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Abstract

We show the viability of tackling misuses of001
large language models beyond the identifica-002
tion of machine-generated text. While existing003
methods focus on detection only, some mali-004
cious misuses demand tracing the adversary005
user for counteracting them. To address this,006
we propose Multi-bit Watermark via Position007
Allocation, embedding traceable multi-bit in-008
formation during language model generation.009
Leveraging the benefits of zero-bit watermark-010
ing (Kirchenbauer et al., 2023a), our method en-011
ables robust extraction of the watermark with-012
out any model access, embedding and extrac-013
tion of long messages (≥ 32-bit) without fine-014
tuning, and maintaining text quality, while al-015
lowing zero-bit detection all at the same time.016
Moreover, our watermark is relatively robust017
under strong attacks like interleaving human018
texts and paraphrasing. We compare with ex-019
isting works to show the effectiveness of our020
scheme in terms of robustness and latency.021

1 Introduction022

How can we take a step further from merely identi-023

fying machine-generated text to proactively tack-024

ling misuses of large language models? The emer-025

gence of human-like language models and their026

easily accessible nature via web interface and APIs027

have garnered unprecedented attention from the028

public and academia (Hu, 2023). The ability to fol-029

low complex instructions has boosted the productiv-030

ity of various tasks such as programming, creative031

writing, and more. However, there have been in-032

creasing concerns about exploiting such language033

models to automate malicious activities such as034

spreading disinformation. This has necessitated the035

development of various methods to detect machine-036

generated texts through techniques such as zero-037

shot detection, supervised training, watermarking,038

and more (Mitchell et al., 2023; Wang et al., 2023b;039

Kirchenbauer et al., 2023a; Krishna et al., 2023).040

These endeavors focus on the crucial task of identi- 041

fying machine-generated content, which serves as a 042

pivotal step in mitigating the potential harm caused 043

by such text. 044

However, when it comes to more pernicious mis- 045

uses of large language models, such as the dis- 046

semination of misinformation and propaganda on 047

social media platforms, the stakes are consider- 048

ably higher, potentially leading to the erosion of 049

social trust (Valenzuela et al., 2022). Notable in- 050

stances that exploited automated bots in the past in- 051

clude manipulating an election campaign (Badawy 052

et al., 2018), spreading disinformation about the 053

Russian invasion of Ukraine (Pierri et al., 2023), 054

and promoting products through fake reviews (An- 055

nie, 2023). With the rapid pace at which large 056

language models are currently developed, similar 057

threats will be automated in a much more rapid and 058

delicate manner in the future. 059

In such circumstances, merely identifying the 060

machine-generated text may not suffice for the lan- 061

guage model providers. Instead, the ability to trace 062

back to the adversary user responsible for generat- 063

ing the content becomes pivotal in counteracting 064

such misuses. By doing so, the API providers can 065

take a precursory measure to ban these users from 066

their systems. More importantly, this allows media 067

and social platforms, along with API providers, 068

to collaborate with law enforcement authorities 069

and take more decisive actions. All in all, wa- 070

termarking the user information (or part thereof) 071

can hold the adversary user accountable for poten- 072

tial harms facilitated through language model APIs 073

without having to store user queries (Krishna et al., 074

2023), which would be prohibitively expensive and 075

concern ordinary users who value privacy. Addi- 076

tionally, watermarking can enable language model 077

providers to bind meta-data (e.g. model versions) 078

for tracing the provenance of the language model 079

output. 080

All this can be achieved by embedding multi- 081
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bit information. Our proposed method Multi-bit082

watermark via Position Allocation (MPAC) first083

allocates each token pseudo-randomly onto a sin-084

gle position of the message to be embedded. Then085

the message content at the allocated position de-086

cides which subset of tokens to favor following a087

zero-bit watermarking scheme (Kirchenbauer et al.,088

2023a) that pseudo-randomly biases certain token089

subsets for generation. To increase load capac-090

ity, we can further partition the vocabulary into091

multiple “colored” lists instead of a single green092

list, effectively encoding multiple states for every093

token. We demonstrate the effectiveness of our094

method compared to concurrent works in terms095

of robustness and generation latency, espeically in096

high bit-width and high corruption settings. Finally,097

we discuss and analyze the limitations of multi-bit098

watermarking in Section 5 – namely, the trade-off099

between watermark detection and bit-width.100

Since our method works on top of zero-bit wa-101

termarking, it leverages most of the advantages: (1)102

Multi-bit message can be extracted without access103

to the model parameters or the API, allowing other104

parties to extract the adversary information (e.g.105

timestamp, ID) if given access to the extraction106

algorithm. (2) It can be done on the fly without pre-107

training or finetuning the model and can embed and108

extract long messages (≥ 32-bit) with negligible109

overhead. (3) The watermark is not fragile against110

realistic corruptions such as interleaving with hu-111

man texts or paraphrasing. This has not been previ-112

ously demonstrated in other post-processing multi-113

bit watermarks (Yoo et al., 2023) or stenography114

methods (Ziegler et al., 2019; de Witt et al., 2023).115

(4) Finally, our watermarking framework can dis-116

tinguish between machine and human text and si-117

multaneously embed multi-bit information while118

maintaining the same text quality as its zero-bit119

counterpart. Our experiments demonstrate that 8-120

bit messages can be embedded effectively in short121

text lengths (≤ 100 words) with over 95% bit ac-122

curacy. We hope this opens up new research direc-123

tions for proactively counteracting malicious use124

cases of language model APIs.1125

2 Related Works126

Watermarking has been studied in various types of127

multimedia such as image (Potdar et al., 2005),128

video (Asikuzzaman and Pickering, 2017), au-129

1https://github.com/anoymous92874838/multibit-
watermark-for-llms

dio (Hua et al., 2016), and natural language (Top- 130

kara et al., 2005). Following previous works (Zhu 131

et al., 2018; Luo et al., 2020), we use the term 132

watermarking to denote embedding information 133

into natural language in a manner that is robust 134

against possible attacks given a watermarked text 135

– in our case, this is the output generated by a lan- 136

guage model given the prompt. This differs from 137

steganography (Cheddad et al., 2010; Fang et al., 138

2017; Ziegler et al., 2019; de Witt et al., 2023), 139

which focuses more on the undetectability of a se- 140

cret message that is embedded in the multimedia 141

rather than robustness. For instance, Ziegler et al. 142

(2019) sequentially encodes information via arith- 143

metic coding every token. Naively applying this 144

deterministic encoding scheme makes the water- 145

mark extremely fragile to simple corruptions as 146

shown in Appendix Fig. 5. 147

Recently, methods relying on neural networks 148

have shown progress in natural language water- 149

marking, outperforming traditional methods that 150

rely on rule-based watermarks (Topkara et al., 151

2006b,a; Atallah et al., 2001). Abdelnabi and Fritz 152

(2021) proposed an end-to-end framework where 153

a decoder network predicts the encoded message. 154

Yang et al. (2022) improved upon the quality of 155

the watermarked text by using an algorithmic ap- 156

proach. Building upon this, Yoo et al. (2023) fo- 157

cused on robustness and capacity, outperforming 158

previous works on both aspects. However, since 159

the proposed method works at the sentence-level, 160

any addition or removal of a sentence will fail to ex- 161

tract the watermark. Moreover, these works cannot 162

distinguish non-watermarked texts, making them 163

unsuitable for distinguishing between machine text 164

and human text. 165

Meanwhile, directly watermarking language 166

models in a zero-bit manner during token gener- 167

ation has emerged as a promising approach for 168

distinguishing language model outputs from hu- 169

man text (Kirchenbauer et al., 2023a; Aaronson and 170

Kirchner, 2023) while achieving robustness against 171

realistic attacks (Kirchenbauer et al., 2023b). Sev- 172

eral works have improved upon Kirchenbauer et al. 173

(2023a), e.g., in low entropy generation tasks such 174

as code generation (Lee et al., 2023), undetectabil- 175

ity of the watermark (Christ et al., 2023), and its 176

robustness (Munyer and Zhong, 2023). We focus 177

on extending the prior work for a more proactive 178

counteraction towards identifying malicious users 179

of language models by embedding any information 180

while maintaining the key advantages. 181
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Concurrent to our work, Fernandez et al. (2023a)182

and Wang et al. (2023a) use the entire message to183

create a signal unique to each message. Crucially,184

both works use the entire message content directly185

during embedding as input to the random seed gen-186

erator, which leads to key differences in terms of187

robustness and latency. We further discuss their188

methodology in comparison with ours in the next189

section. Aside from this, Wang et al. (2023a) fur-190

ther utilize a proxy language model to enhance text191

quality.192

3 Method193

We outline the multi-bit watermark protocol:194

1. A user sends a prompt X to the language195

model provider.196

2. Using the message encoding function E ,197

the language model provider generates wa-198

termarked text Y embedded with a multi-199

bit information. The message contains user-200

specific meta-data that can aid tracing back to201

the user (e.g. timestamp, location, ID).202

3. The user publishes the text Ỹ , which may be203

edited from the original watermarked text.204

4. If the published text is deemed unsafe or mali-205

cious, the detector inspects Ỹ (i) to determine206

whether the watermark is present (zero-bit de-207

tection) and (ii) decode the multi-bit message208

to take further measure.209

3.1 Zero-bit Watermarking (Kirchenbauer210

et al., 2023a)211

As a preliminary, we briefly review zero-bit water-212

marking introduced by Kirchenbauer et al. (2023a)213

and elaborate on extending this method to multi-214

bit watermarking. An auto-regressive language215

model p(y|x) predicts the probability distribution216

over the next token ∆(V) given arbitrary length217

prefix tokens where V is the vocabulary. A zero-bit218

watermark is embedded by biasing the language219

model to output a certain subset of tokens. That is,220

the message encoding function E : ∆(V)→ ∆(V)221

generates another probability distribution that alters222

the original distribution of p(y|x).223

For Kirchenbauer et al. (2023a), the message224

encoding function pseudo-randomly chooses a sub-225

set of tokens at each token step t to form a green226

list Gt. The logit scores lt ∈ R|V| are modified227

towards selecting the green-listed tokens in favor228

of the other tokens by adding a bias term δ to the 229

logits in Gt. Instead of fixing the greenlist using 230

rule-based heuristics such as spelling or synonym 231

variations (He et al., 2022), the greenlist is selected 232

pseudo-randomly at each time step to minimize a 233

noticeable shift in text distributions. At each time 234

step, a seed s is outputted depending on the pre- 235

vious h tokens using a pseudo-random function 236

f : Nh → N, and s is used to sample Gt from V . 237

We dub this message encoding function as 238

Greenlist. Given t− 1 prefix tokens X1:t−1, and 239

pseudo-random function f , the tth token is gener- 240

ated by 241

Greenlist

1. Compute hash of tokens s = f(Xt−h:t−1).
2. Permute vocabulary Vt using s as seed for a

random number generator (RNG).
3. Let Gt be the first γ|V| tokens from Vt
4. Add δ to token logits in Gt.

To determine the presence of the watermark, the 242

detector inspects the ratio of the green-listed token. 243

A watermarked text will ideally have a high ratio 244

of green tokens as shown in Fig. 1 Right. 245

3.2 MPAC: Extending to Multi-bit 246

Watermark 247

The objective of multi-bit watermarking is to em- 248

bed and extract a message m ∈ Σb where Σ de- 249

notes the r-nary possible strings, or more com- 250

monly referred to as the alphabet. For a binary 251

message, Σ = {0, 1}. We let p ∈ {0, . . . , b − 1} 252

denote the position of the message and m[p] ∈ 253

{0, . . . , r − 1} the message content at position 254

p. Hereafter, we use [a] to denote the integer set 255

{0, . . . , a− 1}. 256

Our proposed method Multi-bit watermarking 257

via Position Allocation (MPAC) works by allocat- 258

ing the tokens to message positions. First, notice 259

that zero-bit watermarking can be viewed as wa- 260

termarking a single bit of information stating the 261

existence of a watermark (m=0). In essence, each 262

token generated by the language model is a signal 263

that reinforces the watermark. 264

Our message encoding function E : Σb × 265

∆(V) → ∆(V) alters the probability distribution 266

dependent on the message. We first assign a po- 267

sition p using a random number generator seeded 268

with s. Then the message content m = m[p] ∈ [r] 269

is encoded by permuting V and favoring the mth 270
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Figure 1: An overview of our method MPAC. The number inside a token (e.g. p = 1 ) denotes the allocated
position, while the color signifies the message content at that position. At Step 1, a position is sampled prior to
generating a token. At Step 2, the message at that position determines the token subsets to favor. Right: Zero-bit
watermarking can be viewed as a special case of multi-bit watermarking.

subset. Our message encoding function is ex-271

tremely easy to implement over the Greenlist272

scheme. We highlight the steps in colors that are273

specific to ours. All other steps are identical to274

(Kirchenbauer et al., 2023a):275

MPAC

1. Compute s = f(Xt−h:t−1).
2. p← sample([b]) using s as seed.
3. m←m[p]
4. Permute vocabulary Vt using s as seed.
5. Partition Vt = [C0t , · · · , Cr−1

t ] discarding re-
mainders if any.

6. Add δ to token logits in Cmt .

Here r is the number of available partitions. The276

number of vocabulary partitions is determined by277

the greenlist proportion γ, i.e. r = ⌊ 1γ ⌋. When278

r > 2, we can further increase the load capacity by279

taking advantage of all the ‘colored’ lists (hence,280

the notation C), instead of only using the greenlist.281

Given a binary message of length b, the message282

is convereted to radix r attaining mr ∈ [r]b̃ where283

b̃ = ⌈ b
log2 r
⌉. In Figure 1 Left, we illustrate the284

case of r = 4 and b = 8, where the 8-bit message285

is converted into radix 4, resulting in an effective286

message length of 4 (b̃ = 4)2.287

At each token generation, the message content at288

the assigned position p determines which colorlist289

to add δ to. If the message content is ‘0’, the tokens290

from the first list (red in Fig. 1) are favored. Note291

that zero-bit watermarking can be seen as a special292

case of embedding the same single bit message293

(b = 1,m = 0) as shown in Figure 1-Right.294

Message Decoding Given a watermarked language295

model output, we determine the position and which296

2Hereafter, we use b instead of b̃ to denote the effective
message length (dimension of mr).

colorlist each token is from and increment the num- 297

ber of tokens in the colored lists. For instance, for 298

the tth token with message position p = i and the 299

jth colorlist Cjt , we increment the counter Wi[j]. 300

After computing this on the entire text segment, we 301

predict the message content by taking the colorlist 302

with the most tokens for each position. A more 303

detailed algorithm is shown in Algorithm 1. 304

3.3 Detecting Machine Text 305

To distinguish between a watermarked text and a 306

non-watermarked (human-written) text, we count 307

the number of tokens assigned to the predicted 308

message. This corresponds to w in Line 12 of Al- 309

gorithm 1. We model the number of tokens in the 310

argmax colorlist of position i as a random variable 311

Ci
H0∼ Binomial(Ti, γ) where Ti is the number of 312

tokens assigned to position i. As C0, . . . , Cb−1 are 313

independent for a fixed set of trials (Ti, . . . , Tb−1) 314

and have the same success probability parameter, 315

the sum of these is a binomial random variable as 316

well: 317

C = C0 + · · ·+ Cb−1
H0∼ Binomial(T, γ) (1) 318

where T = T0 + · · · + Tb−1. This reduces to the 319

same random variable used in zero-bit watermark- 320

ing and we can compute the z-statistics. More dis- 321

cussions regarding the details of the z-statistic and 322

other possible statistics are outlined in Appendix 323

A.2. 324

3.4 Comparison to Other Works 325

The message encoding function of existing works 326

use the entire message m. After permuting Vt, Fer- 327

nandez et al. (2023a) cyclically shift the vocabulary 328

m10 times where m10 is the radix-10 form of m. 329

This modifies Step 2 of Greenlist. Wang et al. 330

(2023a) hashes m to attain a seed s′ to permute the 331
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Algorithm 1: Message Decoding

Input: Watermarked text X1:T , hash context width h, effective message length b̃
Output: Predicted message m̂, number of colorlisted tokens w
/* Initialize counter */

1 Wp[m] = 0 ∀p,m
/* Count tokens in colorlists */

2 for t in [h+ 1, T ] do
3 s = f(Xt−h:t−1)

4 p = sample([b̃])
5 for m in [r] do
6 Permute Vt using s as seed
7 if Xt ∈ Gmt then
8 Wp[m] += 1

/* Predict message */

9 m̂r = “ "
10 w = 0

11 for p in [b̃] do
12 w += max(Wp[m])
13 m̂ = argmaxm(Wp[m])
14 m̂r += str(m̂)

15 Get bit message m̂ by converting m̂r

16 return m̂, w

vocabulary along with the seed attained from prefix332

tokens, modifying Step 1.333

Cyclic-Shift

2’. Permute Vt using s as seed. Then, cyclic shift
m10 times.

Message-Hash

1’. s′ ←Hash (s+Hash (m10))

Using the entire message leads to two key charac-334

teristics that diverge from ours. First, the hamming335

distance between two messages is not necessarily336

preserved after applying the encoding function. As337

an example, consider Message-Hash. Using the338

final seed s′ created from m = 0000 does not guar-339

antee an output from the RNG that is any closer340

to that of m = 0001 (hamming distance of 1) as341

it is to m = 1111 (hamming distance of 4). This342

leads to an all-or-nothing behavior where either the343

entire message is extracted without error or is a344

completely random message. In the presence of345

high corruption, which reflects the real-world case,346

we show this behavior is not desirable as it lacks347

enough signal to correctly predict the message.348

In addition, the exponential number of messages349

(O(2b)) should be considered during message de-350

coding to find the optimal message, which renders351

decoding of long messages (≥ 32-bit) computation-352

heavy3 . For Fernandez et al. 2023a, the bit-width353

affects the encoding phase due to the cyclic shift354

operation, which is more problematic as it affects355

the end users. MPAC encodes and decodes each356

bit position of the message independently, which357

3See Section 7.5 of Wang et al., 2023a.

brings a negligible increase in the computation as 358

the message length is increased. 359

The simplicity of our multi-bit watermark 360

scheme via position allocation makes it easy to 361

apply it on top of other methods. For example, 362

using the position allocation scheme, we decom- 363

pose the multi-bit message into blocks and hierar- 364

chically embed them using the message encoding 365

scheme of Fernandez et al. (2023a). Details are in 366

Appendix A.3. In addition, the message encoding 367

function of MPAC can be generalized to other zero- 368

bit watermark approaches that uses the exponential 369

minimum sampling approach (Aaronson and Kirch- 370

ner, 2023; Kuditipudi et al., 2023). The scheme is 371

provided in Appendix A.4. 372

3.5 Techniques for Practical Use 373

List decoding is a well-established field in cod- 374

ing theory that decodes a list of messages that are 375

within a certain hamming distance (Elias, 1991; 376

Guruswami and Rudra, 2008; Guruswami, 2004). 377

Inspired by this, we alter our decoding function to 378

output candidate messages sorted by the level of 379

confidence. In practice, list decoding is especially 380

useful because provenance tracing via watermark- 381

ing is far from finding an exact solution, but nar- 382

rowing down the possible leakage points for a more 383

detailed inspection that may be costly. For instance, 384

when watermarking the timestamp of activity, it is 385

useful to have a likely set of timestamps for which 386

the practitioners to manually inspect, rather than a 387

single candidate. This technique is not unique to 388

ours and can be applied to other methods as long as 389

the decoding stage is computationally feasible. We 390

detail on how confidence score can be computed in 391

Appendix A.3. 392
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encoding / decoding time. Right: TPR for various FPR thresholds.

4 Experiments393

4.1 Experimental Settings394

For our main experiments, we use LLaMA-2-7B395

(Touvron et al., 2023) to generate sequences us-396

ing the newslike subset of the Colossal Common397

Crawl Cleaned corpus (C4) dataset (Raffel et al.,398

2020) following previous work (Kirchenbauer et al.,399

2023a). This simulates the scenario of generating400

fake news given a certain topic. For watermark-401

ing and text generation, we follow the configura-402

tions used in Kirchenbauer et al. (2023b) unless403

otherwise denoted: bias δ = 2.0, greenlist ratio404

γ = 0.25, which have shown a good trade-off be-405

tween the detection performance and generation406

quality. Since γ = 0.25, the number of colors407

r is 4. We embed a random b-bit message onto408

>500 samples and report the mean metrics across409

samples.410

When using the term ‘bit’ or ‘bit-width’, this411

denotes the initial message length and the effective412

message length is determined by r. When neces-413

sary, we also show the three standard error ranges.414

More details are in Appendix A.5.415

Metrics To measure the performance of multi-bit416

watermarking, we use bit accuracy following previ-417

ous works in the watermarking literature (Zhu et al.,418

2018; Luo et al., 2020; Yang et al., 2022; Yoo et al.,419

2023) to measure how much of the embedded bits420

can be extracted without error. For zero-bit water-421

mark performance (i.e. machine-text detection), we422

use area under the ROC curve (AUROC) and the423

true positive rate (TPR) at various false postive rate424

thresholds. For text quality, we use the automatic425

metrics used in Kirchenbauer et al. (2023b) such426

as perplexity (PPL) using a larger oracle model427

(LLaMA-2-13B) and semantic similarity based on428

a paraphraser model (Wieting et al., 2022, P-SP).429

We further discuss the validity of the metrics in430

Appendix A.6. 431

Threat Model In the real world, a user often ed- 432

its the generated text before publishing either to 433

enhance and/or in an attempt to evade the water- 434

mark. We study two types of attacks studied in 435

the past work (Kirchenbauer et al., 2023b): copy- 436

paste mixes the watermarked text and human text 437

and paraphrasing uses another language model to 438

paraphrase the watermarked text. For the copy- 439

paste attack, we randomly interleave the generated 440

watermarked text into a non-watermarked text, mix- 441

ing a p percentage of non-watermarked texts while 442

maintaining the total length. For paraphrasing, we 443

use GPT-3.5-turbo (the prompt is shown in Table 444

15). Both attacks do not maintain the start and end 445

tokens of the watermarked text. 446

4.2 Results 447

For numerical results, see the tables in Appendix 448

A.10. 449

Comparison with Other Works. We compare 450

MPAC with Fernandez et al. (2023a, Cyclic-Shift) 451

and Wang et al. (2023a, Message-Hash). We 452

do not compare with other stenography and post- 453

processing works as they are extremely fragile 454

in real-world corruption settings. Please refer to 455

Sec. 2 for details. For Cyclic-Shift, the bit-width 456

is bounded by log2 |V| ≈15 bits, since the cyclic- 457

shift operation is only unique up to the size of the 458

vocabulary. Due to this, we also experiment with 459

extending Cyclic-Shift to another zero-bit water- 460

mark method scheme called exponential minimum 461

sampling (Aaronson and Kirchner, 2023, EMS), 462

which does not have a theoretical upperbound. We 463

call this Cyclic-Shift (EMS). 464

The results in Fig. 2 show the clean and ro- 465

bust multi-bit accuracy in the presence of the copy- 466

paste attack. At 8-bit, all methods achieve nearly 467

100% accuracy and do fairly well even in the pres- 468
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Figure 3: (a) Clean bit accuracy with 3 standard errors for a fixed number of tokens (left) and fixed BPT (right). (b)
Text quality (PPL, P-SP) and encoding latency across bit widths. 3 standard errors are shown.

ence of corruption. At higher bit-width, MPAC out-469

performs others in both clean and robust accu-470

racy. As corruption rate is increased, the other471

methods show dramatic degradation. In contrast,472

MPAC can withstand them due to position alloca-473

tion, which independently encodes each position.474

In Fig. 2 Right, we compare the watermark detec-475

tion performance at 8-bit. For Cyclic-Shift and476

Message-Hash , we use 10,000 negative samples477

and the TPRs@FPR=1e−5 are linearly interpo-478

lated due to the lengthened decoding time. The479

results demonstrate that MPAC outperforms prior480

works at low FPR thresholds. Notably, at FPR=1e-481

5, our true positive rate is .951.482

Enlarging the message length comes at the cost483

of computation for prior works. Increasing the484

bit-width from 16-bit→24-bit, lengthens the gen-485

eration time of Cyclic-Shift by roughly 3.6x486

(14 seconds → 50 seconds) per sample, while487

MPAC does not have increased latency (Fig. 3b).488

Message-Hash does not suffer from latency over-489

head during encoding, but the computation and490

memory overhead increase exponentially during491

decoding.492

Colorlisting improves multibit performance.493

Next, we verify the effectiveness of ‘colorlisting’,494

which takes advantage of the surplus vocabulary495

partitions. Fig. 3a demonstrates the gain in the496

load capacity by using r=4 colorlists as opposed to497

r=2 given a fixed γ. Besides the 8-bit case, which498

already achieves high accuracy, the performance of499

γ = 0.25, r=4 is statistically significant at p=1e−2500

than the second best variant. We further discuss the501

implications of varying γ, r in Section 5.502

Next, we increase the number of tokens (T) and503

bit width accordingly to demonstrate the feasibility504

of embedding longer messages. While the perfor-505

mance degrades as we increase the bit-width, the506

watermark does not entirely break, demonstrating507

the benefits of decomposing the message by posi-508

tions. Moreover, the degradation can be partially509

compensated for by using list decoding. For 32-bit, 510

the best possible message in the list achieves 95% 511

bit acc. by verifying only 16 out of 232 possible 512

messages. 513

MPAC can maintain the watermark under var- 514

ious corruptions. The full results of copy-paste 515

attack in Appendix Fig. 10. Even at 32-bit, our wa- 516

termark is not entirely destroyed as we encode each 517

position of the watermark independently, which 518

shows that it can benefit from error correction 519

codes. We found paraphrasing to be much more 520

challenging than the copy-paste attack and thus, 521

experimented with only 8-bit messages and increas- 522

ing the token lengths (Fig. 10b). With T=500, the 523

bit accuracy reaches nearly 80% and with 16-list 524

decoding, we are able to attain 90% bit accuracy 525

across all token lengths. More attacks are consid- 526

ered in Appendix A.8. 527

Detection performance is affected by bit-width. 528

To get a clearer picture of the detection perfor- 529

mance, we compute AUC vs. the number of tokens 530

observed in Fig. 4a following Kirchenbauer et al. 531

(2023b). We see that the detection performance 532

decreases as the message bit is increased. This 533

phenomenon is similarly observed in other works 534

as the increase in the number of “hypotheses" re- 535

quired to check leads to an increase in the false 536

positive rate (Fernandez et al., 2023b). We further 537

discuss the reasons behind this in the subsequent 538

section. Note, however, that a watermarked text 539

with 32-bit message reaches AUC over 0.99 once 540

observing 200 tokens (≈ 150 words). The TPR at 541

FPR=1e−3 for b={0, 8, 16, 24, 32} are 0.98, 0.98, 542

0.95, 0.93, and 0.91, respectively (shown in Table 543

7). 544

Text quality is not affected by bit-width. MPAC ex- 545

tends zero-bit watermarking by allocating tokens 546

to message positions and partitioning vocabular- 547

ies, which would otherwise be allocated to a single 548

position and a single vocabulary partition. Con- 549

sequently, given the same δ and γ, it only alters 550
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Figure 4: (a) AUC@number of tokens observed for b={0, 8, 16, 24, 32}. Darker colors denote larger bit-widths. (b)
Zero-bit and multi-bit watermark performance for varying γ and r for 1000 samples at T=100,b=8. (c) Error rate as
a function of confidence.

the text distribution to an extent that zero-bit water-551

marking does regardless of the bit-width. Indeed,552

our empirical results in Fig. 3b demonstrate that the553

text quality is statistically indistinguishable across554

bit-widths. We also show that the encoding latency,555

which directly experiences user experience, does556

not increase with bit-width. Three standard error557

ranges are shown.558

Across Model Scales, Datasets, Hash Schemes.559

We further experiment with other pretrained mod-560

els (Jiang et al., 2023; Zhang et al., 2022) and their561

finetuned versions. Table 6 demonstrates Mistral562

and OPT also achieve a similar performance, show-563

ing that our method is not limited to a specific564

pretrained model. We also find that the finetuned565

versions are also capable of watermarking, though566

the RLHF-tuned LLaMA model show a slight drop-567

off. The results for larger models (13B, 70B) and568

other datasets are in Appendix A.9. To summarize,569

we found that text distributions with low entropy570

inherently have lower load capacity as observed571

similarly in prior works. However, our results con-572

sistently show that multi-bit watermarking is pos-573

sible for open-form generation – which resembles574

disinformation generation – across model types and575

scales. We also present results for using another576

hash scheme with a longer context width in Ap-577

pendix Table 12 and 13, which shows a similar578

level of performance.579

5 Discussions580

Load capacity and detection performance trade-581

off. As noted above, embedding longer messages582

degrades the watermark detection performance due583

to overestimating the statistics of non-watermarked584

human texts (Fig. 6). This is because computing585

the statistics involved finding the maximum cell586

value for each position. One natural solution is587

to use a better statistic that models the maximum588

cell value of a multinomial distribution. Empiri-589

cally, we found that this performed on par or even 590

slightly worse compared to the current approach, 591

which may be due to the approximation error when 592

using a small sample size. We give a more detailed 593

discussion on this in Appendix A.2. 594

Radix and Colorlist proportion How do radix 595

and colorlist proportion γ influence multi-bit wa- 596

termark performance? For γ=.125, the benefits of 597

enlarging r to 8 are saturated and show no statisti- 598

cal significance to r=4. While larger r allows more 599

tokens to be assigned to each position by reducing 600

the effective length of the message, it challenges 601

the problem by increasing the number of possi- 602

ble answers (digits) per position. Additionally, we 603

observed that increasing radix trade-offs zero-bit 604

performance for multi-bit performance. The obser- 605

vations are illustrated in Fig. 4b. 606

List Decoding Ablation In Fig. 4c, we show a 607

plot of bit error rate stratified by confidence. While 608

not properly calibrated (under-estimation), having 609

higher confidence leads to lower error rate. We 610

also highlight the effectiveness of this technique 611

by comparing it with randomly outputting candi- 612

date messages from scratch in Table 2. We also 613

observed that randomly altering a single position 614

provides a good list as the best candidate message 615

is already a good starting point. 616

6 Conclusion 617

Our findings demonstrate the viability of embed- 618

ding any information into the outputs of language 619

models while having the capability to distinguish 620

between machine text and human text. This un- 621

veils a novel prospect of counteracting high-stake 622

misuse of large language models via API. One limi- 623

tation of our approach is the reduced separability of 624

machine and human text when embedding longer 625

messages. Overhauling this limitation can be a ma- 626

jor step towards deploying multi-bit watermark in 627

the real world. 628
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7 Ethics Statement629

Watermarking can mitigate malicious use cases by630

being able to trace back to the malicious user. This631

will enable holding accountability on adversaries632

for their malfeasance. However, ordinary users633

may find the idea discomforting as it may give the634

sense that the API provider can know what outputs635

are fed to the individual users. This is not the case636

unless the content is published to the public by the637

user, which – in many cases – is already done in638

an environment where the user can be identified639

(e.g. social media). All in all, the identification640

of machine-generated texts and tracing their prove-641

nance can enhance the accountability of API access642

of large language models without breaching indi-643

vidual users’ privacy.644
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A.1 Decoding Algorithm886

Algorithm 2: Message Decoding
Input: Watermarked text X1:T , hash

context width h, effective message
length b̃

Output: Predicted message m̂, number of
colorlisted tokens w

/* Initialize counter */

1 Wp[m] = 0 ∀p,m
/* Count tokens in colored lists */

2 for t in [h+ 1, T ] do
3 s = f(Xt−h:t−1)

4 p = sample([b̃])
5 for m in [r] do
6 Permute Vt using s as seed
7 if Xt ∈ Gmt then
8 Wp[m] += 1

/* Predict message */

9 m̂r = “ "
10 w = 0

11 for p in [b̃] do
12 w += max(Wp[m])
13 m̂ = argmaxm(Wp[m])
14 m̂r += str(m̂)

15 Get bit message m̂ by converting m̂r

16 return m̂, w

A.2 Analysis on Watermark Detection887

A.2.1 Watermark Detection888

The presence of a watermark is determined by889

counting the number of tokens in the greenlist. For890

a human-generated text that has no knowledge of891

the greenlist rule, a token will be from the green-892

list with the probability γ ≤ 0.5, the proportion of893

the greenlist size compared to the entire vocabu-894

lary. Without the knowledge of the greenlist (null895

hypothesis), the number of tokens in the greenlist896

(g) follows a binomial distribution. (Kirchenbauer897

et al., 2023a) used the normal approximation to the898

binomial distribution to compute the z-statistics for899

a text with T tokens: z = g−γT√
γ(1−γ)T

.900

Next, we further analyze how bit-width of the901

message and radix affect detection performance.902

Our analysis stems from the observation that as903

we increase the bit-width the detection score for904

the non-watermarked text increases more rapidly905

than that of the watermarked text. Consequently,906
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Figure 5: Performance difference between watermark
extraction with and without corruption. "Deterministic"
denotes sequentially encoding each position of the mes-
sage as done in Ziegler et al. (2019) in the Greenlist
framework. Mixing 20% of non-watermarked text
makes the bit accuracy of sequential encoding scheme
nearly random.

the difference in the two scores decreases as larger 907

bit-width is used, leading to reduced seperability. 908

The results are in Fig. 6. Notice that the differ- 909

ence between the scores of watermarked and non- 910

watermarked texts decreases for larger bit-width. 911

To grasp a hint of what is going on, we do away 912

with the language model and other complexities by 913

modeling this only through statistical distributions. 914

To recap, our detection statistic (Eq. 1) was com- 915

puted by aggregating the number of tokens in each 916

position of the message. Letting Ci as the number 917

of tokens in the colorlist for the position i, we can 918

write the aggregated form as 919

C = C0 + · · ·+ Cp−1
H0∼ Binomial(T, γ) (2) 920

However, note that during decoding the ground 921

truth message is unknown and thus, is predicted 922

by taking the colorlist that has the max number 923

of tokens. This is problematic when decoding 924

for non-watermarked text as it biases the statis- 925

tic to be higher when bit-width is increased. We let 926

Wi = [w0, . . . , wr−1] be the number of tokens in 927

r colorlists (strength of watermark) for position i. 928

For a non-watermarked text, we can assume that 929

this is a random variable with equal probability for 930

each colorlist 931

Wi ∼Multinomial(ni, [γ · · · γ]) (3) 932

where ni is the number of tokens allocated to posi- 933

tion i. Our decoding method takes the maximum 934

cell value of this, which makes itself a random 935

variable: 936

Wmax
i = max(Wi) = max([w0, . . . , wr−1]). (4) 937

Our final statistic used for our detection score is 938

12



0 200
0

2

4

6

Z
-s

co
re

No watermark

8b 16b 24b 32b

0 200
0.0

2.5

5.0

7.5

10.0

Watermarked

0 200

0

2

4

6

Difference

# of Tokens Observed
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Figure 7: Simulation of the difference between (unor-
malized) scores for watermarked and non-watermarked
multinomial distributions. Higher score signify higher
seperability, hence higher detection performance. We
use ϵ=0.1. For right, we use γ=.125 to allow more radix.

the sum of this variable over the entire positions:939

Wmax =

p∑
i

Wmax
i (5)940

We see that our statistic is dependent upon the num-941

ber of candidates when selecting the maximum cell942

(i.e. radix) through Eq. 4 and the number of posi-943

tions (i.e. bit-width) through Eq. 5.944

To verify the effect of bit-width and radix on945

the detection score, we compare the difference in946

the statistics for a uniform multinomial distribu- 947

tion, which signify non-watermarked text, and a 948

multinomial distribution with a slightly modified 949

probability [γ + ϵ, γ, . . . , γ] to signify the added 950

bias term for the watermarked distribution. We 951

sample 1000 samples of Wmax and compute the 952

difference in the detection scores for the two distri- 953

butions. The results in Fig. 7 corroborate that an 954

increase in bit-width / radix decreases the separa- 955

bility of the detection scores. 956

In an attempt to overhaul this, we tried comput- 957

ing the likelihood of W rm
i before aggregating them 958

using an approximation of (Levin, 1981) (More 959

details in the next section). However, this only led 960

to on par or slightly worse performance. This may 961

be because ni is small for cases when T is small 962

compared to the length of the message. Other than 963

this, some of the approaches we attempted were: 964

• Computing test statistic per position or weight- 965

ing the statistic of each position with ni before 966

aggregating. 967

• Computing the p-value of the binomial ran- 968

dom variables rather than using the normal 969

approximation, i.e. regularized incomplete 970

beta function. 971

• Computing the p-value under the null hypoth- 972

esis that the distribution of the colorlists fol- 973

lows a uniform distribution, i.e. Chi-square 974

Goodness of Fit test 975

All the approaches either led to on-par or slightly 976

worse results. 977
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A.2.2 Approximating Max Multinomial Cell978

Distribution979

We used the approximation of (Levin, 1981) for980

modeling the distribution of the maximum cell fre-981

quency. For completeness, we present the steps982

used for the approximation adapted to our case.983

For a multinomial distribution with sample size N984

and probability vectors [p0, . . . , pr−1], Let a be the985

maximum cell value, then the cumulative distribu-986

tion function of having a maximum value of a can987

be approximated for any real number s > 0988

P (a) =
N !

sNe−s
{
r−1∏
i

P (Xi ≤ a)}P (W = N)

(6)989

where Xi∼Poisson(spi) and W =
∑r−1

i =990

Yi∼Truncated Poisson(spi) with range 0, 1, . . . , a.991

Following Example 1 of (Levin, 1981), we set992

s = N and use Stirling’s approximation for N !.993

We also approximate W using the normal approxi-994

mation to the Poisson distribution.995

A.3 List Decoding and Other Techniques996

The decomposition of the message into each bit po-997

sition bounds the computation during decoding to998

the number of tokens. This allows MPAC to output a999

list of most likely messages without exhaustively1000

considering all the possible messages. We alter1001

our decoding function to output candidate mes-1002

sages sorted by the level of confidence. Denoting1003

the predicted message for position i by m̂, and1004

the observed number of tokens in the colored list1005

(strength of the watermark) by w = Wi[m̂], the1006

confidence of m̂ should be higher if w deviates1007

from the expected mean under the null hypothe-1008

sis that all colored lists are equally likely to be1009

sampled. We define confidence at position i as1010

ci ∝ Pr(Wmax
i ≤ w|H0) where Wmax

i is the maxi-1011

mum cell value of Wi
H0∼Multinomial(Ti, [γ · · · γ])1012

where Ti is the number of tokens assigned to posi-1013

tion i. The distribution of Wmax
i is approximated1014

using techniques from Levin (1981) (See Appendix1015

A.2.2).1016

Our algorithm can be parameterized by the con-1017

fidence bound on each position:1018

• Input: Best prediction m̂ found by majority1019

voting via Alg. 1, confidence bound c01020

• Output: m̂1, · · · , m̂|L| ∈ L whose predictions1021

are altered on positions with confidence under1022

c01023

Bit Accuracy
δ 0.5 1 2

No feedback .626 .766 .948
δ̃ = δ + 1 .769 .860 .960

Table 1: Results for using feedback for adapting bias on
T=100,b=8

Accuracy Gained
8b 16b 24b 32b

ci-sorted list 1.1% 3.7% 6.0% 5.6%
Random list 0.6% 0.4% 0.5% 0.3%

Latency (seconds/250 tokens )
0b 8b 16b 24b 32b

Encoding (7.9) 8.19 7.98 8.01 7.96 8.24
Decoding (.09) .08 .09 .09 .09 .10

Table 2: Comparison of absolute improvement in bit
accuracy when using confidence-based list decoding
and random list.

Empirically, we determine c0 by constraining 1024

|L|. Note that since m̂ is always the most confident 1025

message, we comprise L with the next confident 1026

messages. To do this, we greedily alter the posi- 1027

tions with the lowest confidence to the colorlist 1028

with the second largest number of tokens. Note 1029

that this list decoding technique is not unique to 1030

ours and can be applied to other methods as long 1031

as the decoding stage is computationally feasible. 1032

A.3.1 Results 1033

We show absolute accuracy gained using 1034

confidence-based list decoding (|L|=16) compared 1035

with random decoding. We further compare the 1036

encoding and decoding latency for sequences 1037

with ∼ 250 tokens using a single Nvidia A100 1038

when using an additive left hash scheme with 1039

context width 1. The results are in Table 2.The 1040

latency does not proportionally increase with 1041

message bit length, making it scalable to long 1042

messages. When using an efficient hashing scheme 1043

watermarking has a negligible increase in both 1044

encoding and decoding compared to vanilla 1045

generation, which requires 7.9 seconds and 0.09 1046

seconds, respectively. 1047

A.3.2 Message Correction with Feedback 1048

One key characteristic of our p(y|x) is that we can 1049

instantly check whether the message was correctly 1050

transmitted by examining whether the sampled to- 1051

ken is in the correct colorlist. This property resem- 1052

bles the settings of error correcting codes with feed- 1053

back, in which the receiver can send feedback to 1054
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the sender after receiving the message(Berlekamp,1055

1964; Gupta et al., 2023). One can take advantage1056

of this property by adapting the magnitude of the1057

bias during encoding when the majority vote of a1058

given position differs from the actual message.1059

We provide some preliminary results of taking1060

advantage of feedback during message encoding.1061

One simple scheme is adapting the magnitude of1062

the bias so that when the message is not correctly1063

encoded, we enlarge the bias. Concretely, for 0 ≤1064

t ≤ T that is allocated to position p, if the current1065

max colorlist does not match the actual message1066

content, i.e. m[p] ̸= argmaxjW[j], we use a larger1067

bias δ̃ > δ. The results in Table 1 show that all lead1068

to an increase in the multi-bit accuracy. However,1069

we observed this came with a degradation in text1070

quality measured by automatic metrics. We leave1071

finding better methodology as a future work.1072

A.4 Extending MPAC to other methods1073

Block Allocation Instead of allocating a sin-1074

gle position as done in MPAC, we can allocate1075

a block of message, after which techniques of1076

Cyclic-Shift can be used to encode the block1077

message. This ensemble approach enables the prior1078

works to embed longer messages. Deriving it name1079

from Position Allocation, we dub this as Block1080

Allocation.1081

Block Allocation

1. Compute s = f(Xt−h:t−1).
2. Chunk message in n blocks. m =

[m1, . . . ,mn] where mn ∈ Σ
b
n

3. p← sample([n]) using s as seed.
4. Run Cyclic-Shift with message as mp

At decoding, we predict the message for each1082

block and concatenate them. As a prelimi-1083

nary experiment, we use Block Allocation1084

with Cyclic-Shift using n=4 blocks. Block1085

Allocation can embed 24-bit messages with .9011086

bit accuracy (c.f. Cyclic-Shift achieves .775)1087

and 32-bit with .871 accuracy.1088

Extension to Other Zero-bit Watermarking1089

Aaronson and Kirchner (2023) is another line of1090

work in zero bit watermarking that modifies the1091

sampling process by generating a secret vector1092

r ∈ [0, 1]|V| based on the random seed s. Given1093

the original probability distribution p|V|, the token1094

with both large pv and rv is favored by choosing1095

x = argmaxv∈Vr
1/pv
v . (7)1096

We can adapt our position allocation method 1097

to this as well by preceding the above step with 1098

position allocation. Then, the secret key can be 1099

modified depending on the message content by the 1100

following rule: 1101

r =

{
r if m[p] = 0

1− r if m[p] = 1
(8) 1102

where 1 is a vector with 1 in all the elements. Anal- 1103

ogous to favoring mutually exclusive colorlists, this 1104

allows favoring different tokens depending on the 1105

message content. At decoding time, we can simi- 1106

larly maintain a counter for each position for the 1107

two cases. 1108

A.5 Implementation, Hardware, Code Details 1109

We follow (Kirchenbauer et al., 2023a) in most ex- 1110

perimental settings. For the hashing scheme in the 1111

main paper, we use LeftHash scheme with context 1112

window h = 1. In the appendix, we provide results 1113

for the SelfHash scheme. For further discussions 1114

regarding the hash scheme see Appendix A.7. To 1115

generate sequences with the desired token length T , 1116

we generate with the max token set as T . Then we 1117

filter out the watermarked and non-watermarked 1118

sequences with token lengths under Tlow = T − τ . 1119

We set τ=25, except for the LFQA dataset, which 1120

was set to τ=50 as it has instructions that state to 1121

generate answers with 200-300 words. For gener- 1122

ation, we use sampling with a temperature of 0.7. 1123

For each bit-width, a new set of generations had to 1124

be made as the length of the message differed. 1125

For the copy-paste attack, we sample a random 1126

non-watermarked text and truncate to have the 1127

same length. Then, a position is randomly sam- 1128

pled to insert a p percentage of the watermarked 1129

text into the non-watermarked text. We experiment 1130

with varying degrees of p (10%∼ 50%). 1131

We used float16 for all our models during 1132

generation. Our experiment was run on a single 1133

NVIDIA A100. For T=250, generating around 1134

500 watermarked and non-watermarked samples 1135

took approximately 200 minutes for the left hash 1136

scheme. When using the self-hash scheme, this 1137

took significantly longer (∼ 550 minutes). Our 1138

implementation is based on the official codebase 1139

of (Kirchenbauer et al., 2023a): https://github. 1140

com/jwkirchenbauer/lm-watermarking. We 1141

will be releasing our code to reproduce our experi- 1142

ments. 1143

For baselines, we use the official repository of 1144
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Fernandez et al. (2023a)4 and (Wang et al., 2023a)5.1145

For Message-Hash , following the same configura-1146

tion presented in their work (GPT-2 as the proxy1147

model) cannot watermark the outputs of LLaMA-1148

based models due to the difference in the tokeniz-1149

ers. Consequently, we resort to the Vanilla Marking1150

scheme. This makes all the other factors equiva-1151

lent for the three methods (MPAC, Message-Hash,1152

Cyclic-Shift) except the message encoding func-1153

tion E described in §3. Besides, we believe this has1154

little to no effect on the watermark performance,1155

since the use of proxy model is intended to enhance1156

the quality of the text (in terms of perplexity) rather1157

than the strength of the watermark.1158

A.6 Metrics: Bit Accuracy, Text Quality1159

Text Quality Metrics Using P-SP, we measure the1160

semantic similarity between the human text and1161

watermarked text given the same prompt. While1162

human evaluation is considered to be the golden la-1163

bel, our main purpose is to show that our multi-bit1164

watermarking does not degrade the quality com-1165

pared to zero-bit watermarking. Moreover, the ef-1166

fect of watermarking on the text quality compared1167

to no watermarking shows promising results in hu-1168

man evaluations when sufficiently large models1169

are used for open-ended generation by Kirchen-1170

bauer et al. 2023b (Appendix A.2 and A.9). Addi-1171

tionally, Fernandez et al. (2023a) also demonstrate1172

that watermarking does not lead to noticeable per-1173

formance degradation even on benchmarks with1174

non-ambiguous answers such as coding and math1175

especially with sufficiently larger models, albeit1176

at a small bias. We further show in Fig. 8 the1177

trade-off curve between bit accuracy and text qual-1178

ity. The size indicates the magnitude of bias ({1,1179

1.5 2, 3, 4, 5}) and horizontal dashed lines indicate1180

4https://github.com/facebookresearch/three_
bricks

5https://github.com/lancopku/
codable-watermarking-for-llm

non-watermarked counterparts. Analysis of text 1181

quality shows δ = 2 lies at a good trade-off point. 1182

Bit Accuracy for Multi-bit Watermark In our 1183

experiments, we used bit accuracy (error) as our 1184

metric for multi-bit watermark performance. This 1185

is a general metric that is independent of the down- 1186

stream application or the encoding scheme. How- 1187

ever, computing the exact match of a message 1188

should be done dependent on the context. To il- 1189

lustrate this, we start with some examples. First, 1190

consider the case where the encoding scheme to 1191

identify users is simply assigning a message to 1192

each user. Then, by embedding 4-bit message one 1193

can encode 24 different users : m=‘0000’ for Bob, 1194

m=‘0001’ for Alice, and so on. For such a sce- 1195

nario, one might be interested in computing the 1196

exact match of the 4-bit message, also known as 1197

the packet error ratio. While this encoding scheme 1198

enables tracing back to the exact users at low load 1199

capacity, this is extremely inflexible as it cannot 1200

handle influx or outflux of users. 1201

Conversely, one can turn to a more flexible en- 1202

coding scheme by encoding each character. Using 1203

UTF-8, this requires 8 bits per character, which 1204

would mean 40 bits is required just for encoding 1205

5 character user ID. For this scenario, one might 1206

be more interested in computing the packet error 1207

ratio of each character or the entire 40-bit mes- 1208

sage. A more realistic encoding scheme will be 1209

somewhere between the middle, which uses a more 1210

efficient representation, e.g. by merging often-used 1211

bytes as done in Byte pair encoding (Gage, 1994). 1212

Added with error correction codes such as the Reed- 1213

Solomon code (Wicker and Bhargava, 1999), this 1214

allows a more robust representation. Since focus- 1215

ing on a single type of encoding scheme – and more 1216

fundamentally, what information to embed – nar- 1217

rows down the potential applications, we present 1218

bit accuracy in our main experiments as done in 1219

previous works in the literature (Zhu et al., 2018; 1220

Luo et al., 2020; Yang et al., 2022; Yoo et al., 2023; 1221

Fernandez et al., 2023b). For T=250, the packet 1222

error ratio for the 8-bit message was 7.1%, which 1223

is +5.7 % higher than the bit error rate. With 16-list 1224

decoding, this is reduced to 2.4%. 1225

Another metric considered in Table III of Fer- 1226

nandez et al. (2023a) was combining the detection 1227

scheme and packet error ratio. In this scenario, they 1228

assume an encoding scheme of assigning each user 1229

to a single message and compute the percentage of 1230

finding the exact user given a fixed false positive 1231

rate. At FPR=1e-3 and using 8-bit message (256 1232

16
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Ratio Sampled Position (Sorted)
LeftHash (h=1) 0.319 0.251 0.235 0.195
SelfHash (h=4) 0.264 0.257 0.242 0.238

Table 3: Ratio of the sampled position for b=8,r=4 (four
positions total) for the two hashing schemes for position
allocation.

users), we can correctly identify 90.5% cases. Our1233

true positive rate was computed by the setting used1234

in Table 7.1235

A.7 Discussion on the Hashing Scheme1236

The hashing scheme for generating the seed plays1237

a significant role in watermarking. For our MPAC,1238

the hashing scheme is employed once for position1239

allocation and once for permuting the vocabulary1240

list. Here, we discuss some implications of the1241

design choices.1242

To recap, the function f(Xt−h:t−1) is used to1243

hash h most recent tokens before generating the tth1244

token. Following the terminology of Kirchenbauer1245

et al. (2023b), LeftHash takes the leftmost token,1246

while SelfHash is determined in a slightly more1247

complex way that is dependent on the tth token1248

(see Algorithm 1 of Kirchenbauer et al. (2023b)).1249

The context width and the hashing scheme deter-1250

mine robustness and quality (diversity) trade-offs.1251

For our experiments, we use the two configurations1252

(LeftHash with h=1 and SelfHash with h=4) pro-1253

posed in the previous work found to be effective in1254

the two aspects without further fine-tuning.1255

As expected by the trade-off, the perplexity was1256

slightly higher for LeftHash compared to SelfHash1257

(5.1 vs. 4.9 on average for 250 tokens), while P-1258

SP was at the same level. One clear distinction1259

between the two schemes was the encoding time la-1260

tency. As SelfHash iteratively searches for tokens,1261

this took significantly longer than the LeftHash1262

scheme, which had nearly no overhead compared1263

to no watermarking (appendix A.5 and Table 2).1264

In addition, we observed that the sampled posi-1265

tions were not uniform for LeftHash with h = 11266

as shown in Tab. 3 due to the reduced diversity1267

of the tokens in the context width. Despite this,1268

the multi-bit performance was similar for the two1269

schemes (Table 12 and 13). A possible direction1270

for improvement may be using different hashing1271

schemes for position allocation (more robust) and1272

vocabulary partitioning (more quality-focused).1273

A.8 More on Robustness: Other Attacks, 1274

Detection 1275

We also test our watermark against DIPPER (Kr- 1276

ishna et al., 2023), which is a specialized para- 1277

phrasing model. DIPPER is parameterized by two 1278

scalers, which control lexical diversity and token 1279

order diversity. We first present the results across 1280

bit-width with a lexical diversity of 20 (out of 100). 1281

We see that the watermark fares considerably better 1282

than using GPT-3 attack in Table 4. 1283

To see the magnitude of semantic drift of the 1284

two paraphrasing methods, we compute the P-SP 1285

between the original watermarked text and its para- 1286

phrased counterpart. We also compute the absolute 1287

change in the number of words. Table 5 demon- 1288

strates that paraphrasing using GPT-3.5 changes 1289

the semantic and the number of words greater than 1290

the setting used in Table 4, which may explain why 1291

the multi-bit watermark performance is lower for 1292

GPT-3.5. When we control the diversity parameters 1293

of DIPPER, this is able to degrade the watermark 1294

performance as well as GPT-3.5. 1295

Some other forms of possible attacks considered 1296

in the literature are word substitution, insertion, 1297

and deletion. Word substition is very similar to 1298

the copy-paste attack considered in the main paper. 1299

Our watermark scheme is also robust to partial 1300

insertion and deletion of words as MPAC relies on 1301

the local context to synchronize the positions of the 1302

message and the ordering of the vocabulary. 1303

Robustness of zero-bit Watermark Here we pro- 1304

vide results for the detection performance under 1305

corrptuion. We use the copy-paste attack with the 1306

attack percentage ranges of {10%, 20%, 30%, 40%, 1307

50%} and compare the AUC vs. number of tokens 1308

observed curve similar to Fig. 9. While the de- 1309

tectability is noticeably affected, the final AUC is 1310

recovered to a large degree only after observing 1311

250 tokens. In order of the attack strength, the final 1312

AUC’s are .992, .987, ,980, ,971, .942, respectively. 1313

For the zero-bit counterpart, all the scores are over 1314

.990. 1315

A.9 Ablations on Datasets and Model Sizes 1316

We show additional results on other datasets and 1317

model sizes in Fig. 11. C4 news-like subset 1318

is the dataset we used for our main experiment. 1319

"Long-form Question-Answering" (LFQA) is a 1320

dataset curated by Krishna et al. (2023) on the 1321

Reddit’s “Explain Like I’m Five” (ELI5) forum. 1322

The Essays dataset comprises paris of instructions 1323

17
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Bit Acc. after Paraphrasing with DIPPER
Bit-width 8 16 24 32

Best Prediction .922 (.13) .825 (.12) .778 (.12) .736 (.10)
16-List Decoded .982 (.05) .924 (.08) .864 (.10) .801 (.09)

Table 4: Robustness under paraphrasing using DIPPER (Lexical diveristy=20)

DIPPER

GPT-3.5 Lex.=20 Lex.=40 Lex.=60
Lex.=60

Ordering=60

P-SP .815 .933 .897 .844 .827
Absolute Change in # of Words 36 13 16 19 20

Bit Acc. .733 .922 .849 .757 .719

Table 5: Comparison of the two paraphrasing method on text quality.

Model Bit Acc.
LLaMA-2-7b .986 (.06)

+ Chat .922 (.13)
Mistral-7b .987 (.06)

+ Chat .977 (.08)
OPT-1.3b .982 (.07)

Table 6: Performance on other pretrained models and
their SFT and RLHF variants (Llama-2-7b-chat-hf and
Mistral-7B-Instruct-v0.1). Results on b=8, T=250.

and essays (Schuhmann, 2022). Wikitext (Merity1324

et al., 2016) comprises Wikipedia article. We use1325

the ‘wikitext-2’ subset. For LFQA, we use the1326

finetuned version, LLaMA-2-Chat, specialized for1327

chats as they explicitly have questions or instruc-1328

tions as prompts.1329

It is apparent that the watermark performance1330

is affected by the text distribution. When the en-1331

tropy of the vocabulary distribution is low (low1332

diversity), there is little room for encoding the mes-1333

sage with a fixed bias, which has been observed in1334

zero-bit watermarking as well where the watermark1335

performance suffers for low entropy text distribu-1336

tions such as coding (Lee et al., 2023; Kirchenbauer1337

et al., 2023b). For our multi-bit case, this means the1338

load capacity is inherently low for such text distri-1339

butions. This is especially observed for LFQA, in1340

which the model consistently starts the response by1341

restating the question (e.g. "The reason for [Ques-1342

tion] is . . . "). Across the model scale, the trend is1343

not as apparent although we found that the largest1344

model consistently has a lower performance. This1345

hints that the entropy of the vocabulary distribu-1346

True Positive Rate
Bit-width 0 8 16 24 32
FPR=1e-2 0.999 0.986 0.974 0.964 0.958
FPR=1e-3 0.997 0.974 0.956 0.943 0.915
FPR=1e-4 0.997 0.96 0.934 0.905 0.88
FPR=1e-5 0.994 0.951 0.907 0.851 0.793

Table 7: True positive rate at a fixed false positive rate
across bit-widths. We use ∼ 500 positive sample and
∼100,000 negative samples. We only count the unique
tokens following (Kirchenbauer et al., 2023a; Fernandez
et al., 2023a). This has an effect of removing outlier
human text samples that have exceptionally high scores.

tion is lower for the largest model, which might 1347

explain the higher text quality in general when we 1348

increase the model size. Larger models might have 1349

the capacity to form high-quality sequences even 1350

when the text distribution is altered by increasing 1351

the entropy via temperature or explicitly increasing 1352

the magnitude of the bias during watermarking. We 1353

leave this as a future work. 1354

A.10 Tabular Results 1355

Here we present the numerical results of the ex- 1356

periments done in the main paper. Numbers in the 1357

parenthesis signify the standard deviation. 1358

• Table 8 and 9↔ Figure 2 show the compar- 1359

isons with baseline methods. 1360

• Table 10 ↔ Figure 8 show the relationship 1361

between δ vs. text quality and watermark 1362

strength. 1363

• Table 11↔ Figure 3 left compare the different 1364

configurations of radix and colorlist propor- 1365

tion. 1366
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• Table 12↔ Figure 3 left show the multibit wa-1367

termark performance on a fixed token length.1368

• Table 13↔ Figure 3 right show the multibit1369

watermark performance on a fixed load capac-1370

ity (bits per token).1371

• Table 14↔ Figure 10a show the multibit wa-1372

termark performance under copy-paste corrup-1373

tion.1374

• Table 15↔ Figure 10b show the multibit wa-1375

termark performance under paraphrasing.1376

A.11 Generation Samples1377

We show below in Table 16 generated samples.1378
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B=8,T=250
Copy-Paste (p) Clean cp=10% cp=30% cp=50%

Ours .986 (.06) .981 (.07) .956 (.10) .900 (.13)
FCT+EMS .979 (.10) .943 (.17) .858 (.24) .800 (.28)

FCT+Greenlist .995 (.05) .988 (.08) .970 (.12) .908 (.20)
CTWL .977 (.11) .973 (.12) .951(.16) .858(.24)

Table 8: Comparison of multibit watermark performance with other methods on clean and corrupted settings. For
corruption, we use the copy-paste attack. *The load capacity of FCT+Greenlist is limited to 15-bit.

B=16,T=250 B=24,T=250
Copy-Paste (p) Clean cp=10% cp=30% cp=50% Clean cp=10% cp=30% cp=50%

Ours .951 (.07) .939 (.08) .887 (.09) .819 (.12) .899 (.09) .882 (.09) .830 (.10) .755 (.11)
FCT+EMS .905 (.20) .811 (.26) .702 (.26) .601 (.23) .775 (.26) .729 (.24) .633 (.23) .513 (.13)

CTWL ..936 (.18) .909 (.20) .810 (.26) .614 (.22) .876 (.22) .828 (.25) .663 (.26) .516 (16)

Table 9: Comparison of multibit watermark performance with other methods on clean and corrupted settings.

δ 0.5 1 1.5 2 3 4 5
Bit Acc. .626 (.19) .766 (.18) .887 (.15) .947 (.11) .982 (.08) .993 (.05 .995 (.05)

P-SP (w/ reference) .385 (.15) .379 (.15) .372 (.15) .371 (.15 .360 (.14) .336 (.13) .319 (.13)
P-SP (w/ non-wm.) .526 (.18) .460 (.16) .433 (.15) .417 (.15) .388 (.14) .349 (.14) .330 (.13)

PPL 4.41 (1.5) 4.64 (1.8) 5.01 (2.0) 5.6 (2.0) 7.41 (2.7) 10.3 (4.1) 13.67 (5.9)

Table 10: Bit accuracy and text quality on embedding 8 bit-width message on T=250 across various magnitudes of
bias δ.

Bit Accuracy @ T=250
Bit 8 16 24 32

γ=.25,r=4 .986 (.06) .951 (.07) .900 (.09) .871 (0.08)
γ=.25,r=2 .966 (.07) .905 (.08) .858 (.08) 0.820 (.08)
γ=.50,r=2 .978 (.05) .922 (.07) .875 (.08) 0.849 (.07)

Table 11: Multibit watermark performance measured by bit accuracy for varying configurations of colorlist
proportion and radix.

Bit Acc. @ T=250
Bit 8 16 24 32

LeftHash(h = 1) .986 (0.06) .951 (.07) .900 (.09) .871 (0.08)
SelfHash(h = 4) .976 (.08) .905 (.08) .895 (.09) .862 (.09)

Table 12: Bit accuracy for two different hash schemes for a fixed token length.

Bit Acc. @ BPT=.064
T 63 125 250 500 1000

Bit 4 8 16 32 64

LeftHash(h = 1) .961 (.13) .958 (.09) .951 (.07) .913 (.08) .846 (.09)
SelfHash(h = 4) .952 (.13) .953 (.10) .945 (.08) .911 (.08) .850 (.08)

Table 13: Bit accuracy for two different hash schemes for a fixed bits per token.
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Copy-paste Attack
Attack Strength Clean 10% 20% 30% 40% 50%

8-bit
Best .986 (.06) .981 (.07) 0.971 (.08) .956 (.10) .938 (.12) .900 (.13)

+16-List .997 (.02) .997 (.02) .995 (.03) .993 (.03) .991 (.04) .980 (.05)

16-bit
Best .951 (.07) .939 (.08) .918 (.09) .887 (.09) .858 (.11) .819 (.12)

+16-List .988 (0.04) .983 (.04) .978 (.05) .964 (.06) .947 (.07) .918 (.08)

24-bit
Best .899 (.09) .882 (.09) .858 (.10) .830 (.10) .797 (.11) .755 (.11)

+16-List .959 (.06) .944 (.06) .927 (.08) .907 (.08) .879 (.09) .840 (.09)

32-bit
Best .871 (.08) .851 (.09) .828 (.09) .801 (.09) .765 (.09) .723 (.1)

+16-List .927 (.07) .910 (.08) .888 (.08) .863 (.08) .831 (.09) .792 (.09)

Table 14: Robustness when certain percentage of human text is mixed into the watermarked text.

GPT-3.5 Paraphrasing
Token Length 250T 400T 500T

8-bit

Best .733 (.19) .792 (.19) .795 (.19)
+2-List .825 (.16) .874 (.15) .875 (.15)
+4-List .856 (.14) .894 (.13) .898 (.13)
+8-List .893 (.12) .924 (.11) .928 (.11)
+16-List .911 (.10) .934 (.09) .939 (.09)

Prompt
“As an expert copy-editor, please rewrite the following text in
your own voice while ensuring that the final output contains
the same information as the original text and has roughly the
same length. Please paraphrase all sentences and do not omit
any crucial details. Additionally, please take care to provide
any relevant information about public figures, organizations,
or other entities mentioned in the text to avoid any potential
misunderstandings or biases.”

Table 15: Robustness when paraphrased with GPT-3.5.
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Prompt Non-Watermarked Watermarked

A blind man in his 60s is searching for
the young man who pulled him back
from an approaching train and saved
his life last Thursday, Nov. 9. Mike
Wyatt stood at the stairs to the Peoria
train station in Aurora, Colorado, on
Monday, looking for the young man
who saved his life days earlier

“He told me he was 20 years old and
he was going to college," Wyatt told
reporters. “He said he was going to
be a doctor." Wyatt, who is blind and
has been for most of his life, was at the
train station ready to catch a train to
the airport when he slipped and almost
fell in front of an oncoming train.[...]

and has given him new life. Inside the
station, he spoke to the counter clerk,
hoping the clerk might have informa-
tion that might lead him to the young
man, who jumped at the chance to help
Wyatt when he saw he was in danger.
But, he said, he found nothing.[...]

[...] Shortly after the release of the lead
single “Life’s About to Get Good,” it
hit number one on the Billboard 200.
Of course, fans were simply dying to
see how their favourite country icon
was doing, so

the album was released on CD, vinyl,
and digital. But, Shania took things
to the next level and released a deluxe
version with added tracks. [...]

the song was released a few months
earlier in June. “OK so I am sooooo
proud that my song Life’s About to Get
Good is now the number one song on
Billboard country,” she tweeted back
in June.[...]

[..] Amazon’s offices will be located
within an already-established special
tax district where a portion of the prop-
erty tax revenue goes toward infrastruc-
ture improvements such as parks and
wider sidewalks. The incentive agree-
ment says that half of any new revenue
from that district starting in 202

3 would go to Amazon to help pay for
employee benefits and transportation,
but the county has said it would not be
required to pay those benefits.[...]

7 would go to Amazon through a 15-
year payment schedule. This amount
would grow to more than 60 percent
if the company exceeds 10.24 mil-
lion square feet of office space. Ama-
zon is expected to reach that level in
2027.[...]

[...] "Below the surface of the Sun a
dynamo process is working creating
magnetic field," Harra explained in an
email interview. "When this becomes
buoyant it can rise to the surface of the
Sun,

and this is what we call a sunspot." The
new research shows that the initial ex-
plosion was actually a series of smaller
blasts that combined to create the X-7
flare.

and form coronal holes and sunspots.
This happens in a fairly homogeneous
area on the Sun, so there can be several
sunspots with a single magnetic field
underneath.

[...]The merge listing the most impor-
tant changes to Linux 3.8’s sound sub-
system includes some other changes to
audio drivers. The kernel now includes
a driver for human interface devices
(HIDs) that use I2C (1, 2 and others),
using the "HID over I2C" protocol de-
signed by Microsoft and implemented
in WindowsÂ

7 and later versions of the operat-
ing system. The kernel now has a
driver for the Samsung Galaxy S III
smartphone’s touchscreen (1, 2 and
others), and the rt2800usb driver, for
the RaLink RT2800USB WLAN chip,
now supports devices that have Blue-
tooth 3.0 (1, 2).[...]

7 and Windows Vista. The drivers can
read out data from HIDs and set the
appropriate commands to them. An ex-
ample of such a device is a BT-USB
adapter. The sound subsystem now
supports two new, high-quality audio
codecs (1, 2):[...]

Table 16: Randomly sampled examples of watermarked texts on the C4 newslike subset with 100% bit accuracy.
Samples are truncated for readability.
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