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MOTIVATION
• Multi-layer Perceptrons (MLPs) often suffer from fre-

quency bias and vanishing gradients.
• The widely used Glorot initialization scheme [1] ini-

tializes the weights toN (0, c/
√
din), c = 1, so that the

linearly transformed hidden outputs preserve their
second moment.

• However, non-linear activation functions may trigger
collapsed hidden outputs, especially for deep MLPs
at initialization. (e.g. Fig. 1, for c = 1).

• The choice of c for each hidden layer at initialization
matters.
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Figure 1: Evolution of hidden layer output standard deviation,
given inputs with a standard normal distribution.

FLOW OF VARIANCE
• Consider a linear layer Y = XW . Entries of W are

independent and identically distributed (i.i.d) with
zero mean and standard deviation c/

√
din.

• Given the the square root of input second moment
si, and activation fi, the square root of the post-
activation second moment can be obtained as

si+1 =
√

E(fi(csiN (0, 1))2),

for an infinitely wide hidden layer.
• We simulate the above system for common activation

functions and initializations [1, 2, 3].
• Our simulations (see Fig. 2) confirm our analysis for

existing initializations.
• Stable fixed points at 0 imply collapsed outputs espe-

cially for deeper MLPs.

See https://openreview.net/forum?id=KkMGjzTsXM for the
workshop submission.
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Figure 2: A simulation of the dynamical system in the previous
section. (Left) The iterative mapping functions for Glorot, He,
and SIREN initializations. (Right) The derivative of the iterative
mapping functions shown in the left.

GO INITIALIZATION OF MLPS
• Use orthogonality in the last layer features as a mea-

sure to quantify the expressivity of MLPs in the data
domain.

• Calculate the similarities (cosines of angles) of the
last layer hidden features.

cos θi,j :=
〈gi

w, g
j
w〉

||gi
w||2||g

j
w||2

.

• Transform the similarities between features to a regu-
larized loss objective as

min
c,b
−
∑

i 6=j log(1− (cos θi,j)2)

d(d− 1)
+ λ||c||22.

• Minimizing this loss at initialization leads to MLP
weights that prevent collapsed outputs by penalizing
similarities in the last layer features.

NTK ANALYSIS
• The Neural Tangent Kernel (NTK) of MLP networks

with inputs x, y is defined as

K(x, y) = ∇wfw(x) · ∇wfw(y).

• Several studies [4, 5, 6] show that the NTK of infinite
width MLPs converges to a deterministic kernel, and
is invariant under gradient descent with infinitely
small learning rate.

• Deep MLPs with tanh activations initialized using
the s GO scheme tend to exhibit a localized NTK.

• This localized behavior discounts long-range corre-
lations between distant data points, and hence pro-
motes the fitting of local function behavior.

• Beneficial for learning functions with high frequency
components.

NEURAL TANGENT KERNEL (NTK) ANALYSIS

Figure 3: NTK in the data domain for MLP initialized with Glorot scheme (left), and the proposed GO scheme with different
regularization strength (middle and right).

NUMERICAL EXAMPLES
Synthetic data: Synthetic data-set from a highly oscillatory ground truth function. In different trials, data points are
sampled denser to impose larger oscillations. Fig. 4 shows that scale-adjustment from GO initialization brings more robust
fitting.
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Figure 4: Train and test errors for comparison and contrast. (Left) Medium train errors and 80% CIs. (Middle) Medium test errors and
80% CIs. (Righ) Train and test errors convergence.

Image regression: The ground truth RGB image contains rich details of a city landscape. A continuous representation of
the image is recovered by fitting 25% of the pixels using an MLP with total variation regularization and tanh activations.
An MLP with GO initialization is able to improve the SNR from 16.8 dB to 20.0 dB compared to the Glorot scheme.

Figure 5: Image regression results. (From left to right) Original image, sampling mask, learning from Glorot initialization, learning from
GO initialization.
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