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ABSTRACT

Recent progress in knowledge graph completion (KGC) has focused on text-based
approaches to address the challenges of large-scale knowledge graphs (KGs).
Despite their achievements, these methods often overlook the intricate interconnec-
tions between entities, a key aspect of the underlying topological structure of a KG.
Stochastic blockmodels (SBMs), particularly the latent feature relational model
(LFRM), offer robust probabilistic frameworks that can dynamically capture latent
community structures and enhance link prediction. In this paper, we introduce a
novel framework of sparse latent feature models for KGC, optimized through a deep
variational autoencoder (VAE). Our approach not only effectively completes miss-
ing triples but also provides clear interpretability of the latent structures, leveraging
textual information. Comprehensive experiments on the WN18RR, FB15k-237,
and Wikidata5M datasets show that our method significantly improves performance
by revealing latent communities and producing interpretable representations.

1 INTRODUCTION

The majority of real-world phenomena exhibit multifaceted characteristics. For instance, social
networks are not merely a collection of isolated individuals but represent a complex web of interactions
across various contexts. Knowledge graphs (KGs) organize information into triples (h, r, t), where h
denotes the head entity, t the tail entity, and r the relationship, forming extensive semantic networks.
However, real-world KGs like DBpedia (Auer et al., 2007) and Wikidata (Vrandečić & Krötzsch,
2014) often suffer from incompleteness, missing key entities and relationships (Dong et al., 2014).
Knowledge graph completion (KGC) aims to infer this missing information, improving the utility
and completeness of the graph.

Early developments in KGC centered around knowledge graph embedding (KGE) techniques (Bordes
et al., 2013; Sun et al., 2019; Balažević et al., 2019), which focused on learning low-dimensional
embeddings for entities and relations, applying various scoring functions to triples. More recently,
text-based methods (Yao et al., 2019; Wang et al., 2021a; 2022) utilizing pre-trained language models
(PLMs) have achieved state-of-the-art performance on large-scale datasets such as Wikidata5M
(Wang et al., 2021b). These approaches generally rely on the transformation of the head embedding
h into the tail t through the relation r, yet the complex interconnectivity among communities
associated with entities remains insufficiently exploited. As highlighted by Stanley et al. (2019),
network topologies typically exhibit dense connections within groups and fewer connections between
them. Inspired by this, we approach triple completion from a broader perspective by focusing on
relational connections across entity communities. For instance, in the KG depicted in Figure 1,
entities are categorized into overlapping communities. To answer the query regarding the relationship
between Michael Jordan and Gregg Popovich, ’acquaintance’ emerges as a plausible candidate, which
can be inferred from the interconnections observed between the two communities—’NBA Players’
and ’NBA Coaches’.

Uncovering the latent structure of graph data is a key area of focus in statistical network analysis
(Porter et al., 2009; Latouche et al., 2010). Stochastic blockmodels (SBMs) (Airoldi et al., 2008;
Miller et al., 2009; Latouche et al., 2011) are a widely recognized class of probabilistic models that
assign cluster memberships to graph nodes, and are highly regarded in both academic and industrial
settings. A notable variant is the latent feature relational model (LFRM), a type of overlapping
stochastic blockmodel (OSBM), which allows nodes to belong to multiple groups and leverages
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Figure 1: A simplified example of KG involving diverse communities. Solid black arrows indicate
existing links, while the dashed red arrow represents a missing link for a KGC model to predict.
Each community within the graph is encircled, highlighting the overlapped groups of interconnected
entities.

an Indian Buffet Process (IBP) prior on the node-community assignment matrix Z to discover the
number of latent communities. These models typically rely on MCMC (Miller et al., 2009) or
variational inference (Zhu et al., 2016) to infer latent variables. While DGLFRM (Mehta et al., 2019)
enhances SBM inference using a deep sparse variational autoencoder (VAE) (Kingma & Welling,
2013), it is not tailored for KGC tasks and faces challenges when scaled to large graphs with
hundreds of thousands or even millions of nodes.

Contributions. We propose DSLFM-KGC, a novel method for tackling the KGC challenge by
utilizing latent community structures in KGs. Our main contributions are as follows: i) we design an
end-to-end probabilistic model for KGC that integrates additional sparse clustering features into triple
representation, implemented through a deep VAE (Kingma & Welling, 2013); ii) DSLFM-KGC pro-
vides robust performance and interpretability in completing missing triples by leveraging community-
level interconnections in entities; and iii) the deep architecture allows for scalable inference. Through
extensive experiments on the WN18RR, FB15k-237, and Wikidata5M datasets, iv) we showcase
our model’s superior capability and scalability in managing KGC tasks and uncovering interpretable
latent structures.

2 PRELIMINARIES

2.1 LATENT FEATURE RELATIONAL MODEL

The SBMs (Holland et al., 1983; Airoldi et al., 2008; Miller et al., 2009) are fundamental approaches
for analyzing relational data, where a graph with N nodes is represented by a binary adjacency matrix
A ∈ {0, 1}N×N . In this matrix, Ai,j = 1 indicates a link between node i and node j. Each node
i in an SBM is associated with a one-hot latent variable zi ∈ {0, 1}K to indicate its community
membership, where K is the number of node communities.

For scenarios where nodes belong to multiple communities, the OSBM (Latouche et al., 2011) adapts
the latent indicator zi into a multivariate Bernoulli vector consisting of K independent Bernoulli
variables, denoted as zi ∼ MB(z|π):

MB(z|π) =
K∏

k=1

Bernoulli(zk|πk) =
K∏

k=1

πzk
k (1− πk)

1−zk (1)
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where πk ∈ [0, 1]. The link probability between two nodes in OSBM is defined as a bilinear function
of their indicator vectors:

p(Ai,j = 1|zi, zj ,W ) = σ(z⊤i Wzj) (2)

Here,W is a real-valuedK×K matrix, withwkl influencing the link likelihood between communities
k and l, and σ(·) is the sigmoid function.

Expanding on OSBM, the LFRM integrates the IBP prior (Miller et al., 2009) on the binary node-
community matrix Z = [z1, . . . , zN ]⊤, enabling dynamic learning of the number of communities.
Traditional inference methods used in SBMs, such as MCMC or variational inference, often struggle
to scale in large networks. To overcome this, DGLFRM (Mehta et al., 2019) uses a VAE (Kingma &
Welling, 2013), employing a graph convolutional network (GCN) (Kipf & Welling, 2016) to encode
the variational distribution q(Z) and a non-linear multilayer perceptron (MLP) to model the link
probability p(Ai,j |zi, zj ,W ). Despite its advances, DGLFRM encounters difficulties when applied
to large-scale heterogeneous KGs, which feature entities and relations of diverse types.

2.2 KNOWLEDGE GRAPH COMPLETION

A KG is commonly defined as G = (E ,R, T ), where E is the set of entities, and R is the set of
relations. The set T = {(h, r, t)|h, t ∈ E , r ∈ R} contains factual triples, each representing a
directed labeled edge h r→ t in the KG. Furthermore, modern KGs often include meta-information
M, such as natural language descriptions (Yao et al., 2019; Wang et al., 2022) or multi-modal data
(Zhang et al., 2024a). For any entity e ∈ E and any relation r ∈ R, M(e) and M(r) denote the
corresponding meta-information.

For a given query (h, r, ?), the task of KGC involves identifying the missing tail entity by retrieving
the most plausible candidate t̂ from the entity set E , such that (h, r, t̂) is valid. From the KGC
perspective, we model a KG as containing a query set Q = {(h, r)|h ∈ E , r ∈ R}, a candidate
answer (entity) set E , and a mapping A : Q× E → {0, 1} that identifies whether a query has a valid
answer in the KG G. This mapping is represented as a binary matrix A ∈ {0, 1}|Q|×|E|, analogous to
an adjacency matrix, where Ahr,t = 1 if the triple (h, r, t) ∈ T , and Ahr,t = 0 otherwise.

3 METHODOLOGY

This section presents the framework of DSLFM-KGC. We begin by describing the probabilistic
generative model for KGs, emphasizing its application to KGC. Following this, we elaborate the VAE
architecture employed for inference, detailing the design and implementation of both the encoder and
decoder.

3.1 GENERATIVE MODEL

We assume that triples within a KG are conditionally independent, given their latent communities.
The generation process of a KG unfolds as follows:

For each query (h, r) ∈ Q and each answer t ∈ E , draw the membership indicator vectors:

zhr ∼ MB(z|πhr), zt ∼ MB(z|πt) (3)

Next, draw the latent feature vectors:

whr ∼ N (w|0, σ2I), wt ∼ N (w|0, σ2I) (4)

finally, draw the triple:
Ahr,t ∼ p(Ahr,t|zhr, zt,whr,wt) (5)

Here, zhr ∈ {0, 1}K1 , zt ∈ {0, 1}K2 are binary vectors with elements equal to one indicating their
respective community memberships, and whr ∈ RK1 ,wt ∈ RK2 represent the strength of their
community memberships, i.e., latent features. Typically, query clusters outnumber entity clusters due
to the diversity of entity-relation pairs.
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The distribution p(Ahr,t|zhr, zt,whr,wt) is modeled as a Bernoulli distribution, with the probability
p(Ahr,t = 1|zhr, zt,whr,wt) signifying that the answer aligns with the query, thus confirming the
existence of the triple (h, r, t) in the KG:

fhr = whr ⊙ zhr, ft = wt ⊙ zt (6)

p(Ahr,t = 1|zhr, zt,whr,wt) = σ
(
f⊤hrft

)
(7)

where ⊙ is the Hadamard product.

Let Zqry and Zans denote the membership indicator matrices for queries and answers, respectively, and
let Wqry and Wans denote the membership strength matrices. Then, Fqry = Zqry ⊙Wqry and Fans =
Zans ⊙Wans constitute a sparse latent feature model (Ghahramani & Griffiths, 2005; d’Aspremont
et al., 2004; Jolliffe et al., 2003). We use the Indian Buffet Process (IBP) (Griffiths & Ghahramani,
2011) prior on the indicator matrices to facilitate the learning of the number of communities, thereby
establishing an infinite latent feature model (Ghahramani & Griffiths, 2005).

Zqry ∼ IBP(αqry), Zans ∼ IBP(αans) (8)

3.2 VAE ENCODER

We adopt the stick-breaking construction of the IBP (Teh et al., 2007) to model zhr:

vhr,k ∼ Beta(αqry, 1), k = 1, . . . ,K1

πhr,k =

k∏
j=1

vhr,j , zhr,k ∼ Bernoulli(πhr,k) (9)

The sampling of zt can be achieved similarly. By employing the stick-breaking approach, the
effective number of communities engaged can be learned by setting a sufficiently large truncation
level K = K1 = K2 in our model.

Let H = {Vqry, Zqry,Wqry, Vans, Zans,Wans} denote the set of latent variables and O = {Q, E , A} the
set of observations. We utilize an encoder network to approximate the true posterior p(H|O) with
a variational distribution qϕ(H) parameterized by ϕ, which is factorized following the mean-field
approximation:

qϕ(H) =

K∏
k=1

 ∏
(h,r)∈Q

qϕ(vhr,k)qϕ(zhr,k)qϕ(whr,k)
∏
t∈A

qϕ(vt,k)qϕ(zt,k)qϕ(wt,k)

 (10)

The distributions involved are defined as follows:

qϕ(vhr,k) ≜ Beta(chr,k, dhr,k), k = 1, . . . ,K (11)

qϕ(zhr,k) ≜ qϕ(zhr,k|Q) = Bernoulli(πhr,k(Q)), k = 1, . . . ,K (12)

qϕ(whr,k) ≜ qϕ(whr,k|Q) = N (µhr,k(Q), σ2
hr,k(Q)), k = 1, . . . ,K (13)

where πhr,k, µhr,k and σ2
hr,k are outputs of the encoder network hϕ, i.e., {πhr,µhr,σ

2
hr}(h,r)∈Q =

hϕ(Q) with Q as the input. In experiment, we found that treating chr and dhr as part of the encoder
parameters (instead of encoding them from the posterior) helps mitigate over-parameterization. We
define qϕ(vt,k), qϕ(zt,k) and qϕ(wt,k) in a similar vein, with Q replaced by E .

Following recent progress in text-based approaches for the KGC task (Yao et al., 2019; Wang et al.,
2022), we employ the strategy that individually encodes the textual descriptions of queries and
answers using two BERT (Devlin et al., 2019) encoders, sharing pre-trained weights, and applying
mean pooling:

ehr = Pool(BERTqry(xhr)), et = Pool(BERTans(xt)) (14)

Here, xhr and xt represent the textual descriptions of the query and the answer after tokenization,
respectively. Subsequently, a multi-layer perceptron (MLP) is leveraged to project the textual
encodings into the latent space:

{πhr,k, µhr,k, σhr,k}Kk=1 = MLP(ehr), {πt,k, µt,k, σt,k}Kk=1 = MLP(et) (15)
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Figure 2: An overview of our DSLFM-KGC framework during inference. Initially, the encoder
network hϕ encodes the textual information of a triple (xhr and xt) into posterior distributions,
as defined in Equations 14 and 15. Latent variables (e.g., zhr and whr) are then sampled using
reparameterization tricks (see Appendix A.4), after which the decoder gθ generates representations
for the query and answer (ghr and gt).

It is important to note that our approach leverages latent structures encoded within the textual semantic
space, which has demonstrated enhanced expressiveness for KGC tasks. Additionally, the flexibility
of our model allows for the use of various types of encoders, such as a multi-modal one, to further
enhance expressiveness. We plan to explore these possibilities in future research.

We denote the overall encoder network with parameters ϕ as hϕ. Integrating textual inputs not only
enhances the performance of our model, but also provides deeper insights into the latent structure.
This allows for the exploration of the mined communities through the descriptions of the entities
within, the benefits of which will be demonstrated in the experiment section.

3.3 VAE DECODER

We model the probability distribution pθ through a decoder network gθ, parameterized by θ.
Given the latent variables zhr, zt,whr and wt, the decoder network generates a link Ahr,t ∼
pθ(Ahr,t|zhr, zt,whr and wt). We first computes the Hadamard product to obtain fhr and ft, as
outlined in Equation 6. An MLP with non-linear activations is subsequently employed to transform
fhr, ft into ghr,gt, respectively.

ghr = MLP(fhr), gt = MLP(ft) (16)

The inner product of these transformed vectors is then computed to represent the confidence level
that the triple (h, r, t) exists in the KG. The use of an MLP, as opposed to relying solely on a single
Hadamard product, enables more expressive representations and improves overall performance.

The architecture of our model is depicted in Figure 2.

3.4 INFERENCE

We jointly update the encoder hϕ and the decoder gθ by minimizing the negative of the evidence
lower bound (ELBO):

L =
∑

(h,r)∈Q

{DKL [qϕ(vhr)||pθ(vhr)] +DKL [qϕ(zhr)||pθ(zhr|vhr)] +DKL [qϕ(whr)||pθ(whr)]}

+
∑
t∈E

{DKL [qϕ(vt)||pθ(vt)] +DKL [qϕ(zt)||pθ(zt|vt)] +DKL [qϕ(wt)||pθ(wt)]}

−
∑

(h,r)∈Q

Eq [log pθ(xhr|zhr,whr)]−
∑
t∈E

Eq [log pθ(xt|zt,wt)]

−
∑

(h,r)∈Q

∑
t∈E

Eq [log pθ(Ahr,t|zhr, zt,whr,wt)] (17)

where DKL[q(·)||p(·)] is the KL divergence of the distributions q(·) and p(·).
To further enhance KGC performance, we express the triple completion term
log pθ(Ahr,t|zhr, zt,whr,wt) as a contrastive loss. The contrastive framework is renowned
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for its capacity to learn expressive representations, as it aims to maximize the mutual information
between the inputs and the outputs (Ben-Shaul et al., 2023; Hjelm et al., 2018; Gutmann & Hyvärinen,
2012). Specifically, we utilize the supervised contrastive loss (Li et al., 2023a; Khosla et al., 2020):

log pθ(Ahr,t|zhr, zt,whr,wt) =
1

|N+|
∑

t∈N+

log
e(S(ghr,gt)−γ)/τ

e(S(ghr,gt)−γ)/τ +
∑

t′∈N− e(S(ghr,gt′ )−γ)/τ

(18)
where N+ represents the set of positive entities of the query (h, r, ?), and N− denotes the set
of negative samples, encompassing all other entities within the same batch (Chen et al., 2020).
The variable γ denotes the additive margin, τ the temperature and S(ghr,gt) = cos(ghr,gt) =
g⊤
hrgt/(||ghr|| · ||gt||) ∈ [−1, 1] the cosine similarity score function.

We then optimize the objective using Stochastic Gradient Variational Bayes (SGVB) and mini-batch
gradient descent (Kingma & Welling, 2013). Given a batch of triples B ⊂ G, and let the decoded
representations ghr,gt ∈ RD, the computation of L requires time O(|B| · (CKL + CRecon + CComp))
and space O(|B| ·D + |B| ·K), where CKL, CRecon and CComp denotes the complexity of evaluating
the KL divergence, reconstruction and triple completion terms in the ELBO, respectively. Please
refer to Appendix A for additional proofs and computation details.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets. To evaluate our method for filling in missing triples in KGs, we selected benchmark
datasets ranging from moderate-sized (about 93k triples) to large-scale (around 20 million triples)
for the KGC task. These include WN18RR, FB15k-237 (Toutanova et al., 2015), and Wikidata5M
(Wang et al., 2021b). Originally introduced by Bordes et al. (2013), the WN18 and FB15k datasets
were later refined to WN18RR and FB15k-237 following studies (Toutanova et al., 2015; Dettmers
et al., 2018) that revealed test leakage issues. Textual data comes from KG-BERT (Yao et al., 2019),
while Wikidata5M (Wang et al., 2021b) is a large-scale KG merging Wikidata and Wikipedia, with
textual descriptions for each entity.

Evaluation metrics. In our approach, for each query (h, r, ?), a score is calculated for each entity
and the rank of the correct answer is determined. We report the Mean Reciprocal Rank (MRR) and
Hit@k metrics under the filtered protocol (Bordes et al., 2013). For each triple (h, r, t), we construct
a forward query (h, r, ?) with t as the answer, along with a backward query (?, r−1, t) for data
augmentation. Here, r−1 denotes the inverse of the relation r, as sourced from Li et al. (2023a). The
averaged results of the forward and backward metrics are reported in our experimental evaluations.

Baselines. We conduct comprehensive experiments to evaluate the performance of our model
against a variety of KGC models, encompassing rule-based, embedding-based and text-based KGC
approaches.

Implementation details. To ensure a fair comparison with existing approaches, we maintain the
same primary hyperparameters. Specifically, the BERT encoders are initialized with pre-trained
weights from "bert-base-uncased". We use a batch size of 1024 with 4 Quadro RTX 8000 GPUs,
although a larger batch size is reasonably expected to provide better performance under the contrastive
framework. The maximum number of communities K is consistently set to 128 for all datasets. In
the case of the WN18RR and FB15k-237 datasets, we utilize in-batch negative sampling, whereas
for the Wikidata5M dataset, we adopt an additional self-negative sampling strategy to ensure fair
comparison with SimKGC (Wang et al., 2022).

Detailed information regarding the experimental setup can be found in Appendix B.1.

4.2 MAIN RESULTS

Due to the stochastic nature of our model, we perform five independent experiments with different
random seeds and report the average metrics. Table 2 presents the results for the Wikidata5M dataset,
while Table 1 for the WN18RR and FB15k-237 datasets. Hit@k is expressed as a percentage. The
best performance for each metric in each dataset is highlighted in bold, and the top metrics across
categories are underlined.
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Table 1: Knowledge graph completion results for the WN18RR and FB15k-237 datasets.

Method WN18RR FB15k-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Rule-based Methods

NeuralLP 38.1 36.8 38.6 40.8 23.7 17.3 25.9 36.1
DRUM 38.2 36.9 38.8 41.0 23.8 17.4 26.1 36.4
LERP 62.2 59.3 63.4 68.2 - - - -

Embedding-based Methods

TransE 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1
DistMult 44.4 41.2 47.0 50.4 28.1 19.9 30.1 44.6
R-GCN 12.3 8.0 13.7 20.7 16.4 10.0 18.1 30.0
RotatE 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3

TuckER 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4
HittER 50.3 46.2 51.6 58.4 37.3 27.9 40.9 55.8

N-Former 48.6 44.3 50.1 57.8 37.2 27.7 41.2 55.6
KRACL 52.7 48.2 54.7 61.3 36.0 26.6 39.5 54.8

Text-based Methods

KG-BERT 21.6 4.1 30.2 52.4 - - - 42.0
MTL-KGC 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8

StAR 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2
SimKGC 66.6 58.7 71.7 80.0 33.6 24.9 36.2 51.1
KG-S2S 57.4 53.1 59.5 66.1 33.6 25.7 37.3 49.8

GHN 67.8 59.6 71.9 82.1 33.9 25.1 36.4 51.8

DSLFM-KGC 70.4 63.1 74.8 84.2 35.5 26.4 38.9 53.7

Table 2: KGC results for the Wikidata5M datasets.

Method MRR Hit@1 Hit@3 Hit@10

DKRL 23.1 5.9 32.0 54.6
KEPLER 40.2 22.2 51.4 73.0

BLP-ComplEx 48.9 26,2 66.4 87.7
BLP-SimplE 49.3 28.9 63.9 86.6

SimKGC 71.3 60.7 78.7 91.3

DSLFM-KGC 76.3 67.2 82.7 93.6

The most substantial improvement is seen on the
Wikidata5M dataset, where our model shows a
5.0% increase in MRR (from 71.3% to 76.3%)
and a 6.5% increase in Hit@1 (from 60.7% to
67.2%) compared to SimKGC. Similar improve-
ments are observed on the WN18RR dataset,
where DSLFM-KGC surpasses the second-best
model (GHN) across all metrics, with enhance-
ments ranging from 1.9% to 3.5% in MRR and
Hit@k, demonstrating its strong predictive ca-
pability. On the FB15k-237 dataset, while our model falls short of embedding-based models, it
still outperforms rule-based and text-based methods, narrowing the gap between text-based and
embedding-based approaches by approximately 2-3 percentage points.

To clarify the results obtained from the WN18RR and FB15k-237 datasets, we perform a detailed
analysis of the underlying KGs. First, we assess the topological structure of each KG by calculating
the average degree M/N , where M and N represent the number of edges and nodes, respectively.
The FB15k-237 dataset exhibits a denser structure, with an average degree of 21.3, compared to
2.27 for WN18RR. Second, we examine the topological structures of both datasets. In FB15k-237,
relationships show a high degree of correlation (e.g., ‘award nominee’, ‘nominee of award’), resulting
in a densely interconnected structure with a less pronounced clustering pattern. Finally, we carry out
in-depth ablation studies to further examine the challenges our model experiences when capturing
latent community structures from the FB15k-237 dataset, as discussed in the following section.

4.3 ABLATION RESULTS

We conduct diverse ablation experiments to investigate into how key components of our model impact
KGC performance.

Stick-breaking prior. We conduct KGC experiments with αqry and αans chosen from the grid
{80, 90, 100} × {10, 20, . . . , 100}, while keeping all other hyperparameters fixed. Table 8 reports
the mean and standard deviation of these 30 results for each dataset. The minimal variation in
performance with different αqry and αans values, as seen in Table 8, highlights the robustness of our
model under diverse prior settings.
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Figure 4: The latent structure Fans learned from the WN18RR and FB15k-237 datasets. The columns
of Fans, representing communities, are sorted such that communities with higher summed strengths
are assigned lower indices in the matrix.
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Figure 3: Average number of activated communities
learned on the WN18RR and FB15k-237 datasets.

As discussed in Section 4.2, the denser topology
of the FB15k-237 dataset makes it more difficult
to capture community structures. To gain fur-
ther insights, we compute the average number of
activated communities (the number of non-zero
entries in Zans divided by the number of entities
|E|) and present the trend across different αans
values in Figure 3. Clearly, for identical αans
values, FB15k-237 exhibits significantly fewer
latent communities than WN18RR, with the dis-
parity increasing as αans rises. This indicates the
greater density and less pronounced clustering
structure of the FB15k-237 dataset.

Table 3: Performance of DSLFM-KGC on the
WN18RR and FB15k-237 datasets w/ different latent
structures.

Method WN18RR FB15k-237
Hit@1 Hit@10 Epochs Hit@1 Hit@10 Epochs

Ours 63.1 84.2 65 26.4 53.7 15
VAE 60.9 82.4 55 25.6 52.0 10
AE 59.0 82.0 50 25.1 52.3 10

Dose the sparse latent structure makes a dif-
ference? To assess this, we replace our encoder
with one that generates an approximate stan-
dard Gaussian distribution, as used in the vanilla
VAE (Kingma & Welling, 2013). Additionally,
we evaluate a pure autoencoder (AE), which as-
sumes no probabilistic distribution for the latent
variables. The testing performance and the train-
ing convergence epochs (based on the best validation metric) for the WN18RR and FB15k-237
datasets are shown in Table 3.

The results in Table 3 show that integrating latent structure substantially enhance KGC performance
on the WN18RR dataset. However, the FB15k-237 dataset witnesses only modest improvements,
illustrating the challenges in modeling its latent community structure. Furthermore, the increased
complexity of the latent structure negatively impacted the convergence rate, as evidenced by the
longer training epochs. Future studies to enhance KGC accuracy on dense-connected KGs and
improve training efficiency are necessary.

5 ANALYSIS

To showcase the interpretability of our model, derived from SBM, we visualize the latent structure
learned from the WN18RR and FB15k-237 datasets in Figure 4. For demonstration purposes, we
use stick-breaking prior settings of αqry = 100, αans = 50, and a truncation level of K = 64. The
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Table 4: Uncovered communities from the FB15k-237 dataset along with entity descriptions.
Community and entity names are highlighted in different colors, with entities in each community

sorted in descending order by strength.

Cluster : County
County Wexford : County Wexford is a county in Ireland...

Marion County : Marion County is a county located in the U.S. state of Indiana...

County Tyrone : County Tyrone is one of the six counties of Northern Ireland...

Cluster : Music
PJ Harvey : Polly Jean Harvey MBE is an English musician...

Little Richard : ...an American recording artist, songwriter, and musician...
Italo disco : Italo disco is a genre of music which originated in Italy...
Talent manager-GB : A talent manager, also known as band manager...

sparse latent feature matrix Fans shows how entities are grouped into communities, where larger
absolute values suggest stronger confidence in whether a node belongs to a specific community. For
WN18RR, as illustrated in Figure 4a, more pronounced clustering is visible, with the left and right
columns showing larger absolute values, while the middle columns are more moderate. In contrast,
the FB15k-237 matrix exhibits more evenly distributed values across its columns.

In addition, incorporating a text encoder allows for a more in-depth understanding of the latent
structure learned from a KG. We select several communities and their most significant entities from
the FB15k-237 dataset for enhanced visualization, with their textual descriptions provided in Table 4.
This integration of text features enables more intuitive and concrete observations of the uncovered
communities, validating both the effectiveness and interpretability of our approach.

6 RELATED WORK

Knowledge Graph Completion. To address the task of KGC, initial research has concentrated
on developing effective scoring mechanisms to evaluate the plausibility of triples embedded in
low-dimensional spaces. A pioneering approach in this area is knowledge graph embedding (KGE)
Bordes et al. (2013); Yang et al. (2014); Schlichtkrull et al. (2018); Sun et al. (2019); Balažević
et al. (2019), also known as embedding-based methods. Notably, TransE Bordes et al. (2013) is a
representative model that interprets a relationship r as a translation from the head entity h to the tail
entity t. Tucker Balažević et al. (2019) employs Tucker Decomposition Tucker (1966) to compute
a smaller core tensor and a set of three matrices, each representing entity and relation embeddings
separately. Recently, text-based KGC methods have incorporated textual descriptions of entities
and relations, thus encoding them into a more expressive semantic space. Specifically, NTN Socher
et al. (2013) simplifies entity representation by averaging its word embeddings. SimKGC Wang
et al. (2022) integrates a contrastive learning framework with three negative sampling strategies,
significantly improving KGC performance. However, these prevalent KGC methods assume that the
existence of a triple in a KG solely depends on the entities and relation involved, often overlooking
the intricate interconnections among communities.

KGC methods that leverage neighborhood information. Graph Neural Networks (GNNs), es-
pecially Message Passing Neural Networks (MPNNs), have become essential tools for node repre-
sentation learning in graphs, where they assume that similar neighborhood structures yield closer
node representations. Notable MPNN-based KGC methods like RGCN (Schlichtkrull et al., 2018),
CompGCN (Vashishth et al., 2019), and KBGAT (Nathani et al., 2019) have demonstrated strong
KGC performance but have since been found to inadequately leverage neighborhood information
(Zhang et al., 2022; Li et al., 2023b). Furthermore, GNN-based approaches generally do not incorpo-
rate community-level information for KG completion. Meanwhile, there are few KGC methods that
leverage clustering features, such as CTransR (Lin et al., 2015) and EL-Trans (Yang et al., 2023).
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However, these models often struggle with poor KGC performance and lack an end-to-end design,
limiting their applicability to modern KGs.

Stochastic Blockmodels have demonstrated success in uncovering various latent structures, thereby
enhancing link prediction. The stochastic blockmodel (SBM) Holland et al. (1983) assigns each node
to a specific community, with the interconnections between nodes influenced by their community
memberships. The mixed membership stochastic blockmodel (MMSB) Airoldi et al. (2008) introduces
a multinomial indicator vector for node-community assignments, allowing for mixed membership
communities. However, MMSB restricts nodes to a single cluster at any given time. The overlapping
stochastic blockmodel (OSBM) Latouche et al. (2011) overcomes this limitation by utilizing a multi-
Bernoulli distribution, enabling nodes to belong to multiple communities simultaneously. The latent
feature relational model (LFRM) Miller et al. (2009) is a specific instance of OSBM that applies
the Indian Buffet Process (IBP) prior to the assignment matrix. Traditional SBMs, however, are
constrained in expressiveness and scalability due to their reliance on MCMC Miller et al. (2009) or
variational inference Zhu et al. (2016) for learning latent variables. Recently, DGLFRM Mehta et al.
(2019) employs a sparse variational autoencoder (VAE) framework for inference in SBMs, thereby
extending their applicability to larger graphs. Nevertheless, DGLFRM struggles to handle graphs
with tens of thousands of nodes or more, a common scenario in modern KGs.

7 CONCLUSION

In this paper, we propose DSLFM-KGC, a framework developed to learn sparse latent structural
features for enhancing knowledge graph completion (KGC). Specifically, we introduce a novel gener-
ative model for KGs, based on stochastic blockmodels (SBMs), which dynamically uncover latent
communities and improve triple completion performance. Additionally, a deep sparse variational
autoencoder enables scalable inference and greater expressiveness. Extensive experiments on three
benchmark datasets verify the superior performance of DSLFM-KGC in completing missing triples
while maintaining interpretability. Despite the improvements in KGC performance, there is still a
significant challenge in optimizing training efficiency. Future research will focus on learning more
expressive latent representations while reducing computational overhead.
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A MATHEMATICAL PROOFS

This section provides detailed mathematical derivations of the negative ELBO as introduced in
Equation 17.

A.1 THE NEGATIVE ELBO

Let H = {Vqry, Zqry,Wqry, Vans, Zans,Wans} denote the set of latent variables and O =
{Xqry, Xans, A} the set of observations, with Xqry and Xans being the tokenized sequences of the
queries and answer, respectively. The negative ELBO in our model is formulated as:

L = −Eq

[
log

pθ(H,O)

qϕ(H)

]
= −Eq

[
log

pθ(H)

qϕ(H)
+ log pθ(O|H)

]
= DKL [qϕ(H)||pθ(H)]− Eq [log pθ(Xqry, Xans, A|Zqry, Zans,Wqry,Wans)]

= DKL [qϕ(H)||pθ(H)]− Eq [log pθ(Xqry|Zqry,Wqry)]

− Eq [log pθ(Xqry|Zqry,Wqry)]− Eq [log pθ(Xans|Zans,Wans)]

− Eq [log pθ(A|Zqry, Zans,Wqry,Wans)]

This objective consists of three main parts: the first two KL divergence terms LKL, the next two
reconstruction terms Lrecon, and the last triple completion term Lcomp.

Given a batch of triples B ⊂ G, with QB and EB representing the associated queries and answers,
we derive a batch-optimized version of Equation 17:
L(B) = LKL(B) + LRecon(B) + LComp(B)

=
∑

(h,r)∈QB

{DKL [qϕ(vhr)||pθ(vhr)] +DKL [qϕ(zhr)||pθ(zhr|vhr)] +DKL [qϕ(whr)||pθ(whr)]}

+
∑
t∈EB

{DKL [qϕ(vt)||pθ(vt)] +DKL [qϕ(zt)||pθ(zt|vt)] +DKL [qϕ(wt)||pθ(wt)]}

−
∑

(h,r)∈QB

Eq [log pθ(xhr|zhr,whr)]−
∑
t∈EB

Eq [log pθ(xt|zt,wt)]

−
∑

(h,r,t)∈B

Eq [log pθ(Ahr,t|zhr, zt,whr,wt)] (19)

To compute the reconstruction terms, such as Eq [log pθ(xhr|zhr,whr)], we use the cosine similarity
between the embedding ehr (Equation 14) and the decoded representation ghr (Equation 16):

Eq [log pθ(xhr|zhr,whr)] = cos(ehr,ghr) (20)

Note that, vhr,vt, zhr, zt,whr and are K-dimensional vectors, while ghr,gt ∈ RD. The time
required to compute LKL(B), LRecon(B) and LComp(B) in Equation 19 is O(|B|·CKL), O(|B|·CRecon)
and O(|B|·CComp), with space complexities O(|B|·K), O(|B|·D) and O(|B|·D), respectively. Here,
CKL, CRecon and CComp denote the complexity for evaluating the KL divergence, reconstruction and
triple completion terms for a single triple. Thus, the total time and space complexity for computing
19 are O(|B| · (CKL + CRecon + CComp)) and O(|B| ·D + |B| ·K).

In practice, we apply two different weighting coefficients to the KL and reconstruction losses to
balance the learning objectives and reduce the risk of posterior collapse (Higgins et al., 2017):

L(B) = βLKL(B) + ηLRecon(B) + LComp(B) (21)

Regarding the KL terms, we adhere to the method described by Kingma & Welling (2013)
for computing the KL divergences for two normal variables: DKL [qϕ(whr)||pθ(whr)] and
DKL [qϕ(wt)||pθ(wt)]. In the following sections, we derive the computation of the KL divergence
for two Beta distributions, i.e., DKL [qϕ(vhr)||pθ(vhr)] and DKL [qϕ(vt)||pθ(vt)], as well as for two
Bernoulli distributions, i.e., DKL [qϕ(zhr)||pθ(zhr|vhr)] and DKL [qϕ(zt)||pθ(zt|vt)].
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A.2 THE KL DIVERGENCE OF BETA DISTRIBUTIONS

The KL divergence of two Beta distributions has a closed-form solution. The PDF of a Beta
distribution Beta(a, b) with concentration parameters a, b is given by:

f(x|a, b) = 1

B(a, b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1 (22)

where B(a, b) is the Beta function, defined as

B(a, b) =
∫ 1

0

ua−1(1− u)b−1du =
Γ(a)Γ(b)

Γ(a+ b)
(23)

with Γ(·) representing the Gamma function.

Let the distributions p(x) and q(x) be Beta(ap, bp) and Beta(aq, bq) respectively, the KL divergence
for q(x) and p(x) is computed as:

KL [q(x)||p(x)] = Eq

[
log

q(x)

p(x)

]
= Eq

[
log

1
B(aq,bq)

xaq−1(1− x)bq−1

1
B(ap,bp)

xap−1(1− x)bp−1)

]

= Eq

[
log

B(ap, bp)
B(aq, bq)

]
+ (aq − ap)Eq [log x] + (bq − bp)Eq [log(1− x)]

= logB(ap, bp)− logB(aq, bq) + (aq − ap)Eq [log x] + (bq − bp)Eq [log(1− x)]

where Eq[log x] and Eq[log(1− x)] are the expected sufficient statistics under distribution q, which
can be computed using the properties of the exponential family distributions:

Eq[log x] = ψ(aq)− ψ(aq + bq) (24)
Eq[log(1− x)] = ψ(bq)− ψ(aq + bq) (25)

where ψ(·) denotes the di-gamma function.

Thus, the complete expression of the KL divergence becomes:

KL [q(x)||p(x)] = logB(ap, bp)− logB(aq, bq) + (aq − ap)(ψ(aq)− ψ(aq + bq))

+ (bq − bp)(ψ(bq)− ψ(aq + bq)) (26)

A.3 THE KL DIVERGENCE OF CONCRETE DISTRIBUTIONS

To enable differentiable optimization, we utilize the binary Concrete distribution (Maddison et al.,
2016) to obtain a continuous relaxation of the Bernoulli distribution (Equation 12). However, the KL
divergence of two Concrete distributions, q(y) and p(y), is intractable. We resort to approximation
using the Monte Carlo (MC) expectations:

KL [q(y)||p(y)] = Eq [log q(y)− log p(y)]

≃ 1

N

N∑
i=1

(log q(yi)− log p(yi)), yi ∼ q(y), i = 1, . . . , N (27)

According to Maddison et al. (2016), the logarithm of the probability density function for the Concrete
distribution is given by:

log p(y|π, λ) = log λ− λy + log π − 2 log(1 + exp(−λy + log π)) (28)

where p(y|π, λ) ≜ Concrete(y|π, λ) denotes the Concrete distribution, λ ∈ (0,∞) the relaxation
temperature, and π, the probability ratio.
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Table 5: Statistics of datasets.

Dataset # Relation # Entity # Triple # Train # Validation # Test

WN18RR 11 40,943 93,003 86,835 3,034 3,134
FB15k-237 237 14,541 310,116 272,115 17,535 20,466
Wikidata5M 822 4,594,485 20,624,605 20,614,279 5,163 5,163

Specifically, the KL divergence term DKL [qϕ(zhr)||pθ(zhr|vhr)] in the negative ELBO (Equation
17) is computed as:

DKL [qϕ(zhr)||pθ(zhr|vhr)] = Eq [log qϕ(zhr)− log pθ(zhr|vhr)]

=

K∑
k=1

Eq[log qϕ(zhr,k)− log pθ(zhr,k|vhr)] (29)

where we apply the Concrete relaxation to the variational posterior (Equation 12) and the prior
(Equation 9):

qϕ(zhr,k) ≜ Concrete(zhr,k|πhr,k(G), λpost) (30)

pθ(zhr,k|vhr) ≜ Concrete(zhr,k|πhr,k(vhr), λprior) (31)

In this case, λpost and λprior are hyperparameters and we have

πhr,k(vhr) =

k∏
j=1

vhr,j , vhr,j ∼ qϕ(vhr,j) (32)

where qϕ(vhr,j) is defined in Equation 11. Then DKL [qϕ(zhr)||pθ(zhr|vhr)] is estimated using
Equation 27. The computation of DKL [qϕ(zhr)||pθ(zhr|vhr)] is implemented similarly.

A.4 REPARAMETERIZATION

In our model, the expectations over Beta, Bernoulli and Normal distributions is approximated
using differentiable Monte Carlo (MC) estimate, as required by SGVB (Kingma & Welling, 2013).
Furthermore, to draw samples from these distributions, a reparameterization trick is needed to ensure
effective differentiation. To sample Normal variables whr and wt, we follow the standard approach
used in vanilla VAE (Kingma & Welling, 2013). For reparameterization of Beta variables vhr and vt,
we adopt the implicit differentiation method (Figurnov et al., 2018).

To draw discrete Bernoulli variables during training, we utilize the Gumble-max relaxation (Maddison
et al., 2014; Jang et al., 2016) to achieve a continuous approximation. Specifically, the distribution
used to reparameterize zhr,k aligns with a binary special case of the Concrete distribution (Maddison
et al., 2016):

u ∼ Uniform(0, 1) L = log(u)− log(1− u)

yhr,k
d
=(logit(πhr,k) + L)/λ

zhr,k = σ (yhr,k) (33)

where zhr,k and πhr,k are defined in Equation 12 and 15, logit(·) is the inverse-sigmoid function and
λ is the relaxation temperature. The reparameterization of zt,k is achieved similarly.

B EXPERIMENT

B.1 EXPERIMENT SETTINGS

Datasets. The statistics of each dataset are shown in Table 5.

Baselines. The baseline methods we choose can be categorized into three classes:
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Table 6: Hyperparameters of our DSLFM-KGC for each dataset during training.

Hyperparameter WN18RR FB15k-237 Wikidata5M

initial learning rate 8× 10−5 2× 10−5 5× 10−5

epochs 65 15 1
contrastive temperature τ 0.02 0.08 0.03

dropout 0 0.1 0
stick-breaking prior αqry 100 100 100
stick-breaking prior αans 20 20 100

truncation level K 128 128 128

Table 7: The parameter count, training epochs, and GPU hours required by SimKGC (Wang et al.,
2022) and DSLFM-KGC.

Model # Params WN18RR FB15k-237 Wikidata5M
Epochs GPU hours Epochs GPU hours Epochs GPU hours

SimKGC 218.0M 50 3 10 2 1 12
DSLFM-KGC (ours) 219.8M 65 3.5 15 3 1 13

• For rule-based methods, we incorporate NeuralLP (Yang et al., 2017), DRUM (Sadeghian
et al., 2019) and LERP (Han et al., 2023).

• In the category of embedding-based methods, we choose TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), R-GCN (Schlichtkrull et al., 2018), ConvE (Dettmers et al.,
2018), RotatE (Sun et al., 2019), TuckER (Balažević et al., 2019), HittER (Chen et al.,
2021), N-Former (Liu et al., 2022) and KRACL Tan et al. (2023).

• Text-based methods considered include KG-BERT (Yao et al., 2019), MTL-KGC (Kim
et al., 2020), StAR (Wang et al., 2021a), KG-S2S (Chen et al., 2022), DKPL (Xie et al.,
2016), KEPLER (Wang et al., 2021b), BLP Daza et al. (2021), SimKGC (Wang et al., 2022)
and GHN (Qiao et al., 2023).

Implementation details. We utilize two separate BERT encoders to process the textual descriptions
of the queries and answers. For a specific query (h, r) and entity t, the token sequences, i.e., xhr and
xt, are defined as follows:

xhr = [CLS,M(h),SEP,M(r),SEP] (34)
xt = [CLS,M(t),SEP] (35)

where CLS and SEP are special tokens introduced by Devlin et al. (2019), and M(h),M(r),
and M(t) represent the tokenized textual descriptions of the head, relation and tail, respectively.
Following tokenization, xhr and xt are processed through BERT encoders, as specified in Equation
14.

Hyerparameter. Table 6 lists the consistent hyperparameters used for each dataset.

B.2 ADDITIONAL ABLATION RESULTS

Figure 5 and Table 9 depict the training behavior and testing performance of DSLFM-KGC across
various KL weight β settings. For both the WN18RR and FB15k-237 datasets, setting β = 10−1

leads to a learning imbalance between the KL and triple completion losses, which negatively impacts
the validation loss. In contrast, the validation loss (Lcomp) curves for DSLFM-KGC with β =
10−2, 10−3, and 10−4 show minimal variation. This observation is mirrored in the testing results
shown in Table 9.
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Table 8: Performance of DSLFM-KGC on the WN18RR, FB15k-237 and Wikidata5M datasets w/ different
stick-breaking priors.

Dataset WN18RR FB15k-237 Wikidata5M
Hit@1 Hit@10 Hit@1 Hit@10 Hit@1 Hit@10

Mean 62.7 84.1 26.2 53.8 66.9 94.0

Std 0.3 0.1 0.2 0.1 0.4 0.2
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Figure 5: Validation triple completion loss Lcomp for DSLFM-KGC during training with different β
values on the WN18RR and FB15k-237 datasets.

Table 9: Performance of DSLFM-KGC on the WN18RR and FB15k-237 datasets w/ different β
values.

β
WN18RR FB15k-237

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

10−1 69.2 61.6 83.3 33.7 24.5 52.2
10−2 70.2 62.8 83.9 35.1 26.0 53.3
10−3 70.2 62.6 84.3 35.4 26.2 53.6
10−4 70.4 62.5 84.0 35.4 26.2 53.7

C RELATED WORK

KGC with large language models (LLMs). Recent advancements in text-based KGC leverage the
extensive pre-trained knowledge and contextual understanding of LLMs to bridge the gap between
structured and unstructured knowledge. Techniques in this domain often employ diverse prompt
designs to enable LLMs to perform direct reasoning for KGC (Yao et al., 2023; Wei et al., 2024)
or to refine textual information in datasets, enhancing their accuracy and richness (Li et al., 2023a;
Yang et al., 2024). However, while these methods are training-free and inherently interpretable, they
face challenges such as hallucinations and reliance on few-shot demonstrations, which are difficult
to implement in sparsely connected KGs like WN18RR. Alternatively, some approaches fine-tune
LLMs on KGC tasks using strategies like prefix-tuning (Chen et al., 2023; Zhang et al., 2024b) or
adapter-tuning. While these methods capitalize on the reasoning capabilities of LLMs, they often lack
interpretability, struggle to generalize across datasets, and continue to face challenges in achieving
strong performance. In contrast, our model excels on relatively sparse KGs with distinct clustering
patterns, leveraging text not only to improve KGC interpretability but also to provide meaningful
clustering information about the KG itself. Additionally, while LLMs provide external knowledge
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to enhance KGC, our approach focuses on directly extracting and utilizing the intrinsic information
within KGs to strengthen representation learning. This makes our method particularly effective
in scenarios where LLMs cannot reliably provide external knowledge, such as in domain-specific
datasets.

Our work also relates closely to Variational AutoEncoders (VAEs) (Kingma & Welling, 2013),
a foundational class of generative models that employs an encoder to map input data to a latent
space, typically assuming a Gaussian prior, and a decoder to reconstruct the data from this latent
representation. To facilitate gradient-based optimization during training, the reparameterization trick
is used, re-expressing the sampling of latent variables as deterministic functions of noise variables,
thereby enabling backpropagation through stochastic nodes. While this trick is straightforward for
"location-scale" distributions like the Gaussian, extending it to other distributions such as Bernoulli
(Jang et al., 2016; Maddison et al., 2016) and Beta distributions (Nalisnick & Smyth, 2016) requires
more sophisticated techniques. Reparameterization for these distributions often involves implicit
differentiation methods to compute gradients when explicit reparameterization is infeasible (Figurnov
et al., 2018). A persistent challenge in training VAEs is posterior collapse, where the encoder’s output
becomes similar to the prior, causing the model to ignore the latent variables (Bowman et al., 2015).
This issue undermines the VAE’s ability to learn meaningful representations. Various strategies
have been proposed to mitigate posterior collapse, including modifying the objective function with
βVAE to balance reconstruction and regularization terms (Higgins et al., 2017), employing annealing
schedules for the KL divergence term (Bowman et al., 2015), and designing more expressive posterior
distributions to better capture the underlying data structure (Rezende & Mohamed, 2015).
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