

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FULLY DIFFERENTIABLE METRIC TEMPORAL FIRST- ORDER RULE LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose a novel differentiable neural architecture for learning first-order temporal logic rules enriched with metric operators. Leveraging differentiable immediate consequence operators over data, we extend the approach to temporal data by learning both the predicates and the temporal intervals in which they hold. Among the strengths of our model are its support of existential literals in rule bodies to express eventualities within an interval and its applicability to data over discrete intervals. Notably, our model can effectively capture temporal dependencies without reifying all possible timestamps and produces a linear number of rules in the size of the training set, which has a benign effect on model complexity and scalability. We explore different use cases and show in experiments the benefits of our approach, highlighting its potential as a scalable solution for interpretable metric temporal rules over data.

1 INTRODUCTION

Inductive Logic Programming (ILP) (Muggleton, 1991; Cropper & Dumancic, 2022) is a field that seeks to derive knowledge expressed as logic programs from training examples, enabling generalization to unseen cases. In recent years, the interest in ILP has been increasing since symbolic approaches grounded in logic rule learning are by their nature well-positioned for providing explainability, which is a pressing need for modern data-driven AI systems.

Specifically, with the growing availability of temporal data, learning temporal rules from such data has become an issue in the research community. Often temporal data are relational data enriched with temporal annotations, representing dynamic events as tuples of the form (s, r, o, t) or $(s, r, o, [t_1, t_2])$, where t is a timestamp and $[t_1, t_2]$ a time interval associated with a data triple (s, r, o) . Such representations are ubiquitous and critical for domains like international diplomacy (Boschee & Lautenschlager 2015), healthcare (Chaturvedi 2024), and finance (Jeyaraman et al. 2024), where the temporal validity of facts influences decision-making.

Logic rules can express time in different ways, including (i) the use of designated arguments and functions to encode successive states as in (Chomicki & Imielinski, 1988; Eiter & Šimkus, 2010; Ronca et al., 2018) for linear structures or as in (Chomicki & Imielinski, 1993; Eiter & Simkus, 2009) for branching time, (ii) expressing temporal constraints (Janhunen et al., 2017) (iii) molding action domains (Gelfond & Lifschitz, 1998; Eiter et al., 2005) or (iv) directly by supporting temporal modalities, e.g. (Aguado et al. 2023; Beck et al. 2018; Wałęga et al. 2021).

Recent works (Liu et al., 2022; Xiong et al., 2024; Wang et al., 2024) extended logical rule learning to temporal settings but are limited in expressiveness, typically restricting reasoning to point-based timestamps, simple forward-propagating patterns, or disregarding temporal uncertainty, i.e., when events happen. In this work, we address these limitations by proposing a novel framework for learning *metric temporal rules* Walega et al. (2019). The latter are a symbolic formalism that extends Datalog with temporal operators such as “always” (\square), “historically” (\blacksquare), “eventually” (\lozenge), and “once” (\blacklozenge) from linear time logic (LTL), each annotated with explicit time intervals. For example, the rule

$$sign_fa(Y, X) \leftarrow \blacklozenge_{[2,3]} eoi(X, Y), \blacksquare_{[0,2]} visit(Y, X), \square_{[0,2]} visit(Y, X).$$

054 says that Y may sign a formal agreement with X if the latter expressed an intent to meet two or
 055 three days ago, and visits of Y to X will continue for two days from now since two days ago. Such
 056 rules form a core fragment of DatalogMTL (Wałęga et al. 2021) and LARS (Beck et al. 2018).

057 To achieve this, we introduce the first fully differentiable architecture for metric temporal rule learning,
 058 see Figure 1. Leveraging neural networks, our approach MT-Diff-Learn learns symbolic rules
 059 in an end-to-end manner while retaining the same semantics as the one adopted by the standard
 060 metric temporal reasoners already available (Wang et al. 2022; Beck et al. 2017). In contrast to
 061 embedding-based approaches, where reasoning is performed on latent representations in a vector
 062 space that encodes data and knowledge, e.g. (García-Durán et al., 2018) (see Section 5), our method
 063 produces human-readable rules that can be applied for downstream reasoning or analysis.

064 Our main contributions are summarized as follows:
 065

- 066 We introduce a new mechanism for learning eventuality conditions \diamond and \blacklozenge within temporal inter-
 067 vals, allowing the model to capture rules that require relevant events to occur *somewhere* within a
 068 specified interval (as in the example rule above). This substantially increases the expressiveness
 069 of learned temporal rules and extends the approach in (Wang et al. 2024), which only supports as
 070 “always” where only *everywhere* operators \square and \blacksquare within a specified interval.
- 071 By its design, the framework is the first offering fully differentiable metric rule learning in an
 072 end-to-end manner using neural networks. This paves the way for integrating temporal reasoning
 073 into larger differentiable architectures and enables seamless gradient-based training.
- 074 We demonstrate the applicability of our approach for three use cases, showing that it is capable of
 075 producing not only more succinct (and thus intuitively more general and easier to read) temporal
 076 rules than other methods, but may also increase performance.

077 2 PRELIMINARIES

079 In this section, we first present DatalogMTL, followed by the differentiable immediate consequence
 080 operator. This will lay the groundwork for introducing our differentiable immediate consequence
 081 operator for metric temporal rules in the next section.

083 **DatalogMTL** We consider a fragment of DatalogMTL (Wałęga et al. 2021), which extends Data-
 084 log with metric operators, where LTL operators such as “always” \square , “historically” \blacksquare , “eventually”
 085 \diamond , “once” \blacklozenge (Koymans, 1990) are annotated with intervals. It builds on *metric atoms* of the form

$$087 M ::= \blacksquare_\rho P(\mathbf{s}) \mid \square_\rho P(\mathbf{s}) \mid \blacklozenge_\rho P(\mathbf{s}) \mid \diamond_\rho P(\mathbf{s})$$

089 where $P(\mathbf{s})$ is a relation atom, i.e., \mathbf{s} is a tuple of variables and constants with the same arity as
 090 P , and ρ is an interval of non-negative numbers; we also use $P(\mathbf{s})$ as a shorthand for $\square_{[0,0]} P(\mathbf{s})$
 091 (the singleton interval referring to the current time point. E.g., $\blacklozenge_{[2,3]} eoi(X, Y)$ holds at time t if X
 092 expressed an intent to meet Y in the interval between two or three days ago. A *(metric) rule* is an
 093 expression of the form

$$094 P(\mathbf{s}) \leftarrow M_1, \dots, M_n \quad \text{for } n \geq 1 \tag{1}$$

095 where the *body atoms* M_1, \dots, M_n are metric atoms and the *head atom* $P(\mathbf{s})$ is relational. A *pro-
 096 gram* is a finite set of rules. A *temporal dataset* is a finite set of temporal facts $P(\mathbf{c})@t$ where $P(\mathbf{c})$
 097 is a ground (i.e., variable-free) relational atom and $t \in \mathbb{Z}$.

098 An *interpretation* I is a function assigning a truth value (0 or 1) to each ground relational atom $P(\mathbf{c})$
 099 and time point $t \in \mathbb{Z}$. The satisfaction of relational and metric atoms, is inductively defined:

- 100 • $I, t \models P(\mathbf{c})$ if $I(P(\mathbf{c}), t) = 1$, otherwise $I, t \not\models P(\mathbf{c})$.
- 101 • $I, t \models \blacksquare_{[a,b]} P(\mathbf{c})$ if for all $t' \in [t - b, t - a]$, $I, t' \models P(\mathbf{c})$.
- 102 • $I, t \models \square_{[a,b]} P(\mathbf{c})$ if for all $t' \in [t + a, t + b]$, $I, t' \models P(\mathbf{c})$.
- 103 • $I, t \models \blacklozenge_{[a,b]} P(\mathbf{c})$ if some $t' \in [t - b, t - a]$ exists such that $I, t' \models P(\mathbf{c})$.
- 104 • $I, t \models \diamond_{[a,b]} P(\mathbf{c})$ if some $t' \in [t + a, t + b]$ exists such that $I, t' \models P(\mathbf{c})$.

106 We say that I satisfies a rule r of form (1) at time t , denoted $I, t \models r$, if either $I, t \not\models M_i$ for some
 107 $i \in \{1, \dots, n\}$ or $I, t \models P(\mathbf{s})$. Furthermore, I satisfies a program π at time t , denoted, $I, t \models \pi$, if
 $I, t \models r$ for each $r \in \pi$. Finally, I is a model of π , denoted $I \models \pi$, if $I, t \models \pi$ for every $t \in \mathbb{Z}$.

We adopt *Herbrand interpretations*, substituting each variable with all constants from the rules or dataset D , and denote this domain by \mathcal{U} . We assume \mathcal{U} is nonempty, as reasonable datasets contain at least one element (otherwise, one can be added). For a program π and a domain \mathcal{U} , $\pi_g[\mathcal{U}]$ is the *grounded version* of π , obtained by substituting all variables with all possible combinations of constants appearing in D . While $\pi_g[\mathcal{U}]$ may admit multiple models, Wałęga et al. (2021) showed it has a single *minimal model*, which is computable by repeated applications of *materialisation-based reasoning algorithms*. The latter syntactically applies the rules of $\pi_g[\mathcal{U}]$ over a dataset D to simulate the behavior of the *immediate consequence operator*.

Formally, for a rule r of the form (1) the set $T_r[D]$ consists of all temporal facts $P(\mathbf{s})\nu$ at t such that:

- ν is a substitution replacing all variables in r with constants from D (i.e., ν grounds r), and
- $D, t \models M_i\nu$ for all $1 \leq i \leq n$, viewing D as interpretation (i.e., the grounded body of r holds at time t in D).

We set $T_\pi[D] = \bigcup_{r \in \pi} T_r[D]$. Iterating from $D_0 = D$, the minimal model of $\pi_g[\mathcal{U}]$ is obtained as the least fixed point, denoted $\text{lfp}_\pi[D]$.

Differentiable Immediate Consequence for ILP In *Inductive Logic Programming* (ILP) (Muggleton et al., 2012; Cropper & Dumancic, 2022), the objective is to learn a logic program P that can derive a designated *target atom* h , given background knowledge B and sets \mathcal{P} and \mathcal{N} of positive examples and negative examples, respectively. A solution P must entail all positive examples while excluding all negative ones: $B \cup P \models e^+, \forall e^+ \in \mathcal{P} \wedge B \cup P \not\models e^-, \forall e^- \in \mathcal{N}$.

In algebraic ILP frameworks, the canonical immediate consequence operator T_π for first-order (atemporal logic programs) can be formulated using matrix operations combined with a threshold function (Gao et al., 2024), where propositional atoms are viewed as real-valued variables. Let v be an real number, and let $\varphi(v) = v'$ be the threshold function, where $v' = 1$ if $v \geq \tau$, and $v'_i = 0$ otherwise with τ being the threshold value.

Given a logic program $\pi_h = \{r_1, \dots, r_m\}$ of rules that share the same predicate in the head h and a substitution θ , the algebraic immediate consequence operator D_{π_h} computes the Boolean value of the grounded head atom for v as: $D_{\pi_h}(\mathbf{v}_h) = \bigvee_{k=1}^m \varphi(\mathbf{M}_h[k, \cdot] \mathbf{v}_h)$, where $\mathbf{M}_h[k, \cdot]$ denotes the k -th row of the program matrix \mathbf{M}_h (Gao et al., 2024). The vector \mathbf{v}_h encodes the Boolean values of the body atoms of r_k under θ , and $D_{\pi_h}(\mathbf{v}_h)$ computes whether the corresponding head atom h is derivable under θ . Note that for each first-order atom h , a different matrix \mathbf{M}_h is considered.

To enable gradient-based learning, Gao et al. (2024) proposed a differentiable approximation of D_{π_h} . Specifically, a trainable matrix $\tilde{\mathbf{M}}_h$ with values from the interval $[0, 1]$ represents the learnable rule weights. The discrete threshold function φ is replaced by the differentiable sigmoid activation: $\Phi(x) = \frac{1}{1+e^{-\eta x}}$, where η controls the smoothness of the approximation. Disjunction is replaced in D_{π_h} by a *fuzzy disjunction layer*: $\mathcal{F}(\mathbf{x}) = 1 - \prod_{i=1}^n (1 - x_i)$, which is a differentiable approximation.

The forward computation of the approximation of D_{π_h} is thus defined as: $\tilde{\mathbf{v}}_o = \mathcal{F}(\Phi(\tilde{\mathbf{M}}_h \mathbf{v}_h - 1))$, where -1 is to align the sigmoid activation, which is applied to the vector component-wise, with the original threshold function. By minimizing the loss between $\tilde{\mathbf{v}}_o$ and the ground-truth interpretation vectors, the neural network learns $\tilde{\mathbf{M}}_h$ as a differentiable representation of rules with head h . The collection of all D_{π_h} is denoted by D_π .

3 MT-DIFF-LEARN

We build upon the approach by Gao et al. (2024), who designed a neural network to mimic D_π during forward computation on knowledge graphs. We extend it by learning rules with metric operators in the body, enabling the learning of both the predicates and the specific intervals in which they hold. In the sequel, we present the constituents of the approach, which are data preparation, construction of the neural network, and rules extraction, see Figure 1.

Data Preparation The preprocessing pipeline takes as input a set of temporal facts and, using a sliding window-based approach, generates first-order atoms such as $\text{visit}(X, Y)$. They represent different ground atoms, e.g., $\text{visit}(\text{Angela_Merkel}, \text{Italy})$ or $\text{visit}(\text{Barack_Obama}, \text{Germany})$

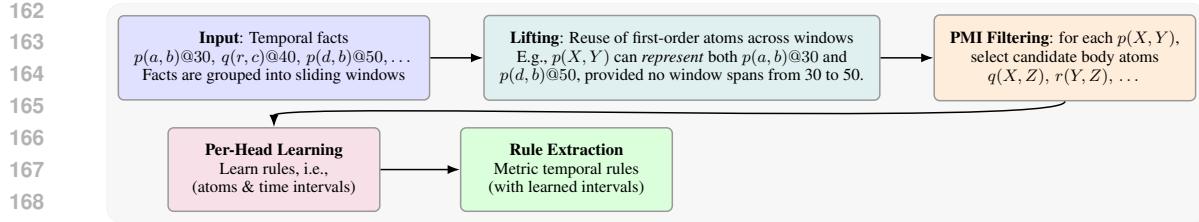


Figure 1: Overview of the MT-Diff-Learn pipeline.

in different windows. We *lift* ground atoms to first-order atoms to obtain more general rules that can be instantiated in multiple ways. To ensure soundness, each variable X refers to a single entity within a window, but may be *reused* across different windows to promote generalization.

Algorithm 1 Windowing, Window Ordering, and Lifting to First-Order Atoms

```

1: Input: Temporal facts  $D$ , window size  $l$ .
2: Output: A dictionary mapping each first-order atom  $p(X_i, X_j)$  and window id  $w$  to the
3: grounded atoms it represents  $p(e_i, e_j)$ .
4: (1) Windowing
5: Partition timestamps into windows  $\mathcal{W} = \{w : [w, w + l] \mid w \in [0, |t_{\max} - l]\}$ .
6: For each window  $w \in \mathcal{W}$ , collect all facts with timestamps in  $[w, w + l]$  and merge consecutive
7:  $p(e_i, e_j)$  occurrences into centered intervals.
8: (2) Window ordering
9: For each  $w \in \mathcal{W}$ , compute the overlap score  $O(w)$  as the number of entity pairs shared with
10: any other window.
11: Sort windows by decreasing  $O(w)$ ; break ties by number of facts then index.
12: (3) Lifting ground atoms to first-order atoms
13: for each window  $w$  in sorted order do
14:   Initialize  $\sigma_w : E_w \rightarrow V = v_0, v_1, \dots$  where  $E_w$  denotes entities appearing in window  $w$ .
15:   Sort all entity pairs in  $w$  by their global frequency (highest first).
16:   for each entity pair  $(e_i, e_j)$  in this order do
17:     Select any ground atom  $p(e_i, e_j)$  from  $w$ ;
18:     If a first-order atom  $p(X_i, X_j)$  was generated in previous windows and  $X_i, X_j$  are not yet
19:     assigned in  $w$ , set  $\sigma_w(e_i) = X_i$  and  $\sigma_w(e_j) = X_j$ ;
20:     else if either  $e_i$  or  $e_j$  is already mapped in  $w$ , reuse the mapped variable and introduce a
21:     fresh one if needed to add  $p(X_i, X_k)$  or  $p(X_k, X_j)$ ;
22:     else introduce fresh variables  $X_m$  and  $X_n$  and add  $p(X_m, X_n)$ ;
23:     Record the resulting first-order representative  $p(X_i, X_j)$ ;
24:   end for
25: end for

```

In real-world datasets, the first-order atoms produced by the procedure above may correspond to ground atoms that co-occur with many others across different windows. Such co-occurrences can be highly informative for making inferences, as they capture meaningful temporal and relational patterns. However, in practice the number of potential co-occurring pairs is often extremely large, making it necessary to distinguish informative associations from spurious or incidental ones. To this end, we compute the Pointwise Mutual Information (PMI) Church & Hanks (1990) between atoms, which quantifies the statistical dependence between two predicates:

$$\text{PMI}(a, b) = \log \frac{P(a, b)}{P(a)P(b)}$$

where $P(a, b) = C(a, b)/|\mathcal{W}|$ represents the frequency that atoms a and b appear together in a window as a ratio between the number of co-occurrences $C(a, b)$ and the number of windows $|\mathcal{W}|$, and $P(a) = \sum_{w \in \mathcal{W}} \mathbf{1}_{\{a \text{ appears in } w\}}/|\mathcal{W}|$ denotes the frequency that atom a appears in a window (and analogously for $P(b)$). In the definition of PMI, if the denominator equals zero, then the value is $-\infty$. Intuitively, PMI measures how much more often two atoms co-occur than would be expected if they were statistically independent.

216 Given a target (head) atom $h = p(X, Y)$, we select candidate body atoms by exploring a PMI-
 217 weighted co-occurrence graph using a bounded breadth & depth search controlled by two parame-
 218 ters: (i) the *breadth* b which limits the number of atoms expanded at each layer and (ii) the *depth* d .
 219 The following procedure conducts a constrained breadth-first exploration: b and d bounds the total
 220 exploration depth.

Algorithm 2 PMI Computation and Candidate-Body Selection

```

222 1: Input: First-order atoms  $\mathcal{A}$ , windows  $\mathcal{W}$ , breadth  $b$ , depth  $d$ .
223 2: Output: Candidate body atoms for each head atom.
224 3: (1) PMI computation
225 4: for each pair of atoms  $(a, b)$  do
226 5:   Count co-occurrences  $C(a, b)$  across windows.
227 6:   Compute  $P(a)$ ,  $P(b)$ ,  $P(a, b)$ .
228 7:   Compute  $\text{PMI}(a, b) = \log(P(a, b)/(P(a)P(b)))$ .
229 8: end for
230 9: (2) Candidate-body selection
231 10: for each head atom  $h$  do
232 11:   // Layer 0: per-head-variable selection
233 12:   For each variable  $X$  in  $h$ , pick up to  $b$  atoms sharing  $X$  with  $h$  and with highest  $\text{PMI}(h, \cdot)$ ,  

234   and add them to the candidate pool;
235 13:   // Layers 1..d: PMI-based neighborhood expansion
236 14:   For each level 1.. $d$ , expand every atom in the current layer by adding up to  $b$  new neighbors  

237   sharing a variable with it; the newly added atoms form the next layer.
238 15: end for
239

```

240 Our preprocessing method is heuristic but grounded in well-established statistical principles such as
 241 PMI. Crucially, MT-Diff-Learn does not depend on these specific design choices: the subsequent
 242 components—and in particular the neural layer implementing the differentiable immediate conse-
 243 quence operator for metric rules—operate unchanged under any alternative procedure that produces
 244 first-order atoms and candidate body predicates. In this sense, the preprocessing stage is modular
 245 and can be replaced or refined independently without affecting the core architecture.

246 **Neural Module: Differentiable Metric Immediate-Consequence Operator** For each target
 247 atom $h = p(X, Y)$, the neural operator receives, for every relevant atom γ_j , information about
 248 whether it holds in a window w and, if so, the intervals during which it holds. This information is
 249 conveniently represented by three input tensors: the *truth tensor*, the *start tensor*, and the *end tensor*.
 250 These tensors are constructed after the PMI-based pre-filtering step, which selects n^h relevant atoms
 251 $\gamma_0, \dots, \gamma_{n^h-1}$ for the target atom (see previous section); note that by construction $n^h \leq b^{d+1}$. More
 252 in detail, for each target atom h we want to derive, we have the following input:

- 253 • a *truth tensor* \mathbf{T}^{in} of shape $(|\mathcal{W}|, n^h)$, where each entry is 1 if the relevant atom γ_j is active in
 254 window w and 0 otherwise. This corresponds to the matrix \mathbf{M}_h introduced in the preliminaries;
- 255 • a *start tensor* $\mathbf{S}^{\text{in}} \in \mathbb{R}^{|\mathcal{W}| \times n^h \times \text{max_int}}$, where $\mathbf{S}^{\text{in}}_{w,j,k}$ stores the starting point of the k -th interval in
 256 which γ_j holds in window w . Multiple interval slots are needed because a relevant atom may hold
 257 in several disjoint subintervals.
- 258 • an *end tensor* \mathbf{E}^{in} , which, instead, represents the ending points of those intervals.

259 If a relevant atom occurs in fewer than `max_int` disjoint intervals, the remaining slots are filled by
 260 repeating its last start and end values; if it does not occur in a window at all, we instead assign $+\infty$
 261 and $-\infty$ as the default start and end values, respectively.

262 In our approach, we limit the range of the learnable intervals to the upper-bound implied by the
 263 considered window size. An important note is that in approaches involving a translation into a
 264 symbolic inductive logic learner, e.g. the one in (Wang et al. 2024), the input to the rule learner
 265 increases *quadratically*, as in principle one needs to reify each candidate body atom per possible
 266 timestamp. Our approach needs no reification as we consider intervals as first-class citizens; we
 267 learn them by learning the lower and upper bounds as numbers, as explained below.

268 For each target atom h , the model learns a matrix $\mathbf{T} \in [0, 1]^{n_r^h \times 3n^h}$, where n_r^h is the number of
 269 rules associated with h (equal to the number of grounded atoms represented by h). Each row of

270 T sums to 1 over $3n^h$ entries and is divided into three segments of equal size: (i) the first third
 271 selects always-metric literals with an associated proper interval; (ii) the second third selects punctual
 272 literals (holding at a single timestamp); (iii) the final third selects eventuality-metric literals with an
 273 associated proper interval. The value $\mathbf{T}_{i,j}$ specifies the degree to which the j -th relevant atom γ_j
 274 is included in the body of rule r_i . A threshold τ is later used to determine whether $\gamma_j \in [0, 1]$ is
 275 retained as an actual body literal.

276 In addition, the model learns matrices $\mathbf{S}^A, \mathbf{E}^A, \mathbf{P}, \mathbf{S}^E$, and $\mathbf{E}^E \in \mathbb{R}^{n_r^h \times n^h}$. For an always-metric
 277 literal, $[\mathbf{S}_{i,j}^A]$ and $[\mathbf{E}_{i,j}^A]$ define the learned lower and upper bounds of its interval; for an eventuality-
 278 metric literal, the corresponding bounds are given by $[\mathbf{S}_{i,j}^E]$ and $[\mathbf{E}_{i,j}^E]$. The matrix \mathbf{P} contains the
 279 learned timestamps for punctual literals.

280 The forward pass implements a differentiable approximation of the metric immediate-consequence
 281 operator. Conceptually, for each window w and each target atom h , the network performs the fol-
 282 lowing computational steps.

283 **Step 1: Normalize rule-body weights.** Each row of the matrix \mathbf{T} is normalized via $\tilde{\mathbf{T}} =$
 284 $\text{Softmax}(\mathbf{T}, -1)$, ensuring that, the weights assigned to the three temporal variants (always, punc-
 285 tual, eventually) of each relevant atoms γ_j form a probability distribution (i.e., rows sum to 1).

286 **Step 2: Compute “always” activations (interval containment).** For each learned interval
 287 $[\mathbf{S}_{i,j}^A, \mathbf{E}_{i,j}^A]$, the operator computes differentiable containment scores:

$$288 \mathbf{A}^{\lfloor} = \sigma(\mathbf{S}^A \otimes \mathbf{1} - \mathbf{S}_{w,:}^{\text{in}}), \quad \mathbf{A}^{\lceil} = \sigma(\mathbf{E}_{w,:}^{\text{in}} - \mathbf{E}^A \otimes \mathbf{1})$$

290 where broadcasting via $\otimes \mathbf{1}$ aligns learned bounds with the max_int ground-truth intervals. Contain-
 291 ment over all possible interval indices k is aggregated by:

$$292 \mathbf{A}^A = \mathcal{F}(\mathbf{A}^{\lfloor} \odot \mathbf{A}^{\lceil}, -1).$$

293 **Step 3: Compute punctual activations (singleton intervals).** To process degenerate intervals:

$$294 \mathbf{A}^P = \mathcal{F}(\sigma(\mathbf{P} \otimes \mathbf{1} - \mathbf{S}_{w,:}^{\text{in}}) \odot \sigma(\mathbf{E}_{w,:}^{\text{in}} + 1 - \mathbf{P} \otimes \mathbf{1}), -1).$$

300 The $+1$ term enables a containment check for *degenerate* intervals: if the model learns a punctual
 301 interval at time t , we can test containment by verifying whether a candidate point t' satisfies $t' \in$
 302 $[t, t+1]$. During rule extraction, this effect is reverted by taking the floor of the learned value t' ,
 303 which correctly yields the intended punctual (degenerate) interval, namely $[\lfloor t' \rfloor, \lfloor t' \rfloor]$.

304 **Step 4: Compute “eventually” activations (interval overlap).** Eventuality conditions require that
 305 the learned interval for γ_j overlaps *at least once* with one of the ground-truth intervals in window
 306 w . This is enforced through two activation matrices: (i) $\mathbf{A}^{\nearrow} = \sigma(\mathbf{E}^{\text{in}} - \mathbf{S}_{w,:}^E \otimes \mathbf{1})$, ensuring that the
 307 learned interval starts before the ground-truth one ends; and (ii) $\mathbf{A}^{\nwarrow} = \sigma(\mathbf{E}_{w,:}^E \otimes \mathbf{1} - \mathbf{S}^{\text{in}})$, ensuring
 308 that the learned interval ends after the ground-truth one begins. These correspond, respectively, to
 309 the necessary and sufficient conditions for an overlap in a proper interval, the case of the degenerate
 310 interval is covered by the punctual activation (Step 3). The fuzzy conjunction is then applied:

$$311 \mathbf{A}^E = \mathcal{F}(\mathbf{A}^{\nearrow} \odot \mathbf{A}^{\nwarrow}, -1).$$

312 **Step 5: Compute body activations.** The final body activation vector concatenates the contributions
 313 of the three temporal forms:

$$314 \mathbf{B} = \tilde{\mathbf{T}}[:, 0:n^h] \odot \mathbf{A}^A \odot \mathbf{T}_{w,:}^{\text{in}} \parallel \tilde{\mathbf{T}}[:, n^h:2n^h] \odot \mathbf{A}^P \odot \mathbf{T}_{w,:}^{\text{in}} \parallel \tilde{\mathbf{T}}[:, 2n^h:3n^h] \odot \mathbf{A}^E \odot \mathbf{T}_{w,:}^{\text{in}},$$

315 where \parallel denotes concatenation. Therefore the shape of \mathbf{B} is $(n_r^h, 3n^h)$ for each target atom h .

316 **Step 6: Apply structural penalties.** To encourage (i) *diversity among bodies* and (ii) *presence*
 317 of *head variables in body atom variables*, the model incorporates, respectively, a cosine similar-
 318 ity penalty and a masked-based penalty. The pairwise cosine similarity matrix is computed as
 319 $\text{CosSim}_{i,j} = \hat{\mathbf{T}}_i \cdot \hat{\mathbf{T}}_j$ for $i \neq j$, where $\hat{\mathbf{T}}_i = \tilde{\mathbf{T}}_i / \|\tilde{\mathbf{T}}_i\|_2$ measures similarity between rules from
 320 ℓ_2 -normalized $\tilde{\mathbf{T}}$, where $i \in \{1, \dots, n_r^h\}$. To avoid self-comparison, diagonal values are ignored

(set to 0). Let $\text{AvgSim}_i = \frac{1}{n_r^h - 1} \sum_{j \neq i} \text{CosSim}_{i,j}$ be the average similarity of the i -th rule (row). To foster diversity in training, we use a decay factor $\alpha_i = 1 - \text{AvgSim}_i \cdot (1 - \text{epoch}/\text{max_epoch})^2$ based on the current and the total number of epochs.

To guide the training toward producing first-order rules, we introduce a mask-based penalty as follows. We compute two *mask*-vectors \mathbf{m}^0 and \mathbf{m}^1 such that \mathbf{m}_k^0 is 1 if the k -th atom contains the first variable of the target atom, otherwise 0. The \mathbf{m}^1 similarly captures variable sharing with the second argument of the target atom. Let w^k for $k \in \{0, 1\}$ be defined as $w^k = \text{Sum}(\tilde{\mathbf{T}} \odot (\mathbf{1} \otimes (\mathbf{m}^k \parallel \mathbf{m}^k \parallel \mathbf{m}^k)), -1)$; w^0 (resp. w^1) is greater than *threshold* τ only if some body atom contains the same first (resp. second) variable as the head atom. We then compute a penalty

$$p^k = 1 - \text{Relu}(\tau - w^k) \cdot (1 - \text{epoch}/\text{max_epoch})^2$$

The *threshold* parameter can be selected in a grid search, choosing the value yielding the best result.

Step 7: Aggregate rule consequences. The output of the operator is obtained through a fuzzy disjunction over rules:

$$O = \mathcal{F}(\Phi(p_i^0 p_i^1 \alpha_i \cdot \mathbf{B} \mathbf{1}_{3n^h})) ,$$

where $\mathbf{1}$ is the all-ones vector and Φ the differentiable aggregation within each rule.

While standard regularization adds a weighted penalty to the loss function, our mechanism enforces a soft diversity constraint directly in the forward pass, which dynamically down-weights redundant rules by reducing their *inference impact*. Note that those weights are high during the first epochs and diminish till, at the last step, their impact is zero.

Training & Rule Extraction For each window w , the network produces predictions $\hat{y}_h^w = f_\Theta(w)$ for every target atom h , which are compared against ground-truth labels y_h^w . To account for the strong imbalance between positive and negative instances, we use a *balanced binary cross-entropy loss*. The *total loss* is the sum over all atoms, augmented with an ℓ_1 regularization term on the parameters Θ to promote sparsity and reduce overfitting.

Once training is completed, we extract the learned rules by inspecting the learned weight matrices corresponding to each target atom. Specifically, for each target atom $h(X, Y)$, we consider the learned truth weights \mathbf{T} , start and end weights $\mathbf{S}^A, \mathbf{E}^A, \mathbf{S}^E$ and \mathbf{E}^E , respectively, and the punctual intervals \mathbf{P} . Each such matrix contains the same number of rows, which we read as the bodies of the rules having $h(X, Y)$ in the head. Let us consider τ as a threshold hyperparameter.

During the preparation of the data, we produced two variables that, for each window, represent the same entity. In this case, we choose one to be the *representative*, and we substitute all the occurrences of the other variables in the first-order atom signature. We categorize rules r as follows:

- r is *safe* if all head variables also appear in its body; e.g., $h(X, Y) \leftarrow \gamma_1(Y), \gamma_2(X, Z)$ is safe.
- r is *partially safe* if at least one, but not all, of the head variables appear in the body. For instance, $h(X, Y) \leftarrow \gamma_2(X, Z)$ is partially safe.
- r is *to ground* if no head variable appears in the body; e.g., $h(X, Y) \leftarrow \gamma_1(Z)$ is to ground.

We then proceed with rule r as follows: if r is safe, we keep the variables of each atom as they appear; if r is partially safe, we keep only the variables appearing in both its head and body. For each window in the training dataset, we ground the remaining variables with the entities they represent in that window; if r is to ground, we proceed as in the previous case but all variables will be grounded.

Next, we describe how to extract the intervals for the body atoms γ_j with $j = 0, \dots, n_r^h - 1$, from the i -th rule r ; recall that $i = 0, \dots, n_r^h - 1$. For each included $\gamma_j = p(X, Y)$, we have two cases:

- **Metric (interval) case:** We extract as learned interval: $I_{\gamma_j} = [\lfloor \mathbf{S}_{i,j} \rfloor, \lceil \mathbf{E}_{i,j} \rceil]$, indicating the interval in the window where γ_j is considered active; this allows the rule r to capture temporal relations holding over a range of timestamps.
- **Punctual (single timestamp) case:** For γ_i to hold at a specific timestamp, we extract the learned punctual time and respective interval for a rule r as: $t_j = \lfloor \mathbf{P}_{i,j} \rfloor$ and $I_{\gamma_j} = [t_j, t_j]$.

We then represent r as: $h(X, Y) \leftarrow \bigwedge_{\gamma_j \in B(r)} \bigwedge_{\text{op} \in \{\blacksquare, \square, \blacklozenge, \lozenge\}} \text{op}_{I_{\gamma_j}} p_{\gamma_j}(X_{\gamma_j}, Y_{\gamma_j})$ where $B(r)$ is the body of r , and $\text{op}_{I_{\gamma_j}} p_{\gamma_j}(X_{\gamma_j}, Y_{\gamma_j})$ indicates that the atom γ_j holds over the learned interval, which is for interpolation is centered around the center of the window. For illustration, for window

size 8, the learned weights vary from 0 to 7 and the timestamp of the target atom is $[8/2] = 4$. Thus for $\gamma(X, Y)$, an always-learned interval $[0, 2]$ is transformed into $\blacksquare_{[2,4]}\gamma(X, Y)$, a learned interval $[2, 5]$ into $\blacksquare_{[0,2]}\gamma(X, Y) \wedge \square_{[0,1]}\gamma(X, Y)$, and a learned into $[6, 6]$ into $\square_{[2,2]}\gamma(X, Y)$.

For each rule r , let $s(r) = |\{H@t \mid D, t \models H, D, t \models B\}|$, $b(r) = |\{H@t \mid D, t \models B\}|$, and $h(r) = |\{H@t \mid D, t \models H\}|$, where $D, t \models B$ means D, t satisfies the grounded body the atoms in B represents in the window $w = t - [l/2]$, with l the window length. We set $sc(r) = s(r)/b(r)$ if $b(r) > 0$ (else 0), and $hc(r) = s(r)/h(r)$ if $h(r) > 0$ (else 0). The final weight is $w(h, r) = \beta sc(r) + (1 - \beta) hc(r)$ with $\beta \in [0, 1]$.

Sliding Slice-Based Algorithm To address real-world temporal datasets and better capture localized temporal patterns, we propose a sliding window algorithm that partitions the dataset into overlapping slices. Formally, given a temporal dataset of facts $p(\bar{c}, t)$ where $\bar{c} = c_1, \dots, c_n$, we define a sequence of temporal slices of length l as: $\{p(\bar{c}, t) \mid 0 \leq t < l\}, \{p(\bar{c}, t) \mid l \leq t < 2l\}, \dots, \{p(\bar{c}, t) \mid l \cdot \lfloor \frac{c_{\max}}{l} \rfloor \leq t \leq c_{\max}\}$. For each slice, we independently apply our MT-Diff-Learn framework to learn locally valid rules. Finally, all extracted rules across slices are aggregated into a single file. Note that using this algorithm, we identify besides the window size also the slice size as a hyperparameter.

4 EXPERIMENTAL RESULTS

We showcase the applicability of our approach to three different scenarios. We first consider link prediction in Temporal Knowledge Graphs (tKG), then we show how we can exploit the expressibility of our output language to capture the common request-grant schema. In our experiments, we are interested to see (Q1) whether the increased expressiveness can be fruitfully leveraged, (Q2) scalability and succinctness of the approach, and (Q3) how answer performance is affected.

Experimental Setup We have implemented our approach in an experimental prototype, MT-Diff-Learn, that is available in the supplementary material.¹ For the experiments, we used a platform with 224GB of memory. All experimental set-ups follow the same schema, viz. the standard evaluation protocol with temporal filtering Han et al. (2020). Each temporal dataset is split into training, validation, and test subsets according to the temporal constraints imposed. From the training and validation data, we extract a DatalogMTL program π and a scoring function $\tau : \pi \rightarrow [0, 1]$ assigning a weight to each rule in π , which is learned during training as discussed above; it reflects the relevance of rule r for capturing temporal patterns in the data.

As for (Q1), we inspect whether (where applicable) meaningful expected rules are generated. For (Q2), we use the number of rules generated to measure model size, and the resources needed. Regarding (Q3), we use two standard metrics *mean reciprocal rank (MRR)* and *Hit@k*, for $k \in \{1, 10\}$ as in (Wang et al. 2024).² Both MRR and Hit@k refer to $rank_i$, which is the position of the correct answer in the ordered list of answers to a query q_i ; if the correct answer does not appear, $rank_i = \infty$.

More in detail, for each test fact $R(a, b)@t$, we construct the queries $R(x, b)@t$ and $R(a, x)@t$, where a resp. b is an expected answer, and let the dataset D include all training and validation facts. We then compute all constants c such that $\pi[D]$ contains $r(c, b)$ at t , denoted $R(c, b)@t \in T_\pi(D)$, as candidate answers. The score of c is defined as $\max\{\tau(r) \mid r \in \Pi, R(c, b)@t \in r[D]\}$ i.e., the maximum score among the rules deriving $R(c, b)@t$.

Candidates are sorted descendingly by score, breaking ties first by considering secondary rule scores and then alphabetically. We apply *temporal filtering* Han et al. (2020); Liu et al. (2022) to remove each candidate $c \neq a$ such that $R(c, b)@t$ appears in the training, validation, or test set. The rank of the correct answer is its position in the filtered list. For $R(a, x)@t$ queries, we proceed analogously.

Link Prediction on Temporal Knowledge Graphs In missing link prediction, we aim to predict which facts belong to the completion D^* of a given tKG as dataset D . Specifically, we address queries generated from $R(a, b)@t$ as above, where t_{\max} is the maximum timestamp in D ; i.e., find substitutions for x that make the query true in D^* in the observed interval (known as interpolation).

¹Currently for arities less or equal 2; an extension to all arities is simple with unchanged neural design.

²We notice some inconsistent inference issues in MTLearn’s original code; see Appendix for details.

Model	ICEWS14			ICEWS0515		
	MRR	H@1	H@10	MRR	H@1	H@10
TTransE (Bordes et al., 2013)	25.5	7.4	60.1	27.1	8.4	61.6
TADistMult (Lin et al., 2023)	47.7	36.3	68.6	47.4	34.6	72.8
LCGE ⁺	61.6	53.2	77.5	61.8	51.4	81.2
TLT-KGE + HGE ⁺	63.0	54.9	77.7	68.6	60.7	83.1
50k-MTLearn	8.9	5.5	16.5	—	—	—
200k-MTLearn	12.4	7.6	22.9	—	—	—
500k-MTLearn	17.6	12.8	28.3	—	—	—
MT-Diff-Learn	<u>38.3</u>	<u>32.7</u>	<u>45.2</u>	<u>42.5</u>	<u>37.8</u>	<u>50.0</u>

Table 1: Interpolation performance on ICEWS14 and ICEWS0515. Results with ⁺ come from (Pan et al., 2024). The underline / dash marks the best rule-based result / second-best result. MT-Diff-Learn was run with: breadth $b = 8$, depth $d = 1$, window_size $w = 5$, slice=44 and $\beta = .5$

Model	Test Set (45 data)			
	MRR	H@1	H@10	#Rules
MT-Diff-Learn	54.46	27.03	100.0	168
MTLearn	49.2	26.5	100.0	111,649

Table 2: Performance on the action cyber-physical scenario

Model	Test Set (45 data)			
	MRR	H@1	H@10	#Rules
MT-Diff-Learn	42.2	20.0	88.8	183
MTLearn	40.6	19.1	100.0	31,391

Table 3: Performance on the action description scenario

State-of-the-art approaches to temporal link prediction are embedding-based Leblay & Chekol (2018); Lacroix et al. (2020); Xu et al. (2021), encoding entities, relations, and timestamps into a vector space and reasoning via latent representations. They achieve strong predictive performance but are inherently opaque and thus troubled in domains where explainability is essential. Table 1 compares MT-Diff-Learn with MTLearn and embedding-based systems on the interpolation task. The public MTLearn pipeline produces about 21M rules, while our model yields about 40,000. To enable evaluation on our hardware for ICEWS14, we assess sampled variants of MTLearn (nk -MTLearn). For ICEWS05-15, rule generation with the released MTLearn pipeline did not complete under the evaluation setup in Wang et al. (2024). These observations suggest that reproducing the reported MTLearn scores may require exceptionally large rule sets, with implications for scalability.

Cyber-Physical Scenario To test our approach to cyber-physical settings, we created a synthetic dataset simulating usual access-request and access-grant interactions among entities (institutions), where $request_k(i, j)$ and $grant_k(i, j)$, $k = 0, 1$ mean that institution i request access to resource k from institution j resp. i grants access to k to j . The generation is challenging due to the noise injected into the data. E.g., not every request may be followed by a grant, and some grants may have no preceding request. However, the noise is small enough to warrant that most generated data preserves the causal relation. If a request like $request_0(81, 14)@1$ was generated, then $grant_0(14, 81)@(1+d)$ is generated with a delay d sampled from a normal distribution with mean 7 and standard deviation 2, capturing realistic temporal dynamics.

The queries are generated from $grant_k(i, j)@t$ as above. The results in Table 2 show that MT-Diff-Learn, which leverages the \diamond and \blacklozenge (Diamond) operators to capture the occurrence of requests within an interval, significantly outperforms MTLearn. Using only the \square and \blacksquare (Box) operators leads to overfitting on the training data if compared to the results from the test cases.

Action Description Scenario We enhance the previous setting to illustrate how temporal rules may aid finding action descriptions, which is an important modeling task. Ideally, we aim to extract two types of rules from the neural model: (1) those describing the effects of actions and (2) those capturing conditions that trigger action execution, which is a strong version of preconditions.

For each fact $grant_k(i, j)@t$ in the previous dataset, we added a fact $access_k(j, i)@(t+1)$ stating that j has access to resource k of i in the next timepoint. The queries are obtained from such facts. The performance is shown in Table 3. As regards (Q1), in our setting, we are able to learn rules like

$$access_k(X, Y) \leftarrow \blacksquare_{[1,1]} grant_k(Y, X).$$

modeling a direct effect of granting access. Further, we can learn rules

$$grant_k(Y, X) : -\blacklozenge_{[4,10]} request_k(X, Y)$$

that granting happens with delay of 4 to 10 time units after request, modeling temporal uncertainty. The higher performances in Table 3 compared to Table 2 from MTLearn showcase its ability to successfully capture local deterministic temporal patterns such the effect of an action. Note that circa 45 thousand rules were produced, while using MT-Diff-Learn, only around 80. Ablation results in the Appendix demonstrate that removing the eventuality operator causes a sharp performance drop.

486 **5 RELATED WORK AND CONCLUSION**

488 Closest to our work is MT-Learn (Wang et al. 2024), which employs AnyBurl (Meilicke et al., 2019),
 489 a bottom-up atemporal rule learner. AnyBurl samples ground paths of length k in a knowledge graph
 490 and generalizes them by replacing entities with variables. Sampling continues until newly generated
 491 rules are no longer novel (a novelty ratio threshold is used). This check is purely syntactic, and
 492 imposing ordering on variables helps in containing the number of first-order rules it produces. Once
 493 the novelty threshold is met, the path length is increased to $k + 1$, and the process repeats. Such
 494 bottom-up approaches tend to generate a large number of rules, as observed in the application of
 495 MTLean on realistic datasets. In contrast, our framework learns directly rules at the first-order level.
 496 We first lift the ground atoms to first-order atoms, and then search for a limited set of rules that aim
 497 to cover the ground atoms they represent.

498 Related to our work is LTL specification learning by Ielo et al. (2023), who, however, did not consider
 499 metric atoms and used ILASP, a SOTA tool for symbolic rule learning. Most approaches to link
 500 prediction rely on neural architectures or embedding techniques augmented with temporal dimensions,
 501 among them RE-Net Jin et al. (2019), TTransE Leblay & Chekol (2018), TA-DisMult (Garcia
 502 2018), TeLM Xu et al. (2021), TComplEx (Lacroix et al. 2020), and LCGE Niu & Li (2023). Our
 503 approach instead extracts interpretable metric rules that directly model temporal dependencies without
 504 relying on latent representations. The TLogic framework (Liu et al. 2022) produces rules that in
 505 contrast to ours can not handle interpolation and are thus limited in expressiveness.

506 Our ongoing work aims to support dense timelines, higher predicate arities, and to extend the language
 507 with flat function terms to increase readability and performance.

508 **509 REFERENCES**

510 Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez, Torsten Schaub, Anna Schuh-
 511 mann, and Concepción Vidal. Linear-time temporal answer set programming. *Theory and Practice
 512 of Logic Programming*, 23(1):2–56, 2023.

513 Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system for incremental asp-based stream
 514 reasoning. *Theory and Practice of Logic Programming*, 17(5-6):744–763, 2017.

515 Harald Beck, Minh Dao-Tran, and Thomas Eiter. Lars: A logic-based framework for analytic rea-
 516 soning over streams. *Artificial Intelligence*, 261:16–70, 2018.

517 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
 518 Translating embeddings for modeling multi-relational data. *Advances in neural information pro-
 519 cessing systems*, 26, 2013.

520 Elizabeth Boschee and Jennifer Lautenschlager. ICEWS coded event data. Harvard Dataverse,
 521 January 2015.

522 Rochana Chaturvedi. Temporal knowledge graph extraction and modeling across multiple docu-
 523 ments for health risk prediction. In *Companion Proceedings of the ACM Web Conference 2024*,
 524 pp. 1182–1185, 2024.

525 Jan Chomicki and Tomasz Imielinski. Temporal deductive databases and infinite objects. In Chris
 526 Edmondson-Yurkanan and Mihalis Yannakakis (eds.), *Proceedings of the Seventh ACM SIGACT-
 527 SIGMOD-SIGART Symposium on Principles of Database Systems, March 21-23, 1988, Austin,
 528 Texas, USA*, pp. 61–73. ACM, 1988. doi: 10.1145/308386.308416. URL <https://doi.org/10.1145/308386.308416>.

529 Jan Chomicki and Tomasz Imielinski. Finite representation of infinite query answers. *ACM Trans.
 530 Database Syst.*, 18(2):181–223, 1993. doi: 10.1145/151634.151635. URL <https://doi.org/10.1145/151634.151635>.

531 Kenneth Church and Patrick Hanks. Word association norms, mutual information, and lexicography.
 532 *Computational linguistics*, 16(1):22–29, 1990.

533 Andrew Cropper and Sebastijan Dumancic. Inductive logic programming at 30: A new introduction.
 534 *J. Artif. Intell. Res.*, 74:765–850, 2022.

540 Thomas Eiter and Mantas Simkus. Bidirectional answer set programs with function symbols. In
 541 *IJCAI*, pp. 765–771, 2009.

542

543 Thomas Eiter and Mantas Šimkus. Fdnc: Decidable nonmonotonic disjunctive logic programs with
 544 function symbols. *ACM Transactions on Computational Logic (TOCL)*, 11(2):1–50, 2010.

545

546 Thomas Eiter, Wolfgang Faber, Gerald Pfeifer, and Axel Polleres. Declarative planning and knowl-
 547 edge representation in an action language. In *Intelligent techniques for planning*, pp. 1–34. IGI
 548 Global Scientific Publishing, 2005.

549

550 Kun Gao, Katsumi Inoue, Yongzhi Cao, and Hanpin Wang. A differentiable first-order rule learner
 551 for inductive logic programming. *Artificial Intelligence*, 331:104108, 2024.

552

553 Alberto García-Durán, Sebastijan Dumančić, and Mathias Niepert. Learning sequence encoders for
 554 temporal knowledge graph completion. *arXiv preprint arXiv:1809.03202*, 2018.

555

556 Michael Gelfond and Vladimir Lifschitz. *Action languages*. Linköping University Electronic Press,
 557 1998.

558

559 Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reasoning for forecasting
 560 on temporal knowledge graphs. In *International conference on learning representations*, 2020.

561

562 Antonio Ielo, Mark Law, Valeria Fionda, Francesco Ricca, Giuseppe De Giacomo, and Alessan-
 563 dra Russo. Towards ilp-based ltlf passive learning. In *Inductive Logic Programming: 32nd
 564 International Conference, ILP 2023, Bari, Italy, November 13–15, 2023, Proceedings*, pp.
 565 30–45, Berlin, Heidelberg, 2023. Springer-Verlag. ISBN 978-3-031-49298-3. doi: 10.1007/
 566 978-3-031-49299-0_3. URL https://doi.org/10.1007/978-3-031-49299-0_3.

567

568 Tomi Janhunen, Roland Kaminski, Max Ostrowski, Sebastian Schellhorn, Philipp Wanko, and
 569 Torsten Schaub. Clingo goes linear constraints over reals and integers. *Theory and Practice
 570 of Logic Programming*, 17(5-6):872–888, 2017.

571

572 Brindha Priyadarshini Jeyaraman, Bing Tian Dai, and Yuan Fang. Temporal relational graph convo-
 573 lutional network approach to financial performance prediction. *Machine Learning and Knowledge
 574 Extraction*, 6(4):2303–2320, 2024.

575

576 Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network: Autoregressive
 577 structure inference over temporal knowledge graphs. *arXiv preprint arXiv:1904.05530*, 2019.

578

579 Ron Koymans. Specifying real-time properties with metric temporal logic. *Real-time systems*, 2(4):
 580 255–299, 1990.

581

582 Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. Tensor decompositions for temporal
 583 knowledge base completion. *arXiv preprint arXiv:2004.04926*, 2020.

584

585 Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge graph. In
 586 *Companion proceedings of the the web conference 2018*, pp. 1771–1776, 2018.

587

588 Qika Lin, Jun Liu, Rui Mao, Fangzhi Xu, and Erik Cambria. Techs: Temporal logical graph net-
 589 works for explainable extrapolation reasoning. In *Proceedings of the 61st annual meeting of the
 590 association for computational linguistics (volume 1: long papers)*, pp. 1281–1293, 2023.

591

592 Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp. Tlogic: Temporal
 593 logical rules for explainable link forecasting on temporal knowledge graphs. In *Proceedings of
 594 the 36th AAAI Conference on Artificial Intelligence (AAAI 2022)*, pp. 4120–4127. AAAI Press,
 595 2022.

596

597 Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt.
 598 Anytime bottom-up rule learning for knowledge graph completion. In *Proceedings of the 28th
 599 International Joint Conference on Artificial Intelligence, IJCAI’19*, pp. 3137–3143. AAAI Press,
 600 2019. ISBN 9780999241141.

601

602 Stephen Muggleton. Inductive logic programming. *New generation computing*, 8(4):295–318, 1991.

594 Stephen H. Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi Inoue,
 595 and Ashwin Srinivasan. ILP turns 20 - biography and future challenges. *Mach. Learn.*, 86
 596 (1):3–23, 2012. doi: 10.1007/S10994-011-5259-2. URL <https://doi.org/10.1007/s10994-011-5259-2>.

598 Guanglin Niu and Bo Li. Logic and commonsense-guided temporal knowledge graph completion. In
 599 *Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI 2023)*, pp. 4569–4577.
 600 AAAI Press, 2023.

602 Jixin Pan, Mojtaba Nayyeri, Yinan Li, and Steffen Staab. Hge: embedding temporal knowledge
 603 graphs in a product space of heterogeneous geometric subspaces. In *Proceedings of the 38th AAAI
 604 Conference on Artificial Intelligence (AAAI 2024)*, pp. 8913–8920. AAAI Press, 2024.

605 Alessandro Ronca, Mark Kaminski, Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks. Stream
 606 reasoning in temporal datalog. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), *Pro-
 607 ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), the 30th
 608 innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
 609 ucational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, Febru-
 610 ry 2-7, 2018*, pp. 1941–1948. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11537. URL
 611 <https://doi.org/10.1609/aaai.v32i1.11537>.

612 P Walega, B Cuenca Grau, Mark Kaminski, and E Kostylev. Datalogmtl: Computational complexity
 613 and expressive power. In *Proceedings of the Twenty-Eighth International Joint Conference on
 614 Artificial Intelligence*. International Joint Conferences on Artificial Intelligence, 2019.

616 Przemysław A Wałęga, Michał Zawidzki, and Bernardo Cuenca Grau. Finitely Materialisable Data-
 617 log Programs with Metric Temporal Operators. In *Proceedings of the 18th International Confer-
 618 ence on Principles of Knowledge Representation and Reasoning*, pp. 619–628. IJCAI Organiza-
 619 tion, 11 2021. doi: 10.24963/kr.2021/59. URL <https://doi.org/10.24963/kr.2021/59>.

621 Dingmin Wang, Pan Hu, Przemysław Andrzej Wałęga, and Bernardo Cuenca Grau. Meteor: Prac-
 622 tical reasoning in datalog with metric temporal operators. In *Proceedings of the 36th AAAI Con-
 623 ference on Artificial Intelligence (AAAI 2022)*, pp. 5906–5913. AAAI Press, 2022.

624 Dingmin Wang, Przemysław Andrzej Wałęga, and Bernardo Cuenca Grau. Mtlearn: extracting
 625 temporal rules using datalog rule learners. In *Proceedings of the 21st International Conference
 626 on Principles of Knowledge Representation and Reasoning (KR 2024)*, pp. 962–973, 2024.

628 Siheng Xiong, Yuan Yang, Faramarz Fekri, and James Clayton Kerce. Tilp: Differentiable learning
 629 of temporal logical rules on knowledge graphs. *arXiv preprint arXiv:2402.12309*, 2024.

630 Chengjin Xu, Yung-Yu Chen, Mojtaba Nayyeri, and Jens Lehmann. Temporal knowledge graph
 631 completion using a linear temporal regularizer and multivector embeddings. In *Proceedings of
 632 the 2021 Conference of the North American Chapter of the Association for Computational Lin-
 633 guistics: Human Language Technologies*, pp. 2569–2578, 2021.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650 In what follows, the experiments
651652 • were conducted on a high-performance server equipped with $2 \times$ Intel Xeon Gold 5416S
653 CPUs (16 cores, 2 threads per core, 2.00 GHz), $8 \times$ NVIDIA L40S GPUs (48 GB VRAM
654 each), and 2 TB of system memory;
655656 All experimental data and code will be made available upon possible acceptance. The reviewers
657 may access the source code at the link provided in the last page under the "SOURCE CODE AND
658 DATA" section of the Appendix.
659660

A.1 RESULTS ON THE INTERPOLATION-LINK PREDICTION ON TEMPORAL KNOWLEDGE 661 GRAPHS

662 The statistics about the datasets that we considered are shown in Table 1.
663664

Dataset	#Relations	#Entities	#Facts
ICEWS14	231	7,130	72,826
ICEWS05-15	252	10,489	368,962

665 Table 1: Statistics of the temporal knowledge graph datasets.
666667 **MTLearn** We attempted to replicate the results reported for MTLearn (Wang et al. 2024). Specif-
668 ically, we successfully generated rules for:
669670 1. the interpolation task of ICEWS14.
671672 However, for ICEWS05-15, the provided code encountered an array index bug, preventing success-
673 ful rule generation. We contacted the developer regarding this issue, but he indicated that he is no
674 longer working in academia and therefore could not provide detailed support.
675676 The number of rules produced for the successful runs was:
677678 • ICEWS14: 21, 152, 956 rules
679680 while MT-Diff-Learn produced 41,677 rules in the best run. Note that this number is more than two
681 order of magnitudes smaller than the number of rules produced by MTLearn (in fact, about 0.2% of
682 the rules produced MTLearn).
683684 The original evaluation script also contained several bugs, some of which were fixable, while
685 others were more involved due to dependencies on the [https://pypi.org/project/](https://pypi.org/project/meteor-reasoner/)
686 meteor-reasoner/ Python library. Moreover, due to the exceptionally large number of rules,
687 our evaluation script ran out of memory, preventing the computation of evaluation metrics for these
688 tasks on our machine. The comparison therefore is tricky, as our tool produces a number of rules at
689 most linear in the number of data from the training set. Therefore, in the next section, we introduce
690 a sampled version of the MTLearn output.
691692 **Resource-Bound MTLearn** In Table 4, we show the best results, the mean, and the standard
693 deviation of three different settings in which we were able to run on our machine. We produced
694 the results of MTLearn for window size 8 and scoring strategy maximum, the default options of the
695 tool; we sampled respectively 50K, 200K, and 500K rules. We executed this procedure for three
696 times, and we computed the metrics.
697698 **MT-Diff-Learn** Recall that n_r^h from the **Neural Network** paragraph stands for the number of rules
699 used to derive the target first-order atom h . We always get a number of rules at most equal to the
700 number of facts that are reported in Tables 2 and 3. In the experiments discussed in the following
701 sections, we also report the number of rules so that, even if the framework produces a linear number
of rules by design, we also show some empirical evidence of this fact.
702

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Metric	MT-Diff-Learn		
	MRR	Hit@1	Hit@10
Best	38.3	32.7	45.2
Mean	34.1	29.5	43.2
Std. Deviation	2.5	2.2	0.9
Num_Rules (Best)		39,197	
Num_Rules (Mean)		41,758.7	
Num_Rules (Std. Deviation)		82.0	

Table 2: Performance summary and number of rules for MT-Diff-Learn on ICEWS14.

Metric	MT-Diff-Learn		
	MRR	Hit@1	Hit@10
Best	42.5	37.8	50.0
Mean	42.0	37.7	49.8
Std. Deviation	0.7	0.1	0.6
Num_Rules (Best)		210,880	
Num_Rules (Mean)		210,997.3	
Num_Rules (Std. Deviation)		111.5	

Table 3: Performance summary and number of rules for MT-Diff-Learn on ICESW05-15.

Metric	500k-MTlearn			200k-MTlearn			50k-MTlearn		
	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10
Best	17.6	12.8	28.3	12.4	7.6	22.9	8.9	5.5	16.5
Mean	15.64	10.62	26.63	11.86	7.06	22.39	8.41	5.17	15.82
Std. Deviation	2.28	2.24	2.41	0.68	0.51	0.64	0.47	0.35	0.55

Table 4: Performance statistics of MTLearn in link prediction for different dataset sizes

756 A.2 RESULTS ON THE CYBER-PHYSICAL SETTING
757

759 Metric	760 MT-Diff-Learn				761 MTLearn			
	762 MRR	763 Hit@10	764 Hit@1	765 #Rules	766 MRR	767 Hit@10	768 Hit@1	769 #Rules
761 Best Result	762 56.0	763 95.2	764 34.5	765 84	766 43.3	767 100.0	768 20.8	769 9,564
761 Mean Result	762 53.8	763 92.9	764 31.7	765 85.3	766 41.5	767 100.0	768 20.5	769 12,295
761 Std. Deviation	762 3.8	763 4.1	764 3.8	765 2.3	766 100.0	767 .	768 0.6	769 2,371.1
763 Dataset Gen. (μ, σ)		764 Mean = 7, Std Deviation = 2, Size Training Set = 202						

764 Table 5: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset generation with $\mu = 7$ and $\sigma = 2$. Window size: 10 for both.
765

767 Metric	768 MT-Diff-Learn				769 MTLearn			
	770 MRR	771 Hit@10	772 Hit@1	773 #Rules	774 MRR	775 Hit@10	776 Hit@1	777 #Rules
770 Best Result	771 54.5	772 100.0	773 32.4	774 165	775 46.7	776 1.0	777 22.4	778 11,8041
770 Mean Result	771 47.6	772 91.9	773 23.4	774 174	775 46.0	776 1.0	777 22.0	778 11,8497.3
770 Std. Deviation	771 6.4	772 7.2	773 8.8	774 8.5	775 1.2	776 .	777 0.6	778 455.5
772 Dataset Gen. (μ, σ)		773 Mean = 15, Std Deviation = 2, Size Training Set = 196						

773 Table 6: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset generation with $\mu = 15$ and $\sigma = 2$. Window size: 35 for both.
774

776 Metric	777 MT-Diff-Learn				778 MTLearn			
	779 MRR	780 Hit@10	781 Hit@1	782 #Rules	783 MRR	784 Hit@10	785 Hit@1	786 #Rules
779 Best Result	780 54.5	781 100.0	782 27.0	783 168	784 49.2	785 100.0	786 26.5	787 111,649
779 Mean Result	780 51.6	781 99.1	782 26.1	783 174	784 48.7	785 100.0	786 25.7	787 111,650
779 Std. Deviation	780 0.80	781 1.5	782 1.5	783 6	784 0.7	785 0.0	786 1.0	787 1.41
781 Dataset Gen. (μ, σ)		782 Mean = 15, Std Deviation = 5, Size Training Set = 189						

782 Table 7: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset generation with $\mu = 15$ and $\sigma = 5$. Window size: 35 for both.
783785 **MTLearn** MTLearn was run using the same window-size parameters as MT-Diff-Learn, namely:
786 window size of 10 when the mean is 7, while window size of 35 when the mean is 15. and with a
787 scoring strategy of maximum, which is the default option.
788789 **MT-Diff-Learn** The model was trained using the following parameters: number of epochs 20,
790 breadth 6, and depth 1.
791792 We further show results that we obtained for variations of the dataset generation with different
793 distribution and window size in Tables 5–7. As one can see, then number of rules produced by
794 MT-Diff-Learn grows linearly in the size of the dataset, while it is still able to outperform MTLearn
795 in different scenarios. This analysis showcases the ability of MT-Diff-Learn for scalability.
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A.3 RESULTS ON THE ACTION DESCRIPTION TASK
811

812 Metric	813 MT-Diff-Learn				814 MTLearn			
	815 MRR	816 Hit@10	817 Hit@1	818 #Rules	819 MRR	820 Hit@10	821 Hit@1	822 #Rules
Best Result	34.1	56.3	22.4	128	42.08	94.83	19.8	23,964
Mean Result	32.1	53.5	19.4	179.3	41.52	92.7	20.5	23,964
Std. Deviation	2.48	2.40	2.86	45.17	0.97	1.82	0.57	10.0
Dataset Gen. (μ, σ)	Mean = 7, Std Deviation = 2, Size Training Set = 299							

818 Table 8: Comparison of MT-Diff-Learn and MTLearn in the action-description scenario, dataset
819 generation with $\mu = 7$ and $\sigma = 2$. Window size: 10 for both.
820

821 Metric	822 MT-Diff-Learn				823 MTLearn			
	824 MRR	825 Hit@10	826 Hit@1	827 #Rules	828 MRR	829 Hit@10	830 Hit@1	831 #Rules
Best Result	39.6	87.5	19.4	190	46.7	99.6	27.6	23,977
Mean Result	38.7	83.3	18.5	183.3	49.4	98.6	24.5	24,048.3
Std. Deviation	1.5	3.8	0.1	7.02	2.8	1.0	2.7	117.5
Dataset Gen. (μ, σ)	Mean = 15, Std Deviation = 2, Size Training Set = 283							

827 Table 9: Comparison of MT-Diff-Learn and MTLearn in the action-description scenario, dataset
828 generation with $\mu = 15$ and $\sigma = 2$. Window size: 35 for both.
829

830 Metric	831 MT-Diff-Learn				832 MTLearn			
	833 MRR	834 Hit@10	835 Hit@1	836 #Rules	837 MRR	838 Hit@10	839 Hit@1	840 #Rules
Best Result	42.2	88.8	20.0	183	40.6	100.0	19.1	31391
Mean Result	42.0	85.4	17.5	180.7	39.7	100.0	16.4	31655
Std. Deviation	2.6	3.1	2.2	2.1	1.0	0.0	2.3	228.6
Dataset Gen. (μ, σ)	Mean = 15, Std Deviation = 5, Size Training Set = 285							

836 Table 10: Comparison of MT-Diff-Learn and MTLearn in the action-description scenario, dataset
837 generation with $\mu = 15$ and $\sigma = 5$. Window size: 35 for both.
838839 **MTLearn** MTLearn was run using the same window-size parameters as MT-Diff-Learn, namely:
840 window size of 10 when the mean is 7, while window size of 35 when the mean is 15. and with a
841 scoring strategy of maximum, which is the default option.
842843 **MT-Diff-Learn** The model was trained with the following parameters: number of epochs 20,
844 breadth 6, and depth 1. The window size parameter coincides with that of the MTLearn runs.
845846 We further show results that we obtained for variations of the dataset generation with different
847 distribution and window size in Tables 8–10. As one can see, also in this scenario, our model is able
848 to produce acceptable performances keeping the number of rules limited.
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 A.4 ABLATION STUDY ON THE CYBER-PHYSICAL SETTING
865

866 We investigate the contribution of the eventuality operators by conducting an ablation study in the
867 cyber-physical scenario. Specifically, we compare the performance of MT-Diff-Learn when both
868 eventuality operators (\diamond, \blacklozenge) are available against a variant that replaces them with the always op-
869 erator (\square, \blacksquare). Note that in both settings, punctual intervals are still permitted. This highlights the
870 importance of temporal evolutions for capturing system dynamics, where the grant occurs with un-
871 certainty: it is expected to happen within an interval, but the exact time point remains unknown.
872 Note also that the request-implies-grant is a canonical pattern in such scenarios.

Metric	MT-Diff-Learn-with- $\{\diamond, \blacklozenge\}$			MT-Diff-Learn-with- $\{\square, \blacksquare\}$		
	MRR	Hit@10	Hit@1	MRR	Hit@10	Hit@1
Best Result	54.46	100.0	32.43	15.5	18.9	12.2
Mean Result	47.60	91.89	23.42	13.7	15.3	12.2
Std. Deviation	6.43	7.15	8.79	1.6	3.1	0

873 Dataset Gen. (μ, σ) Mean = 15, Std Deviation = 2, Size Training Set = 196

874 Table 11: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset gen-
875 eration with $\mu = 15$ and $\sigma = 2$. Window size: 35 for both.

883 B SOURCE CODE AND DATA

884 The source code and data can be found here:
885 <https://drive.google.com/drive/folders/12sJDhN1nGZ49iGJEFKmm8VGYsr5laSq7?usp=sharing>.

888 C REBUTTAL

890 C.1 FIRST REVIEWER

892 **Weaknesses** >> The paper is a bit like reading someone’s half-documented code. The paper says
893 “We do this, then we do that, then we do that.” But it is often not clear what the goal is or why those
894 steps are appropriate. This is particularly a problem in section 3. It also makes it difficult to adjust
895 for lapses in the exposition. To take some early examples: “target atom” isn’t defined at line 126
896 and it’s not clear where it comes from or why it’s needed.

897 Thanks for your comments. We noticed this issue and updated the presentation in a more schematic
898 style. Please check Section 3 in the revised version.

900 Regarding the conceptual clarifications: our objective is to learn a logic program P that derives a
901 designated *target atom* h , given background knowledge B and sets \mathcal{P} and \mathcal{N} of positive and negative
902 examples. A valid solution P must entail all positive examples while excluding all negative ones:

$$B \cup P \models e^+ \quad \forall e^+ \in \mathcal{P}, \quad B \cup P \not\models e^- \quad \forall e^- \in \mathcal{N}.$$

904 Instead of relying on a black-box neural predictor, the network is structured so as to learn a program
905 P whose inference behaviour follows the formal semantics of DatalogMTL. Predictions are framed
906 as logical entailment: the model determines whether the target atom (i.e., the output label y) holds.

907 For example, if *wet_ground* is the target atom, the system may learn a rule such as:

$$\textit{wet_ground} \leftarrow \blacklozenge[2, 0] \textit{rains},$$

910 which, under the semantics of DatalogMTL, states that the ground is wet if it has rained at any point
911 within the last two days or on the current day in a scenario where the time unit is a day. In general,
912 *target atoms* are precisely those atoms whose truth values the model aims to predict via the learned
913 logical rules.

914 >> At line 132, it’s not clear where the threshold comes from: before relaxation, is it meant to be
915 the number of negative literals in the rule?

917 We wrote: “Let v be an real number, and let $\varphi(v) = v'$ be the threshold function, where $v' = 1$ if
918 $v \geq \tau$, and $v'_i = 0$ otherwise with τ being the threshold value.” Instead of $v'_i = 0$, it should have

918 been $v' = 0$. Perhaps the typo hindered the reading. Therefore, it is not the number of negative
 919 literals. It is a threshold value such that if a value is greater than τ , then it collapses to 1, otherwise
 920 to 0.

921 >> At line 202, what happens if multiple atoms were “already considered in the previous
 922 windows”?

924 If multiple atoms were already considered in previous windows, one of them is selected uniformly
 925 at random. The remaining atoms can then still be used in the current window to *represent* distinct
 926 ground instances. For example, suppose both $\text{consult}(X, Y)$ and $\text{consult}(W, Z)$ were previously
 927 generated. Then, if the current window contains the ground atoms $\text{consult}(a, b)$ and $\text{consult}(c, d)$,
 928 we may map $\text{consult}(X, Y)$ to represent $\text{consult}(a, b)$ while $\text{consult}(W, Z)$ remains available to
 929 represent $\text{consult}(c, d)$.

930 >> Even as a low-level description of what’s done, the paper doesn’t quite hang together. To take
 931 one example: Line 190 defines the “overlap score” and says that it is “used to determine processing
 932 order,” but it’s not clear what “processing order” refers to, and neither nor the overlap score is ever
 933 mentioned again! (I suppose it’s the same as the “co-occurring score” in the next paragraph.)

934 Thank you for pointing this out. Our heuristics compute two different scores: (i) an overlap score
 935 used to determine the order in which windows are processed, and (ii) a co-occurrence score used to
 936 decide the order in which ground atoms are lifted to first-order ones. We intended the textual de-
 937 scription to be easier to follow than presenting a full procedural algorithm, but we see how this may
 938 have caused confusion. If allowed, we will include a clear algorithmic description in the appendix
 939 to make the distinction explicit.

940 >> Furthermore, the definition of contains unbound variables. (I suppose it should have been named
 941 .)

942 Thank you for highlighting this point. As stated in the paper, the number of rules we generate
 943 is linear in the input, which implies that the number of variables is indeed bounded. We made
 944 it clearer by exposing the procedure in an algorithmic fashion: the generation of the variables is
 945 described from line 14 to line 17 in Algorithm 1. One cannot generate more $|E||\mathcal{W}|$ variables,
 946 where E denotes the set of all entities and $|\mathcal{W}|$ the number of windows.

947
 948
 949 **Questions** >> What is the formal learning problem here?

950 The formal learning problem we address is that of learning DatalogMTL rules (defined in Section
 951 2) that describe a temporal dataset. More precisely, our setting corresponds to the temporal interpo-
 952 lation problem studied in prior work such as [1] and [2]: given temporal sequences of facts, the goal
 953 is to induce a rule set whose temporal consequences reconstruct or generalize these sequences.

954 [1] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reasoning for fore-
 955 casting on temporal knowledge graphs. In the International conference on learning representations,
 956 2020.

957 [2] Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp. Tlogic: Tem-
 958 poral logical rules for explainable link forecasting on temporal knowledge graphs. In Proceedings of
 959 the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), pp. 4120–4127. AAAI Press,
 960 2022.

961 >> Is it a machine learning problem where there is a true set of temporal facts over intervals, the
 962 answers to some queries are observed at random, and the estimated DatalogMTL program should
 963 accurately predict the answers to other queries?

964 The learning problems we consider are indeed machine-learning tasks over temporal data, but they
 965 span three concrete settings rather than a single abstract formulation:

- 966 1. Temporal link prediction (interpolation) on temporal knowledge graphs, following the setting of
 967 [1] and [2], where the goal is to reconstruct unseen temporal facts from partially observed sequences.
- 968 2. A synthetic temporal dataset in which the model must learn temporal relations connecting requests
 969 and grants.

972 3. A temporal action-learning scenario, where the system induces action descriptions from observations
 973 of an autonomous agent.

974 More generally, we learn a DatalogMTL program that generalizes from observed temporal facts to
 975 unobserved ones. We tested it across different temporal reasoning domains to show its versatility.

976 >> Is it a statistics problem where a true parameter is a DatalogMTL program, the answers to some
 977 queries are observed at random, and the true program should be recovered in the limit? If so, is the
 978 program in fact identifiable?

979 In the ICEWS settings, there is no clear, perfect program one should learn in the limit, while in
 980 the synthetic dataset, yes. For instance, the rules presented in the Action Description Scenario
 981 setting represent some possible *good* rules one would like to learn given the parameters used in the
 982 generation of the data.

983 >> Is it a computational problem of finding a small description of a set of positive facts

984 It does not necessarily need to be small, however, if it is small, it is preferable. Our tool learns
 985 indeed a small number of rules (linear) in the size of the dataset.

986 >> (and if so, how is it ensured that the description does not predict false facts, since negative
 987 examples are not provided)?

988 In the [1] and [2] settings, an answer is always expected.

989 [1] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reasoning for fore-
 990 casting on temporal knowledge graphs. In the International conference on learning representations,
 991 2020.

992 [2] Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp. Tlogic: Tem-
 993 poral logical rules for explainable link forecasting on temporal knowledge graphs. In Proceedings of
 994 the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), pp. 4120–4127. AAAI Press,
 995 2022.

996 >> Is it an association rule mining problem as mentioned earlier? If so, what is the success crite-
 997 rion?

998 The success criterion is not based on association-rule mining but on standard evaluation metrics used
 999 in temporal link prediction and temporal reasoning tasks. In all experiments, we assess performance
 1000 using Hits@Rank and MRR, which measure how well the learned DatalogMTL program predicts
 1001 the correct temporal facts among all candidate answers.

1002 >> What does "consecutive occurrences" mean at line 181? You talk about t , $t+1$, and $t+2$. I had
 1003 assumed that time was continuous, since you referred early on to "intervals"; did you actually intend
 1004 for time to be discrete?

1005 Yes, in our experimental setting time is discrete. This allows us to refer to consecutive occurrences
 1006 such as t , $t + 1$, and $t + 2$, which correspond to the discrete interval $[t, t + 2]$. Intervals can still
 1007 be defined naturally over a discrete timeline. Extending the framework to continuous time is an
 1008 interesting direction for future work; it would mainly require adjustments in data preprocessing
 1009 rather than changes to the core method.

1010 >> It's not clear to me whether learning temporal logic programs is an important problem. Can you
 1011 make a case for it?

1012 Learning temporal logic programs is important because many real-world reasoning tasks are inher-
 1013 ently temporal: events have durations, actions have delayed effects, and relations evolve over time.
 1014 The ability to induce temporal rules from data places our work within a growing line of research in
 1015 Inductive Logic Programming (ILP) and neuro-symbolic reasoning, where temporal extensions are
 1016 becoming increasingly relevant.

1017 Temporal logic programs provide high-level, human-readable rules that capture how facts evolve
 1018 over time. These rules are valuable not only for prediction (e.g., temporal link prediction, learning
 1019 action descriptions) but also for explainability and diagnosis in evolving systems, where extracting
 1020 structured knowledge from data is crucial. In contrast, transformer-based models—despite recent
 1021 efforts to improve their interpretability, remain inherently more opaque than symbolic formalisms,

1026 which offer explicit reasoning steps. Symbolic approaches may sometimes trade off raw performance,
 1027 but they provide semantic clarity that is essential in domains where understanding temporal
 1028 dynamics matters.

1029 >> But as an alternative, perhaps one could train a neural generative model and then extract ex-
 1030 planatory patterns from it post hoc.)

1032 Training a neural generative model and extracting patterns post hoc is indeed a possible alternative.
 1033 However, our goal is to extract rules that correspond directly to the actual decision-making process
 1034 of the model—i.e., explicit if-then clauses that the system truly relies on during inference. Post-hoc
 1035 pattern results in a knowledge that does not offer the same properties of a formal language with a
 1036 clear syntax and semantics. Therefore it cannot directly support classical knowledge-representation
 1037 tasks such as logical inference, automated planning, verification, or diagnosis. In contrast, our
 1038 method learns rules within a formal logic framework (DatalogMTL), ensuring that the extracted
 1039 rules can be given as an input to temporal rule solvers or monitoring frameworks.

1040 To integrate: “post-hoc interpretation, we take an existing machine learning system, that has already
 1041 been trained, and try to understand its inner state. In the other approach, designing explicit already-
 1042 interpretable machine learning systems, we con- strain the design of the machine learning system to
 1043 guarantee, in advance, that its results will be interpretable”

1044 >> I am not able to follow the details of the method as presented. On first principles, I would have
 1045 expected a method similar to Gao et al. (2024), which you present as your starting point, but where
 1046 the matrix columns had names like (for all T in [Time+a, Time+b]) property(T, X, Y) or (exists T in
 1047 [Time+a, Time+b]) property(T, X, Y). These truth conditions of such a column would be softened,
 1048 in part by fuzzing the edges of the interval [Time+a, Time+b]. Thus, you could improve a, b by
 1049 following their gradient. Why didn’t you do it this way?

1050 We may be misunderstanding the reviewer’s suggestion, but our architecture does already allow for
 1051 differentiable learning of interval endpoints. In DatalogMTL, temporal operators such as boxes or
 1052 diamonds are implemented through differentiable layers, and the parameters are learned via gradient
 1053 descent—analogous in the same spirit the reviewer suggests.

1054 >> What happens if you make the window size too large or too small?

1055 The size of the windows is optimized via a grid-search. The idea is that the windows should be large
 1056 enough to capture most of the relevant temporal dependencies across the data.

1058 >> Does this change the number of rules you find and their specificity, so that you might underpre-
 1059 dict or overpredict positive facts?

1060 Changing the window size can indeed influence the specificity of the learned rules. Intuitively, larger
 1061 windows rely less on temporally local dependencies and may therefore lead to more general rules,
 1062 which can increase the risk of overgeneralization. On this other side, when the temporal dependen-
 1063 cies in the data are short-term, increasing the window size may introduce unnecessary complexity
 1064 and this may negatively affect the quality of the learned rules. We will include this discussion in the
 1065 revised version to clarify how window size interacts with rule specificity and prediction accuracy
 1066 with some ablation studies to support this.

1067 >> What are the simplest examples where your heuristics would fail?

1069 The simplest example is when every entity appears only once, and the first-order “representatives”
 1070 do not generalize. In fact, in this case, the outcome will be a grounded DatalogMTL program.

1072 C.2 SECOND REVIEWER

1073 **Weaknesses** >> The experimental section could be strengthened by including comparisons
 1074 against more diverse state-of-the-art neuro-symbolic or temporal rule mining baseline approaches,
 1075 beyond standard non-temporal or limited temporal inductive logic programming methods, to fully
 1077 contextualize the proposed model’s performance in the broader field of temporal sequence modeling.

1078 We interpret the reviewer’s comment as referring to temporal sequence modeling. Our focus, how-
 1079 ever, is on interpretable rule learning, not black-box sequence modeling. While sequence models
 such as LSTMs or Transformers can handle temporal prediction, they do not produce symbolic rules

1080 or interpretable structures, making them unsuitable baselines for our setting. Of course, the literature
 1081 is very huge, so we reported only some results of temporal sequence modeling tools in the
 1082 Table about temporal link prediction in the interpolation settings. Nonetheless, we will clarify this
 1083 distinction in the paper.

1084

1085 **Questions** >> How robust is the learning of the continuous metric interval bounds to noise in the
 1086 training data,

1087

1088 Our syntactic dataset is obtained by adding some uncertainty on the realization of the grant via the
 1089 parameters μ and σ , and some noise is injected as the grant is given if a uniform probability variable
 1090 that uniformly ranges from 0 to 1 exceeds .9.

1090

1091 >> and what regularization or loss terms (if any) are specifically implemented to prevent interval
 1092 collapse or explosion during gradient descent?

1093

We have not considered such regularization.

1094

1095 >> Given the focus on interpretability, can the authors provide a more detailed analysis of the
 1096 learned rules—perhaps a qualitative summary or examples from the different use cases—to illustrate
 1097 how MT-Diff-Learn discovers non-obvious or complex temporal relationships that purely sequential
 1098 models might miss?

1098

1099 An example of a rule that is learned in the ICEWS setting is:

1100

$$\text{consult}(X, Y) \leftarrow \square_{[0,0]} \text{consult}(Y, X).$$

1101

1102 This rule is not di per see involving a temporal complex structure, but it showcase how certain
 1103 property such as symmetry in this case can be easily represented.

1103

1104 A temporal which spans over different timestamps is the following:

1105

$$\text{sign_agreement}(X, Y) \leftarrow \blacksquare_{[1,2]} \text{consult}(Y, X).$$

1106

1107 This rule is rather general, as it can be instantiated in many different ways. Its intended meaning is
 1108 the following: at a time point t , the atom $\text{sign_agreement}(X, Y)$ holds whenever subject b has been
 1109 consulting subject a throughout the interval $[t - 2, t - 1]$. In other words, if b has been consulting a
 1110 during the previous day and the day before, then at time t subject a will sign an agreement with b .

1111

1112 C.3 THIRD REVIEWER

1113

1114 **Weaknesses** >> The lifting process is complex and relies heavily on heuristics (overlap scores,
 1115 processing order, variable assignment constraints). The robustness of the system to these choices
 1116 is unclear, and the impact of associated hyperparameters (window size l , breadth b , depth d) is not
 1117 analyzed. The generalizability of this lifting process warrants further investigation.

1118

We agree that more ablation studies should be provided, and we aim to integrate them in the revised
 1119 version of the paper.

1120

>> On standard tKG benchmarks (ICEWS), MT-Diff-Learn significantly lags behind SOTA
 1121 embedding-based methods. While the focus is on interpretability, this gap may limit adoption where
 1122 accuracy is paramount. The paper should better discuss this trade-off.

1123

We agree that embedding-based temporal KGC methods achieve higher raw accuracy on large-scale
 1124 benchmarks such as ICEWS. However, these models are inherently black-box and do not yield in-
 1125 terpretable temporal rules. We will clarify this trade-off in the revised version and position our
 1126 approach as an interpretable alternative rather than a direct competitor to high-performance embed-
 1127 ding models. Furthermore, in cases where the labels of entities and relation names do not carry any
 1128 semantic information, the performance of embedding-based approaches may degrade significantly,
 1129 whereas rule-based methods remain robust to such semantic neutrality.

1130

>> Key parts of the methodology are difficult to parse. The lifting procedure (W1) is confusing.
 1131 Furthermore, the process of translating the learned intervals back into DatalogMTL syntax is unclear.
 1132 The example provided (transforming $[2, 5]$ into a conjunction of past and future operators) seems
 1133 overly complicated and requires clarification regarding how semantics are preserved relative to the
 window center.

1134 The translation from learned intervals into DatalogMTL is conceptually simple, so that part should
 1135 be made more readable if it causes any problem.

1136
 1137 >> The abstract claims applicability to data over dense time intervals. However, the semantics
 1138 defined in Section 2 are explicitly over integers (\mathbb{Z}), and dense time is only mentioned as future
 1139 work.

1140 Yes, with some adaptation in the preprocessing of the data we can apply this method to learn also
 1141 rules operating on a dense timeline, however, to ease the presentation we stick to the simpler case of
 1142 the integers. We will make this clearer in the revised version.

1143 >> While the output model is succinct, the training process involves complex tensor operations. The
 1144 input tensors (Start/End) have a dimension representing the maximum number of disjoint intervals
 1145 an atom might hold in a window. The paper does not detail the practical implications of this on
 1146 memory usage and training time if this value is large.

1147 For each target atom h , we generate the three tensors for (i) the truth matrix, (ii) the starting and (iii)
 1148 the ending matrix. Since the number of the relevant atoms is parametrized by b and d in the PMI-
 1149 filtered selection, under the assumption that b^d is fixed, and, therefore, can be considered a constant,
 1150 then the size of the matrixes are polynomial in size in the number of ground atoms the target atom h
 1151 represents.

1152
 1153 **Questions** >> The lifting process is intricate and heuristic-driven. How sensitive are the final
 1154 results to these heuristics (e.g., the ordering strategy)? Could you provide a small, concrete example
 1155 illustrating how the variable assignment rules (1-4) operate across two overlapping windows?

1156 Thanks for pointing out that the description of the lifting process was difficult to follow. We agree,
 1157 and in the revised version, we will make the procedure clearer in two ways. First, we present
 1158 the variable-assignment rules in a more algorithmic and structured manner, so that the ordering
 1159 strategy and the decision points are explicit. Second, we will include a small, concrete example in
 1160 the appendix (due to space constraints in the main paper) showing how two partially overlapping
 1161 windows are lifted step-by-step.

1162 >> Could the authors clarify the interval translation process in L354-359? Assuming a window
 1163 size of 8 (center at 4), how exactly does a learned interval [2, 5] translate into " $\blacksquare[0,2] \gamma(X,Y) \wedge$
 1164 $\square[0,1] \gamma(X,Y)$ " aka, 2 time units in the past and 1 time unit in the future. The interval relative to
 1165 the center seems to be [-2, 1].

1166 Yes, but in the syntax of DatalogMTL for each temporal modality (always and eventually), there are
 1167 two modes: past and future. Therefore, if 0 is the center timepoint, then (past) $\blacksquare[0,2]$ means [-2, 1]
 1168 and (future) $\square[0,1]$ means [0, 1]. Their union yields [-2, 1].

1169 >> How does the memory consumption scale with the max_int parameter? Could this become a
 1170 bottleneck for datasets with complex temporal patterns?

1172 This issue could arise when the window size is very large and many atoms become true within the
 1173 same window but over multiple disjoint intervals. We did not explicitly discuss this case, as it did not
 1174 occur in the ICEWS datasets we used. However, such scenarios are easy to imagine, especially in
 1175 real-world cyber-physical systems. We agree this is an interesting limitation, and we will definitely
 1176 investigate it in future work.

1177 >> Could you clarify the discrepancy between the abstract's claim of applicability to dense time
 1178 and the discrete-time semantics defined in Section 2?

1179 Thanks for highlighting this point. To keep the presentation simple, Section 2 focuses on the
 1180 discrete-time semantics commonly used in prior work. However, the approach itself is not restricted
 1181 to discrete timelines. By suitably adapting the preprocessing stage—specifically, how temporal
 1182 intervals are extracted and represented—our framework can operate over dense time as well. We
 1183 will clarify this distinction in the revised version and we will postpone a clear handling of the dense
 1184 timeline as a future work.

1185
 1186 **C.4 FOURTH REVIEWER**

1187 >> No complete guiding example. One piece of example at lines 356–359 is unclear.

1188 Thank you for pointing this out. In the revised version, we provided a more algorithmic presentation
 1189 of the proposed procedures.

1190 >> Figure 1, which should add substantial information/context to the paper, is underdeveloped.

1191 We agree that Figure 1 can be improved. In the revised version, we updated it to better align with
 1192 the pipeline steps and provide clearer contextual information.

1193 >> Too many mathematical flaws and presentation inconsistencies in the background and method
 1194 sections (and beyond). For example:

1195 Many thanks for the careful reading, we fixed the typos.

1196 >> Now for the experiments. This part feels weak and underdeveloped. What are the "sampled
 1197 variants of MTLearn"?

1198 These are variations of MTLearn that we introduced as the basic version as the basic version of
 1199 the tool produced a large amount of data we were not able to run either our evaluation script or
 1200 the MTLearn's one. In order to still present some results, we considered a sampled version of the
 1201 resulting rules produced by MTLearn.

1202 >> I assume that some examples have been sampled to produce the results in Table 1. If so, have
 1203 you used different random seeds for the sampling and aggregated the results in Table 1? If not, why?

1204 Yes, we used different random seeds. We will make it clearer in the revised version of the paper.

1205 >> What are ICEWS14 and ICEWS05-15? I assume those are datasets, given the context in Table
 1206 1. Do such datasets have a bibliographic reference? What are the characteristics of these datasets?

1207 The specs about ICEWS14 and ICEWS05-15, which are standard benchmarks given that we cited
 1208 different tools that have been tested against these two datasets in Table 1, are reported in Table 1
 1209 from Appendix A.1.

1210 >> I'm asking because the abstract claims the extraction of a linear number of rules (in terms of
 1211 the dimensionality of the training dataset(s)).

1212 Yes, for each atom we want to learn, we may produce at most a rule, therefore the claim holds.

1213 >> As noted earlier, the cyber-physical scenario requires further explanation (see the Summary).

1214 We will add some details in the appendix, as the main text is already quite full of information.

1215 >> Finally, what is a "strong version of preconditions" (line 450)?

1216 It means that it is not just a precondition for the action, but also a triggering condition, meaning that
 1217 whenever it holds, the action is executed. We will make it clearer.

1218 >> I've looked at the Appendix, which needs significant improvement, as with the main text. I'm
 1219 not a huge fan of using bullet points/enumerations for listing just one item (e.g., lines 652–654, line
 1220 673, and line 680). It is clear to me that the Appendix hadn't been read before submission. Although
 1221 notable, the ablation study is weak; I would have expected, besides ablating against eventually or
 1222 not, to see how other components of the architecture perform while enabling/disabling those parts.

1223 We are happy to extend the ablation studies to analyze additional components of the architecture and
 1224 would welcome suggestions from the reviewers. Table 11 already examines the effect of removing
 1225 the eventuality operators, and we will highlight this more clearly in the revised version.

1226

1227 C.5 FIFTH REVIEWER

1228

1229 >> In the introduction, how to define a model as "fully differentiable"? It's unclear because this
 1230 is the core contribution. Many previous works can produce "human-readable rules", so how can to
 1231 differentiate from those works, and how do fully differentiable architectures generate explicit rules?

1232 This is the first work that produces DatalogMTL rules in a differentiable way. In Section 3, we show
 1233 how we can express the immediate consequence operator in a neural network.

1234 >> What's the number of parameters used in this model?

1242 The number of parameters depends on the dataset. After generating first-order atoms and filtering
1243 them using PMI with the hyperparameters b (breadth) and d (depth), each target atom h —which
1244 represents n_r^h grounded atoms—has approximately $n_r^h \cdot n^h$ learnable parameters. Here, $n^h \leq 3b^d$,
1245 which is intentionally kept small to limit the number of candidate body atoms and ensure tractable
1246 model size.

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295