresponding environment on the
right which has at least 2 common neighbors. For example, the top left environment contains nodes
8 and 20 as neighbors of F , while on the right we have nodes 8 and 20 as neighbors of B.

Suppose that we want to reduce the degree of every node by 50%. When performing consistent
pruning by choosing to keep the nodes corresponding to minimal identity (in our algorithm, these
are the hash values) we encounter the following situation: on the left, we are left with environments
consisting of nodes E,F,G,H , each of which has two neighbors 1 and 4. On the right, we are left
with environments consisting of nodes A,B,C,D, each of which has two neighbors 2 and 3. These
results will enable us to train a classifier that distinguish between the depicted components.

Meanwhile, suppose that we randomly prune 50% of the edges of each node. Since there are
(
4
2

)
= 6

possibilities, the probability that we are left with environments consisting of nodes 8 and 20 both on
the left and the right is

(
1
6

)2
= 1

36 . Consequently, a classifier trained on randomly pruned graphs
using the described settings would have an error rate of 2.7%.

Figure 2: Example scenario in which we are tasked to classify nodes into 2 classes. Each of the nodes
A,B,C,D belong to class 2, while each of the nodes E,F,G,H belong to class 1. Moreover, For
each node among {E,F,H,G} there exists a node among {A,B,C,D} that the intersection of the
sets of their neighbors has size of at least 2.

4.4.2 OTHER ADVANTAGES OF PRUNING EDGES OF A GRAPH

Accelerating GCN training and inference The outcome of pruning edges from a graph is an
acceleration of each training iteration. To see this, recall the recursive definition of GCN (Equation
1) from Kipf & Welling (2016). In this definition, the weights matrix W is of size C × F where
C and F denote the number of input channels and filters respectively. Additionally, the matrix D
is a diagonal matrix of size |V | × |V | with at most |V | non-zero elements, and the matrix A is of
size |V | × |V | whose number of non-zero elements is at most |E|. Apparently, the complexity of
this matrices multiplication does not depend on the number of edges, however from Kipf & Welling
(2016) we know that in practice ÃH is efficiently implemented as a product of a sparse matrix with
a dense matrix whose complexity is linear in the number of edges O(|E|FC). For GCNs that uses
an attention mechanism, from Veličković et al. (2017) we know that the time complexity of a single
attention head is O(|V |CF + |E|F). With this, we claim that pruning edges from an input graph
linearly accelerates GCNs and their variants.

Mitigating Over-Squashing LSP simplifies the graph structure by removing edges. In turn, it
reduces the amount of information needed to be encoded within the node representation vectors.
Particularly, pruning of edges helps mitigating the over-squashing phenomenon in which informa-
tion from the exponentially-growing receptive field is compressed into fixed-length node vectors

6

Under review as a conference paper at ICLR 2021

(Alon & Yahav, 2020). Since removing edges reduces the degree of each node, it also reduces its
receptive field exponentially, thus preventing this destructive phenomenon.

We further discuss the Neighborhood Variance issue in Appendix C.

5 EXPERIMENTS

We validated LSP on 3 graph-related tasks: (1) Node classification; (2) Graph regression, and (3)
Graph classification. The objectives of this empirical study were twofold:

• Assess the quality of the pruned graphs in terms of performance metrics. We train and test
several models on various datasets and configurations, and measure the achieved perfor-
mance metric identified with each dataset as a dependent of the pruning configurations.

• As we target acceleration of GNNs, we assess the amount of acceleration obtained by train-
ing and testing with pruned graphs. This is done by measuring the relative time required
for training and testing on graphs that are pruned with various pruning configurations.

For all the experiments discussed in this section, for each dataset we choose a commonly used
model that is identified with this dataset. For example, we use the GAT (Veličković et al., 2017)
architecture proposed for the PPI (Zitnik & Leskovec, 2017) dataset because it achieves state-of-
the-art performance at the time of writing this paper. We refer the readers to Appendix B.3 for
more information about the models that we use for experimenting with each dataset. Additional
implementation details are given in Appendix B.1.

Evaluation Protocol To evaluate the quality of the pruned graphs, we train and test models with
various pruning configurations and evaluate their performance in terms of the metric identified with
each dataset. Additionally, we measure the running times in order to demonstrate the relative ac-
celeration achieved via pruning. These results are presented as the relative time required for each
iteration compared to the model trained on the unpruned graph. It is important to note the obser-
vation that given a pruning ratio, the choice of pruning methodology does not impact the running
times, thus we present a single curve that describes the acceleration for all pruning methods.

Baselines We compare the performance of 2 LSP variants (see Section 4.2) with Random, that
relates to the method which randomly removes edges from a graph with a certain probability p. We
do not compare LSP with methods that sparsify the input graph during inference, such as FastGCN
(Chen et al., 2018) and DropEdge (Rong et al., 2019), which are discussed in Section 2. This is
because LSP does not modify the training and inference phases of GNNs, as opposed to the afore-
mentioned methods. Additionally, in order to demonstrate the advantage of using the combination
of LSP with complex models over using simpler GNNs which are computationally cheaper in terms
of acceleration, we compare the performance of these models with various pruning configurations
against a basic GCN that is naturally computationally cheaper (described in Appendix B.3).

5.1 NODE CLASSIFICATION BENCHMARKS

Data We experimented with various publicly available datasets: GitHub (Rozemberczki et al.,
2019), Cora (Bojchevski & Günnemann, 2017), CiteSeer (Bojchevski & Günnemann, 2017),
PubMed (Bojchevski & Günnemann, 2017) and PPI (Zitnik & Leskovec, 2017). Detailed descrip-
tions and statistics of these datasets are presented in Appendix B.2.

Results Results for node classification benchmarks are shown in Figure 3. Additional results
are provided in Appendix C.3. The superiority of LSP is demonstrated through the experiments
conducted on Cora and PPI. For these benchmarks, the predictive performance drops significantly
for aggressively pruned graphs via random, while it is noticeable that LSP better preserves the
accuracy of the model trained on the original graphs. Moreover, the basic models used for these
experiments demonstrate a significant decrease in performance while the acceleration achieved by
their simplicity is negligible. Notice that for PubMed and CiteSeer, the accuracy ranges are narrow.
For instance, the model trained on PubMed using 100% of the edges achieves an accuracy score of
0.882, while the same model that is trained with 30% of the edges using random pruning achieves an

7

Under review as a conference paper at ICLR 2021

accuracy score of 0.859. Considering this relatively negligible difference, we observe that random
pruning performs well and consistent pruning via either LSP-P or LSP-T preserves this performance.
Additionally, for this experiment the basic model demonstrates performance that is comparable to
the original model while being substantially faster. The same holds for CiteSeer.

To that end, we conclude that in cases where random pruning performs well, the graph topology has
a negligible impact on the performance of the model. In these cases LSP performs marginally better
than random. The superiority of LSP is well-demonstrated in benchmarks where the topology of the
graph is impactful. In such cases, the performance of the models reduces significantly via random
pruning, while pruning via an LSP variant preserves the local properties of the graph. To conclude
this experiments series, we observe that the achieved inference acceleration is linear in the number
of preserved, a result that matches our expectation as per our complexity expectations.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

% Edges (·100)

A
cc

ur
ac

y

Cora

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e
0 0.2 0.4 0.6 0.8 1

0.86

0.87

0.88

% Edges (·100)

A
cc

ur
ac

y

PubMed

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

0.76

0.78

% Edges (·100)

A
cc

ur
ac

y

CiteSeer

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

% Edges (·100)

m
ic

ro
-F

1
PPI

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

Random LSP-P LSP-T Relative Testing Time Basic (Metric) Basic (RTT)

Figure 3: Test results for node classification problems. For each dataset, we report the results in
terms of the metric identified with that dataset (in solid lines), and the running time per iteration (in
densely dotted lines) under the specified pruning configurations.

5.2 GRAPH REGRESSION BENCHMARKS

Data We experimented with datasets from the chemical world with the goal to predict chemical
properties of molecules: QM9 (Wu et al., 2017) and ZINC (Sterling & Irwin, 2015). In both datasets,
each graph is a molecule, consisting of nodes and edges that represent atoms and different types of
bonds between the atoms respectively. The goal is to regress each graph to its properties, quantum
properties in QM9 and constrained solubility (a synthetic computed property) in ZINC. Refer to
Appendix B.2 for more details of these datasets.

Results Results for the graph regression tasks are shown in Figure 4. We include additional results
for other QM9 targets in Appendix C.3. Continuing the conclusions from the previous section, we
observe that pruning via LSP perform better in terms of lower Mean Absolute Error (MAE) for both
graph regression benchmarks.

5.3 GRAPH CLASSIFICATION BENCHMARKS

Data In order to validate the effectiveness of LSP in extreme scenarios, we developed a generator
for synthetic graph classification datasets. We provide the full list of parameters and their default
values of this generator in Appendix B.2.1. We refer to the default generator configurations as those
which we use in the following experiments.

8

Under review as a conference paper at ICLR 2021

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

% Edges (·100)

M
A

E

constrained solubility

0 0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

N
or

m
al

iz
ed

Ti
m

e

(a) ZINC

0 0.2 0.4 0.6 0.8 1

2.6

2.8

3

3.2

3.4
·10−2

% Edges (·100)

M
A

E
(D

)

µ

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

(b) QM9
Random LSP-P LSP-T Relative Testing Time

Figure 4: Mean Absolute Error (MAE) and normalized running times for graph regression problems.
(4a) results for regressing the constrained solubility for molecules in the ZINC database. (4b) results
for regressing the Dipole moment (µ) for molecules in the QM9 database. Errors are presented as
solid lines (Lower is better). Normalized running times are presented as dashed lines.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

% Edges (·100)

A
cc

ur
ac

y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

Random LSP-P LSP-T
RTT Basic (Metric) Basic (RTT)

Figure 5: Accuracy and running time comparison
for the synthetic graph classification dataset.

Results Results for graph classification on
the synthetic benchmark are shown in Figure 5.
This synthetic data generator enables us to sim-
ulate highly complex scenarios where the topol-
ogy is impactful. This is well-demonstrated by
the aggressive accuracy reduction when prun-
ing with random. This yields the observa-
tion that LSP outperforms the random pruning
method by a large margin, especially for mid-
range pruning ratios. Moreover, as we use a
highly complex model in this section (as de-
scribed in Appendix B.3) that performs com-
plex calculations for neighborhood aggrega-
tion, a significant acceleration is observed when
compared to the model trained on the original
graphs. Additionally, this acceleration is depicted as a linear curve, which matches our expectations.
The basic model used for this experiment (described in Appendix B.3.4) demonstrates a significant
acceleration due to the lack of need to compute 16 attention heads per layer. This acceleration is also
followed by a reduction of ∼ 54% in accuracy: the original model trained on the original graphs
achieves an accuracy score of 90.76% while the basic model achieves an accuracy score of 34%.
For the sake of comparison, the original model trained on pruned graphs with the configuration that
achieves comparable acceleration results in accuracy score of ∼ 76% for both LSP variants. In
this configuration, nearly 45% of the graph edges are pruned. From this result, we conclude that
we were able to train a highly complex model that does not compensate for the performance while
being accelerated via pruning its input.

6 CONCLUSIONS

We have presented Locality Sensitive Pruning (LSP), a systematic method for pruning graphs based
on locality sensitive hashing. By relying on the local features of neighborhoods, LSP preserves
local properties of the graph. Consequently, it does not impair the ability to distinguishing between
samples that were distinguishable prior to the pruning process with high probability. We evaluated
LSP through an extensive experimental study on 3 graph-related tasks. For these experiments, we
trained several ad-hoc graph neural networks on diverse real-world datasets that went through the
pruning process of 2 LSP variants. In all experiments, LSP demonstrates superior performance
when compared to the baselines. At the same time, the reduction in the number of edges translates
to a significant acceleration of the used models, which is linear in the number of edges. A possibly
rewarding avenue of future research is the design of dedicated locality sensitive hash functions that
capture informative features of the graph.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Andras Benczur and David R Karger. Randomized approximation schemes for cuts and flows in
capacitated graphs. arXiv preprint cs/0207078, 2002.

Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks. In
Social network data analytics, pp. 115–148. Springer, 2011.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1616–1637, 2018.

Daniele Calandriello, Alessandro Lazaric, Ioannis Koutis, and Michal Valko. Improved large-scale
graph learning through ridge spectral sparsification. In International Conference on Machine
Learning, pp. 688–697. PMLR, 2018.

Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang Wang, Peng He, and
Zhoujun Li. Label-aware graph convolutional networks. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, pp. 1977–1980, 2020.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
Graph sparsification, spectral sketches, and faster resistance computation via short cycle decom-
positions. SIAM Journal on Computing, pp. FOCS18–85, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Lukas Faber, Yifan Lu, and Roger Wattenhofer. Should graph neural networks use features, edges,
or both? arXiv preprint arXiv:2103.06857, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sam-
pling. In International conference on machine learning, pp. 4094–4104. PMLR, 2020.

Pili Hu and Wing Cheong Lau. A survey and taxonomy of graph sampling. arXiv preprint
arXiv:1308.5865, 2013.

Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani. Metropolis
algorithms for representative subgraph sampling. In 2008 Eighth IEEE International Conference
on Data Mining, pp. 283–292, 2008. doi: 10.1109/ICDM.2008.124.

10

Under review as a conference paper at ICLR 2021

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. In International Conference on Learning Representations, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molec-
ular graphs. arXiv preprint arXiv:2003.03123, 2020.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5(1):1–42, 2020.

Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. Link prediction tech-
niques, applications, and performance: A survey. Physica A: Statistical Mechanics and its Appli-
cations, 553:124289, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining, pp. 779–787, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019.

Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A comparison of hash
function types and querying mechanisms. Pattern recognition letters, 31(11):1348–1358, 2010.

Ronald Rivest. Rfc1321: The md5 message-digest algorithm, 1992.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.(2019).
arXiv preprint cs.LG/1909.13021, 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Veeru Sadhanala, Yu-Xiang Wang, and Ryan Tibshirani. Graph sparsification approaches for lapla-
cian smoothing. In Artificial Intelligence and Statistics, pp. 1250–1259. PMLR, 2016.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in learning and
vision. IEEE Trans. Neural Networks, 19(2):377, 2008.

DA Spielman and N Srivastava. Graph sparsification by effective resistances. corr abs/0803.0929
(2008), 2008.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. corr, abs/0808.4134,
2008. arXiv preprint arXiv:0808.4134, 2008.

Rakshith S Srinivasa, Cao Xiao, Lucas Glass, Justin Romberg, and Jimeng Sun. Fast graph attention
networks using effective resistance based graph sparsification. arXiv preprint arXiv:2006.08796,
2020.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

11

Under review as a conference paper at ICLR 2021

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Z Wu, B Ramsundar, EN Feinberg, J Gomes, C Geniesse, AS Pappu, K Leswing, and V Pande.
Moleculenet: a benchmark for molecular machine learning. arxiv e-prints. arXiv preprint
arXiv:1703.00564, 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yang Ye and Shihao Ji. Sparse graph attention networks. IEEE Transactions on Knowledge and
Data Engineering, 2021.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network representation learning: A
survey. IEEE transactions on Big Data, 6(1):3–28, 2018.

Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multi-
plex graph for molecular structures. arXiv preprint arXiv:2011.07457, 2020.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

A CONSTRUCTION OF EDGE ATTRIBUTES

As discussed in Section 4, LSP assumes the existence of edge attributes. However, many graph
datasets do not include such representation but include node attributes instead (or additionally).
Additionally, some datasets have scalar values as edge and node representations (for instance,
molecules with number of bonds as edge attributes and atomic number as node attribute). Those
representations cannot be used as inputs to our hash functions because they expect vectors as input
rather than scalars. Here we describe our choice of representation in each case.

Recall the definition of edge attributes from Section 4 - an attribute of an edge (u, v) ∈ E is
a d-dimensional vector denoted as eu,v ∈ Rd. Similarly, an attribute of a node u ∈ V is a q-
dimensional vector. For convenience, we use the name of a node itself as a notation for its attribute.
We denote the final representation of an edge attribute which serves as an input to theLSP algorithm
as eLSP

u,v .

Node attributes only - eLSP
u,v = [u, v].

Both node and edge attributes - eLSP
u,v = [u, eu,v, v].

Scalar node/edge attributes -Let r ∈ N be an attribute of a node or edge (for example, atomic
number or number of bonds between atoms in a graphs that represents a molecule). Assume r
accepts m possible values, r ∈ {0, ...,m− 1}. We generate a random matrix M ∈ Rm×m and use
the columns of M as embeddings of the corresponding component; that is, the rth column of M is
the corresponding feature vector of the graph component associated with the attribute r.

Example 3 We finalize this section with a complete example of constructing edge attributes from
a graph G = (V,E) representing a molecule. We assume every node v ∈ V is associated with
a natural scalar rv ∈ {0, ...,mV − 1} and every edge e ∈ E is associated with a natural scalar

12

Under review as a conference paper at ICLR 2021

re ∈ {0, ...,mE − 1}. Following our explanation for generating embeddings for scalar attributes,
we generate two random real matrices, MV ∈ RmV ×mV and ME ∈ RmE×mE . Then, the columns
of each matrix are used as feature vectors of nodes and edges as follow. Let M i denote the ith
column of a matrix M . Then, following our explanation for constructing edge representations as
input for LSP , given two nodes u, v ∈ V and an edge connecting the two nodes eu,v , we obtain the
following: eLSP

u,v = [Mu
V ,M

eu,v

E ,Mv
V].

B EXPERIMENTS

B.1 DETAILS

Implementation Details - All experiments were run on Ubuntu 18.04 machine with Intel i9-
10920X CPU, 93GB of RAM and 2 GeForce RTX 3090 GPUs. Our implementation of LSP is
in Python 3. To generate graphs and perform training of graph neural models, we use Pytorch-
Geometric (Fey & Lenssen, 2019) and use Pytorch (Paszke et al., 2019). Moreover, we all datasets
used in this section are retrieved from the collection supplied by Pytorch-Geometric.

B.2 DATASETS

B.2.1 SYNTHETIC GRAPH DATASET GENERATOR

Here, we introduce the synthetic graph classification dataset generator. Table 1 summarizes the
parameters used for the synthetic data generation and their default values, which we use for our
experiment described in Section 5.3.

Table 1: Parameters of the synthetic dataset generator. For each parameter introduced in this table,
the default parameter denotes the value that we use for our experiments in Section 5.3.

Parameter Description Default
Number of samples The number of graph instances in the dataset 20,000
Number of classes The number of classes in the dataset 100
Minimum nodes Minimum number of nodes in each graph sample 40
Maximum nodes Maximum number of nodes in each graph sample 60
Node dimension Dimensionality of the node representation vectors 10
Edge dimension Dimensionality of the edge representation vectors 40
Connectivity rate Degree of each node 0.2
Node centers std Scatter of the node representation vectors 0.2
Edge centers std Scatter of the edge representation vectors 0.2
Node noise std Amount of additive noise for node representation vectors 0.25
Edge noise std Amount of additive noise for edge representation vectors 0.1
Is symmetric Whether to enforce symmetry on each graph False
Node removal probability The probability of remove a node from a graph sample,

after the graph is initally generated
0.1

B.2.2 REAL-WORLD DATASETS

Here, we describe the various real-world datasets used in this paper for different tasks.

Node Classification

• GitHub - A social network where nodes correspond to developers who have starred at least
10 repositories and edges to mutual follower relationships. Node features are location,
starred repositories, employer and e-mail address. The task is to classify nodes as web or
machine learning developers.

13

Under review as a conference paper at ICLR 2021

• Cora, CiteSeer and PubMed - These are citation network with labels of paper topic. Each
node represents a publication corresponding to different class (seven classes for Cora, 6
classes for CiteSeer and 3 classes for PubMed). The citation network consists of links
representing citations. In Cora and CiteSeer, each publication in the dataset is described
by a 0/1-valued word vector indicating the absence/presence of the corresponding word
from the dictionary. In PubMed, each publication in the dataset is described by a TF/IDF
weighted word vector from a dictionary which consists of 500 unique words.

• PPI - This dataset is made up of 24 graphs, with each graph corresponding to a different
human tissue. Each node represents a protein and is associated with features made up of
motif gene sets and immunological signatures. The task is to classify each protein into gene
ontology sets (121 in total).

Statistics for these datasets are shown in Table 2.

Table 2: Node Classification Datasets Statistics

Dataset Github Cora CiteSeer PubMed PPI

Number of nodes 37700 2708 3327 19717 44906
Number of edges 578006 10556 9104 88648 1136460

Number of classes 2 7 6 3 121
Average degree 30 7 5 8 50

Graph Regression

• QM9 - The Quantum Mechanics 9 database contains around 130k small organic molecules
with up to 9 heavy atoms and their physical properties in equilibrium, computed using den-
sity functional theory calculations. Following previous works (Zhang et al., 2020; Klicpera
et al., 2020), we randomly sample 110k molecules for training, 10k for validation and the
rest for testing. Results are presented in terms of Mean Absolute Error (MAE).

• ZINC - A collection of chemical compounds prepared especially for virtual screening.
In this collection, a graph represents a molecule, with node features indicating the atom
type and edge features the type of chemical bond between two atoms. The goal is to
regress the molecule’s penalised water-octanol partition coefficient. We use the original
train/validation/test splits from Gómez-Bombarelli et al. (2018) as provided in Pytorch-
Geometric (Fey & Lenssen, 2019). In similar to Dwivedi et al. (2020), we randomly select
12K for efficiency.

B.3 MODELS

As stated in Section 5, we use the state-of-the-art model identified with each dataset to compare
performance of LSP with other baselines. In the following, we provide descriptions of these mod-
els. After introducing these models, we present the basic architectures used as baselines for our
experiments.

B.3.1 NODE CLASSIFICATION

• GitHub - GAT model used in the comparisons in (Rozemberczki et al., 2021). This model
consists of 2 attention layers that aggregate information up to 2-hop neighbourhoods with
1 attention head. For non-linearities we used leaky rectified linear unit (Leaky ReLU) with
negative slope of 0.2.

• Cora, CiteSeer and PubMed - We use the methodology introduced in GraphSage (Hamil-
ton et al., 2017) in combination with GAT, which has 2 layers. Following GraphSage, we
sample at most 10, 15 neighbors for the first and second hop respectively for training. For
testing, we sample the whole neighborhood of a node. The first layer has 2 attention heads,
where each attention result is has hidden size of 8 and concatenated to the others. The sec-
ond layer, which is used for calculating the output has 1 attention head. We use exponential
linear unit (ELU) as activation between the layers.

14

Under review as a conference paper at ICLR 2021

• PPI - GAT model with 3 layers from Vaswani et al. (2017). The hidden dimension of each
layer is 256 and the number of attention heads in each layer is 4,4,6 for the first, second
and third layer respectively. For non-linearities we used exponential linear unit (ELU).

B.3.2 GRAPH REGRESSION

• QM9 - For all experiments, we use the MXMNet architecture proposed in (Zhang et al.,
2020), with best performing configurations presented in the original paper.

• ZINC - We use the PNA architecture (Corso et al., 2020) with its default settings.

B.3.3 GRAPH CLASSIFICATION

• Synthetic dataset - We construct a GAT model with 3 layers with 16 attention heads each.
The hidden size of the intermediate layers is 40. The first two layers concatenate the out-
puts of the attention heads for output vector of size 40 · 16 = 640. For non-linearities, we
apply ReLU between every two consecutive layers. Then, in order to perform the final clas-
sification, we average the the result of the third attention layer and aggregate the obtained
node representations using global mean pooling. The result is later fed into a dropout layer
which cancels 50% of the activations. Finally, we feed the result into a linear layer which
provides the final prediction of the model.

B.3.4 BASIC MODELS

The basic models used as baselines demonstrate the time-performance trade-off via training compu-
tationally cheaper models that deliver less performance when compared to computationally exten-
sive models trained on pruned graphs. As we use GATs (Veličković et al., 2017) in all experiments
of node-classification and graph classification, the basic models for these experiments are created
by removing the attention mechanism while keeping all the accompanied configurations as is. As a
result, we obtain GCN (Kipf & Welling, 2016) variants variant of the original models that aggregate
messages from neighboring nodes by averaging instead if weights computed via attention heads.

C REDUCING THE NEIGHBORHOODS VARIANCE

The depth of a node’s neighborhood determines the maximal path length between a node and other
nodes contained in its neighborhood. A neighborhood of depth k is called a k-hop neighborhood.
As we increase the depth of the neighborhoods, the number of nodes contained within the neighbor-
hoods increases. However, not all neighborhoods increase in the same way, which in turn leads to a
variable size of neighborhoods - a phenomenon we call Neighborhood Variance, as exemplified in
Figure 6. For the two given nodes v1, v2, their 3-hop neighborhoods have different sizes, which in
turn translates to a variable amount of information that has to be encoded within a fixed-length code.

To see this, we measure the amount of nodes reachable within k hops for each node v in a graph G,
denoted as N k,v

G . We claim the following:

Proposition 4 (Pruning edges for reducing prevents over-squashing) Let G = (V,E) be a
graph and consider a sparsified version G′ = (V,E′) so that E′ ⊂ E. For each v ∈ V , denote by
N k,v

G the set of nodes reachable from v within k hops in the graph G. Then, there exists kmax ∈ N
so that for all k ≤ kmax the variance of the amount of neighboring nodes needed to be encoded
into the representation vector of a node satisfies:

V ar(|N v,k
G′ |) ≤ V ar(|N

v,k
G |). (4)

Suppose that a k-layer GCN (for k ≤ kmax) is trained to solve a task by aggregating information
from k-hop neighborhoods into node representations. Then, from Proposition 4 we know that the
neighborhood size of each node in the pruned graph has less variance and thus a similar amount of
information has to be encoded within the representation vector of each node. Consequently, over-
squashing is avoided. To demonstrate the scope of this phenomenon, we provide statistics about
neighborhood size variance from popular real-world datasets in Appendix C.1. Additionally, we
justify Proposition 4 in Appendix 4.

15

Under review as a conference paper at ICLR 2021

C.1 NEIGHBORHOOD VARIANCE IN REAL-WORLD GRAPHS

Figure 6 depicts this variance for various neighborhood depths and pruning settings for certain
datasets. For all datasets, we observe an exponential upward trend in the variance of the neigh-
borhood sizes as more edges are incorporated in the graph for certain values of neighborhood depths
(k). Additionally, an increase in the depth of the neighborhood (higher k values) leads to a signif-
icant increase in this variance, which explains the performance degradation of deep GCNs due to
over-squashing. This verifies our conclusion from Proposition 4 for real-world scenarios.

0 0.2 0.4 0.6 0.8 1

20

210

220

% Edges (·100)

V
a
r(
|N

v
,k

G
′
|)

CiteSeer

0 0.2 0.4 0.6 0.8 1

20

210

220

% Edges (·100)
V
a
r(
|N

v
,k

G
′
|)

Cora

0 0.2 0.4 0.6 0.8 1

20

220

% Edges (·100)

V
a
r(
|N

v
,k

G
′
|)

PubMed

k=1 k=3 k=5 k=7 k=9

Figure 6: Variance of neighborhood sizes as a function of edge percentage preserved from the orig-
inal graph (Log scale).

C.2 JUSTIFICATION OF PROPOSITION 4

This claim is true for kmax = 1, thus proving its existence:

The size of the 1-hop neighborhood of v equals the number of edges connected to it. Assuming the
ratio of preserved edges in the pruned graph G′ is 0 ≤ p < 1, we have:

V ar(|N v,1
G′ |) = V ar(dG′(v))) = E[dG′(v)

2]− E[dG′(v)]
2 =

= E[(p · dG(v))2]− E[p · dG(v)]2 = E[p2 · dG(v)2]− E[p · dG(v)]2 =

= p2 · E[dG(v)
2]− p2 · E[dG(v)]

2 = p2 · (E[dG(v)
2]− E[dG(v)]

2) =

= p2 · V ar(dG(v))) ≤ V ar(dG(v))) = V ar(|N v,1
G |)

C.3 ADDITIONAL RESULTS

C.4 NODE CLASSIFICATION

Additional results for node classification benchmarks are presented in Figure 7.

0 0.2 0.4 0.6 0.8 1

0.86

0.87

0.87

% Edges (·100)

A
cc

ur
ac

y

Github

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

Random LSP-P LSP-T Relative Testing Time

Figure 7: Additional results for node classification problems. We report the results in terms of the
metric identified with the dataset (in solid lines), and the running time per iteration (in densely dotted
lines) under the specified pruning configurations.

16

Under review as a conference paper at ICLR 2021

C.5 GRAPH REGRESSION

Prediction results for all QM9 targets are presented in Figure 8.

0 0.2 0.4 0.6 0.8 1

2.6
2.8
3

3.2
3.4

·10−2

% Edges (·100)

M
A

E
(D

)
µ

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

4.7

4.8

4.9

·10−2

% Edges (·100)

M
A

E
(a

3 0
)

α

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

23

23.5

24

% Edges (·100)

M
A

E
(m
eV

)

εHOMO

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

19

19.2

19.4

19.6

% Edges (·100)

M
A

E
(m
eV

)

εLUMO

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1
5.6

5.8

6

6.2

6.4
·10−2

% Edges (·100)

M
A

E
(m
eV

)

∆ε

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

0.09

0.1

0.11

0.12

% Edges (·100)

M
A

E
(a

2 0
)

〈R2〉

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

3.5

4

·10−3

% Edges (·100)

M
A

E
(m
eV

)

ZPV E

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

7

8

% Edges (·100)

M
A

E
(m
eV

)

U0

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

8

10

% Edges (·100)

M
A

E
(m
eV

)

U

0 0.2 0.4 0.6 0.8 1

0.6
0.7
0.8
0.9
1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

7

8

9

10

% Edges (·100)

M
A

E
(m
eV

)

H

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

10

15

20

% Edges (·100)

M
A

E
(m
eV

)

G

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

N
or

m
al

iz
ed

Ti
m

e

0 0.2 0.4 0.6 0.8 1

2.4

2.6

2.8
·10−2

% Edges (·100)

M
A

E
(

c
a
l

m
o
l
K

)

Cv

0 0.2 0.4 0.6 0.8 1
0.6
0.7
0.8
0.9
1

N
or

m
al

iz
ed

Ti
m

e

Random LSP-P LSP-T Relative Testing Time

Figure 8: MAE and normalized running times for additional QM9 targets. Errors are presented as
solid lines (Lower is better). Normalized running times are presented as dotted lines.

17

	Introduction
	Related Work
	Preliminaries
	Graph Convolutional Networks (GCNs)
	Locality Sensitive Hashing (LSH)

	Locality Sensitive Pruning
	Overview
	The Choice of LSH Functions
	Analysis
	Benefits of using LSP
	Advantages of pruning using local environmental characteristics
	Other Advantages of Pruning Edges of a Graph

	Experiments
	Node Classification Benchmarks
	Graph Regression Benchmarks
	Graph Classification Benchmarks

	Conclusions
	Construction of Edge Attributes
	Experiments
	Details
	Datasets
	Synthetic Graph Dataset Generator
	Real-World datasets

	Models
	Node classification
	Graph regression
	Graph classification
	Basic models

	Reducing the Neighborhoods Variance
	Neighborhood variance in Real-World graphs
	Justification of Proposition 4
	Additional Results
	Node Classification
	Graph Regression

