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Abstract

Lifelong event detection aims to incrementally
update a model with new event types and data
while retaining the capability on previously
learned old types. One critical challenge is
that the model would catastrophically forget
old types when continually trained on new
data. In this paper, we introduce Epsodic
Memory Prompts (EMP) to explicitly pre-
serve the learned task-specific knowledge. Our
method adopts continuous prompt for each task
and they are optimized to instruct the model
prediction and learn event-specific represen-
tation. The EMPs learned in previous tasks
are carried along with the model in subsequent
tasks, and can serve as a memory module that
keeps the old knowledge and transferring to
new tasks. Experiment results demonstrate the
effectiveness of our method. Furthermore, we
also conduct a comprehensive analysis of the
new and old event types in lifelong learning.

1 Introduction

Class-incremental event detection is a challeng-
ing setting in lifelong learning, where the model
is incrementally updated on a continual stream of
data for new event types while retaining the event
detection capability for all the previously learned
types. The main challenge of class-incremental
event detection lies in the catastrophic forgetting
problem, where the model’s performance on pre-
viously learned types significantly drops after it is
trained on new data. Recent studies (Wang et al.,
2019; Lopez-Paz and Ranzato, 2017) have revealed
that replaying stored samples of old classes can ef-
fectively alleviate the catastrophic forgetting issue.
However, simply fine-tuning the entire model on
the limited stored samples may result in overfitting,
especially when the model has a huge set of pa-
rameters. How to effectively leverage the stored
examples still remains an important question.
Prompt learning, which is to simply tune a
template-based or continuous prompt appended to

the input text while keeping all the other param-
eters freezed, has recently shown comparable or
even better performance than fine-tuning the en-
tire model in many NLP tasks (Brown et al., 2020;
Jiang et al., 2020; Gao et al., 2021; Li and Liang,
2021; Lester et al., 2021; Hambardzumyan et al.,
2021). It is especially flavored by the lifelong learn-
ing setting since it only tunes a small amount of
parameters, thus has the potential to alleviate the
catastrophic forgetting and exemplar memory over-
fitting issues. Moreover, the prompts can also be
used to store task-specific knowledge.

In this work, we propose a simple but effec-
tive incremental prompting framework that intro-
duces Epsodic Memory Prompts (EMP) to store
the learned type-specific knowledge. At each train-
ing stage, we adopt a learnable prompt for each
new event type added from the current task. The
prompts are initialized with event type names and
fine-tuned with the annotations from each task. To
encourage the prompts to always carry and reflect
type-specific information, we entangle the feature
representation of each event mention with the type-
specific prompts by optimizing its type distribution
over them. After each training stage, we keep the
learned prompts in the model and incorporate new
prompts for next task. In this way, the acquired
task-specific knowledge can be carried into subse-
quent tasks. Therefore, our EMP can be considered
as a soft episodic memory that preserves the old
knowledge and transfers it to new tasks. Our con-
tributions can be summarized as follows:

* We propose Epsodic Memory Prompts
(EMP) which can explicitly carry previously
learned knowledge to subsequent tasks for class-
incremental event detection. Extensive experi-
ments validate the effectiveness of our method.

* To the best of our knowledge, we are the first
to adopt prompting methods for class-incremental
event detection. Our framework has the potential
to be applied to other incremental learning tasks.



2 Problem Formulation

Given an input text x1.;, and a set of target spans
{(xi, z;)} from it, an event detection model needs
to assign each target span with an event type in
the ontology or label it as Other if the span is not
an event trigger. For class-incremental event de-
tection, we aim to train a single model fy on a
sequence of T tasks {D, ..., Dr} that consist of
non-overlapping event type sets {C1,...,Cr}'. In
each t-th task, the model needs to classify each
mention to any the types that have seen so far
O; = C1 J ... UC¢. The training instances in each
task D; consist of tuples of an input text ., , a tar-
get span z!, and its corresponding label y* where
y! € C;. For convenience, the notations are for
the ¢-th training stage by default unless denoted
explicitly in the following parts of the paper.

3 Approach
3.1 Span-based Event Detection

Given an input sentence z}.; from task Dy, we first
encode it with BERT (Devlin et al., 2019) to obtain
the contextual representations x4, ; = BERT(z},; ).
Note that we freeze BERT’s parameters in our
method and all baselines. For each span Z!, we
concatenate its starting and ending token represen-
tations and feed them into a multilayer perceptron
(MLP) to get the span representation hgpan. Then,
we apply a linear layer on hgp(m to predict the type
distribution of the span p* = linear(hl,,,). We
use cross-entropy loss to train the model on D;:

Z log p'. (1)
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3.2 Episodic Memory Prompting

To overcome the catastrophic forgetting and exem-
plar memory overfitting issues, we design a contin-
uous prompting approach with Episodic Memory
Prompts (EMPs) to preserve the knowledge learned
from each task and transfer to new tasks.

Given an incoming task D, and its correspond-
ing new event type set C; = {c},...,c},}, we
first initialize a sequence of new prompts C! =
[c},...,cL,] where ¢! € R is a type-specific
prompt for type c!. e is the embedding dimen-
sion size. In our experiments, we use the event
type name to initialize each event type prompt c!

(see Appendix A for details). Note that we always

!"Though the type sets from all tasks contain Other, they
have distinct meanings given different seen types.

preserve the prompts learned from previous tasks,
thus the accumulated prompts until the ¢-th task
are represented as I' = [C!, ..., C!]. Given a par-
ticular sentence x’i: ;, from Dy, we concatenate it
with the accumulated prompts I?, encode the whole
sequence with BERT, and obtain the sequence of
contextual representations [X’.; ;; I!], where X¢ . ;
and T! denote the sequence of contextual embed-
dings of 2!, and I’ respectively. [;] is concatena-
tion operation. Then, similar as Section 3.1, we
obtain a representation flépan for each span based
on x!, and predict the logits over all target event
types p! = linear(ht,,,,).

We expect the EMPs to be specific to the cor-
responding event types and preserve the knowl-
edge of each event type from previous tasks. So
we design an entangled prompt optimization strat-
egy to entangle the feature representation of each
span with the event type-specific prompts by com-
puting an event type probability distribution over
them. Specifically, given a span representation
flgpan and EMP representations I, we compute
the probability distribution over all prompts as
Pt = MLP(I!) - flgpan, where - is the dot prod-
uct. Finally, we combine the original logits p' and
P, to predict the event type label for each span:

Lo=— ) log(@'+p). @
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At the end of each training stage, we keep the
learned prompts from the current task C' in the
model, and then initialize a new prompt C**! for
the next task incrementally: I'+! = [T?; C**+1].

3.3 Lifelong Learning with Experience Replay
and Knowledge Distillation

To alleviate the catastrophic forgetting issue, a com-
mon strategy is to store a limited amount of data
from old tasks in a memory buffer and pass them to
later tasks. We follow this strategy and adopt two
popularly used methods: (1) Experience Replay
which is to repeatedly optimize the model on the
stored data in subsequent tasks; and (2) Knowledge
Distillation (KD) that is to ensure the output proba-
bilities and features from the current and previous
models to be matched, respectively.

Specifically, after training on D,, we apply the
herding algorithm (Welling, 2009) to select 20 train-
ing samples for each type into the memory buffer,
denoted as M. Similar as Equation 2, the objective



for experience repaly is:

Ler=—
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log (0" +7L). (3

For knowledge distillation, following (Cao et al.,
2020), we apply both prediction-level and feature-
level distillation, and use a temperature parameter
to rescale the probabilities of prediction-level KD.
The objectives for prediction-level KD and feature-
level KD are computed as:

> @+ log (B + L)
(@ yr)emM
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where g is the cosine similarity function. Bg;aln and

h!,,,, are [y-normalized features from the model at

t — 1 and ¢ stages, respectively.

Optimization We apply a weighting factor A to
control how much loss from experience replay and
knowledge distillation to use in each batch. The
final loss is computed as:

L=Lc+MNLer+ Lpp + LrD).

4 Experiments and Discussion

Experiment Settings We conduct experiments
on two benchmark datasets: ACE05-EN (Dodding-
ton et al., 2004) and MAVEN (Wang et al., 2020),
and construct the class-incremental datasets follow-
ing the oracle negative setting in (Yu et al., 2021).
We divided the ontology into 5 subsets with dis-
tinct event types, and then use them to constitute
a sequence of 5 tasks denoted as Dy.5. We use the
same partition and task order permutations in (Yu
et al., 2021). During the learning process from D;
to D5, we constantly test the model on the entire
test set (which contains the whole ontology) and
take the mentions of unseen event types as negative
instances. More implementation details, includ-
ing parameters, initialization of prompts as well as
baselines are shown in Appendix A.

Results We present the main results in Table 1.
We have following observations: (1) by comparing
the performance of various approaches on Task 1
which are not affected by any catastrophic forget-
ting, our prompting based approach improves 4.1%
F-score on MAVEN and 1.3% F-score on ACEOS,
demonstrating that by incorporating task-specific

prompts, event detection itself can be significantly
improved. EMPs even provide more improvement
on MAVEN which contains a lot more event types
than ACEOQS, suggesting the potential of incorpo-
rating EMPs for fine-grained event detection; (2)
KCN can be viewed as an ablated version of our
approach without EMPs. Our approach consis-
tently outperforms KCN on almost all tasks on
both datasets, demonstrating the effectiveness of
EMPs on improving class-incremental event detec-
tion; (3) Comparing with BERT-ED, KCN adopts
experience replay and knowledge distillation. Their
performance gap verifies that these two strategies
can dramatically alleviate the catastrophic forget-
ting problem. (4) There is still a large gap between
the current lifelong learning approaches and the
upperbound, indicating that catastrophic forgetting
still remains a very challenging problem. Note that
for fair comparison, for all approaches, we set the
exemplar buffer size as 20, and allow one exemplar
instance to be use in each training batch instead
of the whole memory set, thus most results in our
paper cannot be directly compared with the results
reported in (Yu et al., 2021). We also analyze the
effect of exemplar buffer size in Appendix B.

Analysis of New and Old Types in Lifelong
Learning Figure 1 shows the F-score on old and
new event types in each training stage for both our
approach and KT (Yu et al., 2021) on the MAVEN
dataset. Our approach consistently outperforms
KT by a large margin on both old types and new
types, demonstrating that our EMPs effectively pre-
serve learned knowledge from old event types and
significant improve event detection when the anno-
tations are sufficient. Interestingly, comparing the
F-score on new types in Task 1 and old types in
Task 2, both methods improve the performance on
the types of Task 1, indicating that both methods
have the potential of leveraging indirect supervi-
sion to improve event detection.

Ablation Study For ablation study, we consider
three ablated models based on our EMPs: (1)
change the prompt initialization from using event
type name representations? to using random distri-
bution; (2) remove the knowledge distillation loss
Lpp and Lrp; (3) use completely fixed prompts
to replace the trainable soft prompts. From Ta-
ble 2, we observes that: (1) using event type names

Details of using event type name to initialize prompts are
shown in Appendix A



\ MAVEN ACEO5-EN
Task | 2 3 4 5 1 2 3 4 5
BERT-ED 63.51 39.99 3336 23.83 22.69 | 58.30 43.96 38.02 21.53 25.71
iCaRL* (Rebuffi etal., 2017) | 18.08 27.03 30.78 31.26 29.77 | 405 541 725 694 894
EEIL (Castro et al., 2018) 63.51 50.62 45.16 4139 3834 | 5830 54.93 5272 4518 41.95
BIC (Wu et al., 2019) 63.51 46.69 39.15 31.69 30.47 | 5830 4573 4328 3570 30.80
KCN (Cao et al., 2020) 6351 51.17 46.80 38.72 38.58 | 5830 54.71 52.88 44.93 41.10
KT (Yu et al., 2021) 63.51 5236 4724 3951 39.34 | 5830 5541 5395 4500 42.62
EMP (Ours) | 67.62 5833 5453 47.70 4430 | 59.60 53.19 55.20 45.64 43.28
Upperbound (Ours) |/ / / / 66.68 |/ / / / 68.22

Table 1: Comparison between our approach and baselines in terms of micro F-1 (%) on 5 class-incremental tasks.
We report the averaged results on 5 permutations of tasks to alleviate the affect of task order.
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Figure 1: Performance on old types and new types in
each lifelong task on MAVEN (best viewed in color).

to initialize the prompts is helpful in most tasks.
We leave how to incorporate more effective prior
knowledge into prompts for future work; (2) switch-
ing the continuous prompts to discrete prompts
degrades the performance significantly, suggest-
ing that the continuous prompts is generally more
promising than the discrete prompts.

Task |1 2 3 4 5
EMP (Ours) | 70.57 57.87 5433 4839 45.82
-w/oElnit | 70.26 5478 50.56 48.42 4228
-wloKD | 70.57 5482 5324 4537 4122
-Discrete | 67.57 5486 49.99 4551 39.08

Table 2: Ablation study on event-specific prompt initial-
ization (Elnit), knowledge distillation (KD), and switch-
ing to discrete prompts (Discrete) on MAVEN.

5 Related Work

Lifelong Event Detection Recent deep neural
networks have shown state-of-the-art performance
on conventional supervised event detection (Chen
et al., 2015; Nguyen et al., 2016; Feng et al.,
2016; Lu et al., 2019). However, when mov-
ing to lifelong learning setting, the performance
significantly drops (Kirkpatrick et al., 2017; Li
and Hoiem, 2016; Aljundi et al., 2019; Cui et al.,
2021). Episodic memory replay (EMR) (Lopez-

Paz and Ranzato, 2017; Guo et al., 2020; de Mas-
son d’ Autume et al., 2019; Wang et al., 2019; Han
et al., 2020) and knowledge distillation (Chuang
et al., 2020; Cao et al., 2020; Yu et al., 2021) have
been the two most effective techniques to overcome
the catastrophic forgetting problem. However, they
highly rely on the stored data from old tasks, which
is not the most realistic setting for lifelong learning.

Prompt Learning Conditioning on large-scale
pre-trained language models, prompt learn-
ing (Brown et al., 2020; Lester et al., 2021; Chen
et al., 2021; Liu et al., 2021; Wang et al., 2021a)
have shown comparable performance as language
model fine-tuning. Several recent studies explore
prompt learning in lifelong learning setting. Qin
and Joty (2021) use prompt tuning to train the
model as a task solver and data generator in their
proposed Lifelong Few-shot Language Learning
problem. Wang et al. (2021b) propose L2P for con-
tinual learning in the vision area. To the best of our
knowledge, we are the first work to adopt prompt
learning for class-incremental event detection.

6 Conclusion

In this paper, we propose a novel prompting frame-
work, namely Episodic Memory Prompts (EMP),
for class-incremental event detection. During each
training stage, EMP learns type-specific knowl-
edge via a continuous prompt for each event type.
The EMPs trained in previous tasks are kept in the
model, such that the acquired task-specific knowl-
edge can be transferred into the following new
tasks. Experimental results validate the effective-
ness of our method comparing with competitive
baselines. In addition, our extensive analysis shows
that by employing EMPs, both event detection it-
self and the incremental learning capability of our
approach are significantly improved.
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A Experimental Details

Baselines We consider the following baselines
for comparison: (1) BERT-ED: simply trains the
BERT based event detection model on new tasks
without prompts, experience replay or knowledge
distillation. It’s the same as the span-based event
detection baseline in Section 3.1. (2) KCN (Cao
et al., 2020): use a prototype-based example sam-
pling strategy and hierarchical distillation. As the
original approach studied a different setting, we
adapt their prediction-level and feature-level distil-
lation as the baseline. (3) KT (Yu et al., 2021):
transfer knowledge between old types and new
types in two directions. (4) iCaRL* (Rebuffi et al.,
2017): use nearest-mean-of-exemplars rules to per-
form classification combined with knowledge dis-
tillation. iCaRL adopts different strategies for clas-
sification, experience replay, and distillation. We
directly report the result in (Yu et al., 2021) for ref-
erence. (5) EEIL (Castro et al., 2018): use an addi-
tional finetuning stage on the balanced dataset. (6)
BIC (Wu et al., 2019): use a bias correction layer
after the classification layer. (7) Upperbound:
trains the same model on all types in the datasets
jointly. For iCaRL, EEIL, and BIC, we use the
same implementation in (Yu et al., 2021). For fair
comparison, our approach and all baselines (except
for the Upperbound baseline) are built upon KCN
and use the same experience replay and knowledge
distillation strategies described in Section 3.2.

Implementation Details During training, we use
AdamW (Loshchilov and Hutter, 2019) optimizer
with the learning rate set to 1e —4 and weight decay
set to 1le — 2. Different from previous work (Yu
et al., 2021), we set the batch size to 1 as we en-
code each sentence once and consider all target
spans in the sentence at the same time. We adopt
gradient accumulation with the step set to 8. As
the number of batches is large, we apply a periodic
replay strategy with the interval set to 10 to reduce
computational cost. For each lifelong task D;, we
set the maximum number of training epochs to 20.
We adopt the early stopping strategy with patience

60
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Figure 2: Performance with different buffer size in each
task on MAVEN (best viewed in color).

5, i.e., the training stops if the performance on the
development set does not increase for 5 epochs. We
set the weighting factor A = k/(s + k), where s
is the number of predicted spans and k is set to 50.
The temperature parameter used in prediction-level
distillation is set to 2.

The parameters of each prompt in EMPs are ini-
tialized with the corresponding event type name.
Specifically, there are three cases in the initializa-
tion: (1) If the type name is single-token and it is
contained in BERT’s vocabulary, we directly use
the pre-trained embedding of this token to initialize
the prompt; (2) If the type name is multiple-token
and the tokens are contained in BERT’s vocabu-
lary, we take the average of the pre-trained em-
beddings of these tokens to initialize the prompt;
(3) If the type name contains Out-of-Vocabulary
(00V) tokens, we replace the OOV tokens with the
synonyms that are contained in BERT’s vocabulary.

B Effect of Exemplar Buffer Size

We conduct an analysis on the effect of exemplar
buffer size. We explore the buffer size for each
type in {0, 10, 20}. Note that although we reduced
the buffer size, we did not modify the replay fre-
quency, as we want to investigate the effect of data
diversity in memory buffer. We use KT as the
baseline when buffer size is 20 and 10. Note that
when buffer size is 0, we do not adopt either ex-
perience replay or knowledge distillation and thus
use BERT-ED as the baseline. We plot the results
on Figure 2. We observed that: (1) Decreasing the
buffer size for each type from 20 to 10 degrades the
performance of both models. This indicates that
reducing data diversity may result in the overfitting
on example data, and thus deteriorates the perfor-
mance; (2) The performance of our method is not
affected as much as the baseline, demonstrating our
prompting framework is more tolerant to smaller
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buffer size and remains very competitive perfor-
mance when less data are available; (3) When the
buffer size decreases to 0, the performance of both
methods drops significantly. This shows that both
approaches highly rely on the stored data to over-
come the catastrophic forgetting problem. This
calls for developing more advance techniques to re-
duce the dependence on stored examples, as storing
past data could result in data leakage in real-world
applications.



