

000 T-POP: TEST-TIME PERSONALIZATION WITH ONLINE 001 002 PREFERENCE FEEDBACK 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Personalizing large language models (LLMs) to individual user preferences
012 is a critical step beyond generating generically helpful responses. However,
013 current personalization methods are ill-suited for new users, as they typically
014 require either slow, resource-intensive fine-tuning or a substantial amount of
015 pre-existing user data, creating a significant cold-start problem. To address
016 this challenge, we introduce a new paradigm for real-time personalization
017 by learning from online pairwise preference feedback collected during text
018 generation. We propose T-POP (*Test-Time Personalization with Online*
019 *Preference Feedback*), a novel algorithm that synergistically combines test-time
020 alignment with *dueling bandits*. Without updating the LLM parameters, T-POP
021 steers the decoding process of a frozen LLM by learning a reward function
022 online that captures user preferences. By leveraging dueling bandits, T-POP
023 intelligently queries the user to efficiently balance between exploring their
024 preferences and exploiting the learned knowledge to generate personalized text.
025 Extensive experiments demonstrate that T-POP achieves rapid and data-efficient
026 personalization, significantly outperforming existing baselines and showing
027 consistent improvement with more user interactions.

028 1 INTRODUCTION 029

030 While large language models (LLMs) have achieved remarkable success in generating human-like
031 text, a critical frontier remains: moving from generic, one-size-fits-all responses to deeply
032 personalized interactions. Users increasingly expect models to understand and adapt to their unique
033 voice, style, and preferences (Zhang et al., 2024). The standard approach for aligning LLMs with
034 human preferences has been through methods such as reinforcement learning from human feedback
035 (RLHF) (Ouyang et al., 2022) and direct preference optimization (DPO) (Rafailov et al., 2023).
036 However, these methods are primarily designed to align LLMs with *generic* human preferences,
037 failing to capture the specific nuances of individual users.

038 To address this gap, some recent works have adapted the RLHF framework to align LLMs with
039 the preferences of individual users (Jang et al., 2023; Li et al., 2024b; Park et al., 2024; Lee et al.,
040 2024). While effective, these approaches necessitate fine-tuning the LLM parameters for each user.
041 Consequently, they are often unable to adapt quickly and efficiently to new users, posing a significant
042 barrier to scalability and real-time personalization.

043 In response to the limitations of fine-tuning, another line of research has focused on personalization
044 methods that do not require parameter updates. These techniques include retrieval-augmented
045 generation (RAG) to fetch user-specific information (Sun et al., 2024; Mysore et al., 2023; Salemi
046 et al., 2024) and the integration of the historical data of the user directly into the LLM prompt (Kang
047 et al., 2023; Liu et al., 2023; Li et al., 2024a; Kim & Yang, 2024). A common prerequisite for
048 these methods, however, is the availability of sufficient user data. This leaves them inapplicable
049 to new users for whom such data has not yet been collected, a critical challenge in the field of
050 personalization known as the *cold-start* problem (Zhang et al., 2024).

051 To resolve this problem, a natural solution is to *collect user data online* for new users. Drawing
052 from the widespread success of RLHF and DPO, the most reliable and easily provided form of
053 user data is *preference feedback*, where users indicate their relative preference between a pair of
LLM-generated responses. We therefore propose to collect pairwise user preference data online to

Figure 1: An overview of our T-POP for test-time personalization with online preference feedback.

facilitate rapid personalization. This approach, however, introduces a crucial challenge: *how do we simultaneously (1) collect user preference data online and (2) use these sequentially available data to achieve effective personalization?*

In this work, we tackle this challenge by proposing a principled combination of *test-time alignment* (Khanov et al., 2024) and *dueling bandits* (Verma et al., 2024). We introduce our *Test-Time Personalization with Online Preference Feedback* (T-POP) algorithm, which is illustrated in Fig. 1. Following the test-time alignment paradigm, T-POP adjusts the decoding process of a frozen LLM via an additive reward function that captures user personalization. This reward function is learned online and assigns higher values to responses that are better aligned with the personal preferences of the user. To learn this reward function effectively, we incorporate dueling bandits into the token selection process, which allows us to strategically select a pair of candidate tokens at every decoding step to query the user for feedback. Thanks to the inherent ability of dueling bandit algorithms to balance exploration and exploitation, our T-POP is able to simultaneously (1) generate high-reward responses that are increasingly aligned with user preference (i.e., exploitation) and (2) collect diverse preference data to rapidly refine the reward function (i.e., exploration). As a result, T-POP achieves effective user personalization using only a small number of online user feedback interactions.

In summary, our main contributions are:

- We formalize the problem of test-time personalization with online preference feedback, addressing the critical cold-start challenge for new users.
- We propose T-POP, a novel algorithm that synergistically combines test-time alignment with dueling bandits to achieve rapid, data-efficient personalization without any parameter fine-tuning.
- Extensive experiments show that T-POP significantly outperforms existing personalization baselines, with its effectiveness steadily increasing as more user feedback is provided.

2 PRELIMINARY

Test-Time Alignment for Personalization. Our work builds upon the paradigm of *test-time alignment*, which steers the generation process of a frozen LLM at inference time without updating its parameters. The core idea is to guide each token selection step towards user-preferred outcomes. Specifically, given a partially generated sequence $y_{<p}$, the standard approach is to sample the next token y_p from the probability distribution of the base LLM $\pi_{\text{base}}(\cdot | y_{<p})$. To incorporate personalization, we introduce a reward function $r(\cdot; \theta)$ parameterized by θ , which is learned online to capture the user preferences. This reward function assigns a scalar score to any given sequence, with *higher scores indicating better alignment with the preference of the user*.

108 At each decoding step p , we define a scoring function that combines the base model’s likelihood
 109 with the learned preference reward. For any candidate token v from the vocabulary \mathcal{V} , the score is
 110 calculated as:

$$\text{Score}(v|y_{<p}) = \pi_{\text{base}}(v|y_{<p}) + \omega \cdot r([y_{<p}, v]; \theta) \quad (1)$$

112 where $[y_{<p}, v]$ denotes the new sequence formed by appending token v to the prefix $y_{<p}$, and ω is a
 113 hyperparameter controlling the strength of the personalization. The decoding policy then selects the
 114 next token by maximizing this score: $y_p = \arg \max_{v \in \mathcal{V}} \text{Score}(v|y_{<p})$. This framework allows the
 115 generation to be dynamically steered towards personalized content by optimizing a local, per-token
 116 objective. In our problem of test-time personalization without sufficient user data, the central
 117 challenge is how to learn the reward function $r(\cdot; \theta)$ efficiently from online preference feedback
 118 from the user. To this end, we adopt the framework of neural dueling bandits.

119 **Neural Dueling Bandits.** To learn the reward function r from online preference feedback, we
 120 frame the problem within the neural dueling bandits framework (Verma et al., 2024). This setting is
 121 designed for learning from pairwise preference feedback (e.g., “response A is better than response
 122 B”), which is often more reliable and easier for users to provide than absolute scores.

123 In this framework, a learner iteratively interacts with a user. In each round, it presents a pair of items
 124 (i.e., arms), and the user provides feedback indicating which one they prefer. The user’s choice
 125 is assumed to be governed by the underlying reward function r . This relationship is commonly
 126 modeled using the Bradley-Terry-Luce (BTL) model (Hunter, 2004; Luce et al., 1959), which states
 127 that the probability of preferring arm a_1 over arm a_2 is given by: $P(a_1 \succ a_2) = \sigma(f(a_1) -$
 128 $f(a_2))$, where f denotes the unknown reward function and $\sigma(z) = 1/(1 + e^{-z})$ is the sigmoid
 129 function. To learn complex user preferences in text generation, we adopt a neural network (NN)
 130 $r(\cdot; \theta)$ parameterized by θ to approximate f (Verma et al., 2024).

132 3 THE T-POP ALGORITHM

134 In this section, we introduce our T-POP algorithm (Fig. 1, Algo. 1), which addresses the cold-start
 135 personalization problem for new users. We begin by discussing the high-level insights behind our
 136 approach, followed by a detailed breakdown of its components.

138 3.1 HIGH-LEVEL OVERVIEW

139 The core insight behind T-POP is the synergistic integration of test-time alignment with the
 140 principles of online learning from dueling bandits. Instead of treating personalized text generation
 141 and user preference learning as separate phases, T-POP interweaves them into a single, efficient
 142 process. The algorithm operates by steering the decoding of a frozen LLM to simultaneously
 143 generate two competing sequences in real-time.

144 This is achieved by applying a dueling bandit policy at *each token-generation step*. The **exploitation**
 145 **sequence** is constructed by greedily following the reward model’s current estimate of user
 146 preferences (line 10 of Algo. 1). Concurrently, the **exploration sequence** is built by optimistically
 147 choosing tokens that balance high estimated reward with high uncertainty (line 11 of Algo. 1). The
 148 two completed responses are then presented to the user, who provides feedback on which one they
 149 prefer. This feedback is immediately used to update the reward model, improving its alignment
 150 with the user preferences. This creates a tight feedback loop: the dueling bandit policy generates
 151 **personalized and informative pairs of responses** for learning, and the user feedback immediately
 152 refines the reward model, which in turn improves the personalized text-generation policy for the next
 153 round of interaction. This entire process requires no fine-tuning of the base LLM, enabling rapid
 154 and data-efficient personalization with online feedback.

156 3.2 ONLINE PERSONALIZATION LOOP

157 T-POP operates over a series of interaction rounds $t = 1, 2, \dots, T$. The goal in each round is to
 158 generate a personalized and informative pair of responses $(y_{t,1}, y_{t,2})$, elicit user preference feedback
 159 l_t , and update the neural network reward model $r(\cdot; \theta)$.

161 The learning process begins with an initial reward model $r(\cdot; \theta_1)$. In each round t , the algorithm
 generates the pair $(y_{t,1}, y_{t,2})$ based on the current reward model $r(\cdot; \theta_t)$, as detailed in Sec. 3.3.

162

Algorithm 1: T-POP

163

Input: Initial reward model parameters θ_1 , matrix $V_0 = \lambda I$, number of user interactions T , reward weight ω , exploration parameter ν , number of candidate tokens k , maximum number of tokens M in a response, observation history $\mathcal{D}_0 = \mathcal{I}$.

164

1 for $t = 1, \dots, T$ do

165

2 Receive the user query q_t in the current round, set $y_{t,1} = [q_t]$, $y_{t,2} = [q_t]$

166

3 for each token position $p = 1, \dots, M$ do

167

4 $\mathcal{V}_p^{(1)} \leftarrow$ top- k tokens conditioned on $y_{t,1}$

168

5 $\mathcal{V}_p^{(2)} \leftarrow$ top- k tokens conditioned on $y_{t,2}$

169

6 $\mathcal{V}_p \leftarrow \mathcal{V}_p^{(1)} \cup \mathcal{V}_p^{(2)}$

170

7 for $v \in \mathcal{V}_p$ do

171

8 $score_1(v; \theta_t) \leftarrow \pi_{base}(v|y_{t,1}) + \omega \cdot r([y_{t,1}, v]; \theta_t)$

172

9 $score_2(v; \theta_t) \leftarrow \pi_{base}(v|y_{t,2}) + \omega \cdot r([y_{t,2}, v]; \theta_t)$

173

10 Select token for response 1: $v_{p,1} \leftarrow \arg \max_{v \in \mathcal{V}_p} score_1(v; \theta_t)$

174

11 Select token for response 2:

175

12 $v_{p,2} \leftarrow \arg \max_{v \in \mathcal{V}_p} score_2(v; \theta_t) + \omega \cdot \nu \|\nabla r([y_{t,2}, v]; \theta_t) - \nabla r([y_{t,1}, v_{p,1}]; \theta_t)\|_{V_{t-1}^{-1}}$

176

13 $y_{t,1} \leftarrow [y_{t,1}, v_{p,1}]$, $y_{t,2} \leftarrow [y_{t,2}, v_{p,2}]$

177

14 $V_{t-1} \leftarrow V_{t-1} + (\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))(\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))^\top$

178

15 Obtain binary user preference feedback $l_t = \mathbb{1}_{\{y_{t,1} \succ y_{t,2}\}}$ and update history:

179

16 $\mathcal{D}_t = \mathcal{D}_{t-1} \cup (y_{t,1}, y_{t,2}, l_t)$;

180

17 Train NN using history $\mathcal{D}_t = \{(y_{s,1}, y_{s,2}, l_s)\}_{s=1, \dots, t}$ by minimizing loss function $\mathcal{L}_t(\theta)$

181

18 (equation 2): $\theta_{t+1} = \arg \min_{\theta} \mathcal{L}_t(\theta)$

182

19 Update the covariance matrix: $V_t \leftarrow V_{t-1}$

183

184

185

186

187

188

The user then provides a binary preference $l_t = \mathbb{1}_{\{y_{t,1} \succ y_{t,2}\}}$, which is equal to 1 if the response $y_{t,1}$ is preferred over $y_{t,2}$ and 0 otherwise. This new data point is then added to the history $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(y_{t,1}, y_{t,2}, l_t)\}$ (line 14 of Algo. 1). Upon receiving this feedback, the parameters of the reward model (i.e., neural network) are updated by minimizing the following loss function over the entire history \mathcal{D}_t (line 15 of Algo. 1):

189

$$\mathcal{L}_t(\theta) = - \sum_{(y_1, y_2, l) \in \mathcal{D}_t} \left[l \log \sigma(r(y_1; \theta) - r(y_2; \theta)) + (1-l) \log \sigma(r(y_2; \theta) - r(y_1; \theta)) \right] + \lambda \|\theta\|_2^2, \quad (2)$$

190

191

192

in which $\sigma(\cdot)$ is the sigmoid function. Of note, minimizing this loss function (equation 2) is equivalent to *maximizing the log-likelihood of the preference observations* \mathcal{D}_t according to the Bradley-Terry-Luce (BTL) model (Sec. 2), plus a regularization term (Verma et al., 2024). This updated reward model, with parameters $\theta_{t+1} = \arg \min_{\theta} \mathcal{L}_t(\theta)$, is then used in the next round, enabling continuous improvement of the reward model from user interactions.

193

194

195

Continuous Deployment via Asynchronous Learning. Contrary to a rigid "collect-then-deploy" paradigm, T-POP is designed for continuous, low-latency deployment throughout the interaction. By decoupling model updates from user interactions, T-POP can minimize latency increase:

196

- **Asynchronous Online Updates:** To eliminate the training latency, we implement an asynchronous update strategy. When a user provides preference feedback at round t , the reward model update ($\theta_t \rightarrow \theta_{t+1}$) is triggered in a background thread. Crucially, during the model update process, our T-POP continues to serve subsequent queries *using the latest reward model $r(\cdot; \theta_t)$* . After the model update concludes, the updated reward model $r(\cdot; \theta_{t+1})$ will then be used to serve subsequent user queries. This ensures that the computational cost of training is completely masked from the user experience.

197

198

199

200

- **Flexible Deployment Mode:** Once the personalization phase concludes (at any arbitrary interaction t), T-POP transitions to a definitive inference mode. The learned reward model, $r(\cdot; \theta_t)$, is frozen and utilized solely by the exploitation arm. Generation then proceeds via *token-by-token greedy decoding*, where each token is selected to maximize the score in equation 1 based on the final reward model. This effectively crystallizes the learned preferences into a standard, low-overhead text generator.

216 3.3 TOKEN-BY-TOKEN ARM GENERATION
217

218 A key innovation of T-POP is its dynamic, token-by-token construction of the dueling sequences,
219 $y_{t,1}$ and $y_{t,2}$, which is achieved by integrating dueling bandits with reward-guided decoding. The
220 pair of sequences is built over M steps (lines 3–13 of Algo. 1), with the exploitation-exploration
221 policy applied at each step to select the next token for each growing sequence.

222 **Exploitation Sequence.** The first sequence, $y_{t,1}$, represents pure *exploitation*. It is generated
223 to be the best possible response according to the current reward model $r(\cdot; \theta_t)$. At each token
224 position p , the next token $v_{p,1}$ is chosen greedily to maximize the reward-guided scoring function
225 from equation 1:

$$226 \quad v_{p,1} = \operatorname{argmax}_{v \in \mathcal{V}_p} (\pi_{\text{base}}(v|y_{t,1}) + \omega \cdot r([y_{t,1}, v]; \theta_t)), \quad (3)$$

228 where \mathcal{V}_p is a set of candidate tokens formed by the top- k tokens from the base LLM (Algo. 1, lines
229 4–6). This process iteratively builds a sequence aligned with the current reward model $r(\cdot; \theta_t)$.

230 **Exploration Sequence.** The second sequence, $y_{t,2}$, simultaneously accounts for exploitation and
231 *exploration*. That is, it aims to not only achieve high reward values to align with the user preference
232 (i.e., exploitation), but also generate informative responses with *large uncertainty* to accelerate the
233 learning of the reward model (i.e., exploration). Specifically, at each token position p , it selects the
234 next token $v_{p,2}$ by maximizing the sum of the score and a UCB-style exploration bonus:

$$235 \quad v_{p,2} = \operatorname{argmax}_{v \in \mathcal{V}_p} \underbrace{\pi_{\text{base}}(v|y_{t,2}) + \omega \cdot r([y_{t,2}, v]; \theta_t)}_{\text{Exploitation}} + \underbrace{\omega \cdot \nu \cdot \text{UncertaintyBonus}(v)}_{\text{Exploration}}. \quad (4)$$

238 The uncertainty bonus term is defined as:

$$239 \quad \text{UncertaintyBonus}(v) = \|\nabla r([y_{t,2}, v]; \theta_t) - \nabla r([y_{t,1}, v_{p,1}]; \theta_t)\|_{V_{t-1}^{-1}}. \quad (5)$$

241 Our generation strategy is grounded in the theoretically principled Neural Dueling Bandit framework
242 (Verma et al., 2024) and the Tokenized Bandit theory (Shin et al., 2025).

244 **Guarantees for Neural Dueling Bandits.** The matrix V_{t-1} (line 14 of Algo. 1) aggregates the
245 gradient information from all previously selected sequences:

$$246 \quad V_{t-1} \leftarrow V_{t-1} + (\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))(\nabla r(y_{t,1}; \theta_t) - \nabla r(y_{t,2}; \theta_t))^{\top} \quad (6)$$

248 This covariance update allows the uncertainty bonus in equation 5 to measure the epistemic
249 uncertainty of a candidate sequence $[y_{t,2}, v]$ relative to the exploitation arm $[y_{t,1}, v_{p,1}]$. As
250 established by Verma et al. (2024), maximizing this gradient-based bonus ensures that the system
251 efficiently explores the reward parameter space. Under standard regularity assumptions (e.g.,
252 bounded norm in a Reproducing Kernel Hilbert Space), this mechanism achieves a cumulative
253 regret bound of $R_T = \tilde{O}(d_{\text{eff}}\sqrt{T})$, where d_{eff} is the effective dimension of the neural tangent
254 kernel matrix. This theoretical result guarantees that our reward model converges to the user’s true
255 preference with high probability.

256 **Guarantees for Sequential Decoding.** Extending bandit guarantees to token-by-token generation
257 is non-trivial due to the combinatorial search space. However, our approach is supported by the
258 recent findings of Shin et al. (2025), who proved that linear bandit algorithms applied to token-level
259 decoding achieve sublinear regret $R_T = \tilde{O}(L\sqrt{T})$, provided the utility function satisfies the
260 *Diminishing Distance with More Commons (DDMC)* assumption. Here L denotes the maximum
261 sequence length. Therefore, T-POP effectively operationalizes these theoretical principles: the
262 uncertainty bonus steers generation towards sequences that provide significant novel information
263 (exploration), while the reward score ensures alignment (exploitation), theoretically ensuring both
264 sample efficiency and convergence in the sequential decoding setting.

265 4 EXPERIMENTS
266

268 We conduct comprehensive experiments to empirically validate the effectiveness and data efficiency
269 of our T-POP, particularly its ability to achieve rapid personalization in cold-start scenarios. Some
experimental details are deferred to App. B due to space constraints.

270 4.1 EXPERIMENTAL SETTING
271

272 **Models, Datasets and Personalization Attributes.** We conduct experiments on a diverse
273 set of modern open-source LLMs, including Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),
274 Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Qwen2-7B-Instruct (Yang et al., 2025). Our
275 evaluation suite is built upon four established benchmarks to ensure a comprehensive assessment.
276 We use (1) **HelpSteer** (Wang et al., 2023) for its multi-faceted instruction-following challenges
277 and two subsets of **UltraFeedback** (Cui et al., 2024): (2) **TruthfulQA** (Lin et al., 2021) and (3)
278 **UltraChat**—to evaluate factuality and conversational ability, respectively. To directly measure
279 alignment with user tastes, we also include the (4) **Personal Preference Eval** (Gao et al., 2024)
280 dataset. To simulate diverse real-world user preferences, we evaluate our method across four distinct
281 preference attributes, inspired by prior work (Zhong et al., 2024; Zhang et al., 2025b): *creative*,
282 *verbose*, *concise*, and *uplifting*.
283

284 **Baseline Methods.** We compare our T-POP against a suite of strong baselines representing different
285 personalization paradigms. These include the original, unmodified backbone LLM (**Base**); the
286 backbone guided only by prompt engineering (**Preference Prompting (Pref)**); and a standard
287 decoding algorithm, **Beam Search (BS16)**, with a beam width of 16. We also compare against two
288 state-of-the-art training-free methods: **Linear Alignment (LA)** (Gao et al., 2024), which linearly
289 updates the model’s logits to steer generation, and our primary competitor, **AMULET** (Zhang
290 et al., 2025b), which formulates token-level decoding as an online learning problem for test-time
291 alignment.
292

293 **Evaluation Metrics.** Given the subjective nature of personalization, we employ a two-pronged
294 evaluation strategy. Our primary quantitative metric is the **Reward Model Score**. We use the
295 widely used **ArmoRM-Llama3-8B-v0.1** (Wang et al., 2024) to score the alignment of generated
296 responses with the target attribute, following the evaluation methodology of Zhang et al. (2025b).
297 To complement this and capture nuances that a single reward model may overlook, we also adopt
298 **GPT-4o** as a Judge (Ouyang et al., 2022). Following the standard protocol (Li et al., 2023), we
299 present GPT-4o with the outputs from T-POP and a baseline, and report the win rate.
300

301 During the online interaction phase of our T-POP, we use **GPT-4o** to simulate the user and provide
302 pairwise preference feedback based on the target attribute. The evaluation prompts are adapted from
303 the AlpacaEval standard format.
304

305 4.2 MAIN RESULTS
306

307 An effective personalization method should generate text that is both **strongly** and **consistently**
308 aligned with user preferences. To ensure a comprehensive evaluation, we assess these two aspects
309 separately. First, we utilize the Reward Model Score (Wang et al., 2024) to quantify the **strength**
310 of personalization (Sec. 4.2.1). Second, to measure **consistency**, we report the win rate against the
311 base LLM in pairwise comparisons judged by GPT-4o (Sec. 4.2.2).
312

313 4.2.1 ARMORM SCORES: ANALYSIS OF THE STRENGTH OF PERSONALIZATION
314

315 The main quantitative results, presented in Table 1, benchmark T-POP against strong baselines
316 across a wide range of datasets and attributes. The scores in Table 1 underscore the effectiveness
317 of T-POP in achieving stronger alignment. A detailed model-by-model analysis reveals that ours
318 algorithm consistently delivers substantial gains over all baselines, including the strongest baseline,
319 AMULET. The performance uplift is most pronounced on Qwen2-7B, where T-POP demonstrates
320 an average improvement of **28.0%** over the second best method, AMULET, across all four
321 preference attributes. This is closely followed by a **19.9%** average gain over AMULET on the
322 Mistral-7B model. On Llama-3.1-8B, the race is highly competitive, with T-POP and AMULET
323 each securing state-of-the-art scores in two of the four preference dimensions; however, T-POP still
324 maintains a marginal edge with a final average score of **0.535** compared to AMULET’s **0.5325**.
325 Aggregating these results, T-POP establishes a robust overall average improvement of **14.7%**
326 against AMULET. This persistent and significant performance improvement across diverse models
327 validates the efficacy of our dueling bandit-based test-time personalization framework, which more
328 efficiently captures the nuances of user preferences than other test-time adaptation methods.
329

324
 325 Table 1: Score comparison across different datasets, attributes and LLMs. The best score is
 326 highlighted in **bold**, and the second best score is highlighted in *italics*.

327 Model	328 Dataset	Creative					Verbose					Concise					Uplifting								
		329 Base	330 Pref	331 BS16	332 LA	333 Amulet	334 T-POP	329 Base	330 Pref	331 BS16	332 LA	333 Amulet	334 Ours	329 Base	330 Pref	331 BS16	332 LA	333 Amulet	334 T-POP	329 Base	330 Pref	331 BS16	332 LA	333 Amulet	334 T-POP
330 Mistral-7B	HelpSteer	0.30	0.30	0.34	0.36	<i>0.39</i>	0.48	0.27	0.27	<i>0.31</i>	<i>0.31</i>	0.30	0.40	0.41	0.42	0.50	0.52	0.52	0.59	0.33	0.33	0.39	0.40	0.41	0.50
	Personal	0.34	0.34	0.35	0.38	0.42	0.47	0.30	0.30	0.30	0.30	<i>0.39</i>	0.47	0.49	0.50	0.54	0.53	0.65	0.41	0.42	0.42	0.45	0.46	0.52	
	Truthful QA	0.32	0.33	0.34	0.38	<i>0.41</i>	0.51	0.30	0.31	0.31	<i>0.33</i>	0.32	0.43	0.41	0.44	0.47	<i>0.51</i>	0.49	0.54	0.36	0.38	0.39	0.47	0.47	0.54
	Ultra Chat	0.34	0.35	0.35	0.36	<i>0.38</i>	0.47	0.31	0.31	0.31	0.32	0.31	<i>0.39</i>	0.45	0.46	0.47	0.49	0.51	0.61	0.38	0.39	0.39	0.41	0.42	0.50
331 Qwen2-7B	Average	0.32	0.33	0.34	0.37	<i>0.40</i>	0.48	0.30	0.30	0.31	0.32	0.31	0.40	0.43	0.45	0.48	0.52	0.51	0.60	0.37	0.38	0.40	0.43	0.44	0.51
	HelpSteer	0.34	0.34	0.35	0.35	<i>0.36</i>	0.50	0.31	0.32	<i>0.33</i>	<i>0.33</i>	0.30	0.44	0.43	0.48	0.50	0.57	0.59	0.60	0.38	0.38	0.39	0.39	0.41	0.52
	Personal	0.33	0.34	0.34	0.37	<i>0.41</i>	0.49	<i>0.31</i>	<i>0.31</i>	<i>0.31</i>	0.30	0.28	0.43	0.41	0.48	0.49	0.53	0.54	0.65	0.40	0.42	0.42	0.43	0.42	0.55
	Truthful QA	0.32	0.33	0.33	0.34	<i>0.36</i>	0.53	0.30	0.31	0.32	<i>0.33</i>	0.32	0.47	0.41	0.46	0.50	0.54	0.51	0.53	0.36	0.38	0.39	0.44	0.45	0.58
332 Llama-3.1-8B	Ultra Chat	0.34	0.34	0.34	0.35	<i>0.36</i>	0.47	0.31	0.32	<i>0.33</i>	0.32	0.31	0.44	0.40	0.45	0.46	0.54	0.57	0.62	0.38	0.39	0.39	0.40	0.39	0.54
	Average	0.33	0.34	0.34	0.35	<i>0.37</i>	0.50	0.31	0.32	0.32	0.32	0.30	0.45	0.41	0.47	0.49	0.55	0.55	0.60	0.38	0.39	0.40	0.42	0.42	0.55
	HelpSteer	0.33	0.34	0.36	0.44	<i>0.50</i>	0.51	0.30	0.31	0.33	0.36	<i>0.41</i>	0.51	0.40	0.43	0.45	0.53	0.57	0.62	0.36	0.37	0.39	0.45	0.50	0.53
	Personal	0.35	0.36	0.36	0.46	0.62	0.52	0.31	0.31	0.31	0.35	0.49	0.46	0.39	0.44	0.45	0.53	0.67	0.66	0.42	0.44	0.43	0.49	0.61	0.55
333 Llama-3.1-8B	Truthful QA	0.31	0.33	0.33	0.41	0.56	0.52	0.29	0.29	0.31	0.34	<i>0.44</i>	0.54	0.37	0.40	0.42	0.49	0.52	0.51	0.34	0.36	0.37	0.43	0.49	0.53
	Ultra Chat	0.33	0.34	0.34	0.42	0.57	0.50	0.31	0.32	0.32	0.36	<i>0.41</i>	0.49	0.38	0.41	0.41	0.48	0.53	0.60	0.37	0.38	0.38	0.44	0.48	0.52
	Average	0.33	0.34	0.35	0.43	0.58	0.51	0.30	0.31	0.32	0.35	<i>0.44</i>	0.50	0.38	0.42	0.43	0.51	0.57	0.60	0.37	0.39	0.39	0.45	0.54	0.53

344
 Furthermore, we analyze the impact of the number of user interactions (iterations) on the
 345 performance of T-POP. To demonstrate the robustness of its learning efficiency, we present results
 346 from two distinct experimental settings: the concise attribute on the Personal dataset and the
 347 HelpSteer dataset (Fig. 2). As illustrated across both figures, all three models—Llama-3.1-8B,
 348 Mistral-7B, and Qwen2-7B—exhibit a remarkably consistent and efficient learning curve. **The
 349 reward scores increase sharply within the first 20 iterations in both scenarios**, indicating that
 350 T-POP rapidly captures user preferences with minimal feedback, regardless of the specific task.
 351 Following this initial surge, performance gains begin to plateau, with the models reaching their
 352 peak alignment between 40 and 60 interactions. Subsequently, the scores remain stable or decrease
 353 slightly, which can be attributed to potential overfitting. This consistent trend of rapid initial
 354 improvement followed by convergence across diverse datasets further validates the data efficiency
 355 and swift personalization capability of T-POP.

4.2.2 WIN RATE: ANALYSIS OF THE CONSISTENCY OF PERSONALIZATION

356
 To assess the **consistency** of our personalization method, we employ GPT-4o as a judge to perform
 357 pairwise comparisons. For each prompt, GPT-4o evaluates which of two responses—one from our
 358 method and one from the base LLM—is better aligned with a given personalization attribute. Table 2
 359 presents the results, where each value represents the *win rate* against the base LLM. This metric
 360 measures how consistently an algorithm produces a qualitatively superior and personalized response.

361
 The results show that T-POP achieves personalization with remarkable consistency. Across the 36
 362 experimental settings (3 LLMs \times 4 attributes \times 3 datasets), our T-POP achieves the highest or
 363 second-highest average win rate in 31 cases. Crucially, the win rate for T-POP is almost universally
 364 above 90%, averaging **94.2%** across all settings. A win rate over 90% signifies a high degree
 365 of confidence that T-POP consistently provides correct alignment and personalization, leading
 366 to responses that are qualitatively superior to those from the unguided base model. This robust
 367 performance indicates that our T-POP is not only powerful but also highly reliable.

368
 In summary, the ArmoRM scores in Table 1 and the win rates in Table 2 jointly demonstrate that
 369 **T-POP achieves strong and consistent personalization**.

5 ABLATION STUDY

370
 The **Impact of Reward Weight w** . Fig. 3 illustrates the performance of T-POP across a range of w
 371 values for all three backbone models. The results exhibit a clear and consistent trend. At $w = 0.0$,
 372 where T-POP effectively deactivates the personalization component, the reward scores are at their
 373 lowest, representing the performance of the base LLM. A sharp and substantial improvement in the

Figure 2: The effect of the number of user interactions on the Reward Score for different models. The results correspond to the concise attribute.

Table 2: Win rate of different algorithms against the base LLM in terms of personalization. The best score is highlighted in **bold**, and the second best score is highlighted in *italics*.

Model	Dataset	Creative				Verbose				Concise				Uplifting							
		Pref	BS16	LA	Amulet	T-POP	Pref	BS16	LA	Amulet	Ours	Pref	BS16	LA	Amulet	T-POP	Pref	BS16	LA	Amulet	T-POP
Mistral-7B	HelpSteer	95.5%	94.0%	98.1%	90.2%	99.5%	79.4%	76.5%	91.0%	79.7%	93.1%	87.9%	89.5%	87.9%	75.1%	92.4%	86.7%	85.2%	95.3%	92.3%	97.2%
	Personal	97.1%	94.3%	98.5%	96.6%	99.1%	85.4%	75.4%	96.5%	87.8%	92.5%	95.4%	94.0%	93.8%	71.3%	96.7%	86.4%	85.6%	94.2%	90.2%	98.2%
	Truthful QA	85.4%	83.0%	94.5%	93.3%	99.6%	79.1%	77.5%	90.1%	78.7%	95.4%	77.4%	80.5%	70.3%	70.8%	72.3%	85.8%	82.9%	91.9%	88.2%	96.5%
	Average	92.6%	90.4%	97.0%	93.4%	99.4%	81.3%	76.5%	92.5%	82.1%	93.7%	86.9%	88.0%	84.0%	72.4%	87.7%	86.3%	84.6%	93.8%	90.2%	97.3%
Qwen2-7B	HelpSteer	94.0%	92.8%	86.1%	89.9%	96.6%	93.2%	90.9%	82.9%	83.3%	94.0%	88.2%	89.5%	92.8%	91.6%	92.0%	83.8%	83.5%	75.2%	97.7%	98.2%
	Personal	95.2%	96.3%	98.2%	96.8%	99.1%	93.3%	96.7%	100%	73.7%	90.3%	95.8%	97.6%	99.1%	92.0%	98.7%	83.5%	89.9%	95.8%	91.1%	91.3%
	Truthful QA	90.1%	85.4%	88.2%	83.9%	98.5%	78.2%	79.5%	84.3%	78.9%	96.0%	88.9%	90.1%	92.2%	91.2%	79.0%	81.9%	81.2%	80.8%	93.0%	99.1%
	Average	93.1%	91.5%	90.8%	90.2%	98.1%	88.2%	89.0%	89.1%	78.6%	93.4%	91.0%	92.4%	94.7%	91.6%	89.9%	83.1%	84.9%	83.9%	93.9%	96.2%
Llama-3.1-8B	HelpSteer	97.4%	96.2%	97.4%	97.6%	98.6%	91.7%	91.4%	97.6%	94.7%	97.6%	89.0%	89.3%	94.3%	86.3%	92.3%	89.4%	88.8%	99.0%	97.5%	97.6%
	Personal	96.3%	95.1%	97.1%	99.8%	98.9%	91.4%	90.6%	93.8%	99.6%	94.5%	96.2%	97.0%	97.2%	97.3%	97.4%	94.1%	94.0%	99.6%	100%	94.0%
	Truthful QA	94.1%	92.3%	97.2%	99.5%	97.3%	87.3%	86.7%	96.5%	93.2%	95.4%	71.9%	76.9%	74.7%	85.5%	68.8%	82.7%	82.6%	95.3%	92.8%	93.5%
	Average	95.9%	94.5%	97.2%	99.0%	98.3%	90.1%	86.2%	96.0%	95.8%	95.8%	85.7%	87.7%	87.7%	89.7%	86.1%	88.7%	88.5%	97.8%	96.8%	95.0%

reward scores is observed across all models at $w = 0.1$, and the performance peaks at $w = 1.0$. This indicates that a moderate reward signal is highly effective at steering the generation towards the user preference. However, as the weight is further increased to $w = 2.0$ and subsequently to $w = 5.0$, the reward scores show a noticeable decline. This suggests that an excessively high reward weight can be counterproductive. This is likely because an overly strong preference signal begins to *interfere with the inherent generation capabilities of the backbone model*, π_{base} , leading the decoding strategy to myopically optimize for the reward. This can result in outputs that, while superficially aligned, may lack coherence or quality. This phenomenon is often referred to as reward hacking. Our findings suggest that an optimal value for w lies in the vicinity of $w = 1.0$, which strikes an effective balance between personalization strength and the preservation of generation quality.

Impact of Model Size. To assess the scalability and model-agnostic properties of T-POP, we evaluate its performance on smaller, resource-efficient LLMs. Specifically, we apply T-POP to Qwen2-0.5B-Instruct and Llama-3.2-1B-Instruct, comparing the ArmoRM scores against that of the base models. The results are presented in Table 3, which confirm that T-POP is able to effectively personalize these smaller models. Notably, T-POP delivers a substantial improvement for the Llama-3.2-1B-Instruct model, increasing its alignment score from 0.28 to 0.44. This finding has significant implications, as it demonstrates that our method can dramatically enhance the capabilities of smaller models, enabling them to achieve a level of personalization typically associated with much larger models. This highlights the potential of T-POP for applications with constrained computational resources, such as on-device deployment.

Impact of the Uncertainty Bonus. We perform the experiments using the Llama-3.1-8B-Instruct backbone on the Personal (Gao et al., 2024) dataset for the "concise" attribute, and the model is

Figure 3: The effect of the reward weight (w) on the alignment performance of T-POP across three different backbone models.

Table 3: ArmoRM scores of our T-POP for models with different sizes.

Model	Base Score	T-POP Score
Qwen2-0.5B-Instruct	0.27	0.29
Qwen2-7B-Instruct	0.37	0.51
Llama-3.2-1B-Instruct	0.28	0.44
Llama-3.1-8B-Instruct	0.35	0.55

trained online for 20 iterations. We compare T-POP against three alternative strategies for the exploration arm, replacing our metric with different heuristics:

- **Entropy Bonus:** We replaced our uncertainty metric (equation 5) with a token-level entropy term, $\text{Bonus}(v) = -P(v) \log P(v)$, where $P(v)$ is the softmax probability of the token scores.
- **Boltzmann Exploration:** A standard reinforcement learning baseline representing “noisy exploitation.” The exploration arm employs high-temperature sampling ($T = 1.5$) on the reward-guided logits: $v_{p,2} \sim \text{Softmax}\left(\frac{\log \pi_{base} + \omega \cdot r}{T}\right)$.
- **Random:** The exploration arm is generated via random sampling from the base LLM π_{base} , serving as a performance lower bound.

Table 4: Ablation study on exploration strategies.

Method	Final Score	Improvement vs. Random
T-POP (Random)	0.51	-
T-POP (Entropy)	0.53	+0.02
T-POP (Boltzmann)	0.57	+0.06
T-POP (Ours)	0.64	+0.13

The results are shown in Table 4, which confirm the validity of our algorithm: strategies like Entropy and Boltzmann Exploration primarily leverage the *aleatoric uncertainty* (ambiguity inherent in the next-token prediction of the language model). In contrast, the uncertainty metric employed by T-POP utilizes the gradient norm to capture the *epistemic uncertainty* regarding the user’s preference parameters (Verma et al., 2024). To efficiently solve the cold-start problem, the system must explore regions where the *reward model* lacks knowledge, not merely where the *language model* is diverse. This theoretical distinction translates directly into the superior data efficiency observed in our method.

Alignment-Compute Trade-off. To rigorously evaluate the computational cost, we measured the wall-clock inference time for T-POP against the state-of-the-art baseline, AMULET.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Wall-clock inference time comparison (seconds).

Method	AMULET	T-POP (Ours)
Query-level Latency	11.25	23.26
Token-level Latency	0.09	0.18

As presented in Table 5, T-POP incurs approximately twice the latency of AMULET but remains within the same order of magnitude. This reflects the inherent *alignment-compute trade-off* noted in prior work (Khanov et al., 2024). We argue this moderate computational cost is justified by the substantial performance gains, as T-POP establishes a robust overall average improvement of 14.7% over the strongest baselines in Table 1.

6 RELATED WORK

6.1 ALIGNMENT THROUGH REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ziegler et al., 2019) is the standard paradigm for aligning LLMs with human preferences. The canonical pipeline (Ouyang et al., 2022) involves three stages: 1) supervised fine-tuning (SFT) on high-quality demonstrations; 2) training a reward model (RM) (Stiennon et al., 2020) on a dataset of human-ranked responses; and 3) fine-tuning the SFT model using an RL algorithm such as PPO (Schulman et al., 2017), with the RM providing the reward signal. The computational expense and instability of PPO-based RLHF have motivated simpler alternatives. For example, direct Preference Optimization (DPO) (Rafailov et al., 2023) bypasses explicit reward modeling by reframing alignment as a direct policy optimization problem. However, these advancements still produce a single, static policy aligned with a pre-collected, offline dataset, often scaled with techniques like RLAIF (Bai et al., 2022).

6.2 PERSONALIZED ALIGNMENT

Since the universal preference model of conventional RLHF is ill-suited for personalization, a dedicated research area has emerged to adapt LLMs to individual users. One approach involves creating large-scale datasets to model diverse preferences by mapping sociodemographics (PRISM (Kirk et al., 2024)) or constructing user personas from psychological traits (ALIGNX (Li et al., 2025), PAPI (Zhu et al., 2025)). A more data-efficient direction models preferences in a compact, low-dimensional latent space, for instance, by representing them as a linear combination of base reward functions (PReF (Shenfeld et al., 2025), multi-objective alignment (Zhou et al., 2023)) or as latent distributions for few-shot adaptation (VPL (Poddar et al., 2024)). The third direction, most aligned with our work, focuses on lightweight, inference-time adaptation of frozen LLMs. These methods steer the decoding process by manipulating the LLM outputs (PAD (Chen et al., 2024), LA (Gao et al., 2024), decoding-time realignment (Liu et al., 2024)), reframing token generation as an online learning problem (AMULET (Zhang et al., 2025b)), or directly modifying the internal states of the LLMs such as the attention head activations (PAS (Zhu et al., 2025)).

7 CONCLUSION

In this work, we addressed the critical cold-start problem in personalizing LLMs for new users. We introduced T-POP, a novel algorithm that enables rapid, real-time personalization by learning directly from online pairwise preference feedback. By synergistically integrating test-time alignment with dueling bandits, T-POP steers the decoding process of a frozen LLM to simultaneously exploit learned preferences and efficiently explore for new ones. Our extensive experiments demonstrate that T-POP achieves significant performance gains over existing baselines with minimal user interaction, confirming its data efficiency and effectiveness for swift personalization. Future work could explore extending this framework to handle more complex feedback structures or adapt to long-term shifts in user preferences.

540 REPRODUCIBILITY STATEMENT
541542 To ensure reproducibility, we have clearly described the detailed experimental setting in Sec. 4.1
543 and App. B. We have also included important prompts adopted by our algorithm in App. B.
544545 REFERENCES
546547 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
548 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
549 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
550 2022.551 Ruizhe Chen, Xiaotian Zhang, Meng Luo, Wenhao Chai, and Zuozhu Liu. Pad: Personalized
552 alignment of llms at decoding-time, 2024.
553554 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
555 reinforcement learning from human preferences. *Advances in neural information processing
systems*, 30, 2017.557 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
558 Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language
559 models with scaled ai feedback, 2024. URL <https://arxiv.org/abs/2310.01377>.560 Songyang Gao, Qiming Ge, Wei Shen, Shihan Dou, Junjie Ye, Xiao Wang, Rui Zheng, Yicheng
561 Zou, Zhi Chen, Hang Yan, et al. Linear alignment: A closed-form solution for aligning human
562 preferences without tuning and feedback. *arXiv preprint arXiv:2401.11458*, 2024.
563564 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
565 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
566 of models. *arXiv preprint arXiv:2407.21783*, 2024.567 David R Hunter. Mm algorithms for generalized bradley-terry models. *The annals of statistics*, 32
568 (1):384–406, 2004.
569570 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer,
571 Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups:
572 Personalized large language model alignment via post-hoc parameter merging. *arXiv preprint
arXiv:2310.11564*, 2023.
573574 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
575 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
576 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
577 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.
578579 Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed Chi,
580 and Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on user rating
581 prediction. *arXiv preprint arXiv:2305.06474*, 2023.582 Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search.
583 *arXiv preprint arXiv:2402.01694*, 2024.
584585 Jaehyung Kim and Yiming Yang. Few-shot personalization of llms with mis-aligned responses.
586 *arXiv preprint arXiv:2406.18678*, 2024.
587588 Hannah Rose Kirk, Alexander Whitefield, Paul Röttger, Andrew Bean, Katerina Margatina, Juan
589 Ciro, Rafael Mosquera, Max Bartolo, Adina Williams, He He, Bertie Vidgen, and Scott A.
590 Hale. The prism alignment dataset: What participatory, representative and individualised human
591 feedback reveals about the subjective and multicultural alignment of large language models, 2024.
592593 Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of
preferences via system message generalization. *Advances in Neural Information Processing
Systems*, 37:73783–73829, 2024.

594 Cheng Li, Mingyang Zhang, Qiaozhu Mei, Weize Kong, and Michael Bendersky. Learning to rewrite
 595 prompts for personalized text generation. In *Proceedings of the ACM Web Conference 2024*, pp.
 596 3367–3378, 2024a.

597 Jia-Nan Li, Jian Guan, Songhao Wu, Wei Wu, and Rui Yan. From 1,000,000 users to every user:
 598 Scaling up personalized preference for user-level alignment, 2025.

600 Xinyu Li, Ruiyang Zhou, Zachary C Lipton, and Liu Leqi. Personalized language modeling from
 601 personalized human feedback. *arXiv preprint arXiv:2402.05133*, 2024b.

602 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 603 Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 604 models, 2023.

605 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 606 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

607 Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang Zhou, and Yan Zhang. Is chatgpt a good
 608 recommender? a preliminary study. *arXiv preprint arXiv:2304.10149*, 2023.

609 Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
 610 Llinares, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time
 611 realignment of language models. *arXiv preprint arXiv:2402.02992*, 2024.

612 R Duncan Luce et al. *Individual choice behavior*, volume 4. Wiley New York, 1959.

613 Sheshera Mysore, Zhuoran Lu, Mengting Wan, Longqi Yang, Steve Menezes, Tina Baghaee,
 614 Emmanuel Barajas Gonzalez, Jennifer Neville, and Tara Safavi. Pearl: Personalizing
 615 large language model writing assistants with generation-calibrated retrievers. *arXiv preprint
 616 arXiv:2311.09180*, 2023.

617 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 618 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex
 619 Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
 620 Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
 621 Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes,
 622 Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy,
 623 Andrew Braунstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew
 624 Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford,
 625 Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz
 626 Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth
 627 Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
 628 Brandon Walkin, Brendan Quinn, Brian Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
 629 Camillo Lugaesi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
 630 Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng
 631 Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
 632 Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
 633 Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
 634 Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
 635 Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
 636 Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
 637 Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad
 638 Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie
 639 Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman,
 640 Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney,
 641 Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang,
 642 Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian
 643 Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan
 644 Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James
 645 Crooks, James Lennon, Jamie Kiro, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason
 646 Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica
 647 Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela,

648 Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman,
 649 Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan
 650 Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce
 651 Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singh, Katy Shi, Kavin
 652 Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin
 653 Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai,
 654 Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang
 655 Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis
 656 Feuvrier, Lu Zhang, Lukas Kondracik, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi,
 657 Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark
 658 Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew
 659 Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia
 660 Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael
 661 Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel
 662 Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira
 663 Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone,
 664 Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick
 665 Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
 666 Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia
 667 Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov,
 668 Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder,
 669 Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel
 670 Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara,
 671 Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky
 672 Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy
 673 Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
 674 Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray,
 675 Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu,
 676 Shino Jomoto, Shirong Wu, Shuaiqi Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan,
 677 Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun
 678 Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunningham, Thomas
 679 Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood,
 680 Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood,
 681 Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal
 682 Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu,
 Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen
 683 He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024. URL
`https://arxiv.org/abs/2410.21276.`

684 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 685 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 686 instructions with human feedback. *Advances in neural information processing systems*, 35:
 687 27730–27744, 2022.

688 Chanwoo Park, Mingyang Liu, Kaiqing Zhang, and Asuman Ozdaglar. Principled rlhf from
 689 heterogeneous feedback via personalization and preference aggregation. *arXiv preprint*
 690 `arXiv:2405.00254`, 2, 2024.

691 Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing
 692 reinforcement learning from human feedback with variational preference learning, 2024.

693 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
 694 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 695 *Advances in Neural Information Processing Systems*, 2023.

696 Alireza Salemi, Surya Kallumadi, and Hamed Zamani. Optimization methods for personalizing
 697 large language models through retrieval augmentation. In *Proceedings of the 47th International*
 698 *ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 752–762,
 699 2024.

702 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 703 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

704

705 Idan Shenfeld, Felix Faltings, Pulkit Agrawal, and Aldo Pacchiano. Language model personalization
 706 via reward factorization, 2025.

707

708 Suho Shin, Chenghao Yang, Haifeng Xu, and Mohammad T. Hajiaghayi. Tokenized bandit for llm
 709 decoding and alignment, 2025. URL <https://arxiv.org/abs/2506.07276>.

710

711 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 712 Dario Amodei, and Paul F Christiano. Learning to summarize from human feedback. *Advances
 713 in Neural Information Processing Systems*, 33:3008–3021, 2020.

714

715 Chenkai Sun, Ke Yang, Revanth Gangi Reddy, Yi R Fung, Hou Pong Chan, Kevin Small,
 716 ChengXiang Zhai, and Heng Ji. Persona-db: Efficient large language model personalization for
 717 response prediction with collaborative data refinement. *arXiv preprint arXiv:2402.11060*, 2024.

718

719 Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low.
 Neural dueling bandits: Preference-based optimization with human feedback. *arXiv preprint
 720 arXiv:2407.17112*, 2024.

721

722 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
 723 via multi-objective reward modeling and mixture-of-experts. *arXiv preprint arXiv:2406.12845*,
 2024.

724

725 Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
 726 Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev.
 Helpsteer: Multi-attribute helpfulness dataset for steerlm, 2023. URL <https://arxiv.org/abs/2311.09528>.

727

728 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 729 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 730 arXiv:2505.09388*, 2025.

731

732 Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural Thompson sampling. In
 733 *Proc. ICLR*, 2021.

734

735 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 736 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding:
 737 Advancing text embedding and reranking through foundation models, 2025a. URL <https://arxiv.org/abs/2506.05176>.

738

739 Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong
 740 Zheng, and Yaodong Yang. Amulet: Realignment during test time for personalized preference
 741 adaptation of llms, 2025b.

742

743 Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
 744 Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language
 745 models: A survey. *arXiv preprint arXiv:2411.00027*, 2024.

746

747 Yifan Zhong, Chengdong Ma, Xiaoyuan Zhang, Ziran Yang, Haojun Chen, Qingfu Zhang, Siyuan
 748 Qi, and Yaodong Yang. Panacea: Pareto alignment via preference adaptation for llms. *Advances
 749 in Neural Information Processing Systems*, 37:75522–75558, 2024.

750

751 Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with UCB-based
 752 exploration. In *Proc. ICML*, pp. 11492–11502, 2020.

753

754 Zhanhui Zhou, Jie Liu, Chao Yang, Jing Shao, Yu Liu, Xiangyu Yue, Wanli Ouyang, and
 755 Yu Qiao. Beyond one-preference-for-all: Multi-objective direct preference optimization for
 756 language models. *CoRR*, 2023.

757

758 Minjun Zhu, Yixuan Weng, Linyi Yang, and Yue Zhang. Personality alignment of large language
 759 models, 2025.

756 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
757 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
758 *preprint arXiv:1909.08593*, 2019.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811 A STATEMENT ON LLM USAGE812
813 The authors utilized LLMs solely as writing assistants to improve the grammar, clarity, and
814 readability of this paper. All intellectual contributions, including the core ideas, methodology, and
815 analysis of results, were conducted by the human authors.816
817 B MORE DETAILS ON THE EXPERIMENTAL SETTING818
819 **Reward Model Architecture.** The lightweight reward model, $r(\cdot; \theta)$, is implemented as a simple
820 Multi-Layer Perceptron (MLP) head. This network takes the final hidden-state embeddings from the
821 backbone LLM for a given sequence as input. The MLP consists of one hidden layer with a size of
822 1024, and all hidden layers utilize the ReLU activation function.823
824 **Diagonal Approximation.** Following the common practice in neural bandits, we use diagonal
825 approximation to approximate hte (Zhang et al., 2021; Zhou et al., 2020)826
827 **Datasets Description.** Since T-POP is a training-free framework, we use the collected data solely
828 for evaluation purposes. Our evaluation suite is constructed from four established benchmarks, from
829 which we only use the question (and discard the responses) to simulate real-world user interactions.
830 The datasets and their sizes are as follows:831
832 • **HelpSteer** (Wang et al., 2023) is a QA dataset aimed at evaluating the model’s capability to follow
833 multi-faceted instructions; we utilize its 1,236 testing instances (Zhang et al., 2025b).
834 • **UltraFeedback** (Cui et al., 2024) is a comprehensive, high-quality AI feedback dataset. From
835 this, we selected two subsets: **Truthful QA** (Lin et al., 2021), using its 811 testing problems
836 to assess factuality, and **UltraChat**, from which we extracted 3,845 problems to evaluate
837 conversational ability (Zhang et al., 2025b).
838 • **Personal Preference Eval** (Personal) (Gao et al., 2024) is used to evaluate user preference
839 alignment; we utilized the original dataset containing 548 testing instances (Zhang et al., 2025b).840
841 **Hyperparameters.** The key hyperparameters used for the training of the reward model and the
842 dueling bandit component of T-POP throughout our experiments are listed in Table 6.843
844 Table 6: Hyperparameter settings for T-POP.

845 Category	846 Hyperparameter	847 Value
848 <i>Dueling Bandit Parameters</i>	Reward weight (w)	1.0
	Exploration parameter (ν)	0.5
	Regularization parameter (λ)	1.0
849 <i>Reward Model Online Training</i>	Optimizer	AdamW
	Batch size	8
	Learning rate	5e-4
	Epochs per query	100
	Training Iteration	100
	Weight decay schedule	$1/(N + 50)$
850 <i>Decoding Parameters</i>	Max new tokens	128
	Candidate tokens (k)	40

851
852 For the weight decay schedule, N denotes the number of training data points.853
854 **Embedding and Judge Models.** The reward model utilizes embeddings from the
855 Qwen/Qwen3-Embedding-0.6B model (Zhang et al., 2025a). For all experiments requiring
856 preference evaluation, including the simulation of user feedback during the online learning phase
857 and the final win-rate judgments, we employ openai/GPT-4o (OpenAI et al., 2024).

864
 865 **Judgement Prompt Template.** To ensure a consistent and reproducible method for both
 866 simulating user feedback and performing the final evaluation, we utilized a structured prompt
 867 template adapted from the AlpacaEval format (Li et al., 2023). Fig. 4 shows the natural language
 868 descriptions for the four core preference attributes used in our experiments. These descriptions serve
 869 as the concrete personalization goal.

870 Figu. 5 displays the main judgment prompt template provided to GPT-4o. In practice, a specific
 871 attribute description from Fig. 4 is inserted into the {attribute description} field of the
 872 main template. The complete prompt then instructs GPT-4o to act as an AI assistant and select
 873 which of the two provided responses better embodies the target attribute. This mechanism was
 874 used for two critical functions: (1) to generate the online pairwise preference feedback required by
 875 T-POP during its learning phase, and (2) to conduct the final win-rate evaluations against baseline
 876 models, as presented in Section 4.2.

877 **Preference Attribute Descriptions**

878
 879 **PREFERENCE ATTRIBUTES :**
 880 "creative": "Your answer should be creative as much as possible.",
 881 "verbose": "Your answer should be verbose as much as possible.",
 882 "concise": "Your answer should be concise as much as possible.",
 883 "uplifting": "Your answer should be uplifting as much as possible."
 884

885
 886 Figure 4: Natural language descriptions for the personalized preference attributes.
 887

888 **GPT-4o Judgement Prompt Template**

889 **Input:**

890 You are an AI assistant that helps determine which response better aligns with a given
 891 attribute preference. Given a specific attribute preference, select the response from assistant
 892 A or B that better embodies this attribute. Focus on how well each response aligns with the
 893 specified attribute, not general quality. Declare your choice by using the format: "[[A]]" if
 894 you believe assistant A's response better aligns with the attribute, or "[[B]]" if assistant B's
 895 response better aligns with the attribute.

896 [Target Attribute]

897 {attribute}: {attribute description}

898 [User Question]

899 {query}

900 [The Start of Assistant A's Answer]

901 {response 1}

902 [The End of Assistant A's Answer]

903 [The Start of Assistant B's Answer]

904 {response 2}

905 [The End of Assistant B's Answer]

906 [Task] Which response better aligns with the "{attribute}" attribute? Consider how well
 907 each response embodies the characteristic described above.

908 **Output:**

909 [[A]] or [[B]]

910
 911 Figure 5: The prompt template used to instruct GPT-4o for preference simulation and win rate
 912 evaluation.
 913

914
 915
 916
 917

918 C MORE ABLATION EXPERIMENT RESULTS

920 In this section, we provide additional ablation studies to further validate the efficiency and
 921 effectiveness of T-POP. Unless otherwise stated, all experiments in this section are conducted using
 922 the **Llama-3.1-8B-Instruct** backbone on the **Personal** dataset for the **concise** attribute.

924 C.1 ANALYSIS OF COLD-START PERFORMANCE (EARLY ITERATIONS)

926 To rigorously evaluate T-POP’s capability in addressing the cold-start problem, we analyzed its
 927 performance at extremely early stages of user interaction ($T = 5$ and $T = 10$). Table 7 compares
 928 the ArmoRM scores of T-POP against baselines.

929 Remarkably, with only **5 user interactions**, T-POP achieves a reward score of 0.56, which
 930 already surpasses the strong training-free baseline Linear Alignment (LA, 0.53) and significantly
 931 outperforms static methods like Prompting (0.44). By $T = 10$, the performance gap further widens,
 932 demonstrating T-POP’s ability to rapidly adapt to user preferences with minimal data.

934 **Table 7: Performance comparison at early interaction stages (Proof of Rapid Adaptation).**

Method	Base	Pref	BS16	LA	Amulet	T-POP (Iter=5)	T-POP (Iter=10)	T-POP (Converged)
ArmoRM Score	0.39	0.44	0.45	0.53	0.67	0.56	0.63	0.66

938 C.2 ABLATION ON EXPLORATION STRATEGIES

941 A key component of T-POP is the construction of the “Exploration Sequence” ($y_{t,2}$) using a
 942 principled uncertainty bonus. To justify our design choice, we compared T-POP against three variant
 943 exploration strategies:

- 944 • **Variant A: Entropy Bonus.** We replaced our uncertainty metric with a token-level entropy
 945 term: $\text{Bonus}(v) = -P(v) \log P(v)$, targeting tokens with high predictive uncertainty in the
 946 base model.
- 947 • **Variant B: Boltzmann Exploration.** Instead of an explicit bonus, we employed
 948 High-Temperature Sampling ($T_{high} = 1.5$) on the reward-guided logits to induce “noisy
 949 exploitation.” The token selection follows:

$$951 v_{p,2} \sim \text{Softmax} \left(\frac{\log \pi_{base}(\cdot | y_{t,2}) + \omega \cdot r([y_{t,2}, \cdot]; \theta_t)}{T_{high}} \right)$$

- 953 • **Variant C: Random.** The exploration arm is generated via random sampling from the base
 954 LLM, serving as a lower bound.

956 As shown in Table 8, our uncertainty-based approach significantly outperforms heuristic methods
 957 (Entropy) and noisy sampling (Boltzmann). This confirms that estimating epistemic uncertainty via
 958 the Fisher Information Matrix provides a more informative signal for the reward model than simple
 959 aleatoric uncertainty or randomness.

960 **Table 8: Ablation study on different exploration strategies (Iteration 20).**

Method	Final Score (Iter=20)	Improvement over Random
T-POP (Random)	0.51	-
T-POP (Entropy)	0.53	+0.02
T-POP (Boltzmann)	0.57	+0.06
T-POP (Ours)	0.64	+0.13

968 C.3 INFERENCE LATENCY ANALYSIS

969 We further evaluated the computational overhead of T-POP compared to the SOTA baseline
 970 AMULET. Table 9 reports the wall-clock inference time per query and per token.

972 **T-POP vs. AMULET:** As shown in Table 9, T-POP incurs a higher latency compared to AMULET.
 973 This overhead primarily stems from the embedding phase and the forward pass of the lightweight
 974 Reward Model (RM) during the decoding process. However, importantly, our token-level latency
 975 (0.18s) remains within the same order of magnitude as AMULET (0.09s), making it practically
 976 feasible for real-time user interactions.

977 **Trade-off Justification:** As noted in prior work on test-time alignment (Khanov et al., 2024), there
 978 is an inherent “Computation vs. Alignment” trade-off. Given that T-POP effectively addresses the
 979 Cold-Start Problem, enabling personalization for new users where static baselines fail, we argue
 980 that this marginal increase in computational cost is a justified investment for the significant gains in
 981 alignment quality and data efficiency.

983 Table 9: Wall-Clock Inference Time Comparison.

Metric	AMULET	T-POP (Ours)
Query-level Latency	11.25 s	23.26 s
Token-level Latency	0.09 s	0.18 s