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Abstract

Biological neural networks learn complex behaviors from sparse, delayed feed-
back using local synaptic plasticity, yet the mechanisms enabling structured credit
assignment remain elusive. In contrast, artificial recurrent networks solving sim-
ilar tasks typically rely on biologically implausible global learning rules or hand-
crafted local updates. The space of local plasticity rules capable of support-
ing learning from delayed reinforcement remains largely unexplored. Here, we
present a meta-learning framework that discovers local learning rules for struc-
tured credit assignment in recurrent networks trained with sparse feedback. Our
approach interleaves local neo-Hebbian-like updates during task execution with
an outer loop that optimizes plasticity parameters via backpropagation through
learning (BPTL). The resulting three-factor learning rules enable long-timescale
credit assignment using only local information and delayed rewards, offering new
insights into biologically grounded mechanisms for learning in recurrent circuits.

1 Introduction

Learning in biological organisms involves changes in synaptic connections (synaptic plasticity) be-
tween neurons [, 2]. Synaptic changes are believed to underlie memory formation and are essential
for adaptive behaviour [3]. Experimental evidence suggests that synaptic changes depend on the co-
activation of pre- and postsynaptic activity [4, 5], and possibly other local variables available at the
synaptic site [0, 7]. These unsupervised synaptic modifications have explained activity-dependent
circuit refinement during development such as the emergence of functional properties like receptive
field formation based on naturalistic input statistics [8].

Yet, most organisms routinely solve complex tasks that require feedback through explicit supervi-
sory or reinforcement signals. These signals are believed to gate or modulate plasticity, acting in the
form of a third factor that scales and also probably imposes the direction of the synaptic modifica-
tions [9]. How error- or reward-related information is propagated through the recurrent interactions
is not yet clear. While prior work has largely focused on hand-crafted synaptic updates for unsuper-
vised self-organization, or biologically plausible approximations of backpropagation [10], the space
of plasticity rules capable of supporting structured credit assignment from delayed feedback remains
vastly underexplored.

Backpropagation through time (BPTT), the standard approach for training recurrent neural networks
(RNNs), is biologically implausible since it requires symmetric forward and backward connections
and non-local information [1 1, 12]. Although recent work has reformulated BPTT into more biolog-
ically plausible variants using random feedback [13], truncated approximations [14], or by learning
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feedback pathways [15], these methods require continuous error signals to refine recurrent connec-
tions.

Here, we adopt a bottom-up approach: instead of imposing hand-designed synaptic rules, we dis-
cover biologically plausible plasticity rules that support learning through delayed reinforcement
signals via meta-optimisation. Building on recent work [16], we parameterise plasticity rules as
functions of local signals (presynaptic activity, postsynaptic activity, and synapse size) and meta-
learn their parameters within a second reinforcement learning loop. With that, our present work
tackles the following questions:

* Which local learning rules can implement structured credit assignment under biolog-
ical constraints?

* Do different forms of plasticity give rise to different computational regimes and repre-
sentations as observed with gradient based training (e.g., “lazy” vs. “rich” learning)?

Recent theory distinguishes between lazy and rich regimes of learning in RNNs: in the lazy regime,
representations remain fixed while output weights adapt; in the rich regime, the network reorgan-
ises its internal dynamics to encode task structure. While these regimes are well-characterised for
gradient-trained networks, it remains unclear whether biologically plausible learning rules can sup-
port either or both, and what synaptic mechanisms underlie each regime. Here we demonstrate that
different forms of plasticity naturally lead to qualitatively different learning trajectories and internal
representations, akin to their gradient-based learning rules.

2 Method

Network dynamics. We consider recurrent neural networks (RNNGs) of firing rate neurons coupled
through a synaptic matrix W € RN*¥ [17], with additional input and output matrices Wi, €
RMoXN and Wy € RV*Nou that route task-relevant input into the recurrent circuit and read out
network activation to generate task-specific outputs (actions). The equations governing the network
dynamics are

t
% = —x'+ Wo(x") + W', (1)
r’ = ¢(x")=tanh (x"), (2)

where x! € RY is the vector of pre-activations (or input currents) to each neuron in the network,
¢(-) : RN — RY denotes the single-neuron transfer functions, r € RY is the vector of instan-
taneous firing rates, u’ stands for the activity of the Vi, input neurons. In the terms above, the -
superscript indicates time dependence. Network outputs z! are obtained from linear read-out neu-
rons as

z' = Wour'. 3)

Sparse feedback and parametrized learning rules. We consider networks that learn context-
dependent cognitive tasks using biologically plausible local learning rules, guided by sparse rein-
forcement signals R provided only at the end of each training episode. To enable learning from
such delayed and global signals, each synapse between a pre-synaptic unit j and a post-synaptic unit
1 maintains an eligibility trace e;; [18], which integrates the history of (co-)activation during the
episode. We define the evolution of eligibility traces with differential equations of the form

del, ko L ci
G =~ HoOha) == 3 O (1) (mi—al) - 2 @
0<k;l<d;

where 7, is a decay time-scale, Z; is a running average of the pre-activation of neuron ¢, and 05, ; € R
are learnable coefficients. In contrast to eligibility traces based solely on pairwise correlations [19],
we use here a polynomial expression that captures richer interactions between pre- and post-synaptic
activity. Each coefficient ), ; can be construed as a term-specific learning rate, which may be posi-
tive (Hebbian), negative (anti-Hebbian). This parameterization allows individual terms to modulate
synaptic eligibility based on pre-synaptic activity, post-synaptic activity, co-activity, or deviations
from a homeostatic set point. In our experiments, we set d = 2, yielding 9 monomial terms that
capture nonlinearities and interaction effects, while remaining computationally tractable.
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The recurrent weight matrix W gets updated at the end of each training episode according to a
reward-modulated learning rule
Awiy = ey (R—R) - =2, (5)

Tw

where 7, denotes the time scale of weight decay, e;; stands for the eligibility trace accumulated
during the episode, while R, R stand for the obtained and the expected reward. Here, we model
reward expectations for each type of trial independently as a running average of past rewards for
this trial type [20]. This update rule enables credit assignment through the interaction between
synaptic eligibility and trial-specific reward prediction error, consistent with neo-Hebbian three-
factor learning rules hypothesized to operate in biological circuits [19]. In principle the weight
updates happen due to (slow) weight decay or due to reward prediction errors.

Meta-learning plasticity rules. While previous work has relied on hand-crafted eligibility trace
dynamics and synaptic update rules to train recurrent neural networks with sparse feedback [20], we
instead adopt a meta-learning approach to learn the parameters of the plasticity rules. Our frame-
work consists of two nested training loops: (i) an inner loop in which the recurrent network is
trained over several episodes using local learning rules and sparse reinforcement signals provided
at the end of each episode, as described above; and (ii) an outer loop that optimizes the plasticity
meta-parameters @ = {{le}i 1—0 » Tw » Te } Via gradient descent using backpropagation through
learning on a meta-loss computed over K training episodes (trials). This approach allows the learn-
ing rules themselves to be adapted to the task, rather than be fixed a priori.

Backpropagation through learning. Our goal is to optimise the learning rule parameters 6 to
maximise task performance, measured as the expected cumulative reward (R) obtained after a fixed
number of learning episodes. However, the reward R obtained by the agent depends on the network’s
output, which in turn is determined by its synaptic weights W = {W;,,, W, W, }. The weights are
dynamically updated according to the employed synaptic update rule (Eq. 5). This plasticity rule,
depends on the eligibility traces e;;, which themselves are parameterised by 6. This establishes a
complex dependency chain over the network parameters: R <— W < e <— 6. Thus directly com-
puting the gradient V(R) by backpropagating through the entire network dynamics over learning
is computationally challenging.

To address this, we employ a REINFORCE-inspired approximation [21] to estimate the gradient
Vo(R). Recall that the REINFORCE gradient formula involves computing the gradient of an ex-
pected value by observing outcomes and scaling a measure of what elicited that outcome with the
associated reward. Or more formally, scaling the gradient of the log-probability of an outcome with
the reward associated with that outcome

Vo(R) = (R— R) - Vglogm(R | )) (6)

Here, since we consider deterministic weight updates, we do not have a stochastic policy 7, as is
common in policy gradient methods in reinforcement learning. However, we can consider the final
weight configuration W(O) as an implicit policy with parameters ©, that determine the learned
network behaviour. We then use the reward prediction error, defined as )R = R — R (where R is
a running average of the reward), as a signal to adapt the parameters 6

_dW
Vo(R) =~ (R—R) - —. 7
de
Since the weight updates depend linearly on the eligibility trace (Eq. 5), we have
dWij dei 1
=6R- . 8
dby dby ®

To relate this to the gradient of the reward with respect to 6, we sum over all synapses, resulting in
the approximation

deij AL A
Vo(R) ~ ;5R~ Wy ;fm' (r5)" (a7 — i) - ©)
The eligibility trace e;; is a function of neural activity, and its dependency on the parameters ¢ is
explicitly defined by the model (Eq. ). For the eligibility trace parametrised in the polynomial
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de;; . . o .
form of Eq. 4, the term ;01 has an explicit expression in terms of neural activations and firing rates

(Eq. 9). This expression is fully analytic and requires no gradient propagation through the network
or the learning episodes. The plasticity parameters 6 are then updated using gradient ascent based
on this estimated gradient.

To enforce sparsity on the identified rules in order to minimise the number of active terms in the
identified rule to render it interpretable.

3 Results

We defer the reader to the Extensive results section in the Supplementary Information for the results
of the numerical experiments.

4 Related work

Decades of research on synaptic plasticity have focused on hand-crafted learning rules designed to
replicate experimentally observed changes in post-synaptic potentials from single-neuron record-
ings. However, the recent explosion in large-scale functional recordings, particularly longitudinal
data collected across learning, has sparked growing interest in identifying the types of plasticity
rules that may underlie observed changes in neural activity and behavioural performance. Despite
this interest, the task remains extremely challenging: current experimental techniques do not allow
direct measurement of synaptic interactions across large neural populations, making it difficult to
infer the underlying synaptic mechanisms at play. Thus an increasing number of frameworks have
emerged that aim to discover plasticity rules from indirect signatures such as changes in neural ac-
tivity distributions, recorded trajectories, or behavioural performance. These approaches differ in
what kind of observations they use, and in the assumptions they make about the network structure,
plasticity rule parameterisation, and underlying task.

Matching rate distributions. One line of work focuses on inferring synaptic plasticity rules from
pre- and post-learning firing rate distributions. Lim et al.[22] jointly infer neuron transfer functions
and synaptic updates from observed rate distributions, under assumptions of Poisson firing statistics
and linearized plasticity. This approach was later extended using Gaussian process priors over plas-
ticity functions[23], improving flexibility but still restricted to feedforward networks and ignoring
temporal dynamics.

These approaches do not model the full trajectory of activity during learning, instead identify plas-
ticity rules that explain cumulative changes across learning. As a result, they cannot constrain rule
parameters based on how learning unfolded in time.

Inference by conditioning on neural trajectories. A second group of methods exploits neural ac-
tivity trajectories recorded over learning. Ramesh et al. [24] use a generative adversarial framework
to infer plasticity rules that generate neural trajectories similar to empirical ones. While highly ex-
pressive, this method requires extensive data and computational resources, and suffers from known
instability issues in GAN training. Confavreux et al. [16] proposed a meta-learning framework to
discover plasticity rules that produce desired temporal coding properties in rate-based networks.
While insightful, their approach optimises for a fixed synthetic objective (e.g., encoding elapsed
time), rather than learning from observed data or behaviour.

Behavior-based plasticity inference. A third set of studies use behavioural performance trajec-
tories to constrain synaptic plasticity. Ashwood et al.[25] fit learning rule parameters in rodent
decision tasks using a Bayesian model, requiring approximation of the full posterior over synaptic
weights. Rajagopalan et al.[26] reformulate the plasticity inference problem as logistic regression
by assuming presynaptic activity and reward as the only inputs. These frameworks remain limited
in flexibility, often neglecting dependencies on postsynaptic activity or synapse strength, which are
essential for biologically grounded learning.

Most of these approaches assume feed-forward structure of the underlying network [23, 27], and
consider plasticity evolving network dynamics in an unsupervised setting. Only the recent work of
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[27] considers a reward term in the plasticity rule, that effectively puts the learning framework under
a reinforcement learning and thus closer to how biological organisms learn.

5 Limitations

Despite its strengths, our work has several limitations that point to opportunities for future improve-
ment and extension. One limitation is that the proposed meta-learning procedure must be run mul-
tiple times independently to discover multiple plasticity rules that satisfy the same task constraints.
Recent advances using simulation-based inference [ 1 6] provide a promising alternative for sampling
entire distributions over plasticity rules that solve a given cognitive task, potentially offering a more
efficient and principled exploration of solution space. Yet, simulation based inference is easy to
incorporate in our setting.

Another limitation is that our current framework is purely exploratory and does not explicitly in-
corporate constraints from experimentally recorded neural activity. While this allows for a broad
and flexible search over possible learning mechanisms, it limits the biological specificity of the dis-
covered rules. Extending our framework to incorporate such constraints, for instance, by biasing
the meta-optimisation toward activity trajectories consistent with recorded data, could yield more
realistic models of synaptic updates.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract we claim that we can find through meta-learning biologically-
plausible learning rules for training RNNs with sparse feedback signals. In the main text
we show that we do

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes],

Justification:In the section Limitations

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ~Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes],
Justification: In the Supplement
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be released upon acceptance. However the description in the
Supplement should also suffice to reproduce the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes],
Justification: In the Section :Details of numerical experiments” in the supplement.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes],
Justification: Yes where relevant
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: Yes
Justification: In the Section :Details of numerical experiments” in the supplement.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and we very that our work complies in every
respect with the points outlined there.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We now include in the supplement a section called Broader Impact. However,
briefly we do not see any direct negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

11


https://neurips.cc/public/EthicsGuidelines

469
470
471
472

473
474
475
476
477
478
479

480
481
482

484
485
486
487

488

489
490
491

492

493

494

495

496
497
498

500
501

502
503
504

505

506
507
508

509

510
511
512

513

514
515

516
517

518

519
520

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: [NA] .
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper is strongly influenced by the paper [20], and the paper is cited,

however the code used in the experiments was developed from scratch in Python after
consulting the original C++ code released with the aforementioned paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: Again this is included in ’Details on Numerical experiments”
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: [NA |
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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572 * We recognize that the procedures for this may vary significantly between institutions

573 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
574 guidelines for their institution.

575 * For initial submissions, do not include any information that would break anonymity
576 (if applicable), such as the institution conducting the review.

577 16. Declaration of LLM usage

578 Question: Does the paper describe the usage of LLMs if it is an important, original, or
579 non-standard component of the core methods in this research? Note that if the LLM is used
580 only for writing, editing, or formatting purposes and does not impact the core methodology,
581 scientific rigorousness, or originality of the research, declaration is not required.

582 Answer: [NA|

583 Justification: [NA|

584 Guidelines:

585 * The answer NA means that the core method development in this research does not
586 involve LLMs as any important, original, or non-standard components.

587 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
588 for what should or should not be described.
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