T-POP: TEST-TIME PERSONALIZATION WITH ONLINE PREFERENCE FEEDBACK

Anonymous authors

Paper under double-blind review

ABSTRACT

Personalizing large language models (LLMs) to individual user preferences is a critical step beyond generating generically helpful responses. However, current personalization methods are ill-suited for new users, as they typically require either slow, resource-intensive fine-tuning or a substantial amount of pre-existing user data, creating a significant cold-start problem. To address this challenge, we introduce a new paradigm for real-time personalization by learning from online pairwise preference feedback collected during text We propose T-POP (Test-Time Personalization with Online Preference Feedback), a novel algorithm that synergistically combines test-time alignment with dueling bandits. Without updating the LLM parameters, T-POP steers the decoding process of a frozen LLM by learning a reward function online that captures user preferences. By leveraging dueling bandits, T-POP intelligently queries the user to efficiently balance between exploring their preferences and exploiting the learned knowledge to generate personalized text. Extensive experiments demonstrate that T-POP achieves rapid and data-efficient personalization, significantly outperforming existing baselines and showing consistent improvement with more user interactions.

1 Introduction

While large language models (LLMs) have achieved remarkable success in generating human-like text, a critical frontier remains: moving from generic, one-size-fits-all responses to deeply personalized interactions. Users increasingly expect models to understand and adapt to their unique voice, style, and preferences (Zhang et al., 2024). The standard approach for aligning LLMs with human preferences has been through methods such as reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022) and direct preference optimization (DPO) (Rafailov et al., 2023). However, these methods are primarily designed to align LLMs with *generic* human preferences, failing to capture the specific nuances of individual users.

To address this gap, some recent works have adapted the RLHF framework to align LLMs with the preferences of individual users (Jang et al., 2023; Li et al., 2024b; Park et al., 2024; Lee et al., 2024). While effective, these approaches necessitate fine-tuning the LLM parameters for each user. Consequently, they are often unable to adapt quickly and efficiently to new users, posing a significant barrier to scalability and real-time personalization.

In response to the limitations of fine-tuning, another line of research has focused on personalization methods that do not require parameter updates. These techniques include retrieval-augmented generation (RAG) to fetch user-specific information (Sun et al., 2024; Mysore et al., 2023; Salemi et al., 2024) and the integration of the historical data of the user directly into the LLM prompt (Kang et al., 2023; Liu et al., 2023; Li et al., 2024a; Kim & Yang, 2024). A common prerequisite for these methods, however, is the availability of sufficient user data. This leaves them inapplicable to new users for whom such data has not yet been collected, a critical challenge in the field of personalization known as the *cold-start* problem (Zhang et al., 2024).

To resolve this problem, a natural solution is to *collect user data online* for new users. Drawing from the widespread success of RLHF and DPO, the most reliable and easily provided form of user data is *preference feedback*, where users indicate their relative preference between a pair of LLM-generated responses. We therefore propose to collect pairwise user preference data online to

Figure 1: An overview of our T-POP for test-time personalization with online preference feedback.

facilitate rapid personalization. This approach, however, introduces a crucial challenge: how do we simultaneously (1) collect user preference data online and (2) use these sequentially available data to achieve effective personalization?

In this work, we tackle this challenge by proposing a principled combination of *test-time alignment* (Khanov et al., 2024) and *dueling bandits* (Verma et al., 2024). We introduce our *Test-Time Personalization with Online Preference Feedback* (T-POP) algorithm, which is illustrated in Fig. 1. Following the test-time alignment paradigm, T-POP adjusts the decoding process of a frozen LLM via an additive reward function that captures user personalization. This reward function is learned online and assigns higher values to responses that are better aligned with the personal preferences of the user. To learn this reward function effectively, we incorporate dueling bandits into the token selection process, which allows us to strategically select a pair of candidate tokens at every decoding step to query the user for feedback. Thanks to the inherent ability of dueling bandit algorithms to balance exploration and exploitation, our T-POP is able to simultaneously (1) generate high-reward responses that are increasingly aligned with user preference (i.e., exploitation) and (2) collect diverse preference data to rapidly refine the reward function (i.e., exploration). As a result, T-POP achieves effective user personalization using only a small number of online user feedback interactions.

In summary, our main contributions are:

- We formalize the problem of test-time personalization with online preference feedback, addressing the critical cold-start challenge for new users.
- We propose T-POP, a novel algorithm that synergistically combines test-time alignment with dueling bandits to achieve rapid, data-efficient personalization without any parameter fine-tuning.
- Extensive experiments show that T-POP significantly outperforms existing personalization baselines, with its effectiveness steadily increasing as more user feedback is provided.

2 Preliminary

Test-Time Alignment for Personalization. Our work builds upon the paradigm of *test-time alignment*, which steers the generation process of a frozen LLM at inference time without updating its parameters. The core idea is to guide each token selection step towards user-preferred outcomes. Specifically, given a partially generated sequence $y_{< p}$, the standard approach is to sample the next token y_p from the probability distribution of the base LLM $\pi_{\text{base}}(\cdot|y_{< p})$. To incorporate personalization, we introduce a reward function $r(\cdot;\theta)$ parameterized by θ , which is learned online to capture the user preferences. This reward function assigns a scalar score to any given sequence, with higher scores indicating better alignment with the preference of the user.

At each decoding step p, we define a scoring function that combines the base model's likelihood with the learned preference reward. For any candidate token v from the vocabulary \mathcal{V} , the score is calculated as:

$$Score(v|y_{< p}) = \pi_{base}(v|y_{< p}) + \omega \cdot r([y_{< p}, v]; \theta)$$
(1)

where $[y_{< p}, v]$ denotes the new sequence formed by appending token v to the prefix $y_{< p}$, and ω is a hyperparameter controlling the strength of the personalization. The decoding policy then selects the next token by maximizing this score: $y_p = \arg\max_{v \in \mathcal{V}} \operatorname{Score}(v|y_{< p})$. This framework allows the generation to be dynamically steered towards personalized content by optimizing a local, per-token objective. In our problem of test-time personalization without sufficient user data, the central challenge is how to learn the reward function $r(\cdot;\theta)$ efficiently from online preference feedback from the user. To this end, we adopt the framework of neural dueling bandits.

Neural Dueling Bandits. To learn the reward function r from online preference feedback, we frame the problem within the neural dueling bandits framework (Verma et al., 2024). This setting is designed for learning from pairwise preference feedback (e.g., "response A is better than response B"), which is often more reliable and easier for users to provide than absolute scores.

In this framework, a learner iteratively interacts with a user. In each round, it presents a pair of items (i.e., arms), and the user provides feedback indicating which one they prefer. The user's choice is assumed to be governed by the underlying reward function r. This relationship is commonly modeled using the Bradley-Terry-Luce (BTL) model (Hunter, 2004; Luce et al., 1959), which states that the probability of preferring arm a_1 over arm a_2 is given by: $P(a_1 > a_2) = \sigma(f(a_1) - f(a_2))$, where f denotes the unknown reward function and $\sigma(z) = 1/(1 + e^{-z})$ is the sigmoid function. To learn complex user preferences in text generation, we adopt a neural network (NN) $r(\cdot;\theta)$ parameterized by θ to approximate f (Verma et al., 2024).

3 THE T-POP ALGORITHM

In this section, we introduce our T-POP algorithm (Fig. 1, Algo. 1), which addresses the cold-start personalization problem for new users. We begin by discussing the high-level insights behind our approach, followed by a detailed breakdown of its components.

3.1 HIGH-LEVEL OVERVIEW

The core insight behind T-POP is the synergistic integration of test-time alignment with the principles of online learning from dueling bandits. Instead of treating personalized text generation and user preference learning as separate phases, T-POP interweaves them into a single, efficient process. The algorithm operates by steering the decoding of a frozen LLM to simultaneously generate two competing sequences in real-time.

This is achieved by applying a dueling bandit policy at *each token-generation step*. The **exploitation sequence** is constructed by greedily following the reward model's current estimate of user preferences (line 10 of Algo. 1). Concurrently, the **exploration sequence** is built by optimistically choosing tokens that balance high estimated reward with high uncertainty (line 11 of Algo. 1). The two completed responses are then presented to the user, who provides feedback on which one they prefer. This feedback is immediately used to update the reward model, improving its alignment with the user preferences. This creates a tight feedback loop: the dueling bandit policy generates **personalized and informative pairs of responses** for learning, and the user feedback immediately refines the reward model, which in turn improves the personalized text-generation policy for the next round of interaction. This entire process requires no fine-tuning of the base LLM, enabling rapid and data-efficient personalization with online feedback.

3.2 Online Personalization Loop

T-POP operates over a series of interaction rounds $t=1,2,\ldots,T$. The goal in each round is to generate a personalized and informative pair of responses $(y_{t,1},y_{t,2})$, elicit user preference feedback l_t , and update the neural network reward model $r(\cdot;\theta)$.

The learning process begins with an initial reward model $r(\cdot; \theta_1)$. In each round t, the algorithm generates the pair $(y_{t,1}, y_{t,2})$ based on the current reward model $r(\cdot; \theta_t)$, as detailed in Sec. 3.3.

Algorithm 1: T-POP **Input:** Initial reward model parameters θ_1 , matrix $V_0 = \lambda I$, number of user interactions T, reward weight ω , exploration parameter ν , number of candidate tokens k, maximum number of tokens M in a response, observation history $\mathcal{D}_0 = \mathcal{I}$. 1 for t = 1, ..., T do Receive the user query q_t in the current round, set $y_{t,1} = [q_t], y_{t,2} = [q_t]$ **for** each token position p = 1, ..., M **do** $\mathcal{V}_{p}^{(1)} \leftarrow \text{top-}k \text{ tokens conditioned on } y_{t,1}$ $\mathcal{V}_{p}^{(2)} \leftarrow \text{top-}k \text{ tokens conditioned on } y_{t,2}$ $\mathcal{V}_p \leftarrow \mathcal{V}_p^{(1)} \cup \mathcal{V}_p^{(2)}$ for $v \in \mathcal{V}_p$ do $score_1(v; \theta_t) \leftarrow \pi_{base}(v|y_{t,1}) + \omega \cdot r([y_{t,1}, v]; \theta_t)$ $score_2(v; \theta_t) \leftarrow \pi_{base}(v|y_{t,2}) + \omega \cdot r([y_{t,2}, v]; \theta_t)$ Select token for response 1: $v_{p,1} \leftarrow \arg\max_{v \in \mathcal{V}_p} score_1(v; \theta_t)$ Select token for response 2: $v_{p,2} \leftarrow \arg\max_{v \in \mathcal{V}_p} score_2(v; \theta_t) + \omega \cdot \nu \left\| \nabla r([y_{t,2}, v]; \theta_t) - \nabla r([y_{t,1}, v_{p,1}]; \theta_t) \right\|_{V_{\bullet}^{-1}}$ $y_{t,1} \leftarrow [y_{t,1}, v_{p,1}], y_{t,2} \leftarrow [y_{t,2}, v_{p,2}]$ $V_{t-1} \leftarrow V_{t-1} + (\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))(\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))^{\top}$ Obtain binary user preference feedback $l_t = \mathbb{1}_{\{y_{t,1} \succ y_{t,2}\}}$ and update history: $\mathcal{D}_t = \mathcal{D}_{t-1} \cup (y_{t,1}, y_{t,2}, l_t);$ Train NN using history $\mathcal{D}_t = \{(y_{s,1}, y_{s,2}, l_s)\}_{s=1,\dots,t}$ by minimizing loss function $\mathcal{L}_t(\theta)$ (equation 2): $\theta_{t+1} = \arg\min_{\theta} \mathcal{L}_t(\theta)$

The user then provides a binary preference $l_t = \mathbb{1}_{\{y_{t,1} \succ y_{t,2}\}}$, which is equal to 1 if the response $y_{t,1}$ is preferred over $y_{t,2}$ and 0 otherwise. This new data point is then added to the history $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(y_{t,1},y_{t,2},l_t)\}$ (line 14 of Algo. 1). Upon receiving this feedback, the parameters of the reward model (i.e., neural network) are updated by minimizing the following loss function over the entire history \mathcal{D}_t (line 15 of Algo. 1):

$$\mathcal{L}_{t}(\theta) = -\sum_{(y_{1}, y_{2}, l) \in \mathcal{D}_{t}} \left[l \log \sigma(r(y_{1}; \theta) - r(y_{2}; \theta)) + (1 - l) \log \sigma(r(y_{2}; \theta) - r(y_{1}; \theta)) \right] + \lambda \|\theta\|_{2}^{2}, (2)$$

in which $\sigma(\cdot)$ is the sigmoid function. Of note, minimizing this loss function (equation 2) is equivalent to maximizing the log-likelihood of the preference observations \mathcal{D}_t according to the Bradley-Terry-Luce (BTL) model (Sec. 2), plus a regularization term (Verma et al., 2024). This updated reward model, with parameters $\theta_{t+1} = \arg\min_{\theta} \mathcal{L}_t(\theta)$, is then used in the next round, enabling continuous improvement of the reward model from user interactions.

Deployment Phase. After a sufficient amount of preference feedback has been collected (i.e., after T rounds), the online learning phase concludes. The resulting reward model, $r(\cdot;\theta_T)$, is now trained to characterize the user's personalized preferences and can be deployed for generation without requiring further feedback. In this deployment mode, T-POP produces a single personalized response using only the exploitation strategy (line 10 of Algo. 1). Generation proceeds via token-by-token greedy decoding, where each token is selected to maximize the score in equation 1 using the final, frozen reward model $r(\cdot;\theta_T)$. This allows us to consistently generate responses aligned with the user preferences captured by the final reward model, effectively transitioning from an interactive learning agent to a personalized text generator.

3.3 TOKEN-BY-TOKEN ARM GENERATION

Update the covariance matrix: $V_t \leftarrow V_{t-1}$

A key innovation of T-POP is its dynamic, token-by-token construction of the dueling sequences, $y_{t,1}$ and $y_{t,2}$, which is achieved by integrating dueling bandits with reward-guided decoding. The pair of sequences is built over M steps (lines 3–13 of Algo. 1), with the exploitation-exploration policy applied at each step to select the next token for each growing sequence.

Exploitation Sequence. The first sequence, $y_{t,1}$, represents pure *exploitation*. It is generated to be the best possible response according to the current reward model $r(\cdot; \theta_t)$. At each token position p, the next token $v_{p,1}$ is chosen greedily to maximize the reward-guided scoring function from equation 1:

$$v_{p,1} = \underset{v \in \mathcal{V}_p}{\operatorname{argmax}} \left(\pi_{\text{base}}(v|y_{t,1}) + \omega \cdot r([y_{t,1}, v]; \theta_t) \right), \tag{3}$$

where V_p is a set of candidate tokens formed by the top-k tokens from the base LLM (Algo. 1, lines 4-6). This process iteratively builds a sequence aligned with the current reward model $r(\cdot; \theta_t)$.

Exploration Sequence. The second sequence, $y_{t,2}$, simultaneously accounts for exploitation and *exploration*. That is, it aims to not only achieve high reward values to align with the user preference (i.e., exploitation), but also generate informative responses with *large uncertainty* to accelerate the learning of the reward model (i.e., exploration). Specifically, at each token position p, it selects the next token $v_{p,2}$ by maximizing the sum of the score and a UCB-style exploration bonus:

$$v_{p,2} = \underset{v \in \mathcal{V}_p}{\operatorname{argmax}} \underbrace{\pi_{\operatorname{base}}(v|y_{t,2}) + \omega \cdot r([y_{t,2},v];\theta_t)}_{\operatorname{Exploitation}} + \underbrace{\omega \cdot \nu \cdot \operatorname{UncertaintyBonus}(v)}_{\operatorname{Exploration}}. \tag{4}$$

The uncertainty bonus term is defined as:

UncertaintyBonus
$$(v) = \|\nabla r([y_{t,2}, v]; \theta_t) - \nabla r([y_{t,1}, v_{p,1}]; \theta_t)\|_{V_{\star}^{-1}}.$$
 (5)

Theoretical Justifications. Our strategy to generate the pair of arms is inspired by the theoretically principled neural dueling bandit algorithm (Verma et al., 2024). The matrix V_{t-1} (line 14 of Algo. 1) aggregates the information from all previously selected sequences up to round t-1:

$$V_{t-1} \leftarrow V_{t-1} + (\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))(\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))^{\top}$$
(6)

The uncertainty bonus (equation 5) measures our uncertainty about the reward of the sequence $[y_{t,2}, v]$, conditioned on the sequence $[y_{t,1}, v_{p,1}]$ and all previously generated sequences. Therefore, the addition of the uncertainty bonus in equation 4 encourages the second generated sequence to be different from the first generated sequence as well as all previously generated sequences. As a result, it steers the generation towards a sequence that provides significant novel information which is helpful for further refining the reward model.

4 EXPERIMENTS

We conduct comprehensive experiments to empirically validate the effectiveness and data efficiency of our T-POP, particularly its ability to achieve rapid personalization in cold-start scenarios. Some experimental details are deferred to App. B due to space constraints.

4.1 EXPERIMENTAL SETTING

Models, Datasets and Personalization Attributes. We conduct experiments on a diverse set of modern open-source LLMs, including Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen2-7B-Instruct (Yang et al., 2025). Our evaluation suite is built upon four established benchmarks to ensure a comprehensive assessment. We use (1) HelpSteer (Wang et al., 2023) for its multi-faceted instruction-following challenges and two subsets of UltraFeedback (Cui et al., 2024): (2) TruthfulQA (Lin et al., 2021) and (3) UltraChat—to evaluate factuality and conversational ability, respectively. To directly measure alignment with user tastes, we also include the (4) Personal Preference Eval (Gao et al., 2024) dataset. To simulate diverse real-world user preferences, we evaluate our method across four distinct preference attributes, inspired by prior work (Zhong et al., 2024; Zhang et al., 2025b): creative, verbose, concise, and uplifting.

Baseline Methods. We compare our T-POP against a suite of strong baselines representing different personalization paradigms. These include the original, unmodified backbone LLM (**Base**); the backbone guided only by prompt engineering (**Preference Prompting (Pref**)); and a standard decoding algorithm, **Beam Search (BS16**), with a beam width of 16. We also compare against two state-of-the-art training-free methods: **Linear Alignment (LA)** (Gao et al., 2024), which linearly

updates the model's logits to steer generation, and our primary competitor, **AMULET** (Zhang et al., 2025b), which formulates token-level decoding as an online learning problem for test-time alignment.

Evaluation Metrics. Given the subjective nature of personalization, we employ a two-pronged evaluation strategy. Our primary quantitative metric is the **Reward Model Score**. We use the widely used **ArmoRM-Llama3-8B-v0.1** (Wang et al., 2024) to score the alignment of generated responses with the target attribute, following the evaluation methodology of Zhang et al. (2025b). To complement this and capture nuances that a single reward model may overlook, we also adopt **GPT-4o** as a Judge (Ouyang et al., 2022). Following the standard protocol (Li et al., 2023), we present GPT-4o with the outputs from T-POP and a baseline, and report the win rate.

During the online interaction phase of our T-POP, we use **GPT-40** to simulate the user and provide pairwise preference feedback based on the target attribute. The evaluation prompts are adapted from the AlpacaEval standard format.

4.2 MAIN RESULTS

An effective personalization method should generate text that is both **strongly** and **consistently** aligned with user preferences. To ensure a comprehensive evaluation, we assess these two aspects separately. First, we utilize the Reward Model Score (Wang et al., 2024) to quantify the **strength** of personalization (Sec. 4.2.1). Second, to measure **consistency**, we report the win rate against the base LLM in pairwise comparisons judged by GPT-40 (Sec. 4.2.2).

4.2.1 ARMORM SCORES: ANALYSIS OF THE STRENGTH OF PERSONALIZATION

The main quantitative results, presented in Table 1, benchmark T-POP against strong baselines across a wide range of datasets and attributes. The scores in Table 1 underscore the effectiveness of T-POP in achieving stronger alignment A detailed model-by-model analysis reveals that ours algorithm consistently delivers substantial gains over all baselines, including the strongest baseline, AMULET. The performance uplift is most pronounced on Qwen2-7B, where T-POP demonstrates an average improvement of **28.0%** over the second best method, AMULET, across all four preference attributes. This is closely followed by a **19.9%** average gain over AMULET on the Mistral-7B model. On Llama-3.1-8B, the race is highly competitive, with T-POP and AMULET each securing state-of-the-art scores in two of the four preference dimensions; however, T-POP still maintains a marginal edge with a final average score of **0.535** compared to AMULET's **0.5325**. Aggregating these results, T-POP establishes a robust overall average improvement of **14.7%** against AMULET. This persistent and significant performance improvement across diverse models validates the efficacy of our dueling bandit-based test-time personalization framework, which more efficiently captures the nuances of user preferences than other test-time adaptation methods.

Furthermore, we analyze the impact of the number of user interactions (iterations) on the performance of T-POP. To demonstrate the robustness of its learning efficiency, we present results from two distinct experimental settings: the concise attribute on the Personal dataset and the HelpSteer dataset (Fig. 2). As illustrated across both figures, all three models—Llama-3.1-8B, Mistral-7B, and Qwen2-7B—exhibit a remarkably consistent and efficient learning curve. **The reward scores increase sharply within the first 20 iterations in both scenarios**, indicating that T-POP rapidly captures user preferences with minimal feedback, regardless of the specific task. Following this initial surge, performance gains begin to plateau, with the models reaching their peak alignment between 40 and 60 interactions. Subsequently, the scores remain stable or decrease slightly, which can be attributed to potential overfitting. This consistent trend of rapid initial improvement followed by convergence across diverse datasets further validates the data efficiency and swift personalization capability of T-POP.

4.2.2 WIN RATE: ANALYSIS OF THE CONSISTENCY OF PERSONALIZATION

To assess the **consistency** of our personalization method, we employ GPT-40 as a judge to perform pairwise comparisons. For each prompt, GPT-40 evaluates which of two responses—one from our method and one from the base LLM—is better aligned with a given personalization attribute. Table 2

Table 1: Score comparison across different datasets, attributes and LLMs. The best score is highlighted in **bold**, and the second best score is highlighted in *italics*.

Model	Dataset	Creative							Verbose				Concise					Uplifting							
		Base	Pref	BS16	LA	Amulet	T-POP	Base	Pref	BS16	LA	Amulet	Ours	Base	Pref	BS16	LA	Amulet	T-POP	Base	Pref	BS16	LA	Amulet	T-POP
	HelpSteer	0.30	0.30	0.34	0.36	0.39	0.48	0.27	0.27	0.31	0.31	0.30	0.40	0.41	0.42	0.50	0.52	0.52	0.59	0.33	0.33	0.39	0.40	0.41	0.50
	Personal	0.34	0.34	0.35	0.38	0.42	0.47	0.30	0.30	0.30	0.30	0.30	0.39	0.47	0.49	0.50	0.54	0.53	0.65	0.41	0.42	0.42	0.45	0.46	0.52
Mistral-7B	Truthful QA	0.32	0.33	0.34	0.38	0.41	0.51	0.30	0.31	0.31	0.33	0.32	0.43	0.41	0.44	0.47	0.51	0.49	0.54	0.36	0.38	0.39	0.47	0.47	0.54
	Ultra Chat	0.34	0.35	0.35	0.36	0.38	0.47	0.31	0.31	0.31	0.32	0.31	0.39	0.45	0.46	0.47	0.49	0.51	0.61	0.38	0.39	0.39	0.41	0.42	0.50
	Average	0.32	0.33	0.34	0.37	0.40	0.48	0.30	0.30	0.31	0.32	0.31	0.40	0.43	0.45	0.48	0.52	0.51	0.60	0.37	0.38	0.40	0.43	0.44	0.51
	HelpSteer	0.34	0.34	0.35	0.35	0.36	0.50	0.31	0.32	0.33	0.33	0.30	0.44	0.43	0.48	0.50	0.57	0.59	0.60	0.38	0.38	0.39	0.39	0.41	0.52
	Personal	0.33	0.34	0.34	0.37	0.41	0.49	0.31	0.31	0.31	0.30	0.28	0.43	0.41	0.48	0.49	0.53	0.54	0.65	0.40	0.42	0.42	0.43	0.42	0.55
Qwen2-7B	Truthful QA	0.32	0.33	0.33	0.34	0.36	0.53	0.30	0.31	0.32	0.33	0.32	0.47	0.41	0.46	0.50	0.54	0.51	0.53	0.36	0.38	0.39	0.44	0.45	0.58
	Ultra Chat	0.34	0.34	0.34	0.35	0.36	0.47	0.31	0.32	0.33	0.32	0.31	0.44	0.40	0.45	0.46	0.54	0.57	0.62	0.38	0.39	0.39	0.40	0.39	0.54
	Average	0.33	0.34	0.34	0.35	0.37	0.50	0.31	0.32	0.32	0.32	0.30	0.45	0.41	0.47	0.49	0.55	0.55	0.60	0.38	0.39	0.40	0.42	0.42	0.55
	HelpSteer	0.33	0.34	0.36	0.44	0.50	0.51	0.30	0.31	0.33	0.36	0.41	0.51	0.40	0.43	0.45	0.53	0.57	0.62	0.36	0.37	0.39	0.45	0.50	0.53
Llama-3.1-8B	Personal	0.35	0.36	0.36	0.46	0.62	0.52	0.31	0.31	0.31	0.35	0.49	0.46	0.39	0.44	0.45	0.53	0.67	0.66	0.42	0.44	0.43	0.49	0.61	0.55
	Truthful QA	0.31	0.33	0.33	0.41	0.56	0.52	0.29	0.29	0.31	0.34	0.44	0.54	0.37	0.40	0.42	0.49	0.52	0.51	0.34	0.36	0.37	0.43	0.49	0.53
	Ultra Chat	0.33	0.34	0.34	0.42	0.57	0.50	0.31	0.32	0.32	0.36	0.41	0.49	0.38	0.41	0.41	0.48	0.53	0.60	0.37	0.38	0.38	0.44	0.48	0.52
	Average	0.33	0.34	0.35	0.43	0.58	0.51	0.30	0.31	0.32	0.35	0.44	0.50	0.38	0.42	0.43	0.51	0.57	0.60	0.37	0.39	0.39	0.45	0.54	0.53

Figure 2: The effect of the number of user interactions on the Reward Score for different models. The results correspond to the concise attribute.

presents the results, where each value represents the *win rate* against the base LLM. This metric measures how consistently an algorithm produces a qualitatively superior and personalized response.

The results show that T-POP achieves personalization with remarkable consistency. Across the 36 experimental settings (3 LLMs \times 4 attributes \times 3 datasets), our T-POP achieves the highest or second-highest average win rate in 31 cases. Crucially, the win rate for T-POP is almost universally above 90%, averaging 94.2% across all settings. A win rate over 90% signifies a high degree of confidence that T-POP consistently provides correct alignment and personalization, leading to responses that are qualitatively superior to those from the unguided base model. This robust performance indicates that our T-POP is not only powerful but also highly reliable.

In summary, the ArmoRM scores in Table 1 and the win rates in Table 2 jointly demonstrate that **T-POP achieves strong and consistent personalization**.

5 ABLATION STUDY

The Impact of Reward Weight w. Fig. 3 illustrates the performance of T-POP across a range of w values for all three backbone models. The results exhibit a clear and consistent trend. At w=0.0, where T-POP effectively deactivates the personalization component, the reward scores are at their lowest, representing the performance of the base LLM. A sharp and substantial improvement in the reward scores is observed across all models at w=0.1, and the performance peaks at w=1.0. This indicates that a moderate reward signal is highly effective at steering the generation towards the user

Table 2: Win rate of different algorithms against the base LLM in terms of personalization. The best score is highlighted in **bold**, and the second best score is highlighted in *italics*.

Model	Dataset		Creative					Verbose				Concise					Uplifting				
		Pref	BS16	LA	Amulet	T-POP	Pref	BS16	LA	Amulet	Ours	Pref	BS16	LA	Amulet	T-POP	Pref	BS16	LA	Amulet	T-POP
	HelpSteer	95.5%	94.0%	98.1%	90.2%	99.5%	79.4%	76.5%	91.0%	79.7%	93.1%	87.9%	89.5%	87.9%	75.1%	92.4%	86.7%	85.2%	95.3%	92.3%	97.2%
	Personal	97.1%	94.3%	98.5%	96.6%	99.1%	85.4%	75.4%	96.5%	87.8%	92.5%	95.4%	94.0%	93.8%	71.3%	96.7%	86.4%	85.6%	94.2%	90.2%	98.2%
Mistral-7B	Truthful QA	85.4%	83.0%	94.5%	93.3%	99.6%	79.1%	77.5%	90.1%	78.7%	95.4%	77.4%	80.5%	70.3%	70.8%	72.3%	85.8%	82.9%	91.9%	88.2%	96.5%
	Average	92.6%	90.4%	97.0%	93.4%	99.4%	81.3%	76.5%	92.5%	82.1%	93.7%	86.9%	88.0%	84.0%	72.4%	87.7%	86.3%	84.6%	93.8%	90.2%	97.3%
	HelpSteer	94.0%	92.8%	86.1%	89.9%	96.6%	93.2%	90.9%	82.9%	83.3%	94.0%	88.2%	89.5%	92.8%	91.6%	92.0%	83.8%	83.5%	75.2%	97.7%	98.2%
	Personal	95.2%	96.3%	98.2%	96.8%	99.1%	93.3%	96.7%	100%	73.7%	90.3%	95.8%	97.6%	99.1%	92.0%	98.7%	83.5%	89.9%	95.8%	91.1%	91.3%
Qwen2-7B	Truthful QA	90.1%	85.4%	88.2%	83.9%	98.5%	78.2%	79.5%	84.3%	78.9%	96.0%	88.9%	90.1%	92.2%	91.2%	79.0%	81.9%	81.2%	80.8%	93.0%	99.1%
	Average	93.1%	91.5%	90.8%	90.2%	98.1%	88.2%	89.0%	89.1%	78.6%	93.4%	91.0%	92.4%	94.7%	91.6%	89.9%	83.1%	84.9%	83.9%	93.9%	96.2%
	HelpSteer	97.4%	96.2%	97.4%	97.6%	98.6%	91.7%	91.4%	97.6%	94.7%	97.6%	89.0%	89.3%	94.3%	86.3%	92.3%	89.4%	88.8%	99.0%	97.5%	97.6%
	Personal	96.3%	95.1%	97.1%	99.8%	98.9%	91.4%	90.6%	93.8%	99.6%	94.5%	96.2%	97.0%	97.2%	97.3%	97.4%	94.1%	94.0%	99.6%	100%	94.0%
Llama-3.1-8B	Truthful QA	94.1%	92.3%	97.2%	99.5%	97.3%	87.3%	86.7%	96.5%	93.2%	95.4%	71.9%	76.9%	74.7%	85.5%	68.8%	82.7%	82.6%	95.3%	92.8%	93.5%
	Average	95.9%	94.5%	97.2%	99.0%	98.3%	90.1%	86.2%	96.0%	95.8%	95.8%	85.7%	87.7%	87.7%	89.7%	86.1%	88.7%	88.5%	97.8%	96.8%	95.0%

Figure 3: The effect of the reward weight (w) on the alignment performance of T-POP across three different backbone models.

preference. However, as the weight is further increased to w=2.0 and subsequently to w=5.0, the reward scores show a noticeable decline. This suggests that an excessively high reward weight can be counterproductive. This is likely because an overly strong preference signal begins to interfere with the inherent generation capabilities of the backbone model, π_{base} , leading the decoding strategy to myopically optimize for the reward. This can result in outputs that, while superficially aligned, may lack coherence or quality. This phenomenon is often referred to as reward hacking. Our findings suggest that an optimal value for w lies in the vicinity of w=1.0, which strikes an effective balance between personalization strength and the preservation of generation quality.

Impact of Model Size. To assess the scalability and model-agnostic properties of T-POP, we evaluate its performance on smaller, resource-efficient LLMs. Specifically, we apply T-POP to Qwen2-0.5B-Instruct and Llama-3.2-1B-Instruct, comparing the ArmoRM scores against that of the base models. The results are presented in Table 3, which confirm that T-POP is able to effectively personalize these smaller models. Notably, T-POP delivers a substantial improvement for the Llama-3.2-1B-Instruct model, increasing its alignment score from 0.28 to 0.44. This finding has significant implications, as it demonstrates that our method can dramatically enhance the capabilities of smaller models, enabling them to achieve a level of personalization typically associated with

Table 3: ArmoRM scores of our T-POP for models with different sizes.

Model	Base Score	T-POP Score
Qwen2-0.5B-Instruct	0.27	0.29
Qwen2-7B-Instruct	0.37	0.51
Llama-3.2-1B-Instruct	0.28	0.44
Llama-3.1-8B-Instruct	0.35	0.55

much larger models. This highlights the potential of T-POP for applications with constrained computational resources, such as on-device deployment.

6 RELATED WORK

6.1 ALIGNMENT THROUGH REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ziegler et al., 2019) is the standard paradigm for aligning LLMs with human preferences. The canonical pipeline (Ouyang et al., 2022) involves three stages: 1) supervised fine-tuning (SFT) on high-quality demonstrations; 2) training a reward model (RM) (Stiennon et al., 2020) on a dataset of human-ranked responses; and 3) fine-tuning the SFT model using an RL algorithm such as PPO (Schulman et al., 2017), with the RM providing the reward signal. The computational expense and instability of PPO-based RLHF have motivated simpler alternatives. For example, direct Preference Optimization (DPO) (Rafailov et al., 2023) bypasses explicit reward modeling by reframing alignment as a direct policy optimization problem. However, these advancements still produce a single, static policy aligned with a pre-collected, offline dataset, often scaled with techniques like RLAIF (Bai et al., 2022).

6.2 Personalized Alignment

Since the universal preference model of conventional RLHF is ill-suited for personalization, a dedicated research area has emerged to adapt LLMs to individual users. One approach involves creating large-scale datasets to model diverse preferences by mapping sociodemographics (PRISM (Kirk et al., 2024)) or constructing user personas from psychological traits (ALIGNX (Li et al., 2025), PAPI (Zhu et al., 2025)). A more data-efficient direction models preferences in a compact, low-dimensional latent space, for instance, by representing them as a linear combination of base reward functions (PReF (Shenfeld et al., 2025), multi-objective alignment (Zhou et al., 2023)) or as latent distributions for few-shot adaptation (VPL (Poddar et al., 2024)). The third direction, most aligned with our work, focuses on lightweight, inference-time adaptation of frozen LLMs. These methods steer the decoding process by manipulating the LLM outputs (PAD (Chen et al., 2024), LA (Gao et al., 2024), decoding-time realignment (Liu et al., 2024)), reframing token generation as an online learning problem (AMULET (Zhang et al., 2025b)), or directly modifying the internal states of the LLMs such as the attention head activations (PAS (Zhu et al., 2025)).

7 CONCLUSION

In this work, we addressed the critical cold-start problem in personalizing LLMs for new users. We introduced T-POP, a novel algorithm that enables rapid, real-time personalization by learning directly from online pairwise preference feedback. By synergistically integrating test-time alignment with dueling bandits, T-POP steers the decoding process of a frozen LLM to simultaneously exploit learned preferences and efficiently explore for new ones. Our extensive experiments demonstrate that T-POP achieves significant performance gains over existing baselines with minimal user interaction, confirming its data efficiency and effectiveness for swift personalization. Future work could explore extending this framework to handle more complex feedback structures or adapt to long-term shifts in user preferences.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have clearly described the detailed experimental setting in Sec. 4.1 and App. B. We have also included important prompts adopted by our algorithm in App. B.

REFERENCES

- Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.
- Ruizhe Chen, Xiaotian Zhang, Meng Luo, Wenhao Chai, and Zuozhu Liu. Pad: Personalized alignment of llms at decoding-time, 2024.
- Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.
- Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language models with scaled ai feedback, 2024. URL https://arxiv.org/abs/2310.01377.
- Songyang Gao, Qiming Ge, Wei Shen, Shihan Dou, Junjie Ye, Xiao Wang, Rui Zheng, Yicheng Zou, Zhi Chen, Hang Yan, et al. Linear alignment: A closed-form solution for aligning human preferences without tuning and feedback. *arXiv* preprint arXiv:2401.11458, 2024.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- David R Hunter. Mm algorithms for generalized bradley-terry models. *The annals of statistics*, 32 (1):384–406, 2004.
- Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personalized large language model alignment via post-hoc parameter merging. *arXiv preprint arXiv:2310.11564*, 2023.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
- Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed Chi, and Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on user rating prediction. *arXiv preprint arXiv:2305.06474*, 2023.
- Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search. *arXiv preprint arXiv:2402.01694*, 2024.
- Jaehyung Kim and Yiming Yang. Few-shot personalization of llms with mis-aligned responses. *arXiv* preprint arXiv:2406.18678, 2024.
- Hannah Rose Kirk, Alexander Whitefield, Paul Röttger, Andrew Bean, Katerina Margatina, Juan Ciro, Rafael Mosquera, Max Bartolo, Adina Williams, He He, Bertie Vidgen, and Scott A. Hale. The prism alignment dataset: What participatory, representative and individualised human feedback reveals about the subjective and multicultural alignment of large language models, 2024.
- Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of preferences via system message generalization. *Advances in Neural Information Processing Systems*, 37:73783–73829, 2024.

541

542

543

544

546

547

548

549

550

551 552

553

554

555

556

558

559

561

562

563

565 566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

588

589

592

Cheng Li, Mingyang Zhang, Qiaozhu Mei, Weize Kong, and Michael Bendersky. Learning to rewrite prompts for personalized text generation. In *Proceedings of the ACM Web Conference* 2024, pp. 3367–3378, 2024a.

- Jia-Nan Li, Jian Guan, Songhao Wu, Wei Wu, and Rui Yan. From 1,000,000 users to every user: Scaling up personalized preference for user-level alignment, 2025.
- Xinyu Li, Ruiyang Zhou, Zachary C Lipton, and Liu Leqi. Personalized language modeling from personalized human feedback. *arXiv preprint arXiv:2402.05133*, 2024b.
- Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models, 2023.
- Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.
- Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang Zhou, and Yan Zhang. Is chatgpt a good recommender? a preliminary study. *arXiv preprint arXiv:2304.10149*, 2023.
- Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe Llinares, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time realignment of language models. *arXiv preprint arXiv:2402.02992*, 2024.
- R Duncan Luce et al. Individual choice behavior, volume 4. Wiley New York, 1959.
- Sheshera Mysore, Zhuoran Lu, Mengting Wan, Longqi Yang, Steve Menezes, Tina Baghaee, Emmanuel Barajas Gonzalez, Jennifer Neville, and Tara Safavi. Pearl: Personalizing large language model writing assistants with generation-calibrated retrievers. *arXiv* preprint arXiv:2311.09180, 2023.
- OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela,

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

627

628

629 630

631

632

633 634

635

636

637 638

639

640 641

642

643

644 645

646

647

Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35: 27730–27744, 2022.

Chanwoo Park, Mingyang Liu, Kaiqing Zhang, and Asuman Ozdaglar. Principled rlhf from heterogeneous feedback via personalization and preference aggregation. *arXiv* preprint arXiv:2405.00254, 2, 2024.

Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing reinforcement learning from human feedback with variational preference learning, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances in Neural Information Processing Systems*, 2023.

Alireza Salemi, Surya Kallumadi, and Hamed Zamani. Optimization methods for personalizing large language models through retrieval augmentation. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 752–762, 2024.

650

651

652 653

654

655

656

657

658

659 660

661

662

663

664

665

666 667

668

669

670 671

672

673

674

675

676

677

678 679

680

681 682

683

684

685

686

687

688 689

690

691

692

693

694

696

697

698 699 700

- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy 649 optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
 - Idan Shenfeld, Felix Faltings, Pulkit Agrawal, and Aldo Pacchiano. Language model personalization via reward factorization, 2025.
 - Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize from human feedback. Advances in Neural Information Processing Systems, 33:3008–3021, 2020.
 - Chenkai Sun, Ke Yang, Revanth Gangi Reddy, Yi R Fung, Hou Pong Chan, Kevin Small, ChengXiang Zhai, and Heng Ji. Persona-db: Efficient large language model personalization for response prediction with collaborative data refinement. arXiv preprint arXiv:2402.11060, 2024.
 - Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. Neural dueling bandits: Preference-based optimization with human feedback. arXiv preprint arXiv:2407.17112, 2024.
 - Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845, 2024.
 - Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert, Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Helpsteer: Multi-attribute helpfulness dataset for steerlm, 2023. URL https://arxiv.org/ abs/2311.09528.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.
 - Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding and reranking through foundation models, 2025a. URL https: //arxiv.org/abs/2506.05176.
 - Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong Zheng, and Yaodong Yang. Amulet: Realignment during test time for personalized preference adaptation of llms, 2025b.
 - Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language models: A survey. arXiv preprint arXiv:2411.00027, 2024.
 - Yifan Zhong, Chengdong Ma, Xiaoyuan Zhang, Ziran Yang, Haojun Chen, Qingfu Zhang, Siyuan Qi, and Yaodong Yang. Panacea: Pareto alignment via preference adaptation for Ilms. Advances in Neural Information Processing Systems, 37:75522–7558, 2024.
 - Zhanhui Zhou, Jie Liu, Chao Yang, Jing Shao, Yu Liu, Xiangyu Yue, Wanli Ouyang, and Yu Qiao. Beyond one-preference-for-all: Multi-objective direct preference optimization for language models. CoRR, 2023.
 - Minjun Zhu, Yixuan Weng, Linyi Yang, and Yue Zhang. Personality alignment of large language models, 2025.
 - Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

STATEMENT ON LLM USAGE

The authors utilized LLMs solely as writing assistants to improve the grammar, clarity, and readability of this paper. All intellectual contributions, including the core ideas, methodology, and analysis of results, were conducted by the human authors.

MORE DETAILS ON THE EXPERIMENTAL SETTING

Reward Model Architecture. The lightweight reward model, $r(\cdot;\theta)$, is implemented as a simple Multi-Layer Perceptron (MLP) head. This network takes the final hidden-state embeddings from the backbone LLM for a given sequence as input. The MLP consists of one hidden layer with a size of 1024, and all hidden layers utilize the ReLU activation function.

Datasets Description. Since T-POP is a training-free framework, we use the collected data solely for evaluation purposes. Our evaluation suite is constructed from four established benchmarks, from which we only use the question (and discard the responses) to simulate real-world user interactions. The datasets and their sizes are as follows:

• HelpSteer (Wang et al., 2023) is a QA dataset aimed at evaluating the model's capability to follow multi-faceted instructions; we utilize its 1,236 testing instances (Zhang et al., 2025b).

• UltraFeedback (Cui et al., 2024) is a comprehensive, high-quality Al feedback dataset. From this, we selected two subsets: Truthful QA (Lin et al., 2021), using its 811 testing problems to assess factuality, and UltraChat, from which we extracted 3,845 problems to evaluate conversational ability (Zhang et al., 2025b).

• Personal Preference Eval (Personal) (Gao et al., 2024) is used to evaluate user preference alignment; we utilized the original dataset containing 548 testing instances (Zhang et al., 2025b).

Hyperparameters. The key hyperparameters used for the training of the reward model and the dueling bandit component of T-POP throughout our experiments are listed in Table 4.

Table 4: Hyperparameter settings for T-POP.

Category	Hyperparameter	Value
	Reward weight (w)	1.0
Dueling Bandit Parameters	Exploration parameter (ν)	0.5
	Regularization parameter (λ)	1.0
	Optimizer	AdamW
	Batch size	8
Reward Model Online Training	Learning rate	5e-4
	Epochs per query	100
	Training Iteration	100
	Weight decay schedule	1/(N + 50)
Danding Parameters	Max new tokens	128
Decoding Parameters	Candidate tokens (k)	40

For the weight decay schedule, N denotes the number of training data points.

Embedding and Judge Models. The reward model utilizes embeddings from the Qwen/Qwen3-Embedding-0.6B model (Zhang et al., 2025a). For all experiments requiring preference evaluation, including the simulation of user feedback during the online learning phase and the final win-rate judgments, we employ openai/GPT-40 (OpenAI et al., 2024).

Judgement Prompt Template. To ensure a consistent and reproducible method for both simulating user feedback and performing the final evaluation, we utilized a structured prompt template adapted from the AlpacaEval format (Li et al., 2023). Fig. 4 shows the natural language descriptions for the four core preference attributes used in our experiments. These descriptions serve as the concrete personalization goal.

Figu. 5 displays the main judgment prompt template provided to GPT-40. In practice, a specific attribute description from Fig. 4 is inserted into the $\{attribute description\}$ field of the main template. The complete prompt then instructs GPT-40 to act as an AI assistant and select which of the two provided responses better embodies the target attribute. This mechanism was used for two critical functions: (1) to generate the online pairwise preference feedback required by T-POP during its learning phase, and (2) to conduct the final win-rate evaluations against baseline models, as presented in Section 4.2.

PREFERENCE ATTRIBUTES: "creative": "Your answer should be creative as much as possible.", "verbose": "Your answer should be verbose as much as possible.", "concise": "Your answer should be concise as much as possible.", "uplifting": "Your answer should be uplifting as much as possible."

Figure 4: Natural language descriptions for the personalized preference attributes.

GPT-40 Judgement Prompt Template

Input:

Output:

[[A]] or [[B]]

You are an AI assistant that helps determine which response better aligns with a given attribute preference. Given a specific attribute preference, select the response from assistant A or B that better embodies this attribute. Focus on how well each response aligns with the specified attribute, not general quality. Declare your choice by using the format: "[[A]]" if you believe assistant A's response better aligns with the attribute, or "[[B]]" if assistant B's response better aligns with the attribute.

```
response better aligns with the attribute.

[Target Attribute]
{attribute}: {attribute description}

[User Question]
{query}

[The Start of Assistant A's Answer]
{response 1}

[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]

[The End of Assistant B's Answer]

{response 2}

[The End of Assistant B's Answer]

[Task] Which response better aligns with the "{attribute}" attribute? Consider how well each response embodies the characteristic described above.
```

Figure 5: The prompt template used to instruct GPT-40 for preference simulation and win rate evaluation.