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ABSTRACT

Personalizing large language models (LLMs) to individual user preferences
is a critical step beyond generating generically helpful responses. However,
current personalization methods are ill-suited for new users, as they typically
require either slow, resource-intensive fine-tuning or a substantial amount of
pre-existing user data, creating a significant cold-start problem. To address
this challenge, we introduce a new paradigm for real-time personalization
by learning from online pairwise preference feedback collected during text
generation. We propose T-POP (Test-Time Personalization with Online
Preference Feedback), a novel algorithm that synergistically combines test-time
alignment with dueling bandits. Without updating the LLM parameters, T-POP
steers the decoding process of a frozen LLM by learning a reward function
online that captures user preferences. By leveraging dueling bandits, T-POP
intelligently queries the user to efficiently balance between exploring their
preferences and exploiting the learned knowledge to generate personalized text.
Extensive experiments demonstrate that T-POP achieves rapid and data-efficient
personalization, significantly outperforming existing baselines and showing
consistent improvement with more user interactions.

1 INTRODUCTION

While large language models (LLMs) have achieved remarkable success in generating human-like
text, a critical frontier remains: moving from generic, one-size-fits-all responses to deeply
personalized interactions. Users increasingly expect models to understand and adapt to their unique
voice, style, and preferences (Zhang et al., 2024). The standard approach for aligning LLMs with
human preferences has been through methods such as reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) and direct preference optimization (DPO) (Rafailov et al., 2023).
However, these methods are primarily designed to align LLMs with generic human preferences,
failing to capture the specific nuances of individual users.

To address this gap, some recent works have adapted the RLHF framework to align LLMs with
the preferences of individual users (Jang et al., 2023; Li et al., 2024b; Park et al., 2024; Lee et al.,
2024). While effective, these approaches necessitate fine-tuning the LLM parameters for each user.
Consequently, they are often unable to adapt quickly and efficiently to new users, posing a significant
barrier to scalability and real-time personalization.

In response to the limitations of fine-tuning, another line of research has focused on personalization
methods that do not require parameter updates. These techniques include retrieval-augmented
generation (RAG) to fetch user-specific information (Sun et al., 2024; Mysore et al., 2023; Salemi
et al., 2024) and the integration of the historical data of the user directly into the LLM prompt (Kang
et al., 2023; Liu et al., 2023; Li et al., 2024a; Kim & Yang, 2024). A common prerequisite for
these methods, however, is the availability of sufficient user data. This leaves them inapplicable
to new users for whom such data has not yet been collected, a critical challenge in the field of
personalization known as the cold-start problem (Zhang et al., 2024).

To resolve this problem, a natural solution is to collect user data online for new users. Drawing
from the widespread success of RLHF and DPO, the most reliable and easily provided form of
user data is preference feedback, where users indicate their relative preference between a pair of
LLM-generated responses. We therefore propose to collect pairwise user preference data online to
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Figure 1: An overview of our T-POP for test-time personalization with online preference feedback.

facilitate rapid personalization. This approach, however, introduces a crucial challenge: how do we
simultaneously (1) collect user preference data online and (2) use these sequentially available data
to achieve effective personalization?

In this work, we tackle this challenge by proposing a principled combination of test-time alignment
(Khanov et al., 2024) and dueling bandits (Verma et al., 2024). We introduce our Test-Time
Personalization with Online Preference Feedback (T-POP) algorithm, which is illustrated in Fig. 1.
Following the test-time alignment paradigm, T-POP adjusts the decoding process of a frozen LLM
via an additive reward function that captures user personalization. This reward function is learned
online and assigns higher values to responses that are better aligned with the personal preferences
of the user. To learn this reward function effectively, we incorporate dueling bandits into the token
selection process, which allows us to strategically select a pair of candidate tokens at every decoding
step to query the user for feedback. Thanks to the inherent ability of dueling bandit algorithms to
balance exploration and exploitation, our T-POP is able to simultaneously (1) generate high-reward
responses that are increasingly aligned with user preference (i.e., exploitation) and (2) collect diverse
preference data to rapidly refine the reward function (i.e., exploration). As a result, T-POP achieves
effective user personalization using only a small number of online user feedback interactions.

In summary, our main contributions are:

• We formalize the problem of test-time personalization with online preference feedback,
addressing the critical cold-start challenge for new users.

• We propose T-POP, a novel algorithm that synergistically combines test-time alignment with
dueling bandits to achieve rapid, data-efficient personalization without any parameter fine-tuning.

• Extensive experiments show that T-POP significantly outperforms existing personalization
baselines, with its effectiveness steadily increasing as more user feedback is provided.

2 PRELIMINARY

Test-Time Alignment for Personalization. Our work builds upon the paradigm of test-time
alignment, which steers the generation process of a frozen LLM at inference time without updating
its parameters. The core idea is to guide each token selection step towards user-preferred outcomes.
Specifically, given a partially generated sequence y<p, the standard approach is to sample the
next token yp from the probability distribution of the base LLM πbase(·|y<p). To incorporate
personalization, we introduce a reward function r(·; θ) parameterized by θ, which is learned online
to capture the user preferences. This reward function assigns a scalar score to any given sequence,
with higher scores indicating better alignment with the preference of the user.
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At each decoding step p, we define a scoring function that combines the base model’s likelihood
with the learned preference reward. For any candidate token v from the vocabulary V , the score is
calculated as:

Score(v|y<p) = πbase(v|y<p) + ω · r([y<p, v]; θ) (1)
where [y<p, v] denotes the new sequence formed by appending token v to the prefix y<p, and ω is a
hyperparameter controlling the strength of the personalization. The decoding policy then selects the
next token by maximizing this score: yp = argmaxv∈V Score(v|y<p). This framework allows the
generation to be dynamically steered towards personalized content by optimizing a local, per-token
objective. In our problem of test-time personalization without sufficient user data, the central
challenge is how to learn the reward function r(·; θ) efficiently from online preference feedback
from the user. To this end, we adopt the framework of neural dueling bandits.

Neural Dueling Bandits. To learn the reward function r from online preference feedback, we
frame the problem within the neural dueling bandits framework (Verma et al., 2024). This setting is
designed for learning from pairwise preference feedback (e.g., “response A is better than response
B”), which is often more reliable and easier for users to provide than absolute scores.

In this framework, a learner iteratively interacts with a user. In each round, it presents a pair of items
(i.e., arms), and the user provides feedback indicating which one they prefer. The user’s choice
is assumed to be governed by the underlying reward function r. This relationship is commonly
modeled using the Bradley-Terry-Luce (BTL) model (Hunter, 2004; Luce et al., 1959), which states
that the probability of preferring arm a1 over arm a2 is given by: P (a1 ≻ a2) = σ(f(a1) −
f(a2)), where f denotes the unknown reward function and σ(z) = 1/(1 + e−z) is the sigmoid
function. To learn complex user preferences in text generation, we adopt a neural network (NN)
r(·; θ) parameterized by θ to approximate f (Verma et al., 2024).

3 THE T-POP ALGORITHM

In this section, we introduce our T-POP algorithm (Fig. 1, Algo. 1), which addresses the cold-start
personalization problem for new users. We begin by discussing the high-level insights behind our
approach, followed by a detailed breakdown of its components.

3.1 HIGH-LEVEL OVERVIEW

The core insight behind T-POP is the synergistic integration of test-time alignment with the
principles of online learning from dueling bandits. Instead of treating personalized text generation
and user preference learning as separate phases, T-POP interweaves them into a single, efficient
process. The algorithm operates by steering the decoding of a frozen LLM to simultaneously
generate two competing sequences in real-time.

This is achieved by applying a dueling bandit policy at each token-generation step. The exploitation
sequence is constructed by greedily following the reward model’s current estimate of user
preferences (line 10 of Algo. 1). Concurrently, the exploration sequence is built by optimistically
choosing tokens that balance high estimated reward with high uncertainty (line 11 of Algo. 1). The
two completed responses are then presented to the user, who provides feedback on which one they
prefer. This feedback is immediately used to update the reward model, improving its alignment
with the user preferences. This creates a tight feedback loop: the dueling bandit policy generates
personalized and informative pairs of responses for learning, and the user feedback immediately
refines the reward model, which in turn improves the personalized text-generation policy for the next
round of interaction. This entire process requires no fine-tuning of the base LLM, enabling rapid
and data-efficient personalization with online feedback.

3.2 ONLINE PERSONALIZATION LOOP

T-POP operates over a series of interaction rounds t = 1, 2, . . . , T . The goal in each round is to
generate a personalized and informative pair of responses (yt,1, yt,2), elicit user preference feedback
lt, and update the neural network reward model r(·; θ).
The learning process begins with an initial reward model r(·; θ1). In each round t, the algorithm
generates the pair (yt,1, yt,2) based on the current reward model r(·; θt), as detailed in Sec. 3.3.
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Algorithm 1: T-POP
Input: Initial reward model parameters θ1, matrix V0 = λI , number of user interactions T ,

reward weight ω, exploration parameter ν, number of candidate tokens k, maximum
number of tokens M in a response, observation history D0 = I.

1 for t = 1, . . . , T do
2 Receive the user query qt in the current round, set yt,1 = [qt], yt,2 = [qt]
3 for each token position p = 1, . . . ,M do
4 V(1)

p ← top-k tokens conditioned on yt,1

5 V(2)
p ← top-k tokens conditioned on yt,2

6 Vp ← V(1)
p ∪ V(2)

p

7 for v ∈ Vp do
8 score1(v; θt)← πbase(v|yt,1) + ω · r ([yt,1, v]; θt)
9 score2(v; θt)← πbase(v|yt,2) + ω · r ([yt,2, v]; θt)

10 Select token for response 1: vp,1 ← argmaxv∈Vp
score1(v; θt)

11 Select token for response 2:
vp,2 ← argmaxv∈Vp

score2(v; θt)+ω ·ν ∥∇r([yt,2, v]; θt)−∇r([yt,1, vp,1]; θt)∥V −1
t−1

12 yt,1 ← [yt,1, vp,1], yt,2 ← [yt,2, vp,2]

13 Vt−1 ← Vt−1 + (∇r(yt,1; θt)−∇r(yt,2; θt))(∇r(yt,1; θt)−∇r(yt,2; θt))⊤

14 Obtain binary user preference feedback lt = 1{yt,1≻yt,2} and update history:
Dt = Dt−1 ∪ (yt,1, yt,2, lt);

15 Train NN using history Dt = {(ys,1, ys,2, ls)}s=1,...,t by minimizing loss function Lt(θ)
(equation 2): θt+1 = argminθ Lt(θ)

16 Update the covariance matrix: Vt ← Vt−1

The user then provides a binary preference lt = 1{yt,1≻yt,2}, which is equal to 1 if the response
yt,1 is preferred over yt,2 and 0 otherwise. This new data point is then added to the history Dt =
Dt−1 ∪ {(yt,1, yt,2, lt)} (line 14 of Algo. 1). Upon receiving this feedback, the parameters of the
reward model (i.e., neural network) are updated by minimizing the following loss function over the
entire history Dt (line 15 of Algo. 1):

Lt(θ) = −
∑

(y1,y2,l)∈Dt

[
l log σ(r(y1; θ)−r(y2; θ))+(1−l) log σ(r(y2; θ)−r(y1; θ))

]
+λ∥θ∥22, (2)

in which σ(·) is the sigmoid function. Of note, minimizing this loss function (equation 2) is
equivalent to maximizing the log-likelihood of the preference observations Dt according to the
Bradley-Terry-Luce (BTL) model (Sec. 2), plus a regularization term (Verma et al., 2024). This
updated reward model, with parameters θt+1 = argminθ Lt(θ), is then used in the next round,
enabling continuous improvement of the reward model from user interactions.

Continuous Deployment via Asynchronous Learning. Contrary to a rigid ”collect-then-deploy”
paradigm, T-POP is designed for continuous, low-latency deployment throughout the interaction.
By decoupling model updates from user interactions, T-POP can minimize latency increase:

• Asynchronous Online Updates: To eliminate the training latency, we implement an
asynchronous update strategy. When a user provides preference feedback at round t, the reward
model update (θt → θt+1) is triggered in a background thread. Crucially, during the model
update process, our T-POP continues to serve subsequent queries using the latest reward model
r(·; θt). After the model update concludes, the updated reward model r(·; θt) will then be used to
serve subsequent user queries. This ensures that the computational cost of training is completely
masked from the user experience.

• Flexible Deployment Mode: Once the personalization phase concludes (at any arbitrary
interaction t), T-POP transitions to a definitive inference mode. The learned reward model,
r(·; θt), is frozen and utilized solely by the exploitation arm. Generation then proceeds via
token-by-token greedy decoding, where each token is selected to maximize the score in equation 1
based on the final reward model. This effectively crystallizes the learned preferences into a
standard, low-overhead text generator.
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3.3 TOKEN-BY-TOKEN ARM GENERATION

A key innovation of T-POP is its dynamic, token-by-token construction of the dueling sequences,
yt,1 and yt,2, which is achieved by integrating dueling bandits with reward-guided decoding. The
pair of sequences is built over M steps (lines 3–13 of Algo. 1), with the exploitation-exploration
policy applied at each step to select the next token for each growing sequence.

Exploitation Sequence. The first sequence, yt,1, represents pure exploitation. It is generated
to be the best possible response according to the current reward model r(·; θt). At each token
position p, the next token vp,1 is chosen greedily to maximize the reward-guided scoring function
from equation 1:

vp,1 = argmax
v∈Vp

(πbase(v|yt,1) + ω · r([yt,1, v]; θt)) , (3)

where Vp is a set of candidate tokens formed by the top-k tokens from the base LLM (Algo. 1, lines
4-6). This process iteratively builds a sequence aligned with the current reward model r(·; θt).
Exploration Sequence. The second sequence, yt,2, simultaneously accounts for exploitation and
exploration. That is, it aims to not only achieve high reward values to align with the user preference
(i.e., exploitation), but also generate informative responses with large uncertainty to accelerate the
learning of the reward model (i.e., exploration). Specifically, at each token position p, it selects the
next token vp,2 by maximizing the sum of the score and a UCB-style exploration bonus:

vp,2 = argmax
v∈Vp

πbase(v|yt,2) + ω · r([yt,2, v]; θt)︸ ︷︷ ︸
Exploitation

+ω · ν · UncertaintyBonus(v)︸ ︷︷ ︸
Exploration

. (4)

The uncertainty bonus term is defined as:

UncertaintyBonus(v) = ∥∇r([yt,2, v]; θt)−∇r([yt,1, vp,1]; θt)∥V −1
t−1

. (5)

Our generation strategy is grounded in the theoretically principled Neural Dueling Bandit framework
(Verma et al., 2024) and the Tokenized Bandit theory (Shin et al., 2025).

Guarantees for Neural Dueling Bandits. The matrix Vt−1 (line 14 of Algo. 1) aggregates the
gradient information from all previously selected sequences:

Vt−1 ← Vt−1 + (∇r(yt,1; θt)−∇r(yt,2; θt))(∇r(yt,1; θt)−∇r(yt,2; θt))⊤ (6)

This covariance update allows the uncertainty bonus in equation 5 to measure the epistemic
uncertainty of a candidate sequence [yt,2, v] relative to the exploitation arm [yt,1, vp,1]. As
established by Verma et al. (2024), maximizing this gradient-based bonus ensures that the system
efficiently explores the reward parameter space. Under standard regularity assumptions (e.g.,
bounded norm in a Reproducing Kernel Hilbert Space), this mechanism achieves a cumulative
regret bound of RT = Õ(deff

√
T ), where deff is the effective dimension of the neural tangent

kernel matrix. This theoretical result guarantees that our reward model converges to the user’s true
preference with high probability.

Guarantees for Sequential Decoding. Extending bandit guarantees to token-by-token generation
is non-trivial due to the combinatorial search space. However, our approach is supported by the
recent findings of Shin et al. (2025), who proved that linear bandit algorithms applied to token-level
decoding achieve sublinear regret RT = Õ(L

√
T ), provided the utility function satisfies the

Diminishing Distance with More Commons (DDMC) assumption. Here L denotes the maximum
sequence length. Therefore, T-POP effectively operationalizes these theoretical principles: the
uncertainty bonus steers generation towards sequences that provide significant novel information
(exploration), while the reward score ensures alignment (exploitation), theoretically ensuring both
sample efficiency and convergence in the sequential decoding setting.

4 EXPERIMENTS

We conduct comprehensive experiments to empirically validate the effectiveness and data efficiency
of our T-POP, particularly its ability to achieve rapid personalization in cold-start scenarios. Some
experimental details are deferred to App. B due to space constraints.
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4.1 EXPERIMENTAL SETTING

Models, Datasets and Personalization Attributes. We conduct experiments on a diverse
set of modern open-source LLMs, including Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen2-7B-Instruct (Yang et al., 2025). Our
evaluation suite is built upon four established benchmarks to ensure a comprehensive assessment.
We use (1) HelpSteer (Wang et al., 2023) for its multi-faceted instruction-following challenges
and two subsets of UltraFeedback (Cui et al., 2024): (2) TruthfulQA (Lin et al., 2021) and (3)
UltraChat—to evaluate factuality and conversational ability, respectively. To directly measure
alignment with user tastes, we also include the (4) Personal Preference Eval (Gao et al., 2024)
dataset. To simulate diverse real-world user preferences, we evaluate our method across four distinct
preference attributes, inspired by prior work (Zhong et al., 2024; Zhang et al., 2025b): creative,
verbose, concise, and uplifting.

Baseline Methods. We compare our T-POP against a suite of strong baselines representing different
personalization paradigms. These include the original, unmodified backbone LLM (Base); the
backbone guided only by prompt engineering (Preference Prompting (Pref)); and a standard
decoding algorithm, Beam Search (BS16), with a beam width of 16. We also compare against two
state-of-the-art training-free methods: Linear Alignment (LA) (Gao et al., 2024), which linearly
updates the model’s logits to steer generation, and our primary competitor, AMULET (Zhang
et al., 2025b), which formulates token-level decoding as an online learning problem for test-time
alignment.

Evaluation Metrics. Given the subjective nature of personalization, we employ a two-pronged
evaluation strategy. Our primary quantitative metric is the Reward Model Score. We use the
widely used ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024) to score the alignment of generated
responses with the target attribute, following the evaluation methodology of Zhang et al. (2025b).
To complement this and capture nuances that a single reward model may overlook, we also adopt
GPT-4o as a Judge (Ouyang et al., 2022). Following the standard protocol (Li et al., 2023), we
present GPT-4o with the outputs from T-POP and a baseline, and report the win rate.

During the online interaction phase of our T-POP, we use GPT-4o to simulate the user and provide
pairwise preference feedback based on the target attribute. The evaluation prompts are adapted from
the AlpacaEval standard format.

4.2 MAIN RESULTS

An effective personalization method should generate text that is both strongly and consistently
aligned with user preferences. To ensure a comprehensive evaluation, we assess these two aspects
separately. First, we utilize the Reward Model Score (Wang et al., 2024) to quantify the strength
of personalization (Sec. 4.2.1). Second, to measure consistency, we report the win rate against the
base LLM in pairwise comparisons judged by GPT-4o (Sec. 4.2.2).

4.2.1 ARMORM SCORES: ANALYSIS OF THE STRENGTH OF PERSONALIZATION

The main quantitative results, presented in Table 1, benchmark T-POP against strong baselines
across a wide range of datasets and attributes. The scores in Table 1 underscore the effectiveness
of T-POP in achieving stronger alignment A detailed model-by-model analysis reveals that ours
algorithm consistently delivers substantial gains over all baselines, including the strongest baseline,
AMULET. The performance uplift is most pronounced on Qwen2-7B, where T-POP demonstrates
an average improvement of 28.0% over the second best method, AMULET, across all four
preference attributes. This is closely followed by a 19.9% average gain over AMULET on the
Mistral-7B model. On Llama-3.1-8B, the race is highly competitive, with T-POP and AMULET
each securing state-of-the-art scores in two of the four preference dimensions; however, T-POP still
maintains a marginal edge with a final average score of 0.535 compared to AMULET’s 0.5325.
Aggregating these results, T-POP establishes a robust overall average improvement of 14.7%
against AMULET. This persistent and significant performance improvement across diverse models
validates the efficacy of our dueling bandit-based test-time personalization framework, which more
efficiently captures the nuances of user preferences than other test-time adaptation methods.
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Table 1: Score comparison across different datasets, attributes and LLMs. The best score is
highlighted in bold, and the second best score is highlighted in italics.

Model Dataset
Creative Verbose Concise Uplifting

Base Pref BS16 LA Amulet T-POP Base Pref BS16 LA Amulet Ours Base Pref BS16 LA Amulet T-POP Base Pref BS16 LA Amulet T-POP

Mistral-7B

HelpSteer 0.30 0.30 0.34 0.36 0.39 0.48 0.27 0.27 0.31 0.31 0.30 0.40 0.41 0.42 0.50 0.52 0.52 0.59 0.33 0.33 0.39 0.40 0.41 0.50

Personal 0.34 0.34 0.35 0.38 0.42 0.47 0.30 0.30 0.30 0.30 0.30 0.39 0.47 0.49 0.50 0.54 0.53 0.65 0.41 0.42 0.42 0.45 0.46 0.52

Truthful QA 0.32 0.33 0.34 0.38 0.41 0.51 0.30 0.31 0.31 0.33 0.32 0.43 0.41 0.44 0.47 0.51 0.49 0.54 0.36 0.38 0.39 0.47 0.47 0.54

Ultra Chat 0.34 0.35 0.35 0.36 0.38 0.47 0.31 0.31 0.31 0.32 0.31 0.39 0.45 0.46 0.47 0.49 0.51 0.61 0.38 0.39 0.39 0.41 0.42 0.50

Average 0.32 0.33 0.34 0.37 0.40 0.48 0.30 0.30 0.31 0.32 0.31 0.40 0.43 0.45 0.48 0.52 0.51 0.60 0.37 0.38 0.40 0.43 0.44 0.51

Qwen2-7B

HelpSteer 0.34 0.34 0.35 0.35 0.36 0.50 0.31 0.32 0.33 0.33 0.30 0.44 0.43 0.48 0.50 0.57 0.59 0.60 0.38 0.38 0.39 0.39 0.41 0.52

Personal 0.33 0.34 0.34 0.37 0.41 0.49 0.31 0.31 0.31 0.30 0.28 0.43 0.41 0.48 0.49 0.53 0.54 0.65 0.40 0.42 0.42 0.43 0.42 0.55

Truthful QA 0.32 0.33 0.33 0.34 0.36 0.53 0.30 0.31 0.32 0.33 0.32 0.47 0.41 0.46 0.50 0.54 0.51 0.53 0.36 0.38 0.39 0.44 0.45 0.58

Ultra Chat 0.34 0.34 0.34 0.35 0.36 0.47 0.31 0.32 0.33 0.32 0.31 0.44 0.40 0.45 0.46 0.54 0.57 0.62 0.38 0.39 0.39 0.40 0.39 0.54

Average 0.33 0.34 0.34 0.35 0.37 0.50 0.31 0.32 0.32 0.32 0.30 0.45 0.41 0.47 0.49 0.55 0.55 0.60 0.38 0.39 0.40 0.42 0.42 0.55

Llama-3.1-8B

HelpSteer 0.33 0.34 0.36 0.44 0.50 0.51 0.30 0.31 0.33 0.36 0.41 0.51 0.40 0.43 0.45 0.53 0.57 0.62 0.36 0.37 0.39 0.45 0.50 0.53

Personal 0.35 0.36 0.36 0.46 0.62 0.52 0.31 0.31 0.31 0.35 0.49 0.46 0.39 0.44 0.45 0.53 0.67 0.66 0.42 0.44 0.43 0.49 0.61 0.55

Truthful QA 0.31 0.33 0.33 0.41 0.56 0.52 0.29 0.29 0.31 0.34 0.44 0.54 0.37 0.40 0.42 0.49 0.52 0.51 0.34 0.36 0.37 0.43 0.49 0.53

Ultra Chat 0.33 0.34 0.34 0.42 0.57 0.50 0.31 0.32 0.32 0.36 0.41 0.49 0.38 0.41 0.41 0.48 0.53 0.60 0.37 0.38 0.38 0.44 0.48 0.52

Average 0.33 0.34 0.35 0.43 0.58 0.51 0.30 0.31 0.32 0.35 0.44 0.50 0.38 0.42 0.43 0.51 0.57 0.60 0.37 0.39 0.39 0.45 0.54 0.53

Furthermore, we analyze the impact of the number of user interactions (iterations) on the
performance of T-POP. To demonstrate the robustness of its learning efficiency, we present results
from two distinct experimental settings: the concise attribute on the Personal dataset and the
HelpSteer dataset (Fig. 2). As illustrated across both figures, all three models—Llama-3.1-8B,
Mistral-7B, and Qwen2-7B—exhibit a remarkably consistent and efficient learning curve. The
reward scores increase sharply within the first 20 iterations in both scenarios, indicating that
T-POP rapidly captures user preferences with minimal feedback, regardless of the specific task.
Following this initial surge, performance gains begin to plateau, with the models reaching their
peak alignment between 40 and 60 interactions. Subsequently, the scores remain stable or decrease
slightly, which can be attributed to potential overfitting. This consistent trend of rapid initial
improvement followed by convergence across diverse datasets further validates the data efficiency
and swift personalization capability of T-POP.

4.2.2 WIN RATE: ANALYSIS OF THE CONSISTENCY OF PERSONALIZATION

To assess the consistency of our personalization method, we employ GPT-4o as a judge to perform
pairwise comparisons. For each prompt, GPT-4o evaluates which of two responses—one from our
method and one from the base LLM—is better aligned with a given personalization attribute. Table 2
presents the results, where each value represents the win rate against the base LLM. This metric
measures how consistently an algorithm produces a qualitatively superior and personalized response.

The results show that T-POP achieves personalization with remarkable consistency. Across the 36
experimental settings (3 LLMs × 4 attributes × 3 datasets), our T-POP achieves the highest or
second-highest average win rate in 31 cases. Crucially, the win rate for T-POP is almost universally
above 90%, averaging 94.2% across all settings. A win rate over 90% signifies a high degree
of confidence that T-POP consistently provides correct alignment and personalization, leading
to responses that are qualitatively superior to those from the unguided base model. This robust
performance indicates that our T-POP is not only powerful but also highly reliable.

In summary, the ArmoRM scores in Table 1 and the win rates in Table 2 jointly demonstrate that
T-POP achieves strong and consistent personalization.

5 ABLATION STUDY

The Impact of Reward Weight w. Fig. 3 illustrates the performance of T-POP across a range of w
values for all three backbone models. The results exhibit a clear and consistent trend. At w = 0.0,
where T-POP effectively deactivates the personalization component, the reward scores are at their
lowest, representing the performance of the base LLM. A sharp and substantial improvement in the
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Figure 2: The effect of the number of user interactions on the Reward Score for different models.
The results correspond to the concise attribute.

Table 2: Win rate of different algorithms against the base LLM in terms of personalization. The
best score is highlighted in bold, and the second best score is highlighted in italics.

Model Dataset
Creative Verbose Concise Uplifting

Pref BS16 LA Amulet T-POP Pref BS16 LA Amulet Ours Pref BS16 LA Amulet T-POP Pref BS16 LA Amulet T-POP

Mistral-7B

HelpSteer 95.5% 94.0% 98.1% 90.2% 99.5% 79.4% 76.5% 91.0% 79.7% 93.1% 87.9% 89.5% 87.9% 75.1% 92.4% 86.7% 85.2% 95.3% 92.3% 97.2%

Personal 97.1% 94.3% 98.5% 96.6% 99.1% 85.4% 75.4% 96.5% 87.8% 92.5% 95.4% 94.0% 93.8% 71.3% 96.7% 86.4% 85.6% 94.2% 90.2% 98.2%

Truthful QA 85.4% 83.0% 94.5% 93.3% 99.6% 79.1% 77.5% 90.1% 78.7% 95.4% 77.4% 80.5% 70.3% 70.8% 72.3% 85.8% 82.9% 91.9% 88.2% 96.5%

Average 92.6% 90.4% 97.0% 93.4% 99.4% 81.3% 76.5% 92.5% 82.1% 93.7% 86.9% 88.0% 84.0% 72.4% 87.7% 86.3% 84.6% 93.8% 90.2% 97.3%

Qwen2-7B

HelpSteer 94.0% 92.8% 86.1% 89.9% 96.6% 93.2% 90.9% 82.9% 83.3% 94.0% 88.2% 89.5% 92.8% 91.6% 92.0% 83.8% 83.5% 75.2% 97.7% 98.2%

Personal 95.2% 96.3% 98.2% 96.8% 99.1% 93.3% 96.7% 100% 73.7% 90.3% 95.8% 97.6% 99.1% 92.0% 98.7% 83.5% 89.9% 95.8% 91.1% 91.3%

Truthful QA 90.1% 85.4% 88.2% 83.9% 98.5% 78.2% 79.5% 84.3% 78.9% 96.0% 88.9% 90.1% 92.2% 91.2% 79.0% 81.9% 81.2% 80.8% 93.0% 99.1%

Average 93.1% 91.5% 90.8% 90.2% 98.1% 88.2% 89.0% 89.1% 78.6% 93.4% 91.0% 92.4% 94.7% 91.6% 89.9% 83.1% 84.9% 83.9% 93.9% 96.2%

Llama-3.1-8B

HelpSteer 97.4% 96.2% 97.4% 97.6% 98.6% 91.7% 91.4% 97.6% 94.7% 97.6% 89.0% 89.3% 94.3% 86.3% 92.3% 89.4% 88.8% 99.0% 97.5% 97.6%

Personal 96.3% 95.1% 97.1% 99.8% 98.9% 91.4% 90.6% 93.8% 99.6% 94.5% 96.2% 97.0% 97.2% 97.3% 97.4% 94.1% 94.0% 99.6% 100% 94.0%

Truthful QA 94.1% 92.3% 97.2% 99.5% 97.3% 87.3% 86.7% 96.5% 93.2% 95.4% 71.9% 76.9% 74.7% 85.5% 68.8% 82.7% 82.6% 95.3% 92.8% 93.5%

Average 95.9% 94.5% 97.2% 99.0% 98.3% 90.1% 86.2% 96.0% 95.8% 95.8% 85.7% 87.7% 87.7% 89.7% 86.1% 88.7% 88.5% 97.8% 96.8% 95.0%

reward scores is observed across all models at w = 0.1, and the performance peaks at w = 1.0. This
indicates that a moderate reward signal is highly effective at steering the generation towards the user
preference. However, as the weight is further increased to w = 2.0 and subsequently to w = 5.0, the
reward scores show a noticeable decline. This suggests that an excessively high reward weight can be
counterproductive. This is likely because an overly strong preference signal begins to interfere with
the inherent generation capabilities of the backbone model, πbase, leading the decoding strategy to
myopically optimize for the reward. This can result in outputs that, while superficially aligned, may
lack coherence or quality. This phenomenon is often referred to as reward hacking. Our findings
suggest that an optimal value for w lies in the vicinity of w = 1.0, which strikes an effective balance
between personalization strength and the preservation of generation quality.

Impact of Model Size. To assess the scalability and model-agnostic properties of T-POP, we
evaluate its performance on smaller, resource-efficient LLMs. Specifically, we apply T-POP to
Qwen2-0.5B-Instruct and Llama-3.2-1B-Instruct, comparing the ArmoRM scores against that of the
base models. The results are presented in Table 3, which confirm that T-POP is able to effectively
personalize these smaller models. Notably, T-POP delivers a substantial improvement for the
Llama-3.2-1B-Instruct model, increasing its alignment score from 0.28 to 0.44. This finding has
significant implications, as it demonstrates that our method can dramatically enhance the capabilities
of smaller models, enabling them to achieve a level of personalization typically associated with
much larger models. This highlights the potential of T-POP for applications with constrained
computational resources, such as on-device deployment.

Impact of the Uncertainty Bonus. We perform the experiments using the Llama-3.1-8B-Instruct
backbone on the Personal (Gao et al., 2024) dataset for the ”concise” attribute, and the model is
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Figure 3: The effect of the reward weight (w) on the alignment performance of T-POP across three
different backbone models.

Table 3: ArmoRM scores of our T-POP for models with different sizes.
Model Base Score T-POP Score
Qwen2-0.5B-Instruct 0.27 0.29
Qwen2-7B-Instruct 0.37 0.51
Llama-3.2-1B-Instruct 0.28 0.44
Llama-3.1-8B-Instruct 0.35 0.55

trained online for 20 iterations. We compare T-POP against three alternative strategies for the
exploration arm, replacing our metric with different heuristics:

• Entropy Bonus: We replaced our uncertainty metric (equation 5) with a token-level entropy term,
Bonus(v) = −P (v) logP (v), where P (v) is the softmax probability of the token scores.

• Boltzmann Exploration: A standard reinforcement learning baseline representing “noisy
exploitation.” The exploration arm employs high-temperature sampling (T = 1.5) on the
reward-guided logits: vp,2 ∼ Softmax

(
log πbase+ω·r

T

)
.

• Random: The exploration arm is generated via random sampling from the base LLM πbase,
serving as a performance lower bound.

Table 4: Ablation study on exploration strategies.
Method Final Score Improvement vs. Random
T-POP (Random) 0.51 -
T-POP (Entropy) 0.53 +0.02
T-POP (Boltzmann) 0.57 +0.06
T-POP (Ours) 0.64 +0.13

The results are shown in Table 4, which confirm the validity of our algorithm: strategies like Entropy
and Boltzmann Exploration primarily leverage the aleatoric uncertainty (ambiguity inherent in the
next-token prediction of the language model). In contrast, the uncertainty metric employed by
T-POPutilizes the gradient norm to capture the epistemic uncertainty regarding the user’s preference
parameters (Verma et al., 2024). To efficiently solve the cold-start problem, the system must
explore regions where the reward model lacks knowledge, not merely where the language model
is diverse. This theoretical distinction translates directly into the superior data efficiency observed
in our method.

Alignment-Compute Trade-off. To rigorously evaluate the computational cost, we measured the
wall-clock inference time for T-POP against the state-of-the-art baseline, AMULET.

9
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Table 5: Wall-clock inference time comparison (seconds).
Method AMULET T-POP (Ours)
Query-level Latency 11.25 23.26
Token-level Latency 0.09 0.18

As presented in Table 5, T-POP incurs approximately twice the latency of AMULET but remains
within the same order of magnitude. This reflects the inherent alignment-compute trade-off noted
in prior work (Khanov et al., 2024). We argue this moderate computational cost is justified by the
substantial performance gains, as T-POP establishes a robust overall average improvement of 14.7%
over the strongest baselines in Table1.

6 RELATED WORK

6.1 ALIGNMENT THROUGH REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ziegler et al.,
2019) is the standard paradigm for aligning LLMs with human preferences. The canonical pipeline
(Ouyang et al., 2022) involves three stages: 1) supervised fine-tuning (SFT) on high-quality
demonstrations; 2) training a reward model (RM) (Stiennon et al., 2020) on a dataset of
human-ranked responses; and 3) fine-tuning the SFT model using an RL algorithm such as PPO
(Schulman et al., 2017), with the RM providing the reward signal. The computational expense
and instability of PPO-based RLHF have motivated simpler alternatives. For example, direct
Preference Optimization (DPO) (Rafailov et al., 2023) bypasses explicit reward modeling by
reframing alignment as a direct policy optimization problem. However, these advancements still
produce a single, static policy aligned with a pre-collected, offline dataset, often scaled with
techniques like RLAIF (Bai et al., 2022).

6.2 PERSONALIZED ALIGNMENT

Since the universal preference model of conventional RLHF is ill-suited for personalization, a
dedicated research area has emerged to adapt LLMs to individual users. One approach involves
creating large-scale datasets to model diverse preferences by mapping sociodemographics (PRISM
(Kirk et al., 2024)) or constructing user personas from psychological traits (ALIGNX (Li et al.,
2025), PAPI (Zhu et al., 2025)). A more data-efficient direction models preferences in a compact,
low-dimensional latent space, for instance, by representing them as a linear combination of base
reward functions (PReF (Shenfeld et al., 2025), multi-objective alignment (Zhou et al., 2023)) or as
latent distributions for few-shot adaptation (VPL (Poddar et al., 2024)). The third direction, most
aligned with our work, focuses on lightweight, inference-time adaptation of frozen LLMs. These
methods steer the decoding process by manipulating the LLM outputs (PAD (Chen et al., 2024), LA
(Gao et al., 2024), decoding-time realignment (Liu et al., 2024)), reframing token generation as an
online learning problem (AMULET (Zhang et al., 2025b)), or directly modifying the internal states
of the LLMs such as the attention head activations (PAS (Zhu et al., 2025)).

7 CONCLUSION

In this work, we addressed the critical cold-start problem in personalizing LLMs for new
users. We introduced T-POP, a novel algorithm that enables rapid, real-time personalization
by learning directly from online pairwise preference feedback. By synergistically integrating
test-time alignment with dueling bandits, T-POP steers the decoding process of a frozen
LLM to simultaneously exploit learned preferences and efficiently explore for new ones. Our
extensive experiments demonstrate that T-POP achieves significant performance gains over existing
baselines with minimal user interaction, confirming its data efficiency and effectiveness for swift
personalization. Future work could explore extending this framework to handle more complex
feedback structures or adapt to long-term shifts in user preferences.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have clearly described the detailed experimental setting in Sec. 4.1
and App. B. We have also included important prompts adopted by our algorithm in App. B.
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A STATEMENT ON LLM USAGE

The authors utilized LLMs solely as writing assistants to improve the grammar, clarity, and
readability of this paper. All intellectual contributions, including the core ideas, methodology, and
analysis of results, were conducted by the human authors.

B MORE DETAILS ON THE EXPERIMENTAL SETTING

Reward Model Architecture. The lightweight reward model, r(·; θ), is implemented as a simple
Multi-Layer Perceptron (MLP) head. This network takes the final hidden-state embeddings from the
backbone LLM for a given sequence as input. The MLP consists of one hidden layer with a size of
1024, and all hidden layers utilize the ReLU activation function.

Diagonal Approximation. Following the common practice in neural bandits, we use diagonal
approximation to approximate hte (Zhang et al., 2021; Zhou et al., 2020)

Datasets Description. Since T-POP is a training-free framework, we use the collected data solely
for evaluation purposes. Our evaluation suite is constructed from four established benchmarks, from
which we only use the question (and discard the responses) to simulate real-world user interactions.
The datasets and their sizes are as follows:

• HelpSteer (Wang et al., 2023) is a QA dataset aimed at evaluating the model’s capability to follow
multi-faceted instructions; we utilize its 1,236 testing instances (Zhang et al., 2025b).

• UltraFeedback (Cui et al., 2024) is a comprehensive, high-quality Al feedback dataset. From
this, we selected two subsets: Truthful QA (Lin et al., 2021), using its 811 testing problems
to assess factuality, and UltraChat, from which we extracted 3,845 problems to evaluate
conversational ability (Zhang et al., 2025b).

• Personal Preference Eval (Personal) (Gao et al., 2024) is used to evaluate user preference
alignment; we utilized the original dataset containing 548 testing instances (Zhang et al., 2025b).

Hyperparameters. The key hyperparameters used for the training of the reward model and the
dueling bandit component of T-POP throughout our experiments are listed in Table 6.

Table 6: Hyperparameter settings for T-POP.
Category Hyperparameter Value

Dueling Bandit Parameters
Reward weight (w) 1.0
Exploration parameter (ν) 0.5
Regularization parameter (λ) 1.0

Reward Model Online Training

Optimizer AdamW
Batch size 8
Learning rate 5e-4
Epochs per query 100
Training Iteration 100
Weight decay schedule 1/(N + 50)

Decoding Parameters Max new tokens 128
Candidate tokens (k) 40

For the weight decay schedule, N denotes the number of training data points.

Embedding and Judge Models. The reward model utilizes embeddings from the
Qwen/Qwen3-Embedding-0.6B model (Zhang et al., 2025a). For all experiments requiring
preference evaluation, including the simulation of user feedback during the online learning phase
and the final win-rate judgments, we employ openai/GPT-4o (OpenAI et al., 2024).
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Judgement Prompt Template. To ensure a consistent and reproducible method for both
simulating user feedback and performing the final evaluation, we utilized a structured prompt
template adapted from the AlpacaEval format (Li et al., 2023). Fig. 4 shows the natural language
descriptions for the four core preference attributes used in our experiments. These descriptions serve
as the concrete personalization goal.

Figu. 5 displays the main judgment prompt template provided to GPT-4o. In practice, a specific
attribute description from Fig. 4 is inserted into the {attribute description} field of the
main template. The complete prompt then instructs GPT-4o to act as an AI assistant and select
which of the two provided responses better embodies the target attribute. This mechanism was
used for two critical functions: (1) to generate the online pairwise preference feedback required by
T-POP during its learning phase, and (2) to conduct the final win-rate evaluations against baseline
models, as presented in Section 4.2.

Preference Attribute Descriptions

PREFERENCE ATTRIBUTES :
”creative”: ”Your answer should be creative as much as possible.”,
”verbose”: ”Your answer should be verbose as much as possible.”,
”concise”: ”Your answer should be concise as much as possible.”,
”uplifting”: ”Your answer should be uplifting as much as possible.”

Figure 4: Natural language descriptions for the personalized preference attributes.

GPT-4o Judgement Prompt Template

Input:
You are an AI assistant that helps determine which response better aligns with a given
attribute preference. Given a specific attribute preference, select the response from assistant
A or B that better embodies this attribute.Focus on how well each response aligns with the
specified attribute, not general quality. Declare your choice by using the format: ”[[A]]” if
you believe assistant A’s response better aligns with the attribute, or ”[[B]]” if assistant B’s
response better aligns with the attribute.
[Target Attribute]
{attribute}: {attribute description}
[User Question]
{query}
[The Start of Assistant A’s Answer]
{response 1}
[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
{response 2}
[The End of Assistant B’s Answer]
[Task] Which response better aligns with the ”{attribute}” attribute? Consider how well
each response embodies the characteristic described above.

Output:
[[A]] or [[B]]

Figure 5: The prompt template used to instruct GPT-4o for preference simulation and win rate
evaluation.
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C MORE ABLATION EXPERIMENT RESULTS

In this section, we provide additional ablation studies to further validate the efficiency and
effectiveness of T-POP. Unless otherwise stated, all experiments in this section are conducted using
the Llama-3.1-8B-Instruct backbone on the Personal dataset for the concise attribute.

C.1 ANALYSIS OF COLD-START PERFORMANCE (EARLY ITERATIONS)

To rigorously evaluate T-POP’s capability in addressing the cold-start problem, we analyzed its
performance at extremely early stages of user interaction (T = 5 and T = 10). Table 7 compares
the ArmoRM scores of T-POP against baselines.

Remarkably, with only 5 user interactions, T-POP achieves a reward score of 0.56, which
already surpasses the strong training-free baseline Linear Alignment (LA, 0.53) and significantly
outperforms static methods like Prompting (0.44). By T = 10, the performance gap further widens,
demonstrating T-POP’s ability to rapidly adapt to user preferences with minimal data.

Table 7: Performance comparison at early interaction stages (Proof of Rapid Adaptation).
Method Base Pref BS16 LA Amulet T-POP (Iter=5) T-POP (Iter=10) T-POP (Converged)

ArmoRM Score 0.39 0.44 0.45 0.53 0.67 0.56 0.63 0.66

C.2 ABLATION ON EXPLORATION STRATEGIES

A key component of T-POP is the construction of the “Exploration Sequence” (yt,2) using a
principled uncertainty bonus. To justify our design choice, we compared T-POP against three variant
exploration strategies:

• Variant A: Entropy Bonus. We replaced our uncertainty metric with a token-level entropy
term: Bonus(v) = −P (v) logP (v), targeting tokens with high predictive uncertainty in the
base model.

• Variant B: Boltzmann Exploration. Instead of an explicit bonus, we employed
High-Temperature Sampling (Thigh = 1.5) on the reward-guided logits to induce “noisy
exploitation.” The token selection follows:

vp,2 ∼ Softmax
(
log πbase(·|yt,2) + ω · r([yt,2, ·]; θt)

Thigh

)
• Variant C: Random. The exploration arm is generated via random sampling from the base

LLM, serving as a lower bound.

As shown in Table 8, our uncertainty-based approach significantly outperforms heuristic methods
(Entropy) and noisy sampling (Boltzmann). This confirms that estimating epistemic uncertainty via
the Fisher Information Matrix provides a more informative signal for the reward model than simple
aleatoric uncertainty or randomness.

Table 8: Ablation study on different exploration strategies (Iteration 20).
Method Final Score (Iter=20) Improvement over Random
T-POP (Random) 0.51 -
T-POP (Entropy) 0.53 +0.02
T-POP (Boltzmann) 0.57 +0.06
T-POP (Ours) 0.64 +0.13

C.3 INFERENCE LATENCY ANALYSIS

We further evaluated the computational overhead of T-POP compared to the SOTA baseline
AMULET. Table 9 reports the wall-clock inference time per query and per token.
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T-POP vs. AMULET: As shown in Table 9, T-POP incurs a higher latency compared to AMULET.
This overhead primarily stems from the embedding phase and the forward pass of the lightweight
Reward Model (RM) during the decoding process. However, importantly, our token-level latency
(0.18s) remains within the same order of magnitude as AMULET (0.09s), making it practically
feasible for real-time user interactions.

Trade-off Justification: As noted in prior work on test-time alignment (Khanov et al., 2024), there
is an inherent “Computation vs. Alignment” trade-off. Given that T-POP effectively addresses the
Cold-Start Problem, enabling personalization for new users where static baselines fail, we argue
that this marginal increase in computational cost is a justified investment for the significant gains in
alignment quality and data efficiency.

Table 9: Wall-Clock Inference Time Comparison.
Metric AMULET T-POP (Ours)
Query-level Latency 11.25 s 23.26 s
Token-level Latency 0.09 s 0.18 s
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