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Abstract

Reinforcement Learning (RL), empowered by Deep Neural Networks (DNNs)
for function approximation, has achieved notable success in diverse applications.
However, its applicability to real-world scenarios with complex dynamics, noisy
signals, and large state and action spaces remains limited due to challenges in
data efficiency, generalization, safety guarantees, and interpretability, among other
factors. To overcome these challenges, one promising avenue is to incorporate
additional structural information about the problem into the RL learning process.
Various sub-fields of RL have proposed methods for incorporating such inductive
biases. We amalgamate these diverse methodologies under a unified framework,
shedding light on the role of structure in the learning problem, and classify these
methods into distinct patterns of incorporating structure that address different
auxiliary objectives. By leveraging this comprehensive framework, we provide
valuable insights into the challenges associated with integrating structure into RL
and lay the groundwork for a design pattern perspective on RL research. This novel
perspective paves the way for future advancements and aids in developing more
effective and efficient RL algorithms that can better handle real-world scenarios. A
larger and more comprehensive overview of this work can be found in our preprint
at https://arxiv.org/abs/2306.16021

1 Introduction

Most of the traditional research in Reinforcement Learning (RL) focuses on designing agents that
learn to solve a sequential decision problem induced by the inherent dynamics of the task they aim to
solve, e.g., the differential equations governing the cart pole task in the classic control suite [Brockman
et al., 2016]. However, their performance significantly degrades when even small aspects of the
environment change [Meng and Khushi, 2019, Lu et al., 2020]. Moreover, deploying RL agents for
real-world learning-based optimization involves additional problems like noisy dynamics, intractable
and computationally expensive state and action spaces, and noisy reward signals.

Thus, research in RL has started to address these issues through methods that can generally be
categorized on a spectrum of two dogmas [Mannor and Tamar, 2023]: (i) Generalization: RL
pipelines developed to solve a broader class of problems where the agent is trained on various tasks
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and environments [Kirk et al., 2023, Benjamins et al., 2023]. (ii) Deployability: RL pipelines that
are specifically engineered towards concrete real-world problems by incorporating additional aspects
such as feature engineering or computational budget optimization [Dulac-Arnold et al., 2020]. The
intersection of generalization and deployability presents a class of problems where we need RL
pipelines that can handle sufficient diversity in the task while incorporating deployability issues. To
foster research in this area, Mannor and Tamar [2023] argue for a design-pattern oriented approach,
where RL pipelines can be abstracted into patterns that are specialized to specific kinds of problems
while robust to a certain level of changes to these problems.

However, the path to RL design patterns is hindered by gaps in our understanding of the relationship
between the design decisions for RL methods and the properties of environments they might be
suited for. While decisions like using state abstractions for high-dimensional spaces seem obvious,
decisions like using relational neural architectures for problems are not so obvious to a designer.
One way to add principle to this process is to understand the different ways of incorporating domain
knowledge into the learning pipeline. One strong source of such knowledge is the structure present
in the learning problem itself, including priors about the state and action spaces, the nature of the
reward function, the dynamics of the environment, assumptions on policy representation, and the
sequence of learning tasks.
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Figure 1: Overview of our framework. Domain knowledge can generally be incorporated into an RL
pipeline as side information. It can be used to achieve improved performance across metrics such as
Sample Efficiency, Generalization, Interpretability, and Safety. A particular source of side information
is decomposability in a learning problem, which can be categorized into four archetypes along a
spectrum - Latent, Factored, Relational, and Modular - explained further in Section 3.2. Incorporating
side information about decomposability amounts to adding structure to a learning pipeline, and this
process can be categorized into seven different patterns - Abstraction, Augmentation, Auxiliary
Optimization, Auxiliary Model, Warehouse, Environment Generation, and Explicitly Designed -
discussed further in Section 4.

Contributions and Structure of the Paper. Figure 1 shows a general overview of three elements
that form our framework for understanding the role of structure in RL. In Section 2, we provide the
background needed to formally define the problem presented in this paper. We then introduce side
information and formulate structure as a particular kind of side information about decomposability
in problem in Section 3. We additionally categorize decompositions in the literature into four
major archetypes. In Section 4, we formulate seven patterns of incorporating structure into the RL
learning process and provide an overview of each pattern by connecting it to the relevant surveyed
literature, further presented in Appendix A in detail. The framework developed in this work opens
new avenues for research while providing a common reference point for understanding what kind of
design decisions work under which situations. We discuss these aspects further in Section 5 for more
concrete takeaways for researchers and practitioners.

2 Preliminaries

The following sections summarize the main background necessary for our approach to studying
structural decompositions and related patterns.
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2.1 Markov Decision Processes

One way to formalize Sequential decision-making problems through a Markov Decision Process
(MDP) [Bellman, 1954, Puterman, 2014] M = ⟨S,A, R, P, ρ⟩. At any timestep, the environment
exists in a state s ∈ S, with ρ being the initial state distribution. The agent takes an action a ∈ A
which transitions the environment to a new state s′ ∈ S . The transition function P : S ×A → ∆(S)
governs the dynamics, taking the state s and action a as input and outputting a probability distribution
over the next states ∆(.) from which the next state s′ can be sampled. For each transition, the agent
receives a reward R : S ×A → R, with R ∈ R. The sequence (s, a, r, s′) is called an experience.

A policy π : S → ∆(A), in a space of policies Π, generates these experiences, and a sequence
of such experiences is also called a trajectory (τ ). The rewards in τ can be accumulated into an
expected sum called the return G, which can be calculated for any starting state s as G(π, s) =

E(s0=s,a1,r1,... )∼π

[∑∞
t=0 rt

]
. To make the return sum tractable, we either assume the horizon of the

problem to be of a fixed length T (finite-horizon return) i.e. the trajectory to terminate after T -steps,
or we discount the future rewards by a discount factor γ (infinite horizon return). Solving an MDP
amounts to determining the policy π∗ ∈ Π that maximizes the expectation over the returns of its
trajectory. This expectation can be captured by the notion of the (state-action) value function Q ∈ Q.
Given a policy π, the expectation can be written recursively:

Qπ(s, a) = Es∼ρ

[
Gt|s, a

]
= Es′∼M

[
R(s, a) + γEa′∼π(.|s′)[Q

π(s′, a′)]
]
. (1)

Thus, the goal can now be formulated as the task of finding an optimal policy that can maximize the
Qπ(s, a):

π∗ ∈ argmax
π∈Π

Qπ(s, a). (2)

2.2 Reinforcement Learning

The task of an RL algorithm is to interact with the MDP by simulating its transition dynamics
P (s′|s, a) and reward function R(s, a) and learn the optimal policy mentioned in Equation (2). In
Deep RL [Franccois-Lavet et al., 2018], the policy is a Deep Neural Network [Goodfellow et al.,
2016] that is used to generate τ . Such a policy is optimized by minimizing an appropriate objective
J ∈ J .

Planning Learning

Transition
Model

Value
Function

Policy

Environment

State

Action

RewardOptimization
Procedure

Figure 2: The anatomy of an RL pipeline.

We use the notion of a pipeline to talk about different RL methods, which can be defined as a
mathematical tuple Ω = ⟨S,A, R, P,Q, π,M̂, J⟩, where all definitions remain the same as before.
Figure 2 shows the anatomy of such a pipeline. The pipeline operates on given states and action
spaces, S,A with dynamics P and a reward function R.

The optimization procedure encompasses the interplay between the current policy π, its value function
Q, the reward R, and the learning objective J . With a slight abuse of notation, we refer to any of the
components of a pipeline as X and assume the space in which it exists as X s
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The pipeline might generate experiences by directly interacting with an environment, i.e., learning
from experiences (Model-Free RL), or plan a trajectory by simulating a learned model M̂ of the
environment to generate experiences (Model-Based RL). Learning can either utilize value functions
and correspondingly the TD error for J (Value-based RL), or parameterize the policy directly and use
the Policy Gradient [Williams, 1992a, Sutton et al., 1999a] to create J (Policy-Based RL).

3 Structure as Side Information

In this section, we discuss the relationship between structure and decomposability. We first introduce
side information in RL in Section 3.1 and consider structure to be a particular form of side information.
We then discuss the major archetypes of decompositions through the spectrum of decomposability in
Section 3.2.

3.1 Side Information

In addition to the characterization of the problem by an MDP, there can still be information on the
table that could be potentially helpful. We call this Side Information. Jonschkowski et al. [2015]
have previously defined side information for (semi-)supervised and unsupervised paradigms as any
additional information z ∈ Z that can contribute to the learning process but is not captured in the
input of output spaces. Translated to the RL setting, side information can be understood as any
additional information z not provided in the original MDP definition M but potentially helpful with
additional objectives such as Sample Efficiency, Generalization, Interpretability, or Safety. This
information can be incorporated into the learning process by biasing one or more of the components
of Ω.

Structure is a particular kind of side information that captures knowledge about decomposability.
Consider the task of managing a large factory with many production cells (example taken from
Guestrin et al. [2003b]). If a cell positioned early in the production line generates faulty parts, the
whole factory may be affected. However, the quality of the parts a cell generates depends directly only
on the state of this cell and the quality of the parts it receives from neighboring cells. Additionally,
the cost of running the factory depends, among other things, on the sum of the costs of maintaining
each local cell. Finally, while a cell responsible for anodization may receive parts directly from any
other cell in the factory, a work order for a cylindrical part may restrict this dependency to cells with
a lathe. Thus, by incorporating information about the additive nature of production, costs, and the
context of the part that needs to be produced, the learning pipeline can show better performance
across the aforementioned objectives.

3.2 Decomposability and Structural Archetypes

Decomposability allows breaking a system into smaller components or subsystems that can be
independently analyzed and potentially learned more efficiently. [Hofer, 2017]. For the RL pipeline
in Figure 2, decomposability can be seen along three axes: (i) Problem Decomposition i.e., the
environment parameterization, states, actions, transitions, and rewards; (ii) Solution Decomposition
i.e., the learned policies, value functions, and models; (iii) Training Regime Decomposition i.e.,
decomposition of a task into subtasks and their sequence. The spectrum of decomposability [Hofer,
2017] provides an intuitive way to understand where a system lies in this regard. On one end
of the spectrum, some problems are non-decomposable, while on the other end, problems can
be decomposed into weakly interacting sub-problems. Similarly, solutions on the former end are
monolithic, and on the latter end, distributed. We capture this problem-solution interplay by marking
four different archetypes of decomposability, as shown in Figure 3. The following sections will dive
into further details regarding each of these archetypes.

Latent Decompositions are monolithic and can be useful in complex environments where the
underlying structure is unclear or non-stationary. Under this view, X can be approximated by a
subspace κ, which can then be integrated into the learning process, leading to the learning process
being re-conditioned on κ.

Latent states classically feature in the Latent MDP literature [Kwon et al., 2021], where the aim
is to discover a latent representation of the state space that is sufficient to learn an optimal policy.
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Figure 3: Spectrum of Decomposability and Structural Archetypes. On the left end of the
spectrum exist monolithic structural decompositions where knowledge about a latent subspace of X
can be learned and incorporated as an inductive bias. Moving towards the right, we can learn multiple
independent subspaces, albeit in a monolithic solution. These are factored decompositions. Further
ahead, we see the emergence of interactionally complex decompositions, where knowledge about
factorization and how they relate to each other can be incorporated into the learning process. We call
these relational decompositions. Finally, we see fully distributed subsystems that can be incorporated
and learned using individual policies. We call these modular decompositions.

Extensions such as Block MDPs [Du et al., 2019] and Contextual MDPs [Hallak et al., 2015] have
succeeded in generalization problems. Latent decompositions of transitions have been studied in
Linear MDPs [Papini et al., 2021] and corresponding applications in Model-based RL [Woo et al.,
2022, van Rossum et al., 2021], where transition matrices are directly decomposed into an inner
product of low-rank approximations. Latent rewards have been used in noisy reward settings, where
the reward signal is assumed to be generated from a latent function [Wang et al., 2020].

Factored Decompositions decompose X into (latent) factors κ1, . . . , κn. Thus, the spaces become
inner products of the individual factor spaces. A crucial aspect differentiating factorization is that the
factors can potentially impose conditional independence in their effects on the learning dynamics.

Factored states have been explored in the Factored MDPs [Kearns and Koller, 1999, Boutilier et al.,
2000, Guestrin et al., 2003b], where the next state distribution is captured using a Dynamic Bayesian
Network [Mihajlovic and Petkovic, 2001]. Factorization actions have helped tackle high-dimensional
action spaces [Mahajan et al., 2021] by either factorizing subsets of high-dimensional action sets [Kim
and Dean, 2002] or through factored Q-values used to produce actions [Tang et al., 2022a]. Factored
rewards in conjunction with factored states induce factorization in Q-values [Koller and Parr, 1999,
Sodhani et al., 2022a], and have additionally be used in multi-objective settings [Mambelli et al.,
2022].

Relational Decompositions add more separability by capturing immutable relations between
factors [Dzeroski et al., 2001]. The relational assumption posits that a space of predicates can ground
these entities, and it can be modeled as a set of rules (such as inductive logic) that define how κi, κj

interact with each other.

Classically, relational representations have been used to model state spaces in Relational MDPs
[Dzeroski et al., 2001] and Object-Oriented MDPs [Guestrin et al., 2003a, Diuk et al., 2008], which
use first-order representations of factored state spaces by representing states using objects, predicates,
and functions to describe a set of ground MDPs. Traditional work in Relational MDPs has additionally
used first-order representations of value functions and/or policies to generalize to new instances. These
include Regression Trees [Mausam and Weld, 2003], Decision Lists [Fern et al., 2006], Algebraic
Decision Diagrams [Joshi and Khardon, 2011], and Linear Basis Functions [Guestrin et al., 2003a,
Sanner and Boutilier, 2012]. Recent approaches have started looking into DNN representations
[Zambaldi et al., 2019, Garg et al., 2020], graph-based representations [Janisch et al., 2020, Sharma
et al., 2022], or utilizing symbolic inductive biases [Garnelo et al., 2016]. Action relations help tackle
large action sets through attention mechanisms [Jain et al., 2021b, Biza et al., 2022b] or action graphs
[Wang et al., 2019]. Task perturbations have also been modeled as relational goals [Illanes et al.,
2020, Kumar et al., 2022] or rewards [Sohn et al., 2018].
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Modular Decompositions exist at the other end of the spectrum of decomposability, where indi-
vidual value functions and/or policies can be learned for each decomposed entity. Specifically, a
task can be broken down into individual subsystems κ1, . . . , κN for which models, value functions,
and policies can be subsequently learned. Such modularity can exist along two axes: (i) Spatial
Modularity allows learning quantities specific to parts of the state space, thus, effectively reducing the
dimensionality of the states, and (ii) Temporal Modularity allows breaking down tasks into sequences
over a learning horizon and, thus, reusing knowledge continually. A natural consequence of such
breakdown is the emergence of a hierarchy, and when learning problems exploit this hierarchical
relationship, these problems come under the purview of Hierarchical RL (HRL) [Pateria et al., 2022].
However, hierarchy is not a necessity for Modularity.

Modular decomposition of states is primarily studied at high-level planning and state abstractions
for HRL methods [Kokel et al., 2021]. Additionally, work on skills has looked into the direction
of training policies for individual parts of the state-space [Goyal et al., 2020]. Goals have been
specifically considered in methods that either use goals as an interface between levels of hierarchy
[Kulkarni et al., 2016, Nachum et al., 2018, Gehring et al., 2021], or as outputs of task specification
methods [Jiang et al., 2019, Illanes et al., 2020].

Modularity in action spaces refers to conditioning policies on learned action abstraction. The classic
example of such methods belongs to the realm of the Options framework [Sutton et al., 1999b]. In
HRL methods, learning and planning of the higher levels are based on the lower-level policies and
termination conditions of their execution.

Continual settings utilize policies compositionally by treating already learned policies as primi-
tives [Eysenbach et al., 2019]. Such methods either feed these primitives to the discrete optimiza-
tion problems for selection mechanisms or to continuous optimization settings involving ensem-
bling [Goyal et al., 2020]. Modularity in such settings manifests itself by construction and is a central
factor in building solutions. Even though the final policy in such paradigms can be monolithic, the
method of obtaining such policies is a distributed regime.

4 Patterns of Incorporating Structure

To understand how information about decomposability can be incorporated into the RL pipeline,
the first inclination would be to look for specific methods. However, a key realization in building
a framework around these methods is to understand what kind of design decisions separate one
class of methods from another, i.e., how should one modify the RL pipeline shown in Figure 2 to
achieve the benefits explained in Section 3. Thus, in this section we survey the literature with a very
specific question in mind: Do existing methods use structure in a repeatable manner? The answer to
this question, inspired by the categorization of Jonschkowski et al. [2015], brings us to patterns of
incorporating structure. Please refer Appendix A for a detailed discussion on how individual works
apply patterns for different objectives of our literature review.

(a) Abstraction

Agent

(b) Augmentation

Opt Opt'

(c) Aux. Optimization

Model

Agent

(d) Aux. Model

(e) Warehouse (f) Environment Generation

Policy

(g) Explicitly Designed

Figure 4: Patterns of incorporating structural information. We categorize the methods of
incorporating structure as inductive biases into the learning pipeline into patterns that can be applied
for different kinds of usages.
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Figure 5: Proclivities. A meta-analysis of the proclivities of each pattern to the additional objectives.
On the x-axis are the patterns discussed in this text, while on the y-axis are the percentage of
publications for each additional objective that address it using a particular pattern.

A pattern is a principled change in the RL pipeline Ω that allows the pipeline to achieve one, or a
combination of, the auxiliary objectives: Sample Efficiency, Generalization, Safety, and Interpretabil-
ity. We categorize the literature into seven patterns, an overview of which has been shown in Figure 4,
and explain them further in the following sections. To develop intuition about this categorization, let’s
consider the running example of a taxi service, where the task of the RL agent (the taxi) is to pick up
passengers from various locations and drop them at their desired destinations within a city grid. The
agent receives a positive reward when a passenger is successfully dropped off at their destination and
incurs a small penalty for each time step to encourage efficiency.

Abstraction Pattern utilizes structural information to create abstract entities in the RL pipeline.
For any entity, X , an abstraction utilizes the structural information to create Xabs, which takes over
the role of X in the optimization procedure. In the taxi example, the state space can be abstracted
to the current grid cell of the taxi, the destination grid cell of the current passenger, and whether
the taxi is currently carrying a passenger. This significantly simplifies the state space compared to
representing the full details of the city grid. The action space could also be abstracted to moving
in the four cardinal directions, plus picking up and dropping off a passenger. Finding appropriate
abstractions can be a challenging task in itself. Too much abstraction can lead to loss of critical
information, while too little might not significantly reduce complexity. Consequently, learning-based
methods that jointly learn abstractions factor this granularity into the learning process.

Abstractions have been thoroughly explored in the literature, with early work addressing a formal
theory on state abstractions Li et al. [2006]. Recent works have primarily used abstractions for
tackling generalization, which also peaks in Figure 5.

Augmentation Pattern treats X and z as separate input entities, the combination of which can range
from the simple concatenation of additional information to more involved methods of conditioning
policy and/or value functions on additional information. Crucially, the structural information neither
directly influences the optimization procedure nor changes the nature of X . For the taxi example, one
way to achieve this would be conditioning the policy on additional information like the time of day or
day of the week. This information could be useful because traffic conditions and passenger demands
can vary depending on these factors. However, augmentations can increase the complexity of the
policy, and care needs to be taken to ensure that the policy does not overfit to the additional information.
Due to this, this pattern is generally not explored to its fullest extent. While augmentations are
equitable for most use cases, the number of methods utilizing this pattern still falls short compared to
more established techniques, such as abstraction.
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Auxiliary Optimization Pattern uses structural biases to modify the optimization procedure. This
includes methods involving contrastive losses, reward shaping, concurrent optimization, masking
strategies, regularization, baselining, etc. Given that the changes in the optimization can go hand-
in-hand with modifications of other components, many methods utilize this pattern in conjunction
with other patterns discussed in this section (E.g., contrastive losses to learn state abstractions). In the
case of the taxi example, reward shaping could help the policy to be reused for slight perturbances
in the city grid, where the shaped reward encourages the taxi to stay near areas where passengers
are frequently found when it doesn’t have a passenger. It is crucial to ensure that the modified
optimization process remains aligned with the original objective, i.e., there needs to exist some
form of regularization that controls how the modification of the optimization procedure respects the
original objective. This amounts to the invariance of the optimal policy under the shaped reward [Ng
et al., 1999] for reward-shaping techniques. For auxiliary objectives, this manifests in some form of
entropy [Fox et al., 2016, Haarnoja et al., 2018a] or divergence regularization [Eysenbach et al., 2019].
Constraints ensure this through recursion [Lee et al., 2022], while baselines control the variance of
updates [Wu et al., 2018]. The strongest use of constraints is in the safety literature, where constraints
either help control the updates using some safety criterion or constrain the exploration. Consequently,
the auxiliary optimization pattern peaks in its proclivity towards addressing safety.

Auxiliary Model Pattern captures structural decomposition in learned Model(s) that can sub-
sequently be used to generate experiences, either fully or partially. Our taxi agent could learn a
latent model of city traffic based on past experiences. This model could be used to plan routes that
avoid traffic and hence reach destinations faster. Alternatively, the agent could learn an ensembling
technique to combine multiple models, each of which model-specific components of the traffic
dynamics. With models, there is usually a trade-off between model complexity and accuracy, and
it’s essential to manage this carefully to avoid overfitting and maintain robustness. To this end,
incorporating structure helps make the model-learning phase more efficient while allowing reuse for
generalization. Hence, the Auxiliary Model pattern strongly proclivities to utilize structural biases
for sample efficiency.

Warehouse Pattern uses structural decomposition to create a database of entities in the solution
space, such as value functions, policies, or models. The inherent modularity in such methods leads
them to focus on knowledge reuse as a central theme, and their online nature often overlaps with
continual settings. The taxi from our running example could maintain a database of value functions or
policies for different parts of the city or at different times of the day. These could be reused as the taxi
navigates through the city, making learning more efficient. While warehousing can generally improve
efficiency, it has primarily been explored through the skills and options framework for targeting
generalization. An important consideration in warehousing is managing the warehouse’s size and
diversity to avoid biasing the learning process too much toward past experiences.

So far, the warehousing pattern seems to be applied to sample efficiency and generalization. However,
warehousing also overlaps with interpretability since the stored data can be easily used to analyze the
agent’s behavior and understand the policy for novel scenarios. Consequently, these objectives are
equitably distributed for warehousing techniques.

Environment Generation Pattern uses structure to create task, goal, or dynamics distributions
from which MDPs can be sampled. These settings can also reflect decomposition along the training
regime by addressing curriculum learning methods Narvekar et al. [2020]. In the taxi example, a
curriculum of tasks could be generated, starting with simple tasks (like navigating an empty grid)
and gradually introducing complexity (like adding traffic and passengers with different destinations).
Ensuring that the generated MDPs provide good coverage of the problem space is crucial to avoid
overfitting to a specific subset of tasks. This necessitates additional diversity constraints that must
be incorporated into the environment generation process. Structure, crucially, provides additional
interpretability and controllability in the environment generation process, thus, making benchmarking
easier than methods that use unsupervised techniques [Laskin et al., 2021].

Explicitly Designed Pattern encompasses all methods where the inductive biases manifest in
specific architectures or setups that reflect the decomposability of the problem that they aim to utilize.
Naturally, this includes highly specific neural architectures, but it also easily extends to other methods
like sequential architectures to capture hierarchies or relations. Crucially, the usage of structural
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information is limited to the specificity of the architecture and not any other part of the pipeline. In
the case of the taxi, a neural architecture could be designed to process the city grid as an image and
output a policy. Techniques like convolutional layers could be used to capture the spatial structure
of the city grid. Different network parts could be specialized for different subtasks, like identifying
passenger locations and planning routes. However, this pattern involves a considerable amount of
manual tuning and experimentation, and the generalization of these designs across different tasks is
not trivial.

5 Open Problems in Structured Reinforcement Learning

We explore various open areas of RL research and discuss how the structural patterns we have
introduced can be applied to these settings.

Offline RL Offline RL methods must tackle distributional shifts as they extract the most from
available passive data. Modular task decompositions and warehousing can help learn individual
policies or value functions for different subtasks. They can additionally maximize the utility of
available offline datasets when combined with abstractions. Factored decompositions combined with
attention mechanisms can help agents focus more on factors less prone to distributional shifts while
learning and help create more robust RL methods. Relational decompositions could help define
auxiliary tasks that involve predicting the relationships between different entities, which could help
in learning useful relational representations of more interpretable data.

Partial observability and non-Markovian models Non-Markovian models can be appropriate
when the environment has either temporal dependencies in state or reward, whereas POMDPs
help when the agent cannot fully observe the state. Temporal abstractions such as options or
state-irrelevance abstractions can create an auxiliary MDP in the options or abstract states domain.
Structural decompositions can make such methods more sample efficient by simplifying the obser-
vation space or reducing the complexity of the belief update process for POMDPs. Any additional
information, such as belief states and memory of past observations, can be used for augmentations.
Decompositions can additionally support learning transition models for planning more efficiently,
while warehousing can improve methods in HRL that operate at different levels of abstraction. Curric-
ula that start with simpler MDPs and gradually introduce partial observability or other non-Markovian
features can create structured training regimes.

Big worlds can benefit from modular decompositions where the agent can explore different modules
independently, which would be more efficient than exhaustive or random exploration of the entire
environment. Knowledge of structure in these environments can be utilized to learn to generalize
better across different parts of the environment. For instance, in a relational decomposition, the agent
could learn relationships between different entities, which could help it generalize to unseen parts of
the environment. Auxiliary optimization could help the agent learn faster by optimizing auxiliary
tasks that are easier to learn or provide useful information about the environment’s structure.

AutoRL methods can utilize decompositions for their search processes. Algorithm selection meth-
ods can utilize the suitability of RL methods for specific decomposability offered by environments
for the selection and ranking of algorithms for a given task. This can also help prefilter algorithms for
further processes, such as hyperparameter optimization. Parameters related to structural decomposi-
tion (e.g., the number of subtasks in a modular decomposition) could be part of the hyperparameter
optimization process in AutoRL. Investigating the effects of various structural decomposition-related
parameters on the learning process could lead to novel insights and methods for more effective
hyperparameter optimization in AutoRL.

Meta-RL Rather than only leveraging structure that exists in the dynamics or reward of a task,
structure can also exist across tasks. Meta-RL methods can benefit from knowledge about meta-task
decomposition by guiding the design of the meta-learning process catered to specific decompositions.
This can additionally help make methods more generalizable. The adaptation strategy can itself be
catered to the kind of decomposition an environment offers. For example, highly decomposable tasks
can benefit from a modular adaptation strategy.
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Foundation Models in RL can utilize decompositions in the fine-tuning phase, where methods
could leverage this information for designing methods specific to individual use cases. Decompo-
sitions can additionally improve our understanding of the performance of the pre-trained model by
benchmarking its performance against specific aspects of the environment. Consequently, we can
create better benchmarks and evaluation protocols for foundational models by understanding the spec-
trum of decomposability and how various methods incorporate structure. For example, warehousing
and fine-tuning can help benchmark interpretable versions of specific aspects of foundation models.

6 Conclusion and Future Work

We introduce a novel framework of different patterns for incorporating the structure of a learning
problem as an inductive bias into RL algorithms. We first ground structure as side information about
decomposability in a learning problem and potential solutions. By categorizing decomposability
into four archetypes along a spectrum, we establish connections with existing literature, shedding
light on the diverse ways in which structure influences RL. Through a meticulous analysis of the
RL landscape, we identify seven patterns that serve as robust pathways for integrating structural
knowledge. Our research concludes with a pattern-centric lens, revealing the vital role of structural
decompositions in present and future RL paradigms. We aim to inspire researchers and practitioners
to embrace this perspective, fostering advancements and innovation in the field of RL. By presenting
this comprehensive framework, we provide a valuable resource for researchers, facilitating further
exploration and investigation into the incorporation of structure in RL.

References
M. Abdulhai, D. Kim, M. Riemer, M. Liu, G. Tesauro, and J. How. Context-specific representation

abstraction for deep option learning. In Sycara et al. [2022].

D. Adjodah, T. Klinger, and J. Joseph. Symbolic relation networks for reinforcement learning. In
Proceedings of the Workshop on Relational Representation Learning in Conference on Neural
Information Processing Systems (NeurIPS), 2018.

A. Alabdulkarim and M. Riedl. Experiential explanations for reinforcement learning. CoRR,
abs/2210.04723, 2022.

C. Allen, N. Parikh, O. Gottesman, and G. Konidaris. Learning markov state abstractions for deep
reinforcement learning. In Ranzato et al. [2021].

S. Amin, M. Gomrokchi, H. Aboutalebi, H. Satija, and D. Precup. Locally persistent exploration in
continuous control tasks with sparse rewards. In Meila and Zhang [2021].

G. Andersen and G. Konidaris. Active exploration for learning symbolic representations. In Guyon
et al. [2017].

J. Andreas, D. Klein, and S. Levine. Learning with latent language. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies,, 2018.

K. Azizzadenesheli, A. Lazaric, and A. Anandkumar. Reinforcement learning in rich-observation
mdps using spectral methods. CoRR, abs/1611.03907, 2016.

P. Bacon, J. Harb, and D. Precup. The option-critic architecture. In S.Singh and S. Markovitch,
editors, Proceedings of the Thirty-First Conference on Artificial Intelligence (AAAI’17). AAAI
Press, 2017.

A. Baheri. Safe reinforcement learning with mixture density network: A case study in autonomous
highway driving. CoRR, abs/2007.01698, 2020. URL https://arxiv.org/abs/2007.01698.

B. Balaji, P. Christodoulou, B. Jeon, and J. Bell-Masterson. Factoredrl: Leveraging factored graphs
for deep reinforcement learning. In NeurIPS Deep Reinforcement Learning Workshop, 2020.

V. Bapst, A. Sanchez-Gonzalez, C. Doersch, K. Stachenfeld, P. Kohli, P. Battaglia, and J. Hamrick.
Structured agents for physical construction. In Chaudhuri and Salakhutdinov [2019].

10

https://arxiv.org/abs/2007.01698


A. Barreto, W. Dabney, R. Munos, J. Hunt, T. Schaul, H. van Hasselt, and D. Silver. Successor
features for transfer in reinforcement learning. In Guyon et al. [2017].

A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. Mankowitz, A. Zidek, and
R. Munos. Transfer in deep reinforcement learning using successor features and generalised policy
improvement. In Dy and Krause [2018].

A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygün, P. Hamel, D. Toyama, J. Hunt, S. Mourad,
D. Silver, and D. Precup. The option keyboard: Combining skills in reinforcement learning. In
Wallach et al. [2019].

J. Bauer, K. Baumli, S. Baveja, F. Behbahani, A. Bhoopchand, N. Bradley-Schmieg, M. Chang,
N. Clay, A. Collister, V. Dasagi, L. Gonzalez, K. Gregor, E. Hughes, S. Kashem, M. Loks-
Thompson, H. Openshaw, J. Parker-Holder, S. Pathak, N. Nieves, N. Rakicevic, T. Rocktäschel,
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A Patterns in Existing Literature

In the following subsections, we delve deeper into each pattern, explaining different lines of literature
that apply each pattern for different uses. To further provide intuition about this categorization, we
will consider the running example of a taxi service, where the task of the RL agent (the taxi) is to pick
up passengers from various locations and drop them at their desired destinations within a city grid.
The agent receives a positive reward when a passenger is successfully dropped off at their destination,
and incurs a small penalty for each time step to encourage efficiency.

For each of the following sections, we present a table of the surveyed methods that categorizes the
work in the following manner: (i) The structured space, information about which is incorporated as
side information; (ii) The type of decomposition exhibited for that structured space. We specifically
categorize works that use structured task distributions through goals and/or rewards; (iii) The auxiliary
objectives for which the decomposition is utilized. Our rationale behind the format of the tables, in
addition to demonstrating our categorization, is to highlight the areas where further research might be
lucrative. These are the spots in the tables where we could not yet find literature, and/or we believe
additional work can be important.

A.1 Abstraction Pattern

Abstraction pattern utilizes structural information to create abstract entities in the RL pipeline. For
any entity, X , an abstraction utilizes the structural information to create Xabs, which takes over the
role of X in the optimization procedure.

Space Type Efficiency Generalization Interpretabiltiy Safety

Goals
Latent Gallouedec and Dellan-

drea [2023]
Hansen-Estruch et al.
[2022], Gallouedec and
Dellandrea [2023]

Relational Prakash et al. [2022]
Modular Icarte et al. [2022] Icarte et al. [2022] Prakash et al. [2022],

Icarte et al. [2022]

States

Latent Zhang et al. [2022],
Ghorbani et al. [2020],
Allen et al. [2021],
Zhang et al. [2021a],
Gelada et al. [2019],
Lee et al. [2020],
Azizzadenesheli et al.
[2016], Misra et al.
[2020]

Lee et al. [2020], Zhang
et al. [2021c], Gelada
et al. [2019], Zhang et al.
[2020a], Misra et al.
[2020]

Gillen and Byl [2021] Yang et al. [2022],
Gillen and Byl [2021]
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Factored Sodhani et al. [2022a] Higgins et al. [2017],
Sodhani et al. [2021],
Perez et al. [2020], Sod-
hani et al. [2022a]

Sodhani et al. [2021],
Bewley and Lecune
[2022], Kooi et al.
[2022]

Relational Martinez et al. [2017],
Garnelo et al. [2016],
Kipf et al. [2020], Kokel
et al. [2021], Klissarov
and Machado [2023]

Janisch et al. [2020],
Kokel et al. [2021],
Bapst et al. [2019], Ad-
jodah et al. [2018], Gar-
nelo et al. [2016], Kipf
et al. [2020], Karia and
Srivastava [2022]

Adjodah et al. [2018],
Garnelo et al. [2016]

Modular Kokel et al. [2021],
Icarte et al. [2022],
Furelos-Blanco et al.
[2021]

Kokel et al. [2021], Stec-
canella et al. [2021],
Icarte et al. [2022],
Furelos-Blanco et al.
[2021]

Icarte et al. [2022],
Furelos-Blanco et al.
[2021]

Actions

Latent Zhao et al. [2019],
Chandak et al. [2019]

Factored Perez et al. [2020] Bewley and Lecune
[2022]

Relational Christodoulou et al.
[2019]

Bapst et al. [2019]

Modular Furelos-Blanco et al.
[2021]

Steccanella et al. [2021],
Furelos-Blanco et al.
[2021]

Furelos-Blanco et al.
[2021]

Rewards Latent Zhang et al. [2021c],
Barreto et al. [2017],
Barreto et al. [2018],
Borsa et al. [2016]

Factored Sodhani et al. [2022a] Perez et al. [2020], Sod-
hani et al. [2022a], Sod-
hani et al. [2021],

Sodhani et al. [2021] Wang et al. [2020]

Dynamics
Latent Zhang et al. [2020b] Zhang et al. [2020b],

Borsa et al. [2019],
Perez et al. [2020],
Zhang et al. [2021c]

Factored Fu et al. [2021] Fu et al. [2021]
Modular Sun et al. [2021] Sun et al. [2021]

Generalization State abstractions are a general choice for improving generalization performance
using methods such as Invariant Causal Prediction [Zhang et al., 2020a, Peters et al., 2016], bisimula-
tion [Hansen-Estruch et al., 2022, Zhang et al., 2021b], Free Energy Minimization Ghorbani et al.
[2020], etc. Disentangled representations [Higgins et al., 2017] impose factored dynamics-aware
decomposability onto the state-space to tackle zero-shot transfer, which has been further extended to
the using VAEs [Burgess et al., 2019].

Value functions have served as abstractions for shared dynamics in Multi-task Settings. Successor
Features (SF) [Dayan, 1993, Barreto et al., 2017] exploit latent reward and dynamic decompositions
by using value functions as an abstraction. Subsequent works have combined them with Generalized
Policy Iteration [Barreto et al., 2018] and Universal Value Function Approximators [Borsa et al., 2019,
Schaul et al., 2015]. In parallel, works such as Sodhani et al. [2021, 2022a] have exploited attention
mechanisms over factored states for better performance across changing dynamics. Additionally,
Latent variable models [Perez et al., 2020] utilize factorization as abstractions to impose independence
conditions in the transition dynamics.

Relational abstractions help incorporate symbolic spaces into the RL pipeline. Karia and Srivastava
[2022] learn generalizable Q values over abstract states and actions that can be transferred to new
tasks, while Kokel et al. [2021] use a symbolic planner to generate state abstractions to facilitate
faster learning across new tasks.

Sample Efficiency Latent state-space models can improve sample efficiency in Model-based
RL [Gelada et al., 2019]. In model-free tasks, these can also be learned as inverse models visual
features Allen et al. [2021], or for control in a latent space [Lee et al., 2020]. Latent transition models
demonstrate efficiency gains by capturing task-relevant information in noisy settings [Fu et al., 2021],
or by preserving bisimulation distances between original states [Zhang et al., 2021c].

Zhao et al. [2019] use latent action models for actions in a dialog generation process. This allows
them to shorten the learning horizon, and thus, converge using REINFORCE [Williams, 1992b] faster.
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Chandak et al. [2019] learn an embedding space of actions using Supervised Learning, and then train
a policy on this latent space instead of the full action space for Model-based RL.

Safety and Interpretability Relational abstractions are a very good choice for interpretability since
they capture interactionally complex decompositions. Adjodah et al. [2018] combine designed object
representations and learned abstractions to add transparency, thus, attaining better interpretability.
Garnelo et al. [2016] build a relational state by tracking objects across frames using heuristics and
using relational measures between identified objects

Abstraction for safety is generally limited to state spaces and rewards. Yang et al. [2022] use a
given set of inference labels to train an RL agent to learn a causal inference model by embedding
the confounders into a latent state. During testing, the agent uses the learned model to estimate the
confounding latent state and the interference label. Meshes [Talele and Byl, 2019], on the other hand,
help with benchmarking the robustness of the learned policy. Gillen and Byl [2021] tackle safety
through a latent representation of the state by learning a lower dimensional number of bins that can
discretize a mesh.

A.2 Augmentation Pattern

Structural biases can be additionally incorporated as an augmentation to X to achieve the aforemen-
tioned objectives. Intuitively, this pattern treats X and z as separate input entities, the combination of
which can range from the simple concatenation of additional information to more involved methods
of conditioning policy and/or value functions on additional information. Crucially, the structural
information neither directly influences the optimization procedure nor changes the nature of X .

Space Type Efficiency Generalization Interpretabiltiy Safety

Goals

Latent Andreas et al. [2018],
Schaul et al. [2015]

Factored Islam et al. [2022] Jiang et al. [2019]
Relational Andreas et al. [2018] Andreas et al. [2018],

Jiang et al. [2019]
Modular Gehring et al. [2021],

Beyret et al. [2019]
Jiang et al. [2019],
Gehring et al. [2021]

Beyret et al. [2019]

States

Latent Islam et al. [2022],
Andreas et al. [2018],
Gupta et al. [2018]

Andreas et al. [2018],
Sodhani et al. [2022b],
Gupta et al. [2018]

Factored Islam et al. [2022]
Relational Andreas et al. [2018] Andreas et al. [2018]
Modular

Actions
Latent Tennenholtz and Man-

nor [2019]
Jain et al. [2021b], Jain
et al. [2020]

Relational Jain et al. [2021b]
Modular Devin et al. [2019] Pathak et al. [2019],

Devin et al. [2019]
Rewards Factored Huang et al. [2020] Huang et al. [2020]

Dynamics Latent Wang and van Hoof
[2022]

Sodhani et al. [2022b],
Guo et al. [2022], Wang
and van Hoof [2022]

Factored Goyal et al. [2021]
Policies Modular Raza and Lin [2019],

Haarnoja et al. [2018a],
Marzi et al. [2023]

Haarnoja et al. [2018a] Verma et al. [2018]

Context-based Augmentations Contextual representations of dynamics in block MDPs [Sodhani
et al., 2022b] and discretized goal-abstractions [Islam et al., 2022] augmented to the state improve
generalization and sample efficiency. Augmentation of Action history vectors to the state help with
sample efficiency [Tennenholtz and Mannor, 2019], and action relations [Jain et al., 2020, 2021b]
contribute to generalization over large action sets.

Language Augmentations Language augmentation can capture relational metadata in the world.
Andreas et al. [2018] condition policy search by assigning a probability to actions that are proportional
to the environment state and a bilinear function of the output of a latent language interpretation
model. This augmentation allows them to achieve exploration and generalization gains using language
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descriptions. Jiang et al. [2019] encode goal-conditioned modular decomposition using language
in a two-level hierarchical framework where the higher level policy learns to generate language
instructions, subsequently encoded as goals for the lower level policy using a GRU.

Control Augmentations Augmentations can additionally help with primitive control, such as multi-
level control seen in the HRL literature. Haarnoja et al. [2018c] tackle hierarchical DNN policies
by augmenting internal latent variables to policies of each layer. Gehring et al. [2021] present an
HRL method with three levels: a policy that specifies a goal space (a set of features to operate on), a
policy to specify the goal configuration conditioned on the goal space, and a low-level policy to reach
the desired goal configuration. They additionally learn the low-level policy through unsupervised
learning and then optimize the high-level options offline by optimizing the value function. A parallel
line of work uses the augmentation pattern for morphological control [Huang et al., 2020]. Pathak
et al. [2019] model the different limbs as individual agents that need to learn to join together into a
morphology to solve a task.

A.3 Auxiliary Optimization Pattern

In this pattern, structural decompositions are used to modify the optimization procedure. Given
that the changes in the optimization can go hand-in-hand with modifications of other components,
many methods in this utilize other patterns in conjunction (E.g. contrastive losses to learn state
abstractions).

Space Type Efficiency Generalization Interpretabiltiy Safety

Goals
Latent Wang et al. [2023]

Relational Kumar et al. [2022]
Factored Alabdulkarim and

Riedl [2022]
Modular Nachum et al. [2018],

Illanes et al. [2020], Li
et al. [2021], Gehring
et al. [2021]

States

Latent Mahajan and Tula-
bandhula [2017], Li
et al. [2021], Azizzade-
nesheli et al. [2016],
Ok et al. [2018], Amin
et al. [2021], Nachum
et al. [2018], Ghorbani
et al. [2020], Yang et al.
[2020b], Henaff et al.
[2022]

Harutyunyan et al.
[2019]

Zhang et al. [2020c],
Yu et al. [2022]

Factored Tavakol and Brefeld
[2014], Trimponias and
Dietterich [2023], Ross
and Pineau [2008], lyu
et al. [2023]

Lee et al. [2022]

Relational Li et al. [2021]
Modular Nachum et al. [2018],

Khetarpal et al. [2020]
Lyu et al. [2019]

Actions
Latent Ok et al. [2018], Amin

et al. [2021], Yang
et al. [2020b], lyu et al.
[2023]

Gupta et al. [2017] Zhang and Yu [2021] Zhang et al. [2019b],
Zhang et al. [2019a],
Zhang and Yu [2021]

Factored Balaji et al. [2020],
Wu et al. [2018], Tang
et al. [2022a], Metz
et al. [2017], Spooner
et al. [2021], Tang et al.
[2022b], Khamassi
et al. [2017], Tavakol
and Brefeld [2014]

Modular Metz et al. [2017],
Klissarov and Machado
[2023]

Lyu et al. [2019] Jain et al. [2021a]

Rewards Factored Trimponias and Diet-
terich [2023], Saxe
et al. [2017], Huang
et al. [2020]

Belogolovsky et al.
[2021], Saxe et al.
[2017], Buchholz and
Scheftelowitsch [2019],
Huang et al. [2020]

Prakash et al. [2020],
Baheri [2020]

Dynamics
Latent Mu et al. [2022a],

Henaff et al. [2022]
Lee and Chung [2021]
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Factored Liao et al. [2021] Belogolovsky et al.
[2021], Buchholz and
Scheftelowitsch [2019]

Relational Mu et al. [2022a], Il-
lanes et al. [2020]

Policy Space Latent Hausman et al. [2018] Hausman et al. [2018],
Gupta et al. [2017]

Reward Modification Reward shaping is a very common way to incorporate additional information
into the optimization procedure. Methods can gain sample efficiency by exploiting modular and
relational decompositions through task descriptions [Illanes et al., 2020], or goal information from a
higher level policy with off-policy modification to the lower level transitions [Nachum et al., 2018].
Mahajan and Tulabandhula [2017] leverage a symmetric and interpretable latent decomposition
through a tree for reward histories, which they leverage to select symmetric states in a minibatch.
Trimponias and Dietterich [2023] achieve safety and sample efficiency by factoring the state and
rewards into endogenous and exogenous factors and using a reward correction for the endogenous
MDP.

Auxiliary Learning objectives Skill-based methods transfer skills between morphologically dif-
ferent agents by learning n invariant subspace and using that to create a transfer auxiliary objective
(through a reward signal) Gupta et al. [2017], or an entropic term for policy regularization Hausman
et al. [2018]. Li et al. [2021] tackles sample efficiency for subtask discovery [Solway et al., 2014] in
HRL by composing values of the sub-trajectories under the current policy, which they subsequently
use for behavior cloning. Zhang et al. [2020c] use latent decomposition as policy regularization
to study adversarially perturbed MDPs for robustness and, potentially, safety. Kumar et al. [2022]
tackles generalization through an auxiliary loss based on the MSE between a prediction of the board
state and actual state to regularize the agent towards human-like inductive biases.

Constraints and Baselines Constrained optimization is commonplace in Safe RL. Yu et al. [2022]
use a factored space of safe and unsafe states to constrain the value function, thus, allowing persistent
safety conditions. Lee et al. [2022] recursively learn a latent subset of safe actions using factored
states to implicitly influences the optimization procedure. Jain et al. [2021a] apply safety to HRL by
modifying the option critic to restrict exploration to non-risky states

Works such as Wu et al. [2018] apply action factorization to as a baseline to reduce the variance of
policy gradients, thus, improving sample efficiency.

Concurrent Optimization Parallelizing optimization using structural decompositions can help
with sample efficiency. Tavakol and Brefeld [2014] model factors that influence the content presented
to users as an FMDP, and use them to ensemble factored value function in a parallel regime. In
a similar vein, Saxe et al. [2017] use a factored reward decomposition in a hierarchical setting to
decompose the Multi-task problem into a linear combination of individual task MDPs. Metz et al.
[2017] tackle multi-dimensional action spaces by discretizing continuous sub-action, extending the
MDP for each sub-action to an undiscounted lower-level MDP, and modifying the backup for each
Q value. Balaji et al. [2020] capture the utilize relational decompositions to mask the inputs in a
Factored Neural Network.

A.4 Auxiliary Model Pattern

This pattern captured structural decomposition in learned Model(s), that can subsequently be used to
generate experiences, either fully or partially.

Space Type Efficiency Generalization Interpretabiltiy Safety

Goals
Factored Ding et al. [2022]

Relational Sohn et al. [2018], Sohn
et al. [2020]

Modular Icarte et al. [2022] Icarte et al. [2022] Icarte et al. [2022]
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States

Latent Gasse et al. [2021],
Wang et al. [2022],
Hafner et al. [2023],
van der Pol et al. [2020],
Ghorbani et al. [2020],
Tsividis et al. [2021],
Yin et al. [2023]

van der Pol et al. [2020],
Wang et al. [2022],
Hafner et al. [2023],
Hafner et al. [2020],
Zhang et al. [2021c],
Tsividis et al. [2021]

Simao et al. [2021]

Factored Innes and Lascarides
[2020], Seitzer et al.
[2021], Andersen and
Konidaris [2017], Ross
and Pineau [2008],
Singh et al. [2021], Pitis
et al. [2020]

Young et al. [2022],
Ding et al. [2022]

Relational Chen et al. [2020], Biza
et al. [2022b], Biza
et al. [2022a], Kipf
et al. [2020], Tsividis
et al. [2021], Singh
et al. [2021], Pitis et al.
[2020]

Biza et al. [2022b], Biza
et al. [2022a], Veerapa-
neni et al. [2020], Kipf
et al. [2020], Tsividis
et al. [2021]

Xu and Fekri [2021]

Modular Abdulhai et al. [2022],
Andersen and Konidaris
[2017], Icarte et al.
[2022], Furelos-Blanco
et al. [2021]

Icarte et al. [2022],
Furelos-Blanco et al.
[2021]

Icarte et al. [2022],
Furelos-Blanco et al.
[2021]

Actions
Latent van der Pol et al. [2020] van der Pol et al. [2020]

Factored Spooner et al. [2021],
Geißer et al. [2020],
Innes and Lascarides
[2020], Pitis et al.
[2020]

Ding et al. [2022]

Relational Biza et al. [2022b], Pitis
et al. [2020]

Biza et al. [2022b]

Modular Furelos-Blanco et al.
[2021], Yang et al.
[2018]

Furelos-Blanco et al.
[2021]

Furelos-Blanco et al.
[2021]

Rewards Latent van der Pol et al. [2020] Zhang et al. [2021c],
van der Pol et al. [2020],
Lee and Chung [2021],
Sohn et al. [2018], Sohn
et al. [2020]

Factored Sohn et al. [2018] Wang et al. [2020], Ba-
heri [2020]

Dynamics Latent Woo et al. [2022], Fu
et al. [2021], van der Pol
et al. [2020], Wang and
van Hoof [2022]

Zhang et al. [2021c],
Woo et al. [2022],
van der Pol et al. [2020],
Fu et al. [2021], Guo
et al. [2022], Wang and
van Hoof [2022]

van Rossum et al.
[2021]

Factored Fu et al. [2021],
Schiewer and Wiskott
[2021]

Goyal et al. [2021], Fu
et al. [2021]

Schiewer and Wiskott
[2021], Kaiser et al.
[2019]

Relational Buesing et al. [2019]
Modular Abdulhai et al. [2022],

Wu et al. [2019], Wen
et al. [2020]

Wu et al. [2019]

Models with structured representations Young et al. [2022] utilize factored decomposition
for state space to demonstrate the benefits of model-based methods in combinatorially complex
environments. In a similar vein, the dreamer models [Hafner et al., 2020, 2023] utilize latent
representations of pixel-based environments.

Object-oriented representation for states can help bypass the need to learn latent factors using
CNNs in MBRL [Biza et al., 2022a], or as random variables whose posterior can be refined using
NNs [Veerapaneni et al., 2020]. Graph (Convolutional) Networks Zhang et al. [2019c] can capture
rich higher-order interaction data, such as crowd navigation Chen et al. [2020], or invariances [Kipf
et al., 2020] Action equivalences can help learn latent models (Abstract MDPs) van der Pol et al.
[2020] for planning and Value Iterations.

Models for task-specific decompositions Another way to utilize decompositions in models is
to capture task-specific decompositions. Models that capture some form of relevance, such as
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observational and interventional data in Causal RL [Gasse et al., 2021], or task-relevant vs irrelevant
data [Fu et al., 2021] can help with Generalization and Sample Efficiency gains. Latent representations
help models capture control-relevant information Wang et al. [2022] or subtask dependencies [Sohn
et al., 2018].

Models for safety usually incorporate some measure of cost to abstract safe states [Simao et al., 2021],
or unawareness to factor states and actions [Innes and Lascarides, 2020].

Models can directly guide exploration mechanisms through latent causal decompositions [Seitzer
et al., 2021] and state subspaces Ghorbani et al. [2020] to gain sample efficiency. Generative methods
such as CycleGAN [Zhu et al., 2017] are also very good ways to use Latent models of different
components of an MDP to generate counterfactual trajectories Woo et al. [2022]

A.5 Warehouse Pattern

Warehousing refers to using structural decomposition to create a database of entities in the solution
space, such as value functions, policies, or models. The inherent modularity in such methods leads
them to focus on knowledge reuse as a central theme, and their online nature often overlaps with
continual settings.

Space Type Efficiency Generalization Interpretabiltiy Safety

Goals
Factored Mendez et al. [2022b],

Devin et al. [2017]
Relational Prakash et al. [2022]
Modular Gehring et al. [2021] Mendez et al. [2022b] Prakash et al. [2022]

States
Latent Hu and Montana [2019],

Bhatt et al. [2022]
Factored Mankowitz et al. [2015],

Yarats et al. [2021]
Mendez et al. [2022b],
Goyal et al. [2020],
Yarats et al. [2021]

Modular Furelos-Blanco et al.
[2021]

Mendez et al. [2022b],
Goyal et al. [2020],
Furelos-Blanco et al.
[2021]

Furelos-Blanco et al.
[2021]

Actions Latent Gupta et al. [2017]
Modular Li et al. [2018], Furelos-

Blanco et al. [2021],
Devin et al. [2019]

Furelos-Blanco et al.
[2021], Devin et al.
[2019], Nam et al.
[2022], Peng et al.
[2019], Barreto et al.
[2019], Sharma et al.
[2020], Xu et al. [2020]

Furelos-Blanco et al.
[2021]

Rewards Factored Haarnoja et al. [2018b],
Mendez et al. [2022b],
Gaya et al. [2022a],
Gaya et al. [2022b]

Dynamics Latent Bhatt et al. [2022]
Factored Shyam et al. [2019],

Schiewer and Wiskott
[2021]

Devin et al. [2017],
Mendez et al. [2022b]

Schiewer and Wiskott
[2021]

Modular Wu et al. [2019] Gaya et al. [2022a],
Gaya et al. [2022b],
Mendez et al. [2022b],
Wu et al. [2019]

Policies Latent Gupta et al. [2017] Verma et al. [2018]
Modular Wolf and Musolesi

[2023], Florensa et al.
[2017], Heess et al.
[2016], Eysenbach et al.
[2019], Raza and Lin
[2019], Mankowitz et al.
[2015], Mendez et al.
[2020], Hausman et al.
[2018]

Florensa et al. [2017],
Heess et al. [2016],
Mendez et al. [2020],
Kaplanis et al. [2019],
Hausman et al. [2018]

Verma et al. [2018]

Policy Warehousing Policy subspaces [Gaya et al., 2022b] is a relatively new concept that utilizes
shared latent parameters in policies to learn a subspace that can be subsequently combined linearly to
create new policies. Extending these subspaces by warehousing additional policies naturally extends
them to continual settings [Gaya et al., 2022a]
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Task factorization using goals and rewards endows warehousing policies and Q values in multi-task
lifelong settings. Mendez et al. [2022b] treat a multi-task lifelong problem as a relationship graph
between existing tasks, generated from a latent space. Devin et al. [2017] factor the MDP into
agent-specific and task-specific degrees of variation, for which individual modules can be trained. Hu
and Montana [2019] use a paired variational encoder-decoder model to disentangle the control of
morphologically different agents into shared and agent-specific factors. Raza and Lin [2019] partition
the agent’s problem into interconnected sub-agents that learn local control policies.

Methods in URL and HRL that apply this pattern typically focus on the skills framework, where the
warehousing is in the form of learned primitives. These can subsequently be used for maximizing
mutual information in lower layers [Florensa et al., 2017], sketching together a policy Heess et al.
[2016], diversity-seeking priors in continual settings Eysenbach et al. [2019], or for partitioned states
spaces Mankowitz et al. [2015]. In a similar vein, Gupta et al. [2017] apply the warehouse pattern on
a latent embedding space, learned using auxiliary optimization.

Decomposed Models Decompositions that inherently exist in models lead to approaches that
often ensemble multiple models that individually reflect different aspects of the problem. Goyal
et al. [2021] capture the dynamics in individual modules that sparsely interact and use attention
mechanisms [Vaswani et al., 2017] for ensembling them. Biza et al. [2022b] bind actions to object-
centric representations using factored world models. Lee and Chung [2021] ensemble dynamics into
a model for better few-shot adaptation to unseen MDPs. Abdulhai et al. [2022] mitigate the sample
inefficiency of Deep Option Critic [Bacon et al., 2017] using subsets of state-space.

A.6 Environment Generation Pattern

Space Type Efficiency Generalization Interpretabiltiy Safety

Goals Relational Illanes et al. [2020], Gur
et al. [2021]

Kumar et al. [2022] Gur et al. [2021]

Modular Kulkarni et al. [2016],
Illanes et al. [2020]

Narvekar et al. [2016],
Mendez et al. [2022a]

States
Latent Wang et al. [2021],

Bhatt et al. [2022]
Factored Lu et al. [2018], Mirsky

et al. [2022]
Mirsky et al. [2022] Lu et al. [2018], Mirsky

et al. [2022]
Relational Lu et al. [2018], Bauer

et al. [2023]
Bauer et al. [2023] Lu et al. [2018]

Rewards

Latent Wang et al. [2021], Lee
and Chung [2021]

Factored Chu and Wang [2023] Mendez et al. [2022a]

Dynamics

Latent Kumar et al. [2021],
Bhatt et al. [2022]

Factored Chu and Wang [2023],
Mirsky et al. [2022]

Mirsky et al. [2022],
Narvekar et al. [2016],
Mendez et al. [2022a]

Mirsky et al. [2022]

Relational Illanes et al. [2020],
Bauer et al. [2023]

Wang et al. [2021],
Bauer et al. [2023]

Wang et al. [2021],
Bauer et al. [2023]

Modular Illanes et al. [2020],
Mirsky et al. [2022]

Mirsky et al. [2022] Mirsky et al. [2022]

In this pattern, structural information is used to create task, goal, or dynamics distributions from
which MDPs can be sampled. This subsumes the idea of procedurally generated environments, while
additionally incorporating methods that use auxiliary models inducing structure in the environment
generation process. The decomposition is reflected in the aspects of the environment generation that
are impacted by the generative process, such as dynamics, reward structure, state space, etc. Given
the online nature of this pattern, methods in this pattern end up addressing curriculum learning, in
one way or another.

Kumar et al. [2021] generate environments with compositional structure using rule-based grammars,
where the decompositions particularly impact the transition dynamics. This allows them to train
agents with an implicit compositional curriculum. This is further used by Kumar et al. [2022] in their
auxiliary optimization procedure. Wang et al. [2021] use a latent graphical model to generate the
state-space, reward functions, and transition dynamics.
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Lee and Chung [2021], even though using an auxiliary model pattern, further apply their latent
dynamics model to generate imagine task distributions that are used to generalize to out-of-distribution
tasks. Chu and Wang [2023] explore task similarities by meta-learning a clustering method through
an exploration policy. In a way, they recover a factored decomposition on the task space where
individual clusters can be further used for policy adaptation.

A.7 Explicitly Designed

This pattern encompasses all methods where the inductive biases manifest in specific architectures
or setups that reflect the decomposability of the problem that they aim to utilize. Naturally, this
includes highly specific Neural architectures, but it also easily extends to other methods like sequential
architectures to capture hierarchies, relations, etc. Crucially, the usage of structural information is
limited to the specificity of the architecture and not any other part of the pipeline.

Space Type Efficiency Generalization Interpretabiltiy Safety

Goals Factored Zhou et al. [2022] Zhou et al. [2022] Alabdulkarim and Riedl
[2022]

Relational Zhou et al. [2022] Zhou et al. [2022]

States

Latent Wang et al. [2016] Yang et al. [2020a]
Factored Zhou et al. [2022] Zhou et al. [2022]

Relational Zhou et al. [2022],
Mambelli et al. [2022],
Shanahan et al. [2020],
Zambaldi et al. [2019]

Zhou et al. [2022],
Mambelli et al. [2022],
Shanahan et al. [2020],
Zambaldi et al. [2019],
Lampinen et al. [2022],
Sharma et al. [2022]

Zambaldi et al. [2019],
Payani and Fekri [2020]

Modular

Actions
Latent Wang et al. [2016]

Factored Tavakoli et al. [2018] Tavakoli et al. [2018]
Relational Garg et al. [2020] Garg et al. [2020]

Rewards Latent Yang et al. [2020a]
Factored Baheri [2020]

Dynamics Latent der Pol et al. [2020] D’Eramo et al. [2020],
Guo et al. [2022]

Factored Srouji et al. [2018],
Hong et al. [2022]

Relational Lampinen et al. [2022]
Policies Relational Oliva et al. [2022], Garg

et al. [2020]
Wang et al. [2018] Garg et al. [2020]

Modular Shu et al. [2018] Shu et al. [2018], Mu
et al. [2022b]
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