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ABSTRACT

We propose a novel differentiable neural architecture for learning first-order tem-
poral logic rules enriched with metric operators. Leveraging differentiable imme-
diate consequence operators over data, we extend the approach to temporal data by
learning both the predicates and the temporal intervals in which they hold. Among
the strengths of our model are its support of existential literals in rule bodies to
express eventualities within an interval and its applicability to data over discrete
intervals. Notably, our model can effectively capture temporal dependencies with-
out reifying all possible timestamps and produces a linear number of rules in the
size of the training set, which has a benign effect on model complexity and scala-
bility. We explore different use cases and show in experiments the benefits of our
approach, highlighting its potential as a scalable solution for interpretable metric
temporal rules over data.

1 INTRODUCTION

Inductive Logic Programming (ILP) (Muggleton, 1991; Cropper & Dumancic, 2022) is a field that
seeks to derive knowledge expressed as logic programs from training examples, enabling gener-
alization to unseen cases. In recent years, the interest in ILP has been increasing since symbolic
approaches grounded in logic rule learning are by their nature well-positioned for providing ex-
plainability, which is a pressing need for modern data-driven AI systems.

Specifically, with the growing availability of temporal data, learning temporal rules from such
data has become an issue in the research community. Often temporal data are relational data en-
riched with temporal annotations, representing dynamic events as tuples of the form (s, r, o, t) or
(s, r, o, [t1, t2]), where t is a timestamp and [t1, t2] a time interval associated with a data triple
(s, r, o). Such representations are ubiquitous and critical for domains like international diplomacy
(Boschee & Lautenschlager 2015), healthcare (Chaturvedi 2024), and finance (Jeyaraman et al.
2024), where the temporal validity of facts influences decision-making.

Logic rules can express time in different ways, including (i) the use of designated arguments and
functions to encode successive states as in (Chomicki & Imielinski, 1988; Eiter & Šimkus, 2010;
Ronca et al., 2018) for linear structures or as in (Chomicki & Imielinski, 1993; Eiter & Simkus,
2009) for branching time, (ii) expressing temporal constraints (Janhunen et al., 2017) (iii) molding
action domains (Gelfond & Lifschitz, 1998; Eiter et al., 2005) or (iv) directly by supporting temporal
modalities, e.g. (Aguado et al. 2023; Beck et al. 2018; Wałęga et al. 2021).

Recent works (Liu et al., 2022; Xiong et al., 2024; Wang et al., 2024) extended logical rule learning
to temporal settings but are limited in expressiveness, typically restricting reasoning to point-based
timestamps, simple forward-propagating patterns, or disregarding temporal uncertainty, i.e., when
events happen. In this work, we address these limitations by proposing a novel framework for
learning metric temporal rules Walega et al. (2019). The latter are a symbolic formalism that extends
Datalog with temporal operators such as “always” (□), “historically” (■), “eventually” (♢), and
“once” (♦) from linear time logic (LTL), each annotated with explicit time intervals. For example,
the rule

sign_fa(Y,X)← ♦[2,3]eoi(X,Y ),■[0,2]visit(Y,X),□[0,2]visit(Y,X).
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says that Y may sign a formal agreement with X if the latter expressed an intent to meet two or
three days ago, and visits of Y to X will continue for two days from now since two days ago. Such
rules form a core fragment of DatalogMTL (Wałęga et al. 2021) and LARS (Beck et al. 2018).

To achieve this, we introduce the first fully differentiable architecture for metric temporal rule learn-
ing, see Figure 1. Leveraging neural networks, our approach MT-Diff-Learn learns symbolic rules
in an end-to-end manner while retaining the same semantics as the one adopted by the standard
metric temporal reasoners already available (Wang et al. 2022; Beck et al. 2017). In contrast to
embedding-based approaches, where reasoning is performed on latent representations in a vector
space that encodes data and knowledge, e.g. (García-Durán et al., 2018) (see Section 5), our method
produces human-readable rules that can be applied for downstream reasoning or analysis.

Our main contributions are summarized as follows:

• We introduce a new mechanism for learning eventuality conditions ♢ and ♦ within temporal inter-
vals, allowing the model to capture rules that require relevant events to occur somewhere within a
specified interval (as in the example rule above). This substantially increases the expressiveness
of learned temporal rules and extends the approach in (Wang et al. 2024), which only supports as
“always” where only everywhere operators □ and ■ within a specified interval.

• By its design, the framework is the first offering fully differentiable metric rule learning in an
end-to-end manner using neural networks. This paves the way for integrating temporal reasoning
into larger differentiable architectures and enables seamless gradient-based training.

• We demonstrate the applicability of our approach for three use cases, showing that it is capable of
producing not only more succinct (and thus intuitively more general and easier to read) temporal
rules than other methods, but may also increase performance.

2 PRELIMINARIES

In this section, we first present DatalogMTL, followed by the differentiable immediate consequence
operator. This will lay the groundwork for introducing our differentiable immediate consequence
operator for metric temporal rules in the next section.

DatalogMTL We consider a fragment of DatalogMTL (Wałęga et al. 2021), which extends Data-
log with metric operators, where LTL operators such as “always” □, “historically” ■, “eventually”
♢, “once” ♦ (Koymans, 1990) are annotated with intervals. It builds on metric atoms of the form

M ::= ■ρP (s) | □ρP (s) | ♦ρP (s) | ♢ρP (s)

where P (s) is a relation atom, i.e., s is a tuple of variables and constants with the same arity as
P , and ρ is an interval of non-negative numbers; we also use P (s) as a shorthand for □[0,0]P (s)
(the singleton interval referring to the current time point. E.g., ♦[2,3]eoi(X,Y ) holds at time t if X
expressed an intent to meet Y in the interval between two or three days ago. A (metric) rule is an
expression of the form

P (s)←M1, . . . ,Mn for n ≥ 1 (1)

where the body atoms M1, . . . ,Mn are metric atoms and the head atom P (s) is relational. A pro-
gram is a finite set of rules. A temporal dataset is a finite set of temporal facts P (c)@t where P (c)
is a ground (i.e., variable-free) relational atom and t ∈ Z.

An interpretation I is a function assigning a truth value (0 or 1) to each ground relational atom P (c)
and time point t ∈ Z. The satisfaction of relational and metric atoms, is inductively defined:

• I, t |= P (c) if I(P (c), t) = 1, otherwise I, t ̸|= P (c).
• I, t |= ■[a,b]P (c) if for all t′ ∈ [t− b, t− a], I, t′ |= P (c).
• I, t |= □[a,b]P (c) if for all t′ ∈ [t+ a, t+ b], I, t′ |= P (c).
• I, t |= ♦[a,b]P (c) if some t′ ∈ [t− b, t− a] exists such that I, t′ |= P (c).
• I, t |= ♢[a,b]P (c) if some t′ ∈ [t+ a, t+ b] exists such that I, t′ |= P (c).

We say that I satisfies a rule r of form (1) at time t, denoted I, t |= r, if either I, t ̸|= Mi for some
i ∈ {1, . . . , n} or I, t |= P (s). Furthermore, I satisfies a program π at time t, denoted, I, t |= π, if
I, t |= r for each r ∈ π. Finally, I is a model of π, denoted I |= π, if I, t |= π for every t ∈ Z.
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We adopt Herbrand interpretations, substituting each variable with all constants from the rules or
dataset D, and denote this domain by U . We assume U is nonempty, as reasonable datasets contain
at least one element (otherwise, one can be added). For a program π and a domain U , πg[U ] is
the grounded version of π, obtained by substituting all variables with all possible combinations of
constants appearing in D. While πg[U ] may admit multiple models, Wałęga et al. (2021) showed it
has a single minimal model, which is computable by repeated applications of materialisation-based
reasoning algorithms. The latter syntactically applies the rules of πg[U ] over a dataset D to simulate
the behavior of the immediate consequence operator.

Formally, for a rule r of the form (1) the set Tr[D] consists of all temporal facts P (s)ν at t such that:

• ν is a substitution replacing all variables in r with constants from D (i.e., ν grounds r), and
• D, t |= Miν for all 1≤ i≤n, viewing D as interpretation (i.e., the grounded body of r holds at

time t in D).

We set Tπ[D] =
⋃

r∈π Tr[D]. Iterating from D0 = D, the minimal model of πg[U ] is obtained as
the least fixed point, denoted lfpπ[D].

Differentiable Immediate Consequence for ILP In Inductive Logic Programming (ILP) (Mug-
gleton et al., 2012; Cropper & Dumancic, 2022), the objective is to learn a logic program P that can
derive a designated target atom h, given background knowledge B and sets P and N of positive
examples and negative examples, respectively. A solution P must entail all positive examples while
excluding all negative ones: B ∪ P |= e+, ∀e+ ∈P ∧ B ∪ P ̸|= e−, ∀e− ∈N .

In algebraic ILP frameworks, the canonical immediate consequence operator Tπ for first-order
(atempoal logic programs) can be formulated using matrix operations combined with a threshold
function (Gao et al., 2024), where propositional atoms are viewed as real-valued variables. Let v be
an real number, and let φ(v) = v′ be the threshold function, where v′ = 1 if v ≥ τ , and v′i = 0
otherwise with τ being the threshold value.

Given a logic program πh = {r1, . . . rm} of rules that share the same predicate in the head h and
a substitution θ, the algebraic immediate consequence operator Dπh

computes the Boolean value of
the grounded head atom for v as: Dπh

(vh) =
∨m

k=1 φ(Mh[k, ·]vh), where Mh[k, ·] denotes the
k-th row of the program matrix Mh (Gao et al., 2024). The vector vh encodes the Boolean values
of the body atoms of rk under θ, and Dπh

(vh) computes whether the corresponding head atom h is
derivable under θ. Note that for each first-order atom h, a different matrix Mh is considered.

To enable gradient-based learning, Gao et al. (2024) proposed a differentiable approximation of
Dπh

. Specifically, a trainable matrix M̃h with values from the interval [0, 1] represents the learnable
rule weights. The discrete threshold function φ is replaced by the differentiable sigmoid activation:
Φ(x) = 1

1+e−ηx , where η controls the smoothness of the approximation. Disjunction is replaced in
Dπh

by a fuzzy disjunction layer: F(x) = 1−
∏n

i=1(1−xi), which is a differentiable approximation.

The forward computation of the approximation of Dπh
is thus defined as: ṽo = F(Φ(M̃hvh − 1)),

where−1 is to align the sigmoid activation, which is applied to the vector component-wise, with the
original threshold function. By minimizing the loss between ṽo and the ground-truth interpretation
vectors, the neural network learns M̃h as a differentiable representation of rules with head h. The
collection of all Dπh

is denoted by Dπ .

3 MT-DIFF-LEARN

We build upon the approach by Gao et al. (2024), who designed a neural network to mimic Dπ during
forward computation on knowledge graphs. We extend it by learning rules with metric operators in
the body, enabling the learning of both the predicates and the specific intervals in which they hold.
In the sequel, we present the constituents of the approach, which are data preparation, construction
of the neural network, and rules extraction, see Figure 1.

Data Preparation The preprocessing pipeline takes as input a set of temporal facts and, using
a sliding window-based approach, generates first-order atoms such as visit(X,Y ). They represent
different ground atoms, e.g., visit(Angela_Merkel, Italy) or visit(Barack_Obama,Germany)
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Input: Temporal facts
p(a, b)@30, q(r, c)@40, p(d, b)@50, . . .
Facts are grouped into sliding windows

Lifting: Reuse of first-order atoms across windows
E.g., p(X,Y ) can represent both p(a, b)@30 and

p(d, b)@50, provided no window spans from 30 to 50.

PMI Filtering: for each p(X,Y ),
select candidate body atoms

q(X,Z), r(Y,Z), . . .

Per-Head Learning
Learn rules, i.e.,

(atoms & time intervals)

Rule Extraction
Metric temporal rules

(with learned intervals)

Figure 1: Overview of the MT-Diff-Learn pipeline.

in different windows. We lift ground atoms to first-order atoms to obtain more general rules that can
be instantiated in multiple ways. To ensure soundness, each variable X refers to a single entity
within a window, but may be reused across different windows to promote generalization.

Algorithm 1 Windowing, Window Ordering, and Lifting to First-Order Atoms

1: Input: Temporal facts D, window size l.
2: Output: A dictionary mapping each first-order atom p(Xi, Xj) and window id w to the

grounded atoms it represents p(ei, ej).
3: (1) Windowing
4: Partition timestamps into windowsW = {w : [w,w + l] | w ∈ [0, |tmax − l]}.
5: For each window w ∈ W , collect all facts with timestamps in [w,w+ l) and merge consecutive

p(ei, ej) occurrences into centered intervals.
6: (2) Window ordering
7: For each w ∈ W , compute the overlap score O(w) as the number of entity pairs shared with

any other window.
8: Sort windows by decreasing O(w); break ties by number of facts then index.
9: (3) Lifting ground atoms to first-order atoms

10: for each window w in sorted order do
11: Initialize σw : Ew → V = v0, v1, . . . where Ew denotes entities appearing win window w.
12: Sort all entity pairs in w by their global frequency (highest first).
13: for each entity pair (ei, ej) in this order do
14: Select any ground atom p(ei, ej) from w;
15: If a first-order atom p(Xi, Xj) was generated in previous windows and Xi, Xj are not yet

assigned in w, set σw(ei) = Xi and σw(ej) = Xj ;
16: else if either ei or ej is already mapped in w, reuse the mapped variable and introduce a

fresh one if needed to add p(Xi, Xk) or p(Xk, Xj);
17: else introduce fresh variables Xm and Xn and add p(Xm, Xn);
18: Record the resulting first-order representative p(Xi, Xj);
19: end for
20: end for

In real-world datasets, the first-order atoms produced by the procedure above may correspond to
ground atoms that co-occur with many others across different windows. Such co-occurrences can
be highly informative for making inferences, as they capture meaningful temporal and relational
patterns. However, in practice the number of potential co-occurring pairs is often extremely large,
making it necessary to distinguish informative associations from spurious or incidental ones. To this
end, we compute the Pointwise Mutual Information (PMI) Church & Hanks (1990) between atoms,
which quantifies the statistical dependence between two predicates:

PMI(a, b) = log
P (a, b)

P (a)P (b)

where P (a, b) = C(a, b)/|W| represents the frequency that atoms a and b appear together in a
window as a ratio between the number of co-occurrences C(a, b) and the number of windows |W|,
and P (a) =

∑
w∈W 1{a appears in w}/|W| denotes the frequency that atom a appears in a window

(and analogously for P (b)). In the definition of PMI, if the denominator equals zero, then the value
is−∞. Intuitively, PMI measures how much more often two atoms co-occur than would be expected
if they were statistically independent.

4
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Given a target (head) atom h = p(X,Y ), we select candidate body atoms by exploring a PMI-
weighted co-occurrence graph using a bounded breadth & depth search controlled by two parame-
ters: (i) the breadth b which limits the number of atoms expanded at each layer and (ii) the depth d.
The following procedure conducts a constrained breadth-first exploration: b and d bounds the total
exploration depth.

Algorithm 2 PMI Computation and Candidate-Body Selection

1: Input: First-order atoms A, windowsW , breadth b, depth d.
2: Output: Candidate body atoms for each head atom.
3: (1) PMI computation
4: for each pair of atoms (a, b) do
5: Count co-occurrences C(a, b) across windows.
6: Compute P (a), P (b), P (a, b).
7: Compute PMI(a, b) = log

(
P (a, b)/(P (a)P (b))

)
.

8: end for
9: (2) Candidate-body selection

10: for each head atom h do
11: // Layer 0: per-head-variable selection
12: For each variable X in h, pick up to b atoms sharing X with h and with highest PMI(h, ·),

and add them to the candidate pool;
13: // Layers 1..d: PMI-based neighborhood expansion
14: For each level 1..d, expand every atom in the current layer by adding up to b new neighbors

sharing a variable with it; the newly added atoms form the next layer.
15: end for

Our preprocessing method is heuristic but grounded in well-established statistical principles such as
PMI. Crucially, MT-Diff-Learn does not depend on these specific design choices: the subsequent
components—and in particular the neural layer implementing the differentiable immediate conse-
quence operator for metric rules—operate unchanged under any alternative procedure that produces
first-order atoms and candidate body predicates. In this sense, the preprocessing stage is modular
and can be replaced or refined independently without affecting the core architecture.
Neural Module: Differentiable Metric Immediate-Consequence Operator For each target
atom h = p(X,Y ), the neural operator receives, for every relevant atom γj , information about
whether it holds in a window w and, if so, the intervals during which it holds. This information is
conveniently represented by three input tensors: the truth tensor, the start tensor, and the end tensor.
These tensors are constructed after the PMI-based pre-filtering step, which selects nh relevant atoms
γ0, . . . , γnh−1 for the target atom (see previous section); note that by construction nh ≤ b d+1. More
in detail, for each target atom h we want to derive, we have the following input:

• a truth tensor Tin of shape (|W|, nh), where each entry is 1 if the relevant atom γj is active in
window w and 0 otherwise. This corresponds to the matrix Mh introduced in the preliminaries;

• a start tensor Sin ∈ R|W|×nh×max_int, where Sin
w,j,k stores the starting point of the k-th interval in

which γj holds in window w. Multiple interval slots are needed because a relevant atom may hold
in several disjoint subintervals.

• an end tensor Ein, which, instead, represents the ending points of those intervals.

If a relevant atom occurs in fewer than max_int disjoint intervals, the remaining slots are filled by
repeating its last start and end values; if it does not occur in a window at all, we instead assign +∞
and −∞ as the default start and end values, respectively.

In our approach, we limit the range of the learnable intervals to the upper-bound implied by the
considered window size. An important note is that in approaches involving a translation into a
symbolic inductive logic learner, e.g. the one in (Wang et al. 2024), the input to the rule learner
increases quadratically, as in principle one needs to reify each candidate body atom per possible
timestamp. Our approach needs no reification as we consider intervals as first-class citizens; we
learn them by learning the lower and upper bounds as numbers, as explained below.

For each target atom h, the model learns a matrix T ∈ [0, 1]n
h
r×3nh

, where nh
r is the number of

rules associated with h (equal to the number of grounded atoms represented by h). Each row of

5
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T sums to 1 over 3nh entries and is divided into three segments of equal size: (i) the first third
selects always-metric literals with an associated proper interval; (ii) the second third selects punctual
literals (holding at a single timestamp); (iii) the final third selects eventuality-metric literals with an
associated proper interval. The value Ti,j specifies the degree to which the j-th relevant atom γj
is included in the body of rule ri. A threshold τ is later used to determine whether γj ∈ [0, 1] is
retained as an actual body literal.

In addition, the model learns matrices SA,EA,P,SE , and EE ∈ Rnh
r×nh

. For an always-metric
literal, ⌊SA

i,j⌋ and ⌈EA
i,j⌉ define the learned lower and upper bounds of its interval; for an eventuality-

metric literal, the corresponding bounds are given by ⌊SE
i,j⌋ and ⌈EE

i,j⌉. The matrix P contains the
learned timestamps for punctual literals.

The forward pass implements a differentiable approximation of the metric immediate-consequence
operator. Conceptually, for each window w and each target atom h, the network performs the fol-
lowing computational steps.

Step 1: Normalize rule–body weights. Each row of the matrix T is normalized via T̃ =
Softmax(T,−1), ensuring that, the weights assigned to the three temporal variants (always, punc-
tual, eventually) of each relevant atoms γj form a probability distribution (i.e., rows sum to 1).

Step 2: Compute “always” activations (interval containment). For each learned interval
[SA

i,j ,EA
i,j ], the operator computes differentiable containment scores:

A[ = σ(SA ⊗ 1− Sin
w,:), A] = σ(Ein

w,: − EA ⊗ 1)

where broadcasting via ⊗1 aligns learned bounds with the max_int ground-truth intervals. Contain-
ment over all possible interval indices k is aggregated by:

AA = F(A[ ⊙ A],−1).

Step 3: Compute punctual activations (singleton intervals). To process degenerate intervals:

AP = F(σ(P⊗ 1− Sin
w,:)⊙ σ(Ein

w,: + 1− P⊗ 1),−1).

The +1 term enables a containment check for degenerate intervals: if the model learns a punctual
interval at time t, we can test containment by verifying whether a candidate point t′ satisfies t′ ∈
[t, t+1]. During rule extraction, this effect is reverted by taking the floor of the learned value t′,
which correctly yields the intended punctual (degenerate) interval, namely [⌊t′⌋, ⌊t′⌋].
Step 4: Compute “eventually” activations (interval overlap). Eventuality conditions require that
the learned interval for γj overlaps at least once with one of the ground-truth intervals in window
w. This is enforced through two activation matrices: (i) A̸< = σ(Ein − SE

w,: ⊗ 1), ensuring that the
learned interval starts before the ground-truth one ends; and (ii) A̸> = σ(EE

w,: ⊗ 1− Sin), ensuring
that the learned interval ends after the ground-truth one begins. These correspond, respectively, to
the necessary and sufficient conditions for an overlap in a proper interval, the case of the degenerate
interval is covered by the punctual activation (Step 3). The fuzzy conjunction is then applied:

AE = F(A̸< ⊙ A̸>, −1).

Step 5: Compute body activations. The final body activation vector concatenates the contributions
of the three temporal forms:

B = T̃[:, 0:nh]⊙ AA ⊙ Tin
w,:

∥∥∥ T̃[:, nh :2nh]⊙ AP ⊙ Tin
w,:

∥∥∥ T̃[:, 2nh :3nh]⊙ AE ⊙ Tin
w,:,

where ∥ denotes concatenation. Therefore the shape of B is (nh
r , 3n

h) for each target atom h.

Step 6: Apply structural penalties. To encourage (i) diversity among bodies and (ii) presence
of head variables in body atom variables, the model incorporates, respectively, a cosine similar-
ity penalty and a masked-based penalty. The pairwise cosine similarity matrix is computed as

CosSimi,j = ̂̃Ti · ̂̃Tj for i ̸= j, where ̂̃Ti = T̃i/∥T̃i∥2 measures similarity between rules from
ℓ2-normalized T̃, where i ∈ {1, . . . , nh

r}. To avoid self-comparison, diagonal values are ignored

6
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(set to 0). Let AvgSimi = 1
nh
r−1

∑
j ̸=i CosSimi,j be the average similarity of the i-th rule (row).

To foster diversity in training, we use a decay factor αi = 1 − AvgSimi · (1 − epoch/max_epoch)2
based on the current and the total number of epochs.

To guide the training toward producing first-order rules, we introduce a mask-based penalty as
follows. We compute two mask-vectors m0 and m1 such that m0

k is 1 if the k-th atom con-
tains the first variable of the target atom, otherwise 0. The m1 similarly captures variable shar-
ing with the second argument of the target atom. Let wk for k ∈ {0, 1} be defined as wk =

Sum(T̃ ⊙ (1 ⊗ (mk||mk||mk)),−1); w0 (resp. w1) is greater than threshold τ only if some body
atom contains the same first (resp. second) variable as the head atom. We then compute a penalty

pk = 1− Relu(τ − wk) · (1− epoch/max_epoch)2

The threshold parameter can be selected in a grid search, choosing the value yielding the best result.

Step 7: Aggregate rule consequences. The output of the operator is obtained through a fuzzy
disjunction over rules:

O = F
(
Φ
(
p0i p

1
i αi · B13nh

))
,

where 1 is the all-ones vector and Φ the differentiable aggregation within each rule.

While standard regularization adds a weighted penalty to the loss function, our mechanism enforces
a soft diversity constraint directly in the forward pass, which dynamically down-weights redundant
rules by reducing their inference impact. Note that those weights are high during the first epochs
and diminish till, at the last step, their impact is zero.

Training & Rule Extraction For each window w, the network produces predictions ŷwh = fΘ(w)
for every target atom h, which are compared against ground-truth labels ywh . To account for the
strong imbalance between positive and negative instances, we use a balanced binary cross-entropy
loss. The total loss is the sum over all atoms, augmented with an ℓ1 regularization term on the
parameters Θ to promote sparsity and reduce overfitting.

Once training is completed, we extract the learned rules by inspecting the learned weight matrices
corresponding to each target atom. Specifically, for each target atom h(X,Y ), we consider the
learned truth weights T, start and end weights SA,EA,SE and EE , respectively, and the punctual
intervals P. Each such matrix contains the same number of rows, which we read as the bodies of
the rules having h(X,Y ) in the head. Let us consider τ as a threshold hyperparameter.

During the preparation of the data, we produced two variables that, for each window, represent
the same entity. In this case, we choose one to be the representative, and we substitute all the
occurrences of the other variables in the first-order atom signature. We categorize rules r as follows:

• r is safe if all head variables also appear in its body; e.g., h(X,Y )← γ1(Y ), γ2(X,Z) is safe.
• r is partially safe if at least one, but not all, of the head variables appear in the body. For instance,
h(X,Y )← γ2(X,Z) is partially safe.

• r is to ground if no head variable appears in the body; e.g., h(X,Y )← γ1(Z) is to ground.

We then proceed with rule r as follows: if r is safe, we keep the variables of each atom as they
appear; if r is partially safe, we keep only the variables appearing in both its head and body. For each
window in the training dataset, we ground the remaining variables with the entities they represent in
that window; if r is to ground, we proceed as in the previous case but all variables will be grounded.

Next, we describe how to extract the intervals for the body atoms γj with j = 0, . . . , nh − 1, from
the i-th rule r; recall that i = 0, . . . , nh

r − 1. For each included γj = p(X,Y ), we have two cases:

• Metric (interval) case: We extract as learned interval: Iγj
= [⌊Si,j⌋, ⌈Ei,j⌉], indicating the

interval in the window where γj is considered active; this allows the rule r to capture temporal
relations holding over a range of timestamps.

• Punctual (single timestamp) case: For γi to hold at a specific timestamp, we extract the learned
punctual time and respective interval for a rule r as: tj = ⌊Pi,j⌋ and Iγj = [tj , tj ].

We then represent r as: h(X,Y ) ←
∧

γj∈B(r)

∧
op∈{■,□,♦,♢} opIγj

pγj
(Xγj

, Yγj
) where B(r)

is the body of r, and opIγj
pγj (Xγj , Yγj ) indicates that the atom γj holds over the learned interval,

which is for interpolation is centered around the center of the window. For illustration, for window

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

size 8, the learned weights vary from 0 to 7 and the timestamp of the target atom is ⌊8/2⌋ = 4. Thus
for γ(X,Y ), an always-learned interval [0, 2] is transformed into ■[2,4]γ(X,Y ), a learned interval
[2, 5] into ■[0,2]γ(X,Y ) ∧□[0,1]γ(X,Y ), and a learned into [6, 6] into □[2,2]γ(X,Y ).

For each rule r, let s(r) = |{H@t | D, t |= H, D, t |= B}|, b(r) = |{H@t | D, t |= B}|, and
h(r) = |{H@t | D, t |= H}|, where D, t |= B means D, t satisfies the grounded body the atoms
in B represents in the window w = t− ⌊l/2⌋, with l the window length. We set sc(r) = s(r)/b(r)
if b(r) > 0 (else 0), and hc(r) = s(r)/h(r) if h(r) > 0 (else 0). The final weight is w(h, r) =
β sc(r) + (1− β) hc(r) with β ∈ [0, 1].

Sliding Slice-Based Algorithm To address real-world temporal datasets and better capture local-
ized temporal patterns, we propose a sliding window algorithm that partitions the dataset into over-
lapping slices. Formally, given a temporal dataset of facts p(c̄, t) where c̄ = c1, . . . , cn, we define a
sequence of temporal slices of length l as: {p(c̄, t) | 0≤ t< l}, {p(c̄, t) | l≤ t< 2l}, . . . , {p(c̄, t) |
l·
⌊
cmax
l

⌋
≤ t≤ cmax}. For each slice, we independently apply our MT-Diff-Learn framework to learn

locally valid rules. Finally, all extracted rules across slices are aggregated into a single file. Note that
using this algorithm, we identify besides the window size also the slice size as a hyperparameter.

4 EXPERIMENTAL RESULTS

We showcase the applicability of our approach to three different scenarios. We first consider link
prediction in Temporal Knowledge Graphs (tKG), then we show how we can exploit the express-
ibility of our output language to capture the common request-grant schema. In our experiments,
we are interested to see (Q1) whether the increased expressiveness can be fruitfully leveraged, (Q2)
scalability and succinctness of the approach, and (Q3) how answer performance is affected.

Experimental Setup We have implemented our approach in an experimental prototype, MT-Diff-
Learn, that is available in the supplementary material.1 For the experiments, we used a platform
with 224GB of memory. All experimental set-ups follow the same schema, viz. the standard evalu-
ation protocol with temporal filtering Han et al. (2020). Each temporal dataset is split into training,
validation, and test subsets according to the temporal constraints imposed. From the training and
validation data, we extract a DatalogMTL program π and a scoring function τ : π → [0, 1] assign-
ing a weight to each rule in π, which is learned during training as discussed above; it reflects the
relevance of rule r for capturing temporal patterns in the data.

As for (Q1), we inspect whether (where applicable) meaningful expected rules are generated. For
(Q2), we use the number of rules generated to measure model size, and the resources needed. Re-
garding (Q3), we use two standard metrics mean reciprocal rank (MRR) and Hit@k, for k ∈ {1, 10}
as in (Wang et al. 2024). 2 Both MRR and Hit@k refer to ranki, which is the position of the correct
answer in the ordered list of answers to a query qi; if the correct answer does not appear, ranki =∞.

More in detail, for each test fact R(a, b)@t, we construct the queries R(x, b)@t and R(a, x)@t,
where a resp. b is an expected answer, and let the dataset D include all training and validation facts.
We then compute all constants c such that π[D] contains r(c, b) at t, denoted R(c, b)@t ∈ Tπ(D),
as candidate answers. The score of c is defined as max{ τ(r) | r ∈ Π, R(c, b)@t ∈ r[D] } i.e., the
maximum score among the rules deriving R(c, b)@t.

Candidates are sorted descendingly by score, breaking ties first by considering secondary rule scores
and then alphabetically. We apply temporal filtering Han et al. (2020); Liu et al. (2022) to remove
each candidate c ̸= a such that R(c, b)@t appears in the training, validation, or test set. The rank of
the correct answer is its position in the filtered list. For R(a, x)@t queries, we proceed analogously.

Link Prediction on Temporal Knowledge Graphs In missing link prediction, we aim to predict
which facts belong to the completion D∗ of a given tKG as dataset D. Specifically, we address
queries generated from R(a, b)@t as above, where tmax is the maximum timestamp in D; i.e., find
substitutions for x that make the query true in D∗ in the observed interval (known as interpolation).

1Currently for arities less or equal 2; an extension to all arities is simple wich unchanged neural design.
2We notice some inconsistent inference issues in MTLearn’s original code; see Appendix for details.
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ICEWS14 ICEWS0515
Model MRR H@1 H@10 MRR H@1 H@10

TTransE (Bordes et al., 2013) 25.5 7.4 60.1 27.1 8.4 61.6
TADistMult (Lin et al., 2023) 47.7 36.3 68.6 47.4 34.6 72.8
LCGE+ 61.6 53.2 77.5 61.8 51.4 81.2
TLT-KGE + HGE+ 63.0 54.9 77.7 68.6 60.7 83.1
50k-MTLearn 8.9 5.5 16.5 _ _ _
200k-MTLearn 12.4 7.6 22.9 _ _ _
500k-MTLearn 17.6 12.8 28.3 _ _ _
MT-Diff-Learn 38.3 32.7 45.2 42.5 37.8 50.0

Table 1: Interpolation performance on ICEWS14 and ICEWS0515. Results
with + come from (Pan et al., 2024). The underline / dash marks the best
rule-based result / second-best result. MT-Diff-Learn was run with:
breadth b = 8, depth d = 1, window_size w = 5, slice=44 and β = .5

Test Set (45 data)
Model MRR H@1 H@10 #Rules

MT-Diff-Learn 54.46 27.03 100.0 168
MTLearn 49.2 26.5 100.0 111,649

Table 2: Performance on the action cyber-physical scenario

Test Set (45 data)
Model MRR H@1 H@10 #Rules

MT-Diff-Learn 42.2 20.0 88.8 183
MTLearn 40.6 19.1 100.0 31,391

Table 3: Performance on the action description scenario

State-of-the-art approaches to temporal link prediction are embedding-based Leblay & Chekol
(2018); Lacroix et al. (2020); Xu et al. (2021), encoding entities, relations, and timestamps into
a vector space and reasoning via latent representations. They achieve strong predictive performance
but are inherently opaque and thus troubled in domains where explainability is essential. Table 1
compares MT-Diff-Learn with MTLearn and embedding-based systems on the interpolation task.
The public MTLearn pipeline produces about 21M rules, while our model yields about 40,000. To
enable evaluation on our hardware for ICEWS14, we assess sampled variants of MTLearn (nk-
MTLearn). For ICEWS05-15, rule generation with the released MTLearn pipeline did not complete
under the evaluation setup in Wang et al. (2024). These observations suggest that reproducing the
reported MTLearn scores may require exceptionally large rule sets, with implications for scalability.

Cyber-Physical Scenario To test our approach to cyber-physical settings, we created a synthetic
dataset simulating usual access-request and access-grant interactions among entities (institutions),
where requestk (i , j ) and grantk (i , j ), k = 0, 1 mean that institution i request access to resource k
from institution j resp. i grants access to k to j. The generation is challenging due to the noise in-
jected into the data. E.g., not every request may be followed by a grant, and some grants may have no
preceding request. However, the noise is small enough to warrant that most generated data preserves
the causal relation. If a request like request0(81, 14)@1 was generated, then grant0(14, 81)@(1+d)
is generated with a delay d sampled from a normal distribution with mean 7 and standard deviation
2, capturing realistic temporal dynamics.

The queries are generated from grantk(i, j)@t as above. The results in Table 2 show that MT-
Diff-Learn, which leverages the ♢ and ♦ (Diamond) operators to capture the occurrence of requests
within an interval, significantly outperforms MTLearn. Using only the □ and ■ (Box) operators
leads to overfitting on the training data if compared to the results from the test cases.

Action Description Scenario We enhance the previous setting to illustrate how temporal rules
may aid finding action descriptions, which is an important modeling task. Ideally, we aim to extract
two types of rules from the neural model: (1) those describing the effects of actions and (2) those
capturing conditions that trigger action execution, which is a strong version of preconditions.

For each fact grantk(i, j)@t in the previous dataset, we added a fact accessk(j, i)@(t+1) stating
that j has access to resource k of i in the next timepoint. The queries are obtained from such facts.
The performance is shown in Table 3. As regards (Q1), in our setting, we are able to learn rules like

accessk(X,Y )← ■[1,1]grantk(Y,X).

modeling a direct effect of granting access. Further, we can learn rules
grantk(Y,X) : −♦[4,10]requestk(X,Y )

that granting happens with delay of 4 to 10 time units after request, modeling temporal uncertainty.
The higher performances in Table 3 compared to Table 2 from MTLearn showcase its ability to
succesfully capture local deterministic temporal patterns such the effect of an action. Note that circa
45 thousand rules were produced, while using MT-Diff-Learn, only around 80. Ablation results in
the Appendix demonstrate that removing the eventuality operator causes a sharp performance drop.
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5 RELATED WORK AND CONCLUSION

Closest to our work is MT-Learn (Wang et al. 2024), which employs AnyBurl (Meilicke et al., 2019),
a bottom-up atemporal rule learner. AnyBurl samples ground paths of length k in a knowledge graph
and generalizes them by replacing entities with variables. Sampling continues until newly generated
rules are no longer novel (a novelty ratio threshold is used). This check is purely syntactic, and
imposing ordering on variables helps in containing the number of first-order rules it produces. Once
the novelty threshold is met, the path length is increased to k + 1, and the process repeats. Such
bottom-up approaches tend to generate a large number of rules, as observed in the application of
MTLean on realistic datasets. In contrast, our framework learns directly rules at the first-order level.
We first lift the ground atoms to first-order atoms, and then search for a limited set of rules that aim
to cover the ground atoms they represent.

Related to our work is LTL specification learning by Ielo et al. (2023), who, however, did not con-
sider metric atoms and used ILASP, a SOTA tool for symbolic rule learning. Most approaches to link
prediction rely on neural architectures or embedding techniques augmented with temporal dimen-
sions, among them RE-Net Jin et al. (2019), TTransE Leblay & Chekol (2018), TA-DisMult (Garcia
2018), TeLM Xu et al. (2021), TComplEx (Lacroix et al. 2020), and LCGE Niu & Li (2023). Our
approach instead extracts interpretable metric rules that directly model temporal dependencies with-
out relying on latent representations. The TLogic framework (Liu et al. 2022) produces rules that in
contrast to ours can not handle interpolation and are thus limited in expressiveness.

Our ongoing work aims to support dense timelines, higher predicate arities, and to extend the lan-
guage with flat function terms to increase readability and performance.
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A APPENDIX

In what follows, the experiments

• were conducted on a high-performance server equipped with 2× Intel Xeon Gold 5416S
CPUs (16 cores, 2 threads per core, 2.00 GHz), 8× NVIDIA L40S GPUs (48 GB VRAM
each), and 2 TB of system memory;

All experimental data and code will be made available upon possible acceptance. The reviewers
may access the source code at the link provided in the last page under the "SOURCE CODE AND
DATA" section of the Appendix.

A.1 RESULTS ON THE INTERPOLATION-LINK PREDICTION ON TEMPORAL KNOWLEDGE
GRAPHS

The statistics about the datasets that we considered are shown in Table 1.

Dataset #Relations #Entities #Facts

ICEWS14 231 7,130 72,826
ICEWS05-15 252 10,489 368,962

Table 1: Statistics of the temporal knowledge graph datasets.

MTLearn We attempted to replicate the results reported for MTLearn (Wang et al. 2024). Specif-
ically, we successfully generated rules for:

1. the interpolation task of ICEWS14.

However, for ICEWS05-15, the provided code encountered an array index bug, preventing success-
ful rule generation. We contacted the developer regarding this issue, but he indicated that he is no
longer working in academia and therefore could not provide detailed support.

The number of rules produced for the successful runs was:

• ICEWS14: 21, 152, 956 rules

while MT-Diff-Learn produced 41,677 rules in the best run. Note that this number is more than two
order of magnitudes smaller than the number of rules produced by MTLearn (in fact, about 0.2% of
the rules produced MTLearn).

The original evaluation script also contained several bugs, some of which were fixable, while
others were more involved due to dependencies on the https://pypi.org/project/
meteor-reasoner/ Python library. Moreover, due to the exceptionally large number of rules,
our evaluation script ran out of memory, preventing the computation of evaluation metrics for these
tasks on our machine. The comparison therefore is tricky, as our tool produces a number of rules at
most linear in the number of data from the training set. Therefore, in the next section, we introduce
a sampled version of the MTLearn output.

Resource-Bound MTLearn In Table 4, we show the best results, the mean, and the standard
deviation of three different settings in which we were able to run on our machine. We produced
the results of MTLearn for window size 8 and scoring strategy maximum, the default options of the
tool; we sampled respectively 50K, 200K, and 500K rules. We executed this procedure for three
times, and we computed the metrics.

MT-Diff-Learn Recall that nh
r from the Neural Network paragraph stands for the number of rules

used to derive the target first-order atom h. TWe always get a number of rules at most equal to the
number of facts that are reported in Tables 2 and 3. In the experiments discussed in the following
sections, we also report the number of rules so that, even if the framework produces a linear number
of rules by design, we also show some empirical evidence of this fact.
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MT-Diff-Learn
Metric MRR Hit@1 Hit@10

Best 38.3 32.7 45.2
Mean 34.1 29.5 43.2
Std. Deviation 2.5 2.2 0.9

Num_Rules (Best) 39, 197
Num_Rules (Mean) 41,758.7
Num_Rules (Std. Deviation) 82.0

Table 2: Performance summary and number of rules for MT-Diff-Learn on ICEWS14.

MT-Diff-Learn
Metric MRR Hit@1 Hit@10

Best 42.5 37.8 50.0
Mean 42.0 37.7 49.8
Std. Deviation 0.7 0.1 0.6

Num_Rules (Best) 210,880
Num_Rules (Mean) 210,997.3
Num_Rules (Std. Deviation) 111.5

Table 3: Performance summary and number of rules for MT-Diff-Learn on ICESW05-15.

500k-MTlearn 200k-MTlearn 50k-MTlearn
Metric MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Best 17.6 12.8 28.3 12.4 7.6 22.9 8.9 5.5 16.5
Mean 15.64 10.62 26.63 11.86 7.06 22.39 8.41 5.17 15.82
Std. Deviation 2.28 2.24 2.41 0.68 0.51 0.64 0.47 0.35 0.55

Table 4: Performance statistics of MTLearn in link prediction for different dataset sizes

14
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A.2 RESULTS ON THE CYBER-PHYSICAL SETTING

MT-Diff-Learn MTLearn

Metric MRR Hit@10 Hit@1 #Rules MRR Hit@10 Hit@1 #Rules

Best Result 56.0 95.2 34.5 84 43.3 100.0 20.8 9,564
Mean Result 53.8 92.9 31.7 85.3 41.5 100.0 20.5 12,295
Std. Deviation 3.8 4.1 3.8 2.3 100.0 . 0.6 2,371.1

Dataset Gen. (µ, σ) Mean = 7, Std Deviation = 2, Size Training Set = 202

Table 5: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset gener-
ation with µ = 7 and σ = 2. Window size: 10 for both.

MT-Diff-Learn MTLearn

Metric MRR Hit@10 Hit@1 #Rules MRR Hit@10 Hit@1 #Rules

Best Result 54.5 100.0 32.4 165 46.7 1.0 22.4 11,8041
Mean Result 47.6 91.9 23.4 174 46.0 1.0 22.0 11,8497.3
Std. Deviation 6.4 7.2 8.8 8.5 1.2 . 0.6 455.5

Dataset Gen. (µ, σ) Mean = 15, Std Deviation = 2, Size Training Set = 196

Table 6: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset gener-
ation with µ = 15 and σ = 2. Window size: 35 for both.

MT-Diff-Learn MTLearn

Metric MRR Hit@10 Hit@1 #Rules MRR Hit@10 Hit@1 #Rules

Best Result 54.5 100.0 27.0 168 49.2 100.0 26.5 111,649
Mean Result 51.6 99.1 26.1 174 48.7 100.0 25.7 111,650
Std. Deviation 0.80 1.5 1.5 6 0.7 0.0 1.0 1.41

Dataset Gen. (µ, σ) Mean = 15, Std Deviation = 5, Size Training Set = 189

Table 7: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset gener-
ation with µ = 15 and σ = 5. Window size: 35 for both.

MTLearn MTLearn was run using the same window-size parameters as MT-Diff-Learn, namely:
window size of 10 when the mean is 7, while window size of 35 when the mean is 15. and with a
scoring strategy of maximum, which is the default option.

MT-Diff-Learn The model was trained using the following parameters: number of epochs 20,
breadth 6, and depth 1.

We further show results that we obtained for variations of the dataset generation with different
distribution and window size in Tables 5–7. As one can see, then number of rules produced by
MT-Diff-Learn grows linearly in the size of the dataset, while it is still able to outperform MTLearn
in different scenarios. This analysis showcases the ability of MT-Diff-Learn for scalability.
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A.3 RESULTS ON THE ACTION DESCRIPTION TASK

MT-Diff-Learn MTLearn

Metric MRR Hit@10 Hit@1 #Rules MRR Hit@10 Hit@1 #Rules

Best Result 34.1 56.3 22.4 128 42.08 94.83 19.8 23,964
Mean Result 32.1 53.5 19.4 179.3 41.52 92.7 20.5 23,964
Std. Deviation 2.48 2.40 2.86 45.17 0.97 1.82 0.57 10.0

Dataset Gen. (µ, σ) Mean = 7, Std Deviation = 2, Size Training Set = 299

Table 8: Comparison of MT-Diff-Learn and MTLearn in the action-description scenario, dataset
generation with µ = 7 and σ = 2. Window size: 10 for both.

MT-Diff-Learn MTLearn

Metric MRR Hit@10 Hit@1 #Rules MRR Hit@10 Hit@1 #Rules

Best Result 39.6 87.5 19.4 190 46.7 99.6 27.6 23,977
Mean Result 38.7 83.3 18.5 183.3 49.4 98.6 24.5 24,048.3
Std. Deviation 1.5 3.8 0.1 7.02 2.8 1.0 2.7 117.5

Dataset Gen. (µ, σ) Mean = 15, Std Deviation = 2, Size Training Set = 283

Table 9: Comparison of MT-Diff-Learn and MTLearn in the action-description scenario, dataset
generation with µ = 15 and σ = 2. Window size: 35 for both.

MT-Diff-Learn MTLearn

Metric MRR Hit@10 Hit@1 #Rules MRR Hit@10 Hit@1 #Rules

Best Result 42.2 88.8 20.0 183 40.6 100.0 19.1 31391
Mean Result 42.0 85.4 17.5 180.7 39.7 100.0 16.4 31655
Std. Deviation 2.6 3.1 2.2 2.1 1.0 0.0 2.3 228.6

Dataset Gen. (µ, σ) Mean = 15, Std Deviation = 5, Size Training Set = 285

Table 10: Comparison of MT-Diff-Learn and MTLearn in the action-description scenario, dataset
generation with µ = 15 and σ = 5. Window size: 35 for both.

MTLearn MTLearn was run using the same window-size parameters as MT-Diff-Learn, namely:
window size of 10 when the mean is 7, while window size of 35 when the mean is 15. and with a
scoring strategy of maximum, which is the default option.

MT-Diff-Learn The model was trained with the following parameters: number of epochs 20,
breadth 6, and depth 1. The window size parameter coincides with that of the MTLearn runs.

We further show results that we obtained for variations of the dataset generation with different
distribution and window size in Tables 8–10. As one can see, also in this scenario, our model is able
to produce acceptable performances keeping the number or rules limited.
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A.4 ABLATION STUDY ON THE CYBER-PHYSICAL SETTING

We investigate the contribution of the eventuality operators by conducting an ablation study in the
cyber-physical scenario. Specifically, we compare the performance of MT-Diff-Learn when both
eventuality operators (♢,♦) are available against a variant that replaces them with the always op-
erator (□,■). Note that in both settings, punctual intervals are still permitted. This highlights the
importance of temporal evolutions for capturing system dynamics, where the grant occurs with un-
certainty: it is expected to happen within an interval, but the exact time point remains unknown.
Note also that the request-implies-grant is a canonical pattern in such scenarios.

MT-Diff-Learn-with-{♢,♦} MT-Diff-Learn-with-{□,■}

Metric MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

Best Result 54.46 100.0 32.43 15.5 18.9 12.2
Mean Result 47.60 91.89 23.42 13.7 15.3 12.2
Std. Deviation 6.43 7.15 8.79 1.6 3.1 0

Dataset Gen. (µ, σ) Mean = 15, Std Deviation = 2, Size Training Set = 196

Table 11: Comparison of MT-Diff-Learn and MTLearn in the cyber-physical scenario, dataset gen-
eration with µ = 15 and σ = 2. Window size: 35 for both.

B SOURCE CODE AND DATA

The source code and data can be found here:
https://drive.google.com/drive/folders/12sJDhN1nGZ49iGJEFKmm8VGYsr5laSq7?usp=sharing.

C REBUTTAL

C.1 FIRST REVIEWER

Weaknesses >> The paper is a bit like reading someone’s half-documented code. The paper says
“We do this, then we do that, then we do that.” But it is often not clear what the goal is or why those
steps are appropriate. This is particularly a problem in section 3. It also makes it difficult to adjust
for lapses in the exposition. To take some early examples: “target atom” isn’t defined at line 126
and it’s not clear where it comes from or why it’s needed.

Thanks for your comments. We noticed this issue and updated the presentation in a more schematic
style. Please check Section 3 in the revised version.

Regarding the conceptual clarifications: our objective is to learn a logic program P that derives a
designated target atom h, given background knowledge B and sets P andN of positive and negative
examples. A valid solution P must entail all positive examples while excluding all negative ones:

B ∪ P |= e+ ∀e+ ∈ P, B ∪ P ̸|= e− ∀e− ∈ N .

Instead of relying on a black-box neural predictor, the network is structured so as to learn a program
P whose inference behaviour follows the formal semantics of DatalogMTL. Predictions are framed
as logical entailment: the model determines whether the target atom (i.e., the output label y) holds.

For example, if wet_ground is the target atom, the system may learn a rule such as:

wet_ground ← ♦[2, 0] rains,

which, under the semantics of DatalogMTL, states that the ground is wet if it has rained at any point
within the last two days or on the current day in a scenario where the time unit is a day. In general,
target atoms are precisely those atoms whose truth values the model aims to predict via the learned
logical rules.

>> At line 132, it’s not clear where the threshold comes from: before relaxation, is it meant to be
the number of negative literals in the rule?

We wrote: “Let v be an real number, and let φ(v) = v′ be the threshold function, where v′ = 1 if
v ≥ τ , and v′i = 0 otherwise with τ being the threshold value.” Instead of v′i = 0, it should have
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been v′ = 0. Perhaps the typo hindered the reading. Therefore, it is not the number of negative
literals. It is a threshold value such that if a value is greater than τ , then it collapses to 1, otherwise
to 0.

>> At line 202, what happens if multiple atoms were “already considered in the previous win-
dows”?

If multiple atoms were already considered in previous windows, one of them is selected uniformly
at random. The remaining atoms can then still be used in the current window to represent distinct
ground instances. For example, suppose both consult(X,Y ) and consult(W,Z) were previously
generated. Then, if the current window contains the ground atoms consult(a, b) and consult(c, d),
we may map consult(X,Y ) to represent consult(a, b) while consult(W,Z) remains available to
represent consult(c, d).

>> Even as a low-level description of what’s done, the paper doesn’t quite hang together. To take
one example: Line 190 defines the "overlap score" and says that it is "used to determine processing
order," but it’s not clear what "processing order" refers to, and neither nor the overlap score is ever
mentioned again! (I suppose it’s the same as the "co-occurring score" in the next paragraph.)

Thank you for pointing this out. Our heuristics compute two different scores: (i) an overlap score
used to determine the order in which windows are processed, and (ii) a co-occurrence score used to
decide the order in which ground atoms are lifted to first-order ones. We intended the textual de-
scription to be easier to follow than presenting a full procedural algorithm, but we see how this may
have caused confusion. If allowed, we will include a clear algorithmic description in the appendix
to make the distinction explicit.

>> Furthermore, the definition of contains unbound variables. (I suppose it should have been named
.)

Thank you for highlighting this point. As stated in the paper, the number of rules we generate
is linear in the input, which implies that the number of variables is indeed bounded. We made
it clearer by exposing the procedure in an algorithmic fashion: the generation of the variables is
described from line 14 to line 17 in Algorithm 1. One cannot generate more |E||W| variables,
where E denotes the set of all entities and |W| the number of windows.

Questions >> What is the formal learning problem here?

The formal learning problem we address is that of learning DatalogMTL rules (defined in Section
2) that describe a temporal dataset. More precisely, our setting corresponds to the temporal interpo-
lation problem studied in prior work such as [1] and [2]: given temporal sequences of facts, the goal
is to induce a rule set whose temporal consequences reconstruct or generalize these sequences.

[1] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reasoning for fore-
casting on temporal knowledge graphs. In the International conference on learning representations,
2020.

[2] Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp. Tlogic: Tempo-
ral logical rules for explainable link forecasting on temporal knowledge graphs. In Proceedings of
the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), pp. 4120–4127. AAAI Press,
2022.

>> Is it a machine learning problem where there is a true set of temporal facts over intervals, the
answers to some queries are observed at random, and the estimated DatalogMTL program should
accurately predict the answers to other queries?

The learning problems we consider are indeed machine-learning tasks over temporal data, but they
span three concrete settings rather than a single abstract formulation:

1. Temporal link prediction (interpolation) on temporal knowledge graphs, following the setting of
[1] and [2], where the goal is to reconstruct unseen temporal facts from partially observed sequences.

2. A synthetic temporal dataset in which the model must learn temporal relations connecting requests
and grants.
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3. A temporal action-learning scenario, where the system induces action descriptions from observa-
tions of an autonomous agent.

More generally, we learn a DatalogMTL program that generalizes from observed temporal facts to
unobserved ones. We tested it across different temporal reasoning domains to show its versatility.

>> Is it a statistics problem where a true parameter is a DatalogMTL program, the answers to some
queries are observed at random, and the true program should be recovered in the limit? If so, is the
program in fact identifiable?

In the ICEWS settings, there is no clear, perfect program one should learn in the limit, while in
the synthetic dataset, yes. For instance, the rules presented in the Action Description Scenario
setting represent some possible good rules one would like to learn given the parameters used in the
generation of the data.

>> Is it a computational problem of finding a small description of a set of positive facts

It does not necessarily need to be small, however, if it is small, it is preferrable. Our tool learns
indeed a small number of rules (linear) in the size of the dataset.

>> (and if so, how is it ensured that the description does not predict false facts, since negative
examples are not provided)?

In the [1] and [2] settings, an answer is always expected.

[1] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reasoning for fore-
casting on temporal knowledge graphs. In the International conference on learning representations,
2020.

[2] Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp. Tlogic: Tempo-
ral logical rules for explainable link forecasting on temporal knowledge graphs. In Proceedings of
the 36th AAAI Conference on Artificial Intelligence (AAAI 2022), pp. 4120–4127. AAAI Press,
2022.

>> Is it an association rule mining problem as mentioned earlier? If so, what is the success crite-
rion?

The success criterion is not based on association-rule mining but on standard evaluation metrics used
in temporal link prediction and temporal reasoning tasks. In all experiments, we assess performance
using Hits@Rank and MRR, which measure how well the learned DatalogMTL program predicts
the correct temporal facts among all candidate answers.

>> What does "consecutive occurrences" mean at line 181? You talk about t, t+1, and t+2. I had
assumed that time was continuous, since you referred early on to "intervals"; did you actually intend
for time to be discrete?

Yes, in our experimental setting time is discrete. This allows us to refer to consecutive occurrences
such as t, t + 1, and t + 2, which correspond to the discrete interval [t, t + 2]. Intervals can still
be defined naturally over a discrete timeline. Extending the framework to continuous time is an
interesting direction for future work; it would mainly require adjustments in data preprocessing
rather than changes to the core method.

>> It’s not clear to me whether learning temporal logic programs is an important problem. Can you
make a case for it?

Learning temporal logic programs is important because many real-world reasoning tasks are inher-
ently temporal: events have durations, actions have delayed effects, and relations evolve over time.
The ability to induce temporal rules from data places our work within a growing line of research in
Inductive Logic Programming (ILP) and neuro-symbolic reasoning, where temporal extensions are
becoming increasingly relevant.

Temporal logic programs provide high-level, human-readable rules that capture how facts evolve
over time. These rules are valuable not only for prediction (e.g., temporal link prediction, learning
action descriptions) but also for explainability and diagnosis in evolving systems, where extracting
structured knowledge from data is crucial. In contrast, transformer-based models—despite recent
efforts to improve their interpretability, remain inherently more opaque than symbolic formalisms,
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which offer explicit reasoning steps. Symbolic approaches may sometimes trade off raw perfor-
mance, but they provide semantic clarity that is essential in domains where understanding temporal
dynamics matters.

>> But as an alternative, perhaps one could train a neural generative model and then extract ex-
planatory patterns from it post hoc.)

Training a neural generative model and extracting patterns post hoc is indeed a possible alternative.
However, our goal is to extract rules that correspond directly to the actual decision-making process
of the model—i.e., explicit if–then clauses that the system truly relies on during inference. Post-hoc
pattern results in a knowledge that does not offer the same properties of a formal language with a
clear syntax and semantics. Therefore it cannot directly support classical knowledge-representation
tasks such as logical inference, automated planning, verification, or diagnosis. In contrast, our
method learns rules within a formal logic framework (DatalogMTL), ensuring that the extracted
rules can be given as an input to temporal rule solvers or monitoring frameworks.

To integrate: “post-hoc interpretation, we take an existing machine learning system, that has already
been trained, and try to understand its inner state. In the other approach, designing explicit already-
interpretable machine learning systems, we con- strain the design of the machine learning system to
guarantee, in advance, that its results will be interpretable”

>> I am not able to follow the details of the method as presented. On first principles, I would have
expected a method similar to Gao et al. (2024), which you present as your starting point, but where
the matrix columns had names like (for all T in [Time+a,Time+b]) property(T,X,Y) or (exists T in
[Time+a,Time+b]) property(T,X,Y). These truth conditions of such a column would be softened,
in part by fuzzing the edges of the interval [Time+a,Time+b]. Thus, you could improve a, b by
following their gradient. Why didn’t you do it this way?

We may be misunderstanding the reviewer’s suggestion, but our architecture does already allow for
differentiable learning of interval endpoints. In DatalogMTL, temporal operators such as boxes or
diamonds are implemented through differentiable layers, and the parameters are learned via gradient
descent— analogous in the same spirit the reviewer suggests.

>> What happens if you make the window size too large or too small?

The size of the windows is optimized via a grid-search. The idea is that the windows should be large
enough to capture most of the relevant temporal dependencies across the data.

>> Does this change the number of rules you find and their specificity, so that you might underpre-
dict or overpredict positive facts?

Changing the window size can indeed influence the specificity of the learned rules. Intuitively, larger
windows rely less on temporally local dependencies and may therefore lead to more general rules,
which can increase the risk of overgeneralization. On this other side, when the temporal dependen-
cies in the data are short-term, increasing the window size may introduce unnecessary complexity
and this may negatively affect the quality of the learned rules. We will include this discussion in the
revised version to clarify how window size interacts with rule specificity and prediction accuracy
with some ablation studies to support this.

>> What are the simplest examples where your heuristics would fail?

The simplest example is when every entity appears only once, and the first-order “representatives”
do not generalize. In fact, in this case, the outcome will be a grounded DatalogMTL program.

C.2 SECOND REVIEWER

Weaknesses >> The experimental section could be strengthened by including comparisons
against more diverse state-of-the-art neuro-symbolic or temporal rule mining baseline approaches,
beyond standard non-temporal or limited temporal inductive logic programming methods, to fully
contextualize the proposed model’s performance in the broader field of temporal sequence modeling.

We interpret the reviewer’s comment as referring to temporal sequence modeling. Our focus, how-
ever, is on interpretable rule learning, not black-box sequence modeling. While sequence models
such as LSTMs or Transformers can handle temporal prediction, they do not produce symbolic rules
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or interpretable structures, making them unsuitable baselines for our setting. Of course, the liter-
ature is very huge, so we reported only some results of temporal sequence modeling tools in the
Table about temporal link prediction in the interpolation settings. Nonetheless, we will clarify this
distinction in the paper.

Questions >> How robust is the learning of the continuous metric interval bounds to noise in the
training data,

Our syntactic dataset is obtained by adding some uncertainty on the realization of the grant via the
parameters µ and σ, and some noise is injected as the grant is given if a uniform probability variable
that uniformly ranges from 0 to 1 exceeds .9.

>> and what regularization or loss terms (if any) are specifically implemented to prevent interval
collapse or explosion during gradient descent?

We have not considered such regularization.

>> Given the focus on interpretability, can the authors provide a more detailed analysis of the
learned rules—perhaps a qualitative summary or examples from the different use cases—to illustrate
how MT-Diff-Learn discovers non-obvious or complex temporal relationships that purely sequential
models might miss?

An example of a rule that is learned in the ICEWS setting is:

consult(X,Y )← □[0,0]consult(Y,X).

This rule is not di per see involving a temporal complex structure, but it showcase how certain
property such as symmetry in this case can be easily represented.

A temporal which spans over different timestamps is the following:

sign_agreement(X,Y )← ■[1,2]consult(Y,X).

This rule is rather general, as it can be instantiated in many different ways. Its intended meaning is
the following: at a time point t, the atom sign_agreement(X,Y ) holds whenever subject b has been
consulting subject a throughout the interval [t− 2, t− 1]. In other words, if b has been consulting a
during the previous day and the day before, then at time t subject a will sign an agreement with b.

C.3 THIRD REVIEWER

Weaknesses >> The lifting process is complex and relies heavily on heuristics (overlap scores,
processing order, variable assignment constraints). The robustness of the system to these choices
is unclear, and the impact of associated hyperparameters (window size l, breadth b, depth d) is not
analyzed. The generalizability of this lifting process warrants further investigation.

We agree that more ablation studies should be provided, and we aim to integrate them in the revised
version of the paper.

>> On standard tKG benchmarks (ICEWS), MT-Diff-Learn significantly lags behind SOTA
embedding-based methods. While the focus is on interpretability, this gap may limit adoption where
accuracy is paramount. The paper should better discuss this trade-off.

We agree that embedding-based temporal KGC methods achieve higher raw accuracy on large-scale
benchmarks such as ICEWS. However, these models are inherently black-box and do not yield in-
terpretable temporal rules. We will clarify this trade-off in the revised version and position our
approach as an interpretable alternative rather than a direct competitor to high-performance embed-
ding models. Furthermore, in cases where the labels of entities and relation names do not carry any
semantic information, the performance of embedding-based approaches may degrade significantly,
whereas rule-based methods remain robust to such semantic neutrality.

>> Key parts of the methodology are difficult to parse. The lifting procedure (W1) is confusing.
Furthermore, the process of translating the learned intervals back into DatalogMTL syntax is unclear.
The example provided (transforming [2, 5] into a conjunction of past and future operators) seems
overly complicated and requires clarification regarding how semantics are preserved relative to the
window center.
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The translation from learned intervals into DatalogMTL is conceptually simple, so that part should
be made more readable if it causes any problem.

>> The abstract claims applicability to data over dense time intervals. However, the semantics
defined in Section 2 are explicitly over integers (Z), and dense time is only mentioned as future
work.

Yes, with some adaptation in the preprocessing of the data we can apply this method to learn also
rules operating on a dense timeline, however, to ease the presentation we stick to the simpler case of
the integers. We will make this clearer in the revised version.

>> While the output model is succinct, the training process involves complex tensor operations. The
input tensors (Start/End) have a dimension representing the maximum number of disjoint intervals
an atom might hold in a window. The paper does not detail the practical implications of this on
memory usage and training time if this value is large.

For each target atom h, we generate the three tensors for (i) the truth matrix, (ii) the starting and (iii)
the ending matrix. Since the number of the relevant atoms is parametrized by b and d in the PMI-
filtered selection, under the assumption that bd is fixed, and, therefore, can be considered a constant,
then the size of the matrixes are polynomial in size in the number of ground atoms the target atom h
represents.

Questions >> The lifting process is intricate and heuristic-driven. How sensitive are the final
results to these heuristics (e.g., the ordering strategy)? Could you provide a small, concrete example
illustrating how the variable assignment rules (1-4) operate across two overlapping windows?

Thanks for pointing out that the description of the lifting process was difficult to follow. We agree,
and in the revised version, we will make the procedure clearer in two ways. First, we present
the variable-assignment rules in a more algorithmic and structured manner, so that the ordering
strategy and the decision points are explicit. Second, we will include a small, concrete example in
the appendix (due to space constraints in the main paper) showing how two partially overlapping
windows are lifted step-by-step.

>> Could the authors clarify the interval translation process in L354-359? Assuming a window
size of 8 (center at 4), how exactly does a learned interval [2, 5] translate into "■[0,2] γ (X,Y) ∧
□[0,1] γ (X,Y)"? aka, 2 time units in the past and 1 time unit in the future. The interval relative to
the center seems to be [-2, 1].

Yes, but in the syntax of DatalogMTL for each temporal modality (always and eventually), there are
two modes: past and future. Therefore, if 0 is the center timepoint, then (past) ■[0,2] means [-2, 1]
and (future) □[0,1] means [0, 1]. Their union yields [-2, 1].

>> How does the memory consumption scale with the max_int parameter? Could this become a
bottleneck for datasets with complex temporal patterns?

This issue could arise when the window size is very large and many atoms become true within the
same window but over multiple disjoint intervals. We did not explicitly discuss this case, as it did not
occur in the ICEWS datasets we used. However, such scenarios are easy to imagine, especially in
real-world cyber-physical systems. We agree this is an interesting limitation, and we will definitely
investigate it in future work.

>> Could you clarify the discrepancy between the abstract’s claim of applicability to dense time
and the discrete-time semantics defined in Section 2?

Thanks for highlighting this point. To keep the presentation simple, Section 2 focuses on the
discrete-time semantics commonly used in prior work. However, the approach itself is not restricted
to discrete timelines. By suitably adapting the preprocessing stage— specifically, how temporal
intervals are extracted and represented— our framework can operate over dense time as well. We
will clarify this distinction in the revised version and we will postpone a clear handling of the dense
timeline as a future work.

C.4 FOURTH REVIEWER

>> No complete guiding example. One piece of example at lines 356–359 is unclear.
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Thank you for pointing this out. In the revised version, we provided a more algorithmic presentation
of the proposed procedures.

>> Figure 1, which should add substantial information/context to the paper, is underdeveloped.

We agree that Figure 1 can be improved. In the revised version, we updated it to better align with
the pipeline steps and provide clearer contextual information.

>> Too many mathematical flaws and presentation inconsistencies in the background and method
sections (and beyond). For example:

Many thanks for the careful reading, we fixed the typos.

>> Now for the experiments. This part feels weak and underdeveloped. What are the "sampled
variants of MTLearn"?

These are variations of MTLearn that we introduced as the basic version as the basic version of
the tool produced a large amount of data we were not able to run either our evaluation script or
the MTLearn’s one. In order to still present some results, we considered a sampled version of the
resulting rules produced by MTLearn.

>> I assume that some examples have been sampled to produce the results in Table 1. If so, have
you used different random seeds for the sampling and aggregated the results in Table 1? If not, why?

Yes, we used different random seeds. We will make it clearer in the revised version of the paper.

>> What are ICEWS14 and ICEWS05-15? I assume those are datasets, given the context in Table
1. Do such datasets have a bibliographic reference? What are the characteristics of these datasets?

The specs about ICEWS14 and ICEWS05-15, which are standard benchmarks given that we cited
different tools that have been tested against these two datasets in Table 1, are reported in Table 1
from Appendix A.1.

>> I’m asking because the abstract claims the extraction of a linear number of rules (in terms of
the dimensionality of the training dataset(s)).

Yes, for each atom we want to learn, we may produce at most a rule, therefore the claim holds.

>> As noted earlier, the cyber-physical scenario requires further explanation (see the Summary).

We will add some details in the appendix, as the main text is already quite full of information.

>> Finally, what is a "strong version of preconditions" (line 450)?

It means that it is not just a precondition for the action, but also a triggering condition, meaning that
whenever it holds, the action is executed. We will make it clearer.

>> I’ve looked at the Appendix, which needs significant improvement, as with the main text. I’m
not a huge fan of using bullet points/enumerations for listing just one item (e.g., lines 652–654, line
673, and line 680). It is clear to me that the Appendix hadn’t been read before submission. Although
notable, the ablation study is weak; I would have expected, besides ablating against eventually or
not, to see how other components of the architecture perform while enabling/disabling those parts.

We are happy to extend the ablation studies to analyze additional components of the architecture and
would welcome suggestions from the reviewers. Table 11 already examines the effect of removing
the eventuality operators, and we will highlight this more clearly in the revised version.

C.5 FIFTH REVIEWER

>> In the introduction, how to define a model as "fully differentiable"? It’s unclear because this
is the core contribution. Many previous works can produce "human-readable rules", so how can to
differentiate from those works, and how do fully differentiable architectures generate explicit rules?

This is the first work that produces DatalogMTL rules in a differentiable way. In Section 3, we show
how we can express the immediate consequence operator in a neural network.

>> What’s the number of parameters used in this model?
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The number of parameters depends on the dataset. After generating first-order atoms and filtering
them using PMI with the hyperparameters b (breadth) and d (depth), each target atom h—which
represents nh

r grounded atoms—has approximately nh
r · nh learnable parameters. Here, nh ≤ 3bd,

which is intentionally kept small to limit the number of candidate body atoms and ensure tractable
model size.
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