
Meta-learning local learning rules for structured credit assignment with sparse feedback

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Biological neural networks learn complex behaviors from sparse, delayed feed-
2 back using local synaptic plasticity, yet the mechanisms enabling structured credit
3 assignment remain elusive. In contrast, artificial recurrent networks solving sim-
4 ilar tasks typically rely on biologically implausible global learning rules or hand-
5 crafted local updates. The space of local plasticity rules capable of support-
6 ing learning from delayed reinforcement remains largely unexplored. Here, we
7 present a meta-learning framework that discovers local learning rules for struc-
8 tured credit assignment in recurrent networks trained with sparse feedback. Our
9 approach interleaves local neo-Hebbian-like updates during task execution with
10 an outer loop that optimizes plasticity parameters via **backpropagation through**
11 **learning (BPTL)**. The resulting three-factor learning rules enable long-timescale
12 credit assignment using only local information and delayed rewards, offering new
13 insights into biologically grounded mechanisms for learning in recurrent circuits.

14 —

15 1 Introduction

16 Learning in biological organisms involves changes in synaptic connections (synaptic plasticity) be-
17 tween neurons [1, 2]. Synaptic changes are believed to underlie memory formation and are essential
18 for adaptive behaviour [3]. Experimental evidence suggests that synaptic changes depend on the co-
19 activation of pre- and postsynaptic activity [4, 5], and possibly other local variables available at the
20 synaptic site [6, 7]. These unsupervised synaptic modifications have explained activity-dependent
21 circuit refinement during development such as the emergence of functional properties like receptive
22 field formation based on naturalistic input statistics [8].

23 Yet, most organisms routinely solve complex tasks that require feedback through explicit supervi-
24 sory or reinforcement signals. These signals are believed to gate or modulate plasticity, acting in the
25 form of a third factor that scales and also probably imposes the direction of the synaptic modifica-
26 tions [9]. How error- or reward-related information is propagated through the recurrent interactions
27 is not yet clear. While prior work has largely focused on hand-crafted synaptic updates for unsuper-
28 vised self-organization, or biologically plausible approximations of backpropagation [10], the space
29 of plasticity rules capable of supporting structured credit assignment from delayed feedback remains
30 vastly underexplored.

31 Backpropagation through time (BPTT), the standard approach for training recurrent neural networks
32 (RNNs), is biologically implausible since it requires symmetric forward and backward connections
33 and non-local information [11, 12]. Although recent work has reformulated BPTT into more biolog-
34 ically plausible variants using random feedback [13], truncated approximations [14], or by learning

35 feedback pathways [15], these methods require continuous error signals to refine recurrent connec-
36 tions.

37 Here, we adopt a bottom-up approach: instead of imposing hand-designed synaptic rules, we dis-
38 cover biologically plausible plasticity rules that support learning through delayed reinforcement
39 signals via meta-optimisation. Building on recent work [16], we parameterise plasticity rules as
40 functions of local signals (presynaptic activity, postsynaptic activity, and synapse size) and meta-
41 learn their parameters within a second reinforcement learning loop. With that, our present work
42 tackles the following questions:

43

- **Which local learning rules can implement structured credit assignment under biolog-
44 ical constraints?**
- **Do different forms of plasticity give rise to different computational regimes and repre-
45 sentations as observed with gradient based training (e.g., “lazy” vs. “rich” learning)?**

46 Recent theory distinguishes between lazy and rich regimes of learning in RNNs: in the lazy regime,
47 representations remain fixed while output weights adapt; in the rich regime, the network reorgan-
48 ises its internal dynamics to encode task structure. While these regimes are well-characterised for
49 gradient-trained networks, it remains unclear whether biologically plausible learning rules can sup-
50 port either or both, and what synaptic mechanisms underlie each regime. Here we demonstrate that
51 different forms of plasticity naturally lead to qualitatively different learning trajectories and internal
52 representations, akin to their gradient-based learning rules.

54 2 Method

55 **Network dynamics.** We consider recurrent neural networks (RNNs) of firing rate neurons coupled
56 through a synaptic matrix $W \in \mathbb{R}^{N \times N}$ [17], with additional input and output matrices $W_{\text{in}} \in$
57 $\mathbb{R}^{N_{\text{in}} \times N}$ and $W_{\text{out}} \in \mathbb{R}^{N \times N_{\text{out}}}$ that route task-relevant input into the recurrent circuit and read out
58 network activation to generate task-specific outputs (actions). The equations governing the network
59 dynamics are

$$\frac{d\mathbf{x}^t}{dt} = -\mathbf{x}^t + W\phi(\mathbf{x}^t) + W_{\text{in}}\mathbf{u}^t, \quad (1)$$

$$\mathbf{r}^t = \phi(\mathbf{x}^t) \doteq \tanh(\mathbf{x}^t), \quad (2)$$

60 where $\mathbf{x}^t \in \mathbb{R}^N$ is the vector of pre-activations (or input currents) to each neuron in the network,
61 $\phi(\cdot) : \mathbb{R}^N \rightarrow \mathbb{R}^N$ denotes the single-neuron transfer functions, $\mathbf{r}^t \in \mathbb{R}_+^N$ is the vector of instant-
62 taneous firing rates, \mathbf{u}^t stands for the activity of the N_{in} input neurons. In the terms above, the \cdot^t
63 superscript indicates time dependence. Network outputs \mathbf{z}^t are obtained from linear read-out neu-
64 rons as

$$\mathbf{z}^t = W_{\text{out}}\mathbf{r}^t. \quad (3)$$

65 **Sparse feedback and parametrized learning rules.** We consider networks that learn context-
66 dependent cognitive tasks using biologically plausible local learning rules, guided by sparse rein-
67 forcement signals R provided only at the end of each training episode. To enable learning from
68 such delayed and global signals, each synapse between a pre-synaptic unit j and a post-synaptic unit
69 i maintains an eligibility trace e_{ij} [18], which integrates the history of (co-)activation during the
70 episode. We define the evolution of eligibility traces with differential equations of the form

$$\frac{de_{ij}^t}{dt} = \mathcal{H}_\theta(r_j^t, x_i^t) - \frac{e_{ij}}{\tau_e} = \sum_{0 \leq k; l \leq d} \theta_{k,l} (r_j^t)^k (\bar{x}_i - x_i^t)^l - \frac{e_{ij}}{\tau_e}, \quad (4)$$

71 where τ_e is a decay time-scale, \bar{x}_i is a running average of the pre-activation of neuron i , and $\theta_{k,l} \in \mathbb{R}$
72 are learnable coefficients. In contrast to eligibility traces based solely on pairwise correlations [19],
73 we use here a polynomial expression that captures richer interactions between pre- and post-synaptic
74 activity. Each coefficient $\theta_{k,l}$ can be construed as a term-specific learning rate, which may be pos-
75 tive (Hebbian), negative (anti-Hebbian). This parameterization allows individual terms to modulate
76 synaptic eligibility based on pre-synaptic activity, post-synaptic activity, co-activity, or deviations
77 from a homeostatic set point. In our experiments, we set $d = 2$, yielding 9 monomial terms that
78 capture nonlinearities and interaction effects, while remaining computationally tractable.

79 The recurrent weight matrix W gets updated at the end of each training episode according to a
 80 reward-modulated learning rule

$$\Delta w_{ij} = e_{ij} (R - \bar{R}) - \frac{w_{ij}}{\tau_w}, \quad (5)$$

81 where τ_w denotes the time scale of weight decay, e_{ij} stands for the eligibility trace accumulated
 82 during the episode, while R , \bar{R} stand for the obtained and the expected reward. Here, we model
 83 reward expectations for each type of trial independently as a running average of past rewards for
 84 this trial type [20]. This update rule enables credit assignment through the interaction between
 85 synaptic eligibility and trial-specific reward prediction error, consistent with neo-Hebbian three-
 86 factor learning rules hypothesized to operate in biological circuits [19]. In principle the weight
 87 updates happen due to (slow) weight decay or due to reward prediction errors.

88 **Meta-learning plasticity rules.** While previous work has relied on hand-crafted eligibility trace
 89 dynamics and synaptic update rules to train recurrent neural networks with sparse feedback [20], we
 90 instead adopt a meta-learning approach to learn the parameters of the plasticity rules. Our frame-
 91 work consists of two nested training loops: **(i)** an inner loop in which the recurrent network is
 92 trained over several episodes using local learning rules and sparse reinforcement signals provided
 93 at the end of each episode, as described above; and **(ii)** an outer loop that optimizes the plasticity
 94 meta-parameters $\Theta = \{\{\theta_{k,l}\}_{k,l=0}^2, \tau_w, \tau_e\}$ via gradient descent using **backpropagation through**
 95 **learning** on a meta-loss computed over K training episodes (trials). This approach allows the learn-
 96 ing rules themselves to be adapted to the task, rather than be fixed a priori.

97 **Backpropagation through learning.** Our goal is to optimise the learning rule parameters θ to
 98 maximise task performance, measured as the expected cumulative reward $\langle R \rangle$ obtained after a fixed
 99 number of learning episodes. However, the reward R obtained by the agent depends on the network's
 100 output, which in turn is determined by its synaptic weights $\mathcal{W} = \{W_{in}, W, W_{out}\}$. The weights are
 101 dynamically updated according to the employed synaptic update rule (Eq. 5). This plasticity rule,
 102 depends on the eligibility traces e_{ij} , which themselves are parameterised by θ . This establishes a
 103 complex dependency chain over the network parameters: $R \leftarrow W \leftarrow e \leftarrow \theta$. Thus directly com-
 104 puting the gradient $\nabla_\theta \langle R \rangle$ by backpropagating through the entire network dynamics over learning
 105 is computationally challenging.

106 To address this, we employ a REINFORCE-inspired approximation [21] to estimate the gradient
 107 $\nabla_\theta \langle R \rangle$. Recall that the REINFORCE gradient formula involves computing the gradient of an ex-
 108 pected value by observing outcomes and scaling a measure of what elicited that outcome with the
 109 associated reward. Or more formally, scaling the gradient of the log-probability of an outcome with
 110 the reward associated with that outcome

$$\nabla_\theta \langle R \rangle = \langle (R - \bar{R}) \cdot \nabla_\theta \log \pi(R | \theta) \rangle \quad (6)$$

111 Here, since we consider deterministic weight updates, we do not have a stochastic policy π , as is
 112 common in policy gradient methods in reinforcement learning. However, we can consider the final
 113 weight configuration $\mathcal{W}(\Theta)$ as an *implicit policy* with parameters Θ , that determine the learned
 114 network behaviour. We then use the **reward prediction error**, defined as $\delta R = R - \bar{R}$ (where \bar{R} is
 115 a running average of the reward), as a signal to adapt the parameters θ

$$\nabla_\theta \langle R \rangle \approx (R - \bar{R}) \cdot \frac{dW}{d\theta}. \quad (7)$$

116 Since the weight updates depend linearly on the eligibility trace (Eq. 5), we have

$$\frac{dW_{ij}}{d\theta_{kl}} = \delta R \cdot \frac{de_{ij}}{d\theta_{kl}}. \quad (8)$$

117 To relate this to the gradient of the reward with respect to θ , we sum over all synapses, resulting in
 118 the approximation

$$\nabla_\theta \langle R \rangle \approx \sum_{i,j} \delta R \cdot \frac{de_{ij}}{d\theta_{kl}} = \sum_{i,j} \delta R \cdot (r_j^t)^k (x_i^t - x_i^t)^l. \quad (9)$$

119 The eligibility trace e_{ij} is a function of neural activity, and its dependency on the parameters θ is
 120 explicitly defined by the model (Eq. 4). For the eligibility trace parametrised in the polynomial

121 form of Eq. 4, the term $\frac{de_{ij}}{d\theta}$ has an explicit expression in terms of neural activations and firing rates
122 (Eq. 9). This expression is fully analytic and requires no gradient propagation through the network
123 or the learning episodes. The plasticity parameters θ are then updated using gradient ascent based
124 on this estimated gradient.

125 To enforce sparsity on the identified rules in order to minimise the number of active terms in the
126 identified rule to render it interpretable.

127 3 Results

128 We defer the reader to the Extensive results section in the Supplementary Information for the results
129 of the numerical experiments.

130 4 Related work

131 Decades of research on synaptic plasticity have focused on hand-crafted learning rules designed to
132 replicate experimentally observed changes in post-synaptic potentials from single-neuron recordings.
133 However, the recent explosion in large-scale functional recordings, particularly longitudinal
134 data collected across learning, has sparked growing interest in identifying the types of plasticity
135 rules that may underlie observed changes in neural activity and behavioural performance. Despite
136 this interest, the task remains extremely challenging: current experimental techniques do not allow
137 direct measurement of synaptic interactions across large neural populations, making it difficult to
138 infer the underlying synaptic mechanisms at play. Thus an increasing number of frameworks have
139 emerged that aim to discover plasticity rules from indirect signatures such as changes in neural ac-
140 tivity distributions, recorded trajectories, or behavioural performance. These approaches differ in
141 what kind of observations they use, and in the assumptions they make about the network structure,
142 plasticity rule parameterisation, and underlying task.

143 **Matching rate distributions.** One line of work focuses on inferring synaptic plasticity rules from
144 pre- and post-learning firing rate distributions. Lim et al.[22] jointly infer neuron transfer functions
145 and synaptic updates from observed rate distributions, under assumptions of Poisson firing statistics
146 and linearized plasticity. This approach was later extended using Gaussian process priors over plas-
147 ticity functions[23], improving flexibility but still restricted to feedforward networks and ignoring
148 temporal dynamics.

149 These approaches do not model the full trajectory of activity during learning, instead identify plas-
150 ticity rules that explain cumulative changes across learning. As a result, they cannot constrain rule
151 parameters based on how learning unfolded in time.

152 **Inference by conditioning on neural trajectories.** A second group of methods exploits neural ac-
153 tivity trajectories recorded over learning. Ramesh et al. [24] use a generative adversarial framework
154 to infer plasticity rules that generate neural trajectories similar to empirical ones. While highly ex-
155 pressive, this method requires extensive data and computational resources, and suffers from known
156 instability issues in GAN training. Confavreux et al. [16] proposed a meta-learning framework to
157 discover plasticity rules that produce desired temporal coding properties in rate-based networks.
158 While insightful, their approach optimises for a fixed synthetic objective (e.g., encoding elapsed
159 time), rather than learning from observed data or behaviour.

160 **Behavior-based plasticity inference.** A third set of studies use behavioural performance trajec-
161 tories to constrain synaptic plasticity. Ashwood et al.[25] fit learning rule parameters in rodent
162 decision tasks using a Bayesian model, requiring approximation of the full posterior over synaptic
163 weights. Rajagopalan et al.[26] reformulate the plasticity inference problem as logistic regression
164 by assuming presynaptic activity and reward as the only inputs. These frameworks remain limited
165 in flexibility, often neglecting dependencies on postsynaptic activity or synapse strength, which are
166 essential for biologically grounded learning.

167 Most of these approaches assume feed-forward structure of the underlying network [23, 27], and
168 consider plasticity evolving network dynamics in an unsupervised setting. Only the recent work of

169 [27] considers a reward term in the plasticity rule, that effectively puts the learning framework under
170 a reinforcement learning and thus closer to how biological organisms learn.

171 **5 Limitations**

172 Despite its strengths, our work has several limitations that point to opportunities for future improve-
173 ment and extension. One limitation is that the proposed meta-learning procedure must be run mul-
174 tiple times independently to discover multiple plasticity rules that satisfy the same task constraints.
175 Recent advances using simulation-based inference [16] provide a promising alternative for sampling
176 entire distributions over plasticity rules that solve a given cognitive task, potentially offering a more
177 efficient and principled exploration of solution space. Yet, simulation based inference is easy to
178 incorporate in our setting.

179 Another limitation is that our current framework is purely exploratory and does not explicitly in-
180 corporate constraints from experimentally recorded neural activity. While this allows for a broad
181 and flexible search over possible learning mechanisms, it limits the biological specificity of the dis-
182 covered rules. Extending our framework to incorporate such constraints, for instance, by biasing
183 the meta-optimisation toward activity trajectories consistent with recorded data, could yield more
184 realistic models of synaptic updates.

185 **References**

186 [1] Craig H Bailey and Eric R Kandel. Structural changes accompanying memory storage. *Annual*
187 *review of physiology*, 1993. (page: 1)

188 [2] Mark Mayford, Steven A Siegelbaum, and Eric R Kandel. Synapses and memory storage. *Cold*
189 *Spring Harbor perspectives in biology*, 4(6):a005751, 2012. (page: 1)

190 [3] John J Hopfield. Neural networks and physical systems with emergent collective computational
191 abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982. (page: 1)

192 [4] Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons:
193 dependence on spike timing, synaptic strength, and postsynaptic cell type. *Journal of neuro-*
194 *science*, 18(24):10464–10472, 1998. (page: 1)

195 [5] Per Jesper Sjöström, Gina G Turrigiano, and Sacha B Nelson. Rate, timing, and cooperativity
196 jointly determine cortical synaptic plasticity. *Neuron*, 32(6):1149–1164, 2001. (page: 1)

197 [6] Michael Graupner and Nicolas Brunel. Calcium-based plasticity model explains sensitivity of
198 synaptic changes to spike pattern, rate, and dendritic location. *Proceedings of the National*
199 *Academy of Sciences*, 109(10):3991–3996, 2012. (page: 1)

200 [7] Victor Pedrosa and Claudia Clopath. Voltage-based inhibitory synaptic plasticity: network
201 regulation, diversity, and flexibility. *bioRxiv*, pages 2020–12, 2020. (page: 1)

202 [8] Stephen J Martin, Paul D Grimwood, and Richard GM Morris. Synaptic plasticity and mem-
203 ory: an evaluation of the hypothesis. *Annual review of neuroscience*, 23(1):649–711, 2000.
204 (page: 1)

205 [9] Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: mod-
206 ulating hebbian plasticity with errors. *Current opinion in neurobiology*, 46:170–177, 2017.
207 (page: 1)

208 [10] Thomas Miconi, Kenneth Stanley, and Jeff Clune. Differentiable plasticity: training plastic
209 neural networks with backpropagation. In *International Conference on Machine Learning*,
210 pages 3559–3568. PMLR, 2018. (page: 1)

211 [11] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random
212 synaptic feedback weights support error backpropagation for deep learning. *Nature communi-*
213 *cations*, 7(1):13276, 2016. (page: 1)

214 [12] Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with
215 segregated dendrites. *Elife*, 6:e22901, 2017. (page: 1)

216 [13] Navid Shervani-Tabar and Robert Rosenbaum. Meta-learning biologically plausible plasticity
217 rules with random feedback pathways. *Nature Communications*, 14(1):1805, 2023. (page: 1)

218 [14] James M Murray. Local online learning in recurrent networks with random feedback. *Elife*, 8:
219 e43299, 2019. (page: 1)

220 [15] Jack Lindsey and Ashok Litwin-Kumar. Learning to learn with feedback and local plasticity.
221 *Advances in Neural Information Processing Systems*, 33:21213–21223, 2020. (page: 2)

222 [16] Basile Confavreux, Poornima Ramesh, Pedro J Goncalves, Jakob H Macke, and Tim Vo-
223 gels. Meta-learning families of plasticity rules in recurrent spiking networks using simulation-
224 based inference. *Advances in Neural Information Processing Systems*, 36:13545–13558, 2023.
225 (pages: 2, 4, and 5)

226 [17] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural
227 networks. *Physical review letters*, 61(3):259, 1988. (page: 2)

228 [18] Eugene M Izhikevich. Solving the distal reward problem through linkage of stdp and dopamine
229 signaling. *Cerebral cortex*, 17(10):2443–2452, 2007. (page: 2)

230 [19] Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. El-
231 igibility traces and plasticity on behavioral time scales: experimental support of neohebbian
232 three-factor learning rules. *Frontiers in neural circuits*, 12:53, 2018. (pages: 2 and 3)

233 [20] Thomas Miconi. Biologically plausible learning in recurrent neural networks reproduces neural
234 dynamics observed during cognitive tasks. *Elife*, 6:e20899, 2017. (pages: 3 and 12)

235 [21] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
236 forcement learning. *Machine learning*, 8(3-4):229–256, 1992. (page: 3)

237 [22] Sukbin Lim, Jillian L McKee, Luke Woloszyn, Yali Amit, David J Freedman, David L Shein-
238 ber, and Nicolas Brunel. Inferring learning rules from distributions of firing rates in cortical
239 neurons. *Nature neuroscience*, 18(12):1804–1810, 2015. (page: 4)

240 [23] Shirui Chen, Qixin Yang, and Sukbin Lim. Efficient inference of synaptic plasticity rule with
241 gaussian process regression. *Iscience*, 26(3), 2023. (page: 4)

242 [24] Poornima Ramesh, Basile Confavreux, Pedro J Goncalves, Tim P Vogels, and Jakob H Macke.
243 Indistinguishable network dynamics can emerge from unalike plasticity rules. *bioRxiv*, pages
244 2023–11, 2023. (page: 4)

245 [25] Zoe Ashwood, Nicholas A Roy, Ji Hyun Bak, and Jonathan W Pillow. Inferring learning
246 rules from animal decision-making. *Advances in Neural Information Processing Systems*, 33:
247 3442–3453, 2020. (page: 4)

248 [26] Adithya E Rajagopalan, Ran Darshan, Karen L Hibbard, James E Fitzgerald, and Glenn C
249 Turner. Reward expectations direct learning and drive operant matching in drosophila. *Pro-
250 ceedings of the National Academy of Sciences*, 120(39):e2221415120, 2023. (page: 4)

251 [27] Yash Mehta, Danil Tyulmankov, Adithya Rajagopalan, Glenn Turner, James Fitzgerald, and
252 Jan Funke. Model based inference of synaptic plasticity rules. *Advances in Neural Information
253 Processing Systems*, 37:48519–48540, 2024. (pages: 4 and 5)

254 [28] Ildefons Magrans de Abril, Junichiro Yoshimoto, and Kenji Doya. Connectivity inference
255 from neural recording data: Challenges, mathematical bases and research directions. *Neural
256 Networks*, 102:120–137, 2018. (page: 5)

257 [29] Mikito Ogino, Daiki Sekizawa, Jun Kitazono, and Masafumi Oizumi. Designing optimal per-
258 turbation inputs for system identification in neuroscience. *bioRxiv*, pages 2025–03, 2025.
259 (page: 5)

260 [30] Yuhan Helena Liu, Stephen Smith, Stefan Mihalas, Eric Shea-Brown, and Uygar Sümbül. Cell-
261 type–specific neuromodulation guides synaptic credit assignment in a spiking neural network.
262 *Proceedings of the National Academy of Sciences*, 118(51):e2111821118, 2021. (page: 5)

263 **NeurIPS Paper Checklist**

264 **1. Claims**

265 Question: Do the main claims made in the abstract and introduction accurately reflect the
266 paper's contributions and scope?

267 Answer: **[Yes]**

268 Justification: In the abstract we claim that we can find through meta-learning biologically-
269 plausible learning rules for training RNNs with sparse feedback signals. In the main text
270 we show that we do

271 Guidelines:

- 272 The answer NA means that the abstract and introduction do not include the claims
273 made in the paper.
- 274 The abstract and/or introduction should clearly state the claims made, including the
275 contributions made in the paper and important assumptions and limitations. A No or
276 NA answer to this question will not be perceived well by the reviewers.
- 277 The claims made should match theoretical and experimental results, and reflect how
278 much the results can be expected to generalize to other settings.
- 279 It is fine to include aspirational goals as motivation as long as it is clear that these
280 goals are not attained by the paper.

281 **2. Limitations**

282 Question: Does the paper discuss the limitations of the work performed by the authors?

283 Answer: **[Yes]**,

284 Justification: In the section Limitations

285 Guidelines:

- 286 The answer NA means that the paper has no limitation while the answer No means
287 that the paper has limitations, but those are not discussed in the paper.
- 288 The authors are encouraged to create a separate "Limitations" section in their paper.
- 289 The paper should point out any strong assumptions and how robust the results are to
290 violations of these assumptions (e.g., independence assumptions, noiseless settings,
291 model well-specification, asymptotic approximations only holding locally). The au-
292 thors should reflect on how these assumptions might be violated in practice and what
293 the implications would be.
- 294 The authors should reflect on the scope of the claims made, e.g., if the approach was
295 only tested on a few datasets or with a few runs. In general, empirical results often
296 depend on implicit assumptions, which should be articulated.
- 297 The authors should reflect on the factors that influence the performance of the ap-
298 proach. For example, a facial recognition algorithm may perform poorly when image
299 resolution is low or images are taken in low lighting. Or a speech-to-text system might
300 not be used reliably to provide closed captions for online lectures because it fails to
301 handle technical jargon.
- 302 The authors should discuss the computational efficiency of the proposed algorithms
303 and how they scale with dataset size.
- 304 If applicable, the authors should discuss possible limitations of their approach to ad-
305 dress problems of privacy and fairness.
- 306 While the authors might fear that complete honesty about limitations might be used by
307 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
308 limitations that aren't acknowledged in the paper. The authors should use their best
309 judgment and recognize that individual actions in favor of transparency play an impor-
310 tant role in developing norms that preserve the integrity of the community. Reviewers
311 will be specifically instructed to not penalize honesty concerning limitations.

312 **3. Theory assumptions and proofs**

313 Question: For each theoretical result, does the paper provide the full set of assumptions and
314 a complete (and correct) proof?

315 Answer: [NA]

316 Justification: [NA]

317 Guidelines:

- 318 • The answer NA means that the paper does not include theoretical results.
- 319 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
320 referenced.
- 321 • All assumptions should be clearly stated or referenced in the statement of any theo-
322 rems.
- 323 • The proofs can either appear in the main paper or the supplemental material, but if
324 they appear in the supplemental material, the authors are encouraged to provide a
325 short proof sketch to provide intuition.
- 326 • Inversely, any informal proof provided in the core of the paper should be comple-
327 mented by formal proofs provided in appendix or supplemental material.
- 328 • Theorems and Lemmas that the proof relies upon should be properly referenced.

329 4. Experimental result reproducibility

330 Question: Does the paper fully disclose all the information needed to reproduce the main
331 experimental results of the paper to the extent that it affects the main claims and/or conclu-
332 sions of the paper (regardless of whether the code and data are provided or not)?

333 Answer: [Yes] ,

334 Justification: In the Supplement

335 Guidelines:

- 336 • The answer NA means that the paper does not include experiments.
- 337 • If the paper includes experiments, a No answer to this question will not be perceived
338 well by the reviewers: Making the paper reproducible is important, regardless of
339 whether the code and data are provided or not.
- 340 • If the contribution is a dataset and/or model, the authors should describe the steps
341 taken to make their results reproducible or verifiable.
- 342 • Depending on the contribution, reproducibility can be accomplished in various ways.
343 For example, if the contribution is a novel architecture, describing the architecture
344 fully might suffice, or if the contribution is a specific model and empirical evaluation,
345 it may be necessary to either make it possible for others to replicate the model with
346 the same dataset, or provide access to the model. In general, releasing code and data
347 is often one good way to accomplish this, but reproducibility can also be provided via
348 detailed instructions for how to replicate the results, access to a hosted model (e.g., in
349 the case of a large language model), releasing of a model checkpoint, or other means
350 that are appropriate to the research performed.
- 351 • While NeurIPS does not require releasing code, the conference does require all sub-
352 missions to provide some reasonable avenue for reproducibility, which may depend
353 on the nature of the contribution. For example
 - 354 (a) If the contribution is primarily a new algorithm, the paper should make it clear
355 how to reproduce that algorithm.
 - 356 (b) If the contribution is primarily a new model architecture, the paper should describe
357 the architecture clearly and fully.
 - 358 (c) If the contribution is a new model (e.g., a large language model), then there should
359 either be a way to access this model for reproducing the results or a way to re-
360 produce the model (e.g., with an open-source dataset or instructions for how to
361 construct the dataset).
 - 362 (d) We recognize that reproducibility may be tricky in some cases, in which case au-
363 thors are welcome to describe the particular way they provide for reproducibility.
364 In the case of closed-source models, it may be that access to the model is limited in
365 some way (e.g., to registered users), but it should be possible for other researchers
366 to have some path to reproducing or verifying the results.

367 5. Open access to data and code

368 Question: Does the paper provide open access to the data and code, with sufficient instruc-
369 tions to faithfully reproduce the main experimental results, as described in supplemental
370 material?

371 Answer: [Yes]

372 Justification: The code will be released upon acceptance. However the description in the
373 Supplement should also suffice to reproduce the experiments.

374 Guidelines:

- 375 • The answer NA means that paper does not include experiments requiring code.
- 376 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 377 • While we encourage the release of code and data, we understand that this might not
378 be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
379 including code, unless this is central to the contribution (e.g., for a new open-source
380 benchmark).
- 381 • The instructions should contain the exact command and environment needed to run to
382 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 383 • The authors should provide instructions on data access and preparation, including how
384 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 385 • The authors should provide scripts to reproduce all experimental results for the new
386 proposed method and baselines. If only a subset of experiments are reproducible, they
387 should state which ones are omitted from the script and why.
- 388 • At submission time, to preserve anonymity, the authors should release anonymized
389 versions (if applicable).
- 390 • Providing as much information as possible in supplemental material (appended to the
391 paper) is recommended, but including URLs to data and code is permitted.

394 6. Experimental setting/details

395 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
396 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
397 results?

398 Answer: [Yes],

399 Justification: In the Section :Details of numerical experiments” in the supplement.

400 Guidelines:

- 401 • The answer NA means that the paper does not include experiments.
- 402 • The experimental setting should be presented in the core of the paper to a level of
403 detail that is necessary to appreciate the results and make sense of them.
- 404 • The full details can be provided either with the code, in appendix, or as supplemental
405 material.

406 7. Experiment statistical significance

407 Question: Does the paper report error bars suitably and correctly defined or other appropri-
408 ate information about the statistical significance of the experiments?

409 Answer: [Yes],

410 Justification: Yes where relevant

411 Guidelines:

- 412 • The answer NA means that the paper does not include experiments.
- 413 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
414 dence intervals, or statistical significance tests, at least for the experiments that support
415 the main claims of the paper.
- 416 • The factors of variability that the error bars are capturing should be clearly stated (for
417 example, train/test split, initialization, random drawing of some parameter, or overall
418 run with given experimental conditions).

419 • The method for calculating the error bars should be explained (closed form formula,
 420 call to a library function, bootstrap, etc.)
 421 • The assumptions made should be given (e.g., Normally distributed errors).
 422 • It should be clear whether the error bar is the standard deviation or the standard error
 423 of the mean.
 424 • It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
 425 ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
 426 Normality of errors is not verified.
 427 • For asymmetric distributions, the authors should be careful not to show in tables or
 428 figures symmetric error bars that would yield results that are out of range (e.g. negative
 429 error rates).
 430 • If error bars are reported in tables or plots, The authors should explain in the text how
 431 they were calculated and reference the corresponding figures or tables in the text.

432 **8. Experiments compute resources**

433 Question: For each experiment, does the paper provide sufficient information on the com-
 434 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 435 the experiments?

436 Answer: Yes

437 Justification: In the Section :Details of numerical experiments” in the supplement.

438 Guidelines:

439 • The answer NA means that the paper does not include experiments.
 440 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 441 or cloud provider, including relevant memory and storage.
 442 • The paper should provide the amount of compute required for each of the individual
 443 experimental runs as well as estimate the total compute.
 444 • The paper should disclose whether the full research project required more compute
 445 than the experiments reported in the paper (e.g., preliminary or failed experiments
 446 that didn’t make it into the paper).

447 **9. Code of ethics**

448 Question: Does the research conducted in the paper conform, in every respect, with the
 449 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

450 Answer: [Yes]

451 Justification: We have read the code of ethics and we very that our work complies in every
 452 respect with the points outlined there.

453 Guidelines:

454 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 455 • If the authors answer No, they should explain the special circumstances that require a
 456 deviation from the Code of Ethics.
 457 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 458 eration due to laws or regulations in their jurisdiction).

459 **10. Broader impacts**

460 Question: Does the paper discuss both potential positive societal impacts and negative
 461 societal impacts of the work performed?

462 Answer: [Yes]

463 Justification: We now include in the supplement a section called Broader Impact. However,
 464 briefly we do not see any direct negative societal impact.

465 Guidelines:

466 • The answer NA means that there is no societal impact of the work performed.
 467 • If the authors answer NA or No, they should explain why their work has no societal
 468 impact or why the paper does not address societal impact.

- 469 • Examples of negative societal impacts include potential malicious or unintended uses
470 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
471 (e.g., deployment of technologies that could make decisions that unfairly impact spe-
472 cific groups), privacy considerations, and security considerations.
- 473 • The conference expects that many papers will be foundational research and not tied
474 to particular applications, let alone deployments. However, if there is a direct path to
475 any negative applications, the authors should point it out. For example, it is legitimate
476 to point out that an improvement in the quality of generative models could be used to
477 generate deepfakes for disinformation. On the other hand, it is not needed to point out
478 that a generic algorithm for optimizing neural networks could enable people to train
479 models that generate Deepfakes faster.
- 480 • The authors should consider possible harms that could arise when the technology is
481 being used as intended and functioning correctly, harms that could arise when the
482 technology is being used as intended but gives incorrect results, and harms following
483 from (intentional or unintentional) misuse of the technology.
- 484 • If there are negative societal impacts, the authors could also discuss possible mitiga-
485 tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
486 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
487 feedback over time, improving the efficiency and accessibility of ML).

488 11. Safeguards

489 Question: Does the paper describe safeguards that have been put in place for responsible
490 release of data or models that have a high risk for misuse (e.g., pretrained language models,
491 image generators, or scraped datasets)?

492 Answer: [NA].

493 Justification: [NA].

494 Guidelines:

- 495 • The answer NA means that the paper poses no such risks.
- 496 • Released models that have a high risk for misuse or dual-use should be released with
497 necessary safeguards to allow for controlled use of the model, for example by re-
498quiring that users adhere to usage guidelines or restrictions to access the model or
499 implementing safety filters.
- 500 • Datasets that have been scraped from the Internet could pose safety risks. The authors
501 should describe how they avoided releasing unsafe images.
- 502 • We recognize that providing effective safeguards is challenging, and many papers do
503 not require this, but we encourage authors to take this into account and make a best
504 faith effort.

505 12. Licenses for existing assets

506 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
507 the paper, properly credited and are the license and terms of use explicitly mentioned and
508 properly respected?

509 Answer: [Yes]

510 Justification: The paper is strongly influenced by the paper [20], and the paper is cited,
511 however the code used in the experiments was developed from scratch in Python after
512 consulting the original C++ code released with the aforementioned paper.

513 Guidelines:

- 514 • The answer NA means that the paper does not use existing assets.
- 515 • The authors should cite the original paper that produced the code package or dataset.
- 516 • The authors should state which version of the asset is used and, if possible, include a
517 URL.
- 518 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 519 • For scraped data from a particular source (e.g., website), the copyright and terms of
520 service of that source should be provided.

521 • If assets are released, the license, copyright information, and terms of use in the pack-
 522 age should be provided. For popular datasets, paperswithcode.com/datasets has
 523 curated licenses for some datasets. Their licensing guide can help determine the li-
 524 cense of a dataset.
 525 • For existing datasets that are re-packaged, both the original license and the license of
 526 the derived asset (if it has changed) should be provided.
 527 • If this information is not available online, the authors are encouraged to reach out to
 528 the asset's creators.

529 **13. New assets**

530 Question: Are new assets introduced in the paper well documented and is the documenta-
 531 tion provided alongside the assets?

532 Answer: **[Yes]**

533 Justification: Again this is included in "Details on Numerical experiments"

534 Guidelines:

535 • The answer NA means that the paper does not release new assets.
 536 • Researchers should communicate the details of the dataset/code/model as part of their
 537 submissions via structured templates. This includes details about training, license,
 538 limitations, etc.
 539 • The paper should discuss whether and how consent was obtained from people whose
 540 asset is used.
 541 • At submission time, remember to anonymize your assets (if applicable). You can
 542 either create an anonymized URL or include an anonymized zip file.

543 **14. Crowdsourcing and research with human subjects**

544 Question: For crowdsourcing experiments and research with human subjects, does the pa-
 545 per include the full text of instructions given to participants and screenshots, if applicable,
 546 as well as details about compensation (if any)?

547 Answer: **[NA]**

548 Justification: **[NA]**

549 Guidelines:

550 • The answer NA means that the paper does not involve crowdsourcing nor research
 551 with human subjects.
 552 • Including this information in the supplemental material is fine, but if the main contrib-
 553 ution of the paper involves human subjects, then as much detail as possible should
 554 be included in the main paper.
 555 • According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
 556 tion, or other labor should be paid at least the minimum wage in the country of the
 557 data collector.

558 **15. Institutional review board (IRB) approvals or equivalent for research with human
 559 subjects**

560 Question: Does the paper describe potential risks incurred by study participants, whether
 561 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
 562 approvals (or an equivalent approval/review based on the requirements of your country or
 563 institution) were obtained?

564 Answer: **[NA]**

565 Justification: **[NA]**

566 Guidelines:

567 • The answer NA means that the paper does not involve crowdsourcing nor research
 568 with human subjects.
 569 • Depending on the country in which research is conducted, IRB approval (or equiva-
 570 lent) may be required for any human subjects research. If you obtained IRB approval,
 571 you should clearly state this in the paper.

572 • We recognize that the procedures for this may vary significantly between institutions
573 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
574 guidelines for their institution.
575 • For initial submissions, do not include any information that would break anonymity
576 (if applicable), such as the institution conducting the review.

577 **16. Declaration of LLM usage**

578 Question: Does the paper describe the usage of LLMs if it is an important, original, or
579 non-standard component of the core methods in this research? Note that if the LLM is used
580 only for writing, editing, or formatting purposes and does not impact the core methodology,
581 scientific rigorousness, or originality of the research, declaration is not required.

582 Answer: [NA]

583 Justification: [NA]

584 Guidelines:

585 • The answer NA means that the core method development in this research does not
586 involve LLMs as any important, original, or non-standard components.
587 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
588 for what should or should not be described.