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Abstract

Biological neural networks learn complex behaviors from sparse, delayed feed-1

back using local synaptic plasticity, yet the mechanisms enabling structured credit2

assignment remain elusive. In contrast, artificial recurrent networks solving sim-3

ilar tasks typically rely on biologically implausible global learning rules or hand-4

crafted local updates. The space of local plasticity rules capable of support-5

ing learning from delayed reinforcement remains largely unexplored. Here, we6

present a meta-learning framework that discovers local learning rules for struc-7

tured credit assignment in recurrent networks trained with sparse feedback. Our8

approach interleaves local neo-Hebbian-like updates during task execution with9

an outer loop that optimizes plasticity parameters via backpropagation through10

learning (BPTL). The resulting three-factor learning rules enable long-timescale11

credit assignment using only local information and delayed rewards, offering new12

insights into biologically grounded mechanisms for learning in recurrent circuits.13

—–14

1 Introduction15

Learning in biological organisms involves changes in synaptic connections (synaptic plasticity) be-16

tween neurons [1, 2]. Synaptic changes are believed to underlie memory formation and are essential17

for adaptive behaviour [3]. Experimental evidence suggests that synaptic changes depend on the co-18

activation of pre- and postsynaptic activity [4, 5], and possibly other local variables available at the19

synaptic site [6, 7]. These unsupervised synaptic modifications have explained activity-dependent20

circuit refinement during development such as the emergence of functional properties like receptive21

field formation based on naturalistic input statistics [8].22

Yet, most organisms routinely solve complex tasks that require feedback through explicit supervi-23

sory or reinforcement signals. These signals are believed to gate or modulate plasticity, acting in the24

form of a third factor that scales and also probably imposes the direction of the synaptic modifica-25

tions [9]. How error- or reward-related information is propagated through the recurrent interactions26

is not yet clear. While prior work has largely focused on hand-crafted synaptic updates for unsuper-27

vised self-organization, or biologically plausible approximations of backpropagation [10], the space28

of plasticity rules capable of supporting structured credit assignment from delayed feedback remains29

vastly underexplored.30

Backpropagation through time (BPTT), the standard approach for training recurrent neural networks31

(RNNs), is biologically implausible since it requires symmetric forward and backward connections32

and non-local information [11, 12]. Although recent work has reformulated BPTT into more biolog-33

ically plausible variants using random feedback [13], truncated approximations [14], or by learning34
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feedback pathways [15], these methods require continuous error signals to refine recurrent connec-35

tions.36

Here, we adopt a bottom-up approach: instead of imposing hand-designed synaptic rules, we dis-37

cover biologically plausible plasticity rules that support learning through delayed reinforcement38

signals via meta-optimisation. Building on recent work [16], we parameterise plasticity rules as39

functions of local signals (presynaptic activity, postsynaptic activity, and synapse size) and meta-40

learn their parameters within a second reinforcement learning loop. With that, our present work41

tackles the following questions:42

• Which local learning rules can implement structured credit assignment under biolog-43

ical constraints?44

• Do different forms of plasticity give rise to different computational regimes and repre-45

sentations as observed with gradient based training (e.g., “lazy” vs. “rich” learning)?46

Recent theory distinguishes between lazy and rich regimes of learning in RNNs: in the lazy regime,47

representations remain fixed while output weights adapt; in the rich regime, the network reorgan-48

ises its internal dynamics to encode task structure. While these regimes are well-characterised for49

gradient-trained networks, it remains unclear whether biologically plausible learning rules can sup-50

port either or both, and what synaptic mechanisms underlie each regime. Here we demonstrate that51

different forms of plasticity naturally lead to qualitatively different learning trajectories and internal52

representations, akin to their gradient-based learning rules.53

2 Method54

Network dynamics. We consider recurrent neural networks (RNNs) of firing rate neurons coupled55

through a synaptic matrix W ∈ RN×N [17], with additional input and output matrices Win ∈56

RNin×N and Wout ∈ RN×Nout that route task-relevant input into the recurrent circuit and read out57

network activation to generate task-specific outputs (actions). The equations governing the network58

dynamics are59

dxt

dt
= −xt +Wϕ(xt) +Winu

t, (1)

rt = ϕ(xt)=̇ tanh (xt), (2)

where xt ∈ RN is the vector of pre-activations (or input currents) to each neuron in the network,60

ϕ(·) : RN → RN denotes the single-neuron transfer functions, rt ∈ RN
+ is the vector of instan-61

taneous firing rates, ut stands for the activity of the Nin input neurons. In the terms above, the ·t62

superscript indicates time dependence. Network outputs zt are obtained from linear read-out neu-63

rons as64

zt = Woutr
t. (3)

Sparse feedback and parametrized learning rules. We consider networks that learn context-65

dependent cognitive tasks using biologically plausible local learning rules, guided by sparse rein-66

forcement signals R provided only at the end of each training episode. To enable learning from67

such delayed and global signals, each synapse between a pre-synaptic unit j and a post-synaptic unit68

i maintains an eligibility trace eij [18], which integrates the history of (co-)activation during the69

episode. We define the evolution of eligibility traces with differential equations of the form70

detij
dt

= Hθ(r
t
j , x

t
i)−

eij
τe

=
∑

0≤k;l≤d;

θk,l
(
rtj
)k (

x̄i − xt
i

)l − eij
τe

, (4)

where τe is a decay time-scale, x̄i is a running average of the pre-activation of neuron i, and θk,l ∈ R71

are learnable coefficients. In contrast to eligibility traces based solely on pairwise correlations [19],72

we use here a polynomial expression that captures richer interactions between pre- and post-synaptic73

activity. Each coefficient θk,l can be construed as a term-specific learning rate, which may be posi-74

tive (Hebbian), negative (anti-Hebbian). This parameterization allows individual terms to modulate75

synaptic eligibility based on pre-synaptic activity, post-synaptic activity, co-activity, or deviations76

from a homeostatic set point. In our experiments, we set d = 2, yielding 9 monomial terms that77

capture nonlinearities and interaction effects, while remaining computationally tractable.78
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The recurrent weight matrix W gets updated at the end of each training episode according to a79

reward-modulated learning rule80

∆wij = eij
(
R− R̄

)
− wij

τw
, (5)

where τw denotes the time scale of weight decay, eij stands for the eligibility trace accumulated81

during the episode, while R, R̄ stand for the obtained and the expected reward. Here, we model82

reward expectations for each type of trial independently as a running average of past rewards for83

this trial type [20]. This update rule enables credit assignment through the interaction between84

synaptic eligibility and trial-specific reward prediction error, consistent with neo-Hebbian three-85

factor learning rules hypothesized to operate in biological circuits [19]. In principle the weight86

updates happen due to (slow) weight decay or due to reward prediction errors.87

Meta-learning plasticity rules. While previous work has relied on hand-crafted eligibility trace88

dynamics and synaptic update rules to train recurrent neural networks with sparse feedback [20], we89

instead adopt a meta-learning approach to learn the parameters of the plasticity rules. Our frame-90

work consists of two nested training loops: (i) an inner loop in which the recurrent network is91

trained over several episodes using local learning rules and sparse reinforcement signals provided92

at the end of each episode, as described above; and (ii) an outer loop that optimizes the plasticity93

meta-parameters Θ = {{θk,l}2k,l=0 , τw , τe} via gradient descent using backpropagation through94

learning on a meta-loss computed over K training episodes (trials). This approach allows the learn-95

ing rules themselves to be adapted to the task, rather than be fixed a priori.96

Backpropagation through learning. Our goal is to optimise the learning rule parameters θ to97

maximise task performance, measured as the expected cumulative reward ⟨R⟩ obtained after a fixed98

number of learning episodes. However, the reward R obtained by the agent depends on the network’s99

output, which in turn is determined by its synaptic weightsW = {Win,W,Wout}. The weights are100

dynamically updated according to the employed synaptic update rule (Eq. 5). This plasticity rule,101

depends on the eligibility traces eij , which themselves are parameterised by θ. This establishes a102

complex dependency chain over the network parameters: R ← W ← e ← θ. Thus directly com-103

puting the gradient ∇θ⟨R⟩ by backpropagating through the entire network dynamics over learning104

is computationally challenging.105

To address this, we employ a REINFORCE-inspired approximation [21] to estimate the gradient106

∇θ⟨R⟩. Recall that the REINFORCE gradient formula involves computing the gradient of an ex-107

pected value by observing outcomes and scaling a measure of what elicited that outcome with the108

associated reward. Or more formally, scaling the gradient of the log-probability of an outcome with109

the reward associated with that outcome110

∇θ⟨R⟩ = ⟨(R− R̄) · ∇θ log π(R | θ)⟩ (6)

Here, since we consider deterministic weight updates, we do not have a stochastic policy π, as is111

common in policy gradient methods in reinforcement learning. However, we can consider the final112

weight configuration W(Θ) as an implicit policy with parameters Θ, that determine the learned113

network behaviour. We then use the reward prediction error, defined as δR = R− R̄ (where R̄ is114

a running average of the reward), as a signal to adapt the parameters θ115

∇θ⟨R⟩ ≈ (R− R̄) · dW
dθ

. (7)

Since the weight updates depend linearly on the eligibility trace (Eq. 5), we have116

dWij

dθkl
= δR · deij

dθkl
. (8)

To relate this to the gradient of the reward with respect to θ, we sum over all synapses, resulting in117

the approximation118

∇θ⟨R⟩ ≈
∑
i,j

δR · deij
dθkl

=
∑
i,j

δR ·
(
rtj
)k (

x̄t
i − xt

i

)l
. (9)

The eligibility trace eij is a function of neural activity, and its dependency on the parameters θ is119

explicitly defined by the model (Eq. 4). For the eligibility trace parametrised in the polynomial120
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form of Eq. 4, the term deij
dθ has an explicit expression in terms of neural activations and firing rates121

(Eq. 9). This expression is fully analytic and requires no gradient propagation through the network122

or the learning episodes. The plasticity parameters θ are then updated using gradient ascent based123

on this estimated gradient.124

To enforce sparsity on the identified rules in order to minimise the number of active terms in the125

identified rule to render it interpretable.126

3 Results127

We defer the reader to the Extensive results section in the Supplementary Information for the results128

of the numerical experiments.129

4 Related work130

Decades of research on synaptic plasticity have focused on hand-crafted learning rules designed to131

replicate experimentally observed changes in post-synaptic potentials from single-neuron record-132

ings. However, the recent explosion in large-scale functional recordings, particularly longitudinal133

data collected across learning, has sparked growing interest in identifying the types of plasticity134

rules that may underlie observed changes in neural activity and behavioural performance. Despite135

this interest, the task remains extremely challenging: current experimental techniques do not allow136

direct measurement of synaptic interactions across large neural populations, making it difficult to137

infer the underlying synaptic mechanisms at play. Thus an increasing number of frameworks have138

emerged that aim to discover plasticity rules from indirect signatures such as changes in neural ac-139

tivity distributions, recorded trajectories, or behavioural performance. These approaches differ in140

what kind of observations they use, and in the assumptions they make about the network structure,141

plasticity rule parameterisation, and underlying task.142

Matching rate distributions. One line of work focuses on inferring synaptic plasticity rules from143

pre- and post-learning firing rate distributions. Lim et al.[22] jointly infer neuron transfer functions144

and synaptic updates from observed rate distributions, under assumptions of Poisson firing statistics145

and linearized plasticity. This approach was later extended using Gaussian process priors over plas-146

ticity functions[23], improving flexibility but still restricted to feedforward networks and ignoring147

temporal dynamics.148

These approaches do not model the full trajectory of activity during learning, instead identify plas-149

ticity rules that explain cumulative changes across learning. As a result, they cannot constrain rule150

parameters based on how learning unfolded in time.151

Inference by conditioning on neural trajectories. A second group of methods exploits neural ac-152

tivity trajectories recorded over learning. Ramesh et al. [24] use a generative adversarial framework153

to infer plasticity rules that generate neural trajectories similar to empirical ones. While highly ex-154

pressive, this method requires extensive data and computational resources, and suffers from known155

instability issues in GAN training. Confavreux et al. [16] proposed a meta-learning framework to156

discover plasticity rules that produce desired temporal coding properties in rate-based networks.157

While insightful, their approach optimises for a fixed synthetic objective (e.g., encoding elapsed158

time), rather than learning from observed data or behaviour.159

Behavior-based plasticity inference. A third set of studies use behavioural performance trajec-160

tories to constrain synaptic plasticity. Ashwood et al.[25] fit learning rule parameters in rodent161

decision tasks using a Bayesian model, requiring approximation of the full posterior over synaptic162

weights. Rajagopalan et al.[26] reformulate the plasticity inference problem as logistic regression163

by assuming presynaptic activity and reward as the only inputs. These frameworks remain limited164

in flexibility, often neglecting dependencies on postsynaptic activity or synapse strength, which are165

essential for biologically grounded learning.166

Most of these approaches assume feed-forward structure of the underlying network [23, 27], and167

consider plasticity evolving network dynamics in an unsupervised setting. Only the recent work of168
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[27] considers a reward term in the plasticity rule, that effectively puts the learning framework under169

a reinforcement learning and thus closer to how biological organisms learn.170

5 Limitations171

Despite its strengths, our work has several limitations that point to opportunities for future improve-172

ment and extension. One limitation is that the proposed meta-learning procedure must be run mul-173

tiple times independently to discover multiple plasticity rules that satisfy the same task constraints.174

Recent advances using simulation-based inference [16] provide a promising alternative for sampling175

entire distributions over plasticity rules that solve a given cognitive task, potentially offering a more176

efficient and principled exploration of solution space. Yet, simulation based inference is easy to177

incorporate in our setting.178

Another limitation is that our current framework is purely exploratory and does not explicitly in-179

corporate constraints from experimentally recorded neural activity. While this allows for a broad180

and flexible search over possible learning mechanisms, it limits the biological specificity of the dis-181

covered rules. Extending our framework to incorporate such constraints, for instance, by biasing182

the meta-optimisation toward activity trajectories consistent with recorded data, could yield more183

realistic models of synaptic updates.184
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NeurIPS Paper Checklist263

1. Claims264

Question: Do the main claims made in the abstract and introduction accurately reflect the265

paper’s contributions and scope?266

Answer: [Yes]267

Justification: In the abstract we claim that we can find through meta-learning biologically-268

plausible learning rules for training RNNs with sparse feedback signals. In the main text269

we show that we do270

Guidelines:271

• The answer NA means that the abstract and introduction do not include the claims272

made in the paper.273

• The abstract and/or introduction should clearly state the claims made, including the274

contributions made in the paper and important assumptions and limitations. A No or275

NA answer to this question will not be perceived well by the reviewers.276

• The claims made should match theoretical and experimental results, and reflect how277

much the results can be expected to generalize to other settings.278

• It is fine to include aspirational goals as motivation as long as it is clear that these279

goals are not attained by the paper.280

2. Limitations281

Question: Does the paper discuss the limitations of the work performed by the authors?282

Answer: [Yes] ,283

Justification:In the section Limitations284

Guidelines:285

• The answer NA means that the paper has no limitation while the answer No means286

that the paper has limitations, but those are not discussed in the paper.287

• The authors are encouraged to create a separate ”Limitations” section in their paper.288

• The paper should point out any strong assumptions and how robust the results are to289

violations of these assumptions (e.g., independence assumptions, noiseless settings,290

model well-specification, asymptotic approximations only holding locally). The au-291

thors should reflect on how these assumptions might be violated in practice and what292

the implications would be.293

• The authors should reflect on the scope of the claims made, e.g., if the approach was294

only tested on a few datasets or with a few runs. In general, empirical results often295

depend on implicit assumptions, which should be articulated.296

• The authors should reflect on the factors that influence the performance of the ap-297

proach. For example, a facial recognition algorithm may perform poorly when image298

resolution is low or images are taken in low lighting. Or a speech-to-text system might299

not be used reliably to provide closed captions for online lectures because it fails to300

handle technical jargon.301

• The authors should discuss the computational efficiency of the proposed algorithms302

and how they scale with dataset size.303

• If applicable, the authors should discuss possible limitations of their approach to ad-304

dress problems of privacy and fairness.305

• While the authors might fear that complete honesty about limitations might be used by306

reviewers as grounds for rejection, a worse outcome might be that reviewers discover307

limitations that aren’t acknowledged in the paper. The authors should use their best308

judgment and recognize that individual actions in favor of transparency play an impor-309

tant role in developing norms that preserve the integrity of the community. Reviewers310

will be specifically instructed to not penalize honesty concerning limitations.311

3. Theory assumptions and proofs312

Question: For each theoretical result, does the paper provide the full set of assumptions and313

a complete (and correct) proof?314
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Answer: [NA]315

Justification: [NA]316

Guidelines:317

• The answer NA means that the paper does not include theoretical results.318

• All the theorems, formulas, and proofs in the paper should be numbered and cross-319

referenced.320

• All assumptions should be clearly stated or referenced in the statement of any theo-321

rems.322

• The proofs can either appear in the main paper or the supplemental material, but if323

they appear in the supplemental material, the authors are encouraged to provide a324

short proof sketch to provide intuition.325

• Inversely, any informal proof provided in the core of the paper should be comple-326

mented by formal proofs provided in appendix or supplemental material.327

• Theorems and Lemmas that the proof relies upon should be properly referenced.328

4. Experimental result reproducibility329

Question: Does the paper fully disclose all the information needed to reproduce the main330

experimental results of the paper to the extent that it affects the main claims and/or conclu-331

sions of the paper (regardless of whether the code and data are provided or not)?332

Answer: [Yes] ,333

Justification: In the Supplement334

Guidelines:335

• The answer NA means that the paper does not include experiments.336

• If the paper includes experiments, a No answer to this question will not be perceived337

well by the reviewers: Making the paper reproducible is important, regardless of338

whether the code and data are provided or not.339

• If the contribution is a dataset and/or model, the authors should describe the steps340

taken to make their results reproducible or verifiable.341

• Depending on the contribution, reproducibility can be accomplished in various ways.342

For example, if the contribution is a novel architecture, describing the architecture343

fully might suffice, or if the contribution is a specific model and empirical evaluation,344

it may be necessary to either make it possible for others to replicate the model with345

the same dataset, or provide access to the model. In general. releasing code and data346

is often one good way to accomplish this, but reproducibility can also be provided via347

detailed instructions for how to replicate the results, access to a hosted model (e.g., in348

the case of a large language model), releasing of a model checkpoint, or other means349

that are appropriate to the research performed.350

• While NeurIPS does not require releasing code, the conference does require all sub-351

missions to provide some reasonable avenue for reproducibility, which may depend352

on the nature of the contribution. For example353

(a) If the contribution is primarily a new algorithm, the paper should make it clear354

how to reproduce that algorithm.355

(b) If the contribution is primarily a new model architecture, the paper should describe356

the architecture clearly and fully.357

(c) If the contribution is a new model (e.g., a large language model), then there should358

either be a way to access this model for reproducing the results or a way to re-359

produce the model (e.g., with an open-source dataset or instructions for how to360

construct the dataset).361

(d) We recognize that reproducibility may be tricky in some cases, in which case au-362

thors are welcome to describe the particular way they provide for reproducibility.363

In the case of closed-source models, it may be that access to the model is limited in364

some way (e.g., to registered users), but it should be possible for other researchers365

to have some path to reproducing or verifying the results.366

5. Open access to data and code367
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Question: Does the paper provide open access to the data and code, with sufficient instruc-368

tions to faithfully reproduce the main experimental results, as described in supplemental369

material?370

Answer: [Yes]371

Justification: The code will be released upon acceptance. However the description in the372

Supplement should also suffice to reproduce the experiments.373

Guidelines:374

• The answer NA means that paper does not include experiments requiring code.375

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/376

public/guides/CodeSubmissionPolicy) for more details.377

• While we encourage the release of code and data, we understand that this might not378

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not379

including code, unless this is central to the contribution (e.g., for a new open-source380

benchmark).381

• The instructions should contain the exact command and environment needed to run to382

reproduce the results. See the NeurIPS code and data submission guidelines (https:383

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.384

• The authors should provide instructions on data access and preparation, including how385

to access the raw data, preprocessed data, intermediate data, and generated data, etc.386

• The authors should provide scripts to reproduce all experimental results for the new387

proposed method and baselines. If only a subset of experiments are reproducible, they388

should state which ones are omitted from the script and why.389

• At submission time, to preserve anonymity, the authors should release anonymized390

versions (if applicable).391

• Providing as much information as possible in supplemental material (appended to the392

paper) is recommended, but including URLs to data and code is permitted.393

6. Experimental setting/details394

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-395

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the396

results?397

Answer: [Yes] ,398

Justification: In the Section :Details of numerical experiments” in the supplement.399

Guidelines:400

• The answer NA means that the paper does not include experiments.401

• The experimental setting should be presented in the core of the paper to a level of402

detail that is necessary to appreciate the results and make sense of them.403

• The full details can be provided either with the code, in appendix, or as supplemental404

material.405

7. Experiment statistical significance406

Question: Does the paper report error bars suitably and correctly defined or other appropri-407

ate information about the statistical significance of the experiments?408

Answer: [Yes] ,409

Justification:Yes where relevant410

Guidelines:411

• The answer NA means that the paper does not include experiments.412

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-413

dence intervals, or statistical significance tests, at least for the experiments that support414

the main claims of the paper.415

• The factors of variability that the error bars are capturing should be clearly stated (for416

example, train/test split, initialization, random drawing of some parameter, or overall417

run with given experimental conditions).418
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• The method for calculating the error bars should be explained (closed form formula,419

call to a library function, bootstrap, etc.)420

• The assumptions made should be given (e.g., Normally distributed errors).421

• It should be clear whether the error bar is the standard deviation or the standard error422

of the mean.423

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-424

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of425

Normality of errors is not verified.426

• For asymmetric distributions, the authors should be careful not to show in tables or427

figures symmetric error bars that would yield results that are out of range (e.g. negative428

error rates).429

• If error bars are reported in tables or plots, The authors should explain in the text how430

they were calculated and reference the corresponding figures or tables in the text.431

8. Experiments compute resources432

Question: For each experiment, does the paper provide sufficient information on the com-433

puter resources (type of compute workers, memory, time of execution) needed to reproduce434

the experiments?435

Answer: Yes436

Justification: In the Section :Details of numerical experiments” in the supplement.437

Guidelines:438

• The answer NA means that the paper does not include experiments.439

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,440

or cloud provider, including relevant memory and storage.441

• The paper should provide the amount of compute required for each of the individual442

experimental runs as well as estimate the total compute.443

• The paper should disclose whether the full research project required more compute444

than the experiments reported in the paper (e.g., preliminary or failed experiments445

that didn’t make it into the paper).446

9. Code of ethics447

Question: Does the research conducted in the paper conform, in every respect, with the448

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?449

Answer: [Yes]450

Justification: We have read the code of ethics and we very that our work complies in every451

respect with the points outlined there.452

Guidelines:453

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.454

• If the authors answer No, they should explain the special circumstances that require a455

deviation from the Code of Ethics.456

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-457

eration due to laws or regulations in their jurisdiction).458

10. Broader impacts459

Question: Does the paper discuss both potential positive societal impacts and negative460

societal impacts of the work performed?461

Answer: [Yes]462

Justification: We now include in the supplement a section called Broader Impact. However,463

briefly we do not see any direct negative societal impact.464

Guidelines:465

• The answer NA means that there is no societal impact of the work performed.466

• If the authors answer NA or No, they should explain why their work has no societal467

impact or why the paper does not address societal impact.468
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• Examples of negative societal impacts include potential malicious or unintended uses469

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations470

(e.g., deployment of technologies that could make decisions that unfairly impact spe-471

cific groups), privacy considerations, and security considerations.472

• The conference expects that many papers will be foundational research and not tied473

to particular applications, let alone deployments. However, if there is a direct path to474

any negative applications, the authors should point it out. For example, it is legitimate475

to point out that an improvement in the quality of generative models could be used to476

generate deepfakes for disinformation. On the other hand, it is not needed to point out477

that a generic algorithm for optimizing neural networks could enable people to train478

models that generate Deepfakes faster.479

• The authors should consider possible harms that could arise when the technology is480

being used as intended and functioning correctly, harms that could arise when the481

technology is being used as intended but gives incorrect results, and harms following482

from (intentional or unintentional) misuse of the technology.483

• If there are negative societal impacts, the authors could also discuss possible mitiga-484

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,485

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from486

feedback over time, improving the efficiency and accessibility of ML).487

11. Safeguards488

Question: Does the paper describe safeguards that have been put in place for responsible489

release of data or models that have a high risk for misuse (e.g., pretrained language models,490

image generators, or scraped datasets)?491

Answer: [NA] .492

Justification: [NA] .493

Guidelines:494

• The answer NA means that the paper poses no such risks.495

• Released models that have a high risk for misuse or dual-use should be released with496

necessary safeguards to allow for controlled use of the model, for example by re-497

quiring that users adhere to usage guidelines or restrictions to access the model or498

implementing safety filters.499

• Datasets that have been scraped from the Internet could pose safety risks. The authors500

should describe how they avoided releasing unsafe images.501

• We recognize that providing effective safeguards is challenging, and many papers do502

not require this, but we encourage authors to take this into account and make a best503

faith effort.504

12. Licenses for existing assets505

Question: Are the creators or original owners of assets (e.g., code, data, models), used in506

the paper, properly credited and are the license and terms of use explicitly mentioned and507

properly respected?508

Answer: [Yes]509

Justification: The paper is strongly influenced by the paper [20], and the paper is cited,510

however the code used in the experiments was developed from scratch in Python after511

consulting the original C++ code released with the aforementioned paper.512

Guidelines:513

• The answer NA means that the paper does not use existing assets.514

• The authors should cite the original paper that produced the code package or dataset.515

• The authors should state which version of the asset is used and, if possible, include a516

URL.517

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.518

• For scraped data from a particular source (e.g., website), the copyright and terms of519

service of that source should be provided.520
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• If assets are released, the license, copyright information, and terms of use in the pack-521

age should be provided. For popular datasets, paperswithcode.com/datasets has522

curated licenses for some datasets. Their licensing guide can help determine the li-523

cense of a dataset.524

• For existing datasets that are re-packaged, both the original license and the license of525

the derived asset (if it has changed) should be provided.526

• If this information is not available online, the authors are encouraged to reach out to527

the asset’s creators.528

13. New assets529

Question: Are new assets introduced in the paper well documented and is the documenta-530

tion provided alongside the assets?531

Answer: [Yes]532

Justification: Again this is included in ”Details on Numerical experiments”533

Guidelines:534

• The answer NA means that the paper does not release new assets.535

• Researchers should communicate the details of the dataset/code/model as part of their536

submissions via structured templates. This includes details about training, license,537

limitations, etc.538

• The paper should discuss whether and how consent was obtained from people whose539

asset is used.540

• At submission time, remember to anonymize your assets (if applicable). You can541

either create an anonymized URL or include an anonymized zip file.542

14. Crowdsourcing and research with human subjects543

Question: For crowdsourcing experiments and research with human subjects, does the pa-544

per include the full text of instructions given to participants and screenshots, if applicable,545

as well as details about compensation (if any)?546

Answer: [NA]547

Justification: [NA]548

Guidelines:549

• The answer NA means that the paper does not involve crowdsourcing nor research550

with human subjects.551

• Including this information in the supplemental material is fine, but if the main contri-552

bution of the paper involves human subjects, then as much detail as possible should553

be included in the main paper.554

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-555

tion, or other labor should be paid at least the minimum wage in the country of the556

data collector.557

15. Institutional review board (IRB) approvals or equivalent for research with human558

subjects559

Question: Does the paper describe potential risks incurred by study participants, whether560

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)561

approvals (or an equivalent approval/review based on the requirements of your country or562

institution) were obtained?563

Answer: [NA]564

Justification: [NA]565

Guidelines:566

• The answer NA means that the paper does not involve crowdsourcing nor research567

with human subjects.568

• Depending on the country in which research is conducted, IRB approval (or equiva-569

lent) may be required for any human subjects research. If you obtained IRB approval,570

you should clearly state this in the paper.571
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• We recognize that the procedures for this may vary significantly between institutions572

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the573

guidelines for their institution.574

• For initial submissions, do not include any information that would break anonymity575

(if applicable), such as the institution conducting the review.576

16. Declaration of LLM usage577

Question: Does the paper describe the usage of LLMs if it is an important, original, or578

non-standard component of the core methods in this research? Note that if the LLM is used579

only for writing, editing, or formatting purposes and does not impact the core methodology,580

scientific rigorousness, or originality of the research, declaration is not required.581

Answer: [NA]582

Justification: [NA]583

Guidelines:584

• The answer NA means that the core method development in this research does not585

involve LLMs as any important, original, or non-standard components.586

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)587

for what should or should not be described.588
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