
Incremental Prompting: Episodic Memory Prompt for Lifelong Event
Detection

Anonymous ACL submission

Abstract

Lifelong event detection aims to incrementally001
update a model with new event types and data002
while retaining the capability on previously003
learned old types. One critical challenge is004
that the model would catastrophically forget005
old types when continually trained on new006
data. In this paper, we introduce Epsodic007
Memory Prompts (EMP) to explicitly pre-008
serve the learned task-specific knowledge. Our009
method adopts continuous prompt for each task010
and they are optimized to instruct the model011
prediction and learn event-specific represen-012
tation. The EMPs learned in previous tasks013
are carried along with the model in subsequent014
tasks, and can serve as a memory module that015
keeps the old knowledge and transferring to016
new tasks. Experiment results demonstrate the017
effectiveness of our method. Furthermore, we018
also conduct a comprehensive analysis of the019
new and old event types in lifelong learning.020

1 Introduction021

Class-incremental event detection is a challeng-022

ing setting in lifelong learning, where the model023

is incrementally updated on a continual stream of024

data for new event types while retaining the event025

detection capability for all the previously learned026

types. The main challenge of class-incremental027

event detection lies in the catastrophic forgetting028

problem, where the model’s performance on pre-029

viously learned types significantly drops after it is030

trained on new data. Recent studies (Wang et al.,031

2019; Lopez-Paz and Ranzato, 2017) have revealed032

that replaying stored samples of old classes can ef-033

fectively alleviate the catastrophic forgetting issue.034

However, simply fine-tuning the entire model on035

the limited stored samples may result in overfitting,036

especially when the model has a huge set of pa-037

rameters. How to effectively leverage the stored038

examples still remains an important question.039

Prompt learning, which is to simply tune a040

template-based or continuous prompt appended to041

the input text while keeping all the other param- 042

eters freezed, has recently shown comparable or 043

even better performance than fine-tuning the en- 044

tire model in many NLP tasks (Brown et al., 2020; 045

Jiang et al., 2020; Gao et al., 2021; Li and Liang, 046

2021; Lester et al., 2021; Hambardzumyan et al., 047

2021). It is especially flavored by the lifelong learn- 048

ing setting since it only tunes a small amount of 049

parameters, thus has the potential to alleviate the 050

catastrophic forgetting and exemplar memory over- 051

fitting issues. Moreover, the prompts can also be 052

used to store task-specific knowledge. 053

In this work, we propose a simple but effec- 054

tive incremental prompting framework that intro- 055

duces Epsodic Memory Prompts (EMP) to store 056

the learned type-specific knowledge. At each train- 057

ing stage, we adopt a learnable prompt for each 058

new event type added from the current task. The 059

prompts are initialized with event type names and 060

fine-tuned with the annotations from each task. To 061

encourage the prompts to always carry and reflect 062

type-specific information, we entangle the feature 063

representation of each event mention with the type- 064

specific prompts by optimizing its type distribution 065

over them. After each training stage, we keep the 066

learned prompts in the model and incorporate new 067

prompts for next task. In this way, the acquired 068

task-specific knowledge can be carried into subse- 069

quent tasks. Therefore, our EMP can be considered 070

as a soft episodic memory that preserves the old 071

knowledge and transfers it to new tasks. Our con- 072

tributions can be summarized as follows: 073

• We propose Epsodic Memory Prompts 074

(EMP) which can explicitly carry previously 075

learned knowledge to subsequent tasks for class- 076

incremental event detection. Extensive experi- 077

ments validate the effectiveness of our method. 078

• To the best of our knowledge, we are the first 079

to adopt prompting methods for class-incremental 080

event detection. Our framework has the potential 081

to be applied to other incremental learning tasks. 082
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2 Problem Formulation083

Given an input text x1:L and a set of target spans084

{(xi, xj)} from it, an event detection model needs085

to assign each target span with an event type in086

the ontology or label it as Other if the span is not087

an event trigger. For class-incremental event de-088

tection, we aim to train a single model fθ on a089

sequence of T tasks {D1, ...,DT } that consist of090

non-overlapping event type sets {C1, ..., CT }1. In091

each t-th task, the model needs to classify each092

mention to any the types that have seen so far093

Ot = C1
⋃
...
⋃
Ct. The training instances in each094

task Dt consist of tuples of an input text xt1:L, a tar-095

get span x̄t, and its corresponding label yt where096

yt ∈ Ct. For convenience, the notations are for097

the t-th training stage by default unless denoted098

explicitly in the following parts of the paper.099

3 Approach100

3.1 Span-based Event Detection101

Given an input sentence xt1:L from task Dt, we first102

encode it with BERT (Devlin et al., 2019) to obtain103

the contextual representations xt
1:L = BERT(xt1:L).104

Note that we freeze BERT’s parameters in our105

method and all baselines. For each span x̄t, we106

concatenate its starting and ending token represen-107

tations and feed them into a multilayer perceptron108

(MLP) to get the span representation ht
span. Then,109

we apply a linear layer on ht
span to predict the type110

distribution of the span pt = linear(ht
span). We111

use cross-entropy loss to train the model on Dt:112

LC = −
∑

(x̄t,yt)∈Dt

log pt. (1)113

3.2 Episodic Memory Prompting114

To overcome the catastrophic forgetting and exem-115

plar memory overfitting issues, we design a contin-116

uous prompting approach with Episodic Memory117

Prompts (EMPs) to preserve the knowledge learned118

from each task and transfer to new tasks.119

Given an incoming task Dt and its correspond-120

ing new event type set Ct = {ct1, ..., ctnt
}, we121

first initialize a sequence of new prompts Ct =122

[ct1, ..., c
t
nt
] where cti ∈ R1×e is a type-specific123

prompt for type cti. e is the embedding dimen-124

sion size. In our experiments, we use the event125

type name to initialize each event type prompt cti126

(see Appendix A for details). Note that we always127

1Though the type sets from all tasks contain Other, they
have distinct meanings given different seen types.

preserve the prompts learned from previous tasks, 128

thus the accumulated prompts until the t-th task 129

are represented as It = [C1, ...,Ct]. Given a par- 130

ticular sentence xt1:L from Dt, we concatenate it 131

with the accumulated prompts It, encode the whole 132

sequence with BERT, and obtain the sequence of 133

contextual representations [x̃t
1:Li; Ĩ

t], where x̃t
1:Li 134

and Ĩti denote the sequence of contextual embed- 135

dings of xt1:L and It respectively. [; ] is concatena- 136

tion operation. Then, similar as Section 3.1, we 137

obtain a representation h̃t
span for each span based 138

on x̃t
i, and predict the logits over all target event 139

types p̃t = linear(h̃t
span). 140

We expect the EMPs to be specific to the cor- 141

responding event types and preserve the knowl- 142

edge of each event type from previous tasks. So 143

we design an entangled prompt optimization strat- 144

egy to entangle the feature representation of each 145

span with the event type-specific prompts by com- 146

puting an event type probability distribution over 147

them. Specifically, given a span representation 148

h̃t
span and EMP representations Ĩt, we compute 149

the probability distribution over all prompts as 150

p̃tc = MLP(Ĩt) · h̃t
span, where · is the dot prod- 151

uct. Finally, we combine the original logits p̃t and 152

p̃tc to predict the event type label for each span: 153

L̃C = −
∑

(x̄t,yt)∈Dt

log (p̃t + p̃tc). (2) 154

At the end of each training stage, we keep the 155

learned prompts from the current task Ct in the 156

model, and then initialize a new prompt Ct+1 for 157

the next task incrementally: It+1 = [It;Ct+1]. 158

3.3 Lifelong Learning with Experience Replay 159

and Knowledge Distillation 160

To alleviate the catastrophic forgetting issue, a com- 161

mon strategy is to store a limited amount of data 162

from old tasks in a memory buffer and pass them to 163

later tasks. We follow this strategy and adopt two 164

popularly used methods: (1) Experience Replay 165

which is to repeatedly optimize the model on the 166

stored data in subsequent tasks; and (2) Knowledge 167

Distillation (KD) that is to ensure the output proba- 168

bilities and features from the current and previous 169

models to be matched, respectively. 170

Specifically, after training on Dt, we apply the 171

herding algorithm (Welling, 2009) to select 20 train- 172

ing samples for each type into the memory buffer, 173

denoted as M. Similar as Equation 2, the objective 174

2



for experience repaly is:175

LER = −
∑

(x̄r,yr)∈M

log (p̃t + p̃tc). (3)176

For knowledge distillation, following (Cao et al.,177

2020), we apply both prediction-level and feature-178

level distillation, and use a temperature parameter179

to rescale the probabilities of prediction-level KD.180

The objectives for prediction-level KD and feature-181

level KD are computed as:182

LPD = −
∑

(x̄r,yr)∈M

(p̃t−1+ p̃t−1
c ) log ((p̃t+ p̃tc)).183

184
LFD =

∑
(xr,(xr

i ,x
r
j ),y

r)∈M

1− g(h̄t−1
span, h̄

t
span),185

where g is the cosine similarity function. h̄t−1
span and186

h̄t
span are l2-normalized features from the model at187

t− 1 and t stages, respectively.188

Optimization We apply a weighting factor λ to189

control how much loss from experience replay and190

knowledge distillation to use in each batch. The191

final loss is computed as:192

L = L̃C + λ(LER + LPD + LFD).193

4 Experiments and Discussion194

Experiment Settings We conduct experiments195

on two benchmark datasets: ACE05-EN (Dodding-196

ton et al., 2004) and MAVEN (Wang et al., 2020),197

and construct the class-incremental datasets follow-198

ing the oracle negative setting in (Yu et al., 2021).199

We divided the ontology into 5 subsets with dis-200

tinct event types, and then use them to constitute201

a sequence of 5 tasks denoted as D1:5. We use the202

same partition and task order permutations in (Yu203

et al., 2021). During the learning process from D1204

to D5, we constantly test the model on the entire205

test set (which contains the whole ontology) and206

take the mentions of unseen event types as negative207

instances. More implementation details, includ-208

ing parameters, initialization of prompts as well as209

baselines are shown in Appendix A.210

Results We present the main results in Table 1.211

We have following observations: (1) by comparing212

the performance of various approaches on Task 1213

which are not affected by any catastrophic forget-214

ting, our prompting based approach improves 4.1%215

F-score on MAVEN and 1.3% F-score on ACE05,216

demonstrating that by incorporating task-specific217

prompts, event detection itself can be significantly 218

improved. EMPs even provide more improvement 219

on MAVEN which contains a lot more event types 220

than ACE05, suggesting the potential of incorpo- 221

rating EMPs for fine-grained event detection; (2) 222

KCN can be viewed as an ablated version of our 223

approach without EMPs. Our approach consis- 224

tently outperforms KCN on almost all tasks on 225

both datasets, demonstrating the effectiveness of 226

EMPs on improving class-incremental event detec- 227

tion; (3) Comparing with BERT-ED, KCN adopts 228

experience replay and knowledge distillation. Their 229

performance gap verifies that these two strategies 230

can dramatically alleviate the catastrophic forget- 231

ting problem. (4) There is still a large gap between 232

the current lifelong learning approaches and the 233

upperbound, indicating that catastrophic forgetting 234

still remains a very challenging problem. Note that 235

for fair comparison, for all approaches, we set the 236

exemplar buffer size as 20, and allow one exemplar 237

instance to be use in each training batch instead 238

of the whole memory set, thus most results in our 239

paper cannot be directly compared with the results 240

reported in (Yu et al., 2021). We also analyze the 241

effect of exemplar buffer size in Appendix B. 242

Analysis of New and Old Types in Lifelong 243

Learning Figure 1 shows the F-score on old and 244

new event types in each training stage for both our 245

approach and KT (Yu et al., 2021) on the MAVEN 246

dataset. Our approach consistently outperforms 247

KT by a large margin on both old types and new 248

types, demonstrating that our EMPs effectively pre- 249

serve learned knowledge from old event types and 250

significant improve event detection when the anno- 251

tations are sufficient. Interestingly, comparing the 252

F-score on new types in Task 1 and old types in 253

Task 2, both methods improve the performance on 254

the types of Task 1, indicating that both methods 255

have the potential of leveraging indirect supervi- 256

sion to improve event detection. 257

Ablation Study For ablation study, we consider 258

three ablated models based on our EMPs: (1) 259

change the prompt initialization from using event 260

type name representations2 to using random distri- 261

bution; (2) remove the knowledge distillation loss 262

LPD and LFD; (3) use completely fixed prompts 263

to replace the trainable soft prompts. From Ta- 264

ble 2, we observes that: (1) using event type names 265

2Details of using event type name to initialize prompts are
shown in Appendix A
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MAVEN ACE05-EN

Task 1 2 3 4 5 1 2 3 4 5

BERT-ED 63.51 39.99 33.36 23.83 22.69 58.30 43.96 38.02 21.53 25.71
iCaRL* (Rebuffi et al., 2017) 18.08 27.03 30.78 31.26 29.77 4.05 5.41 7.25 6.94 8.94
EEIL (Castro et al., 2018) 63.51 50.62 45.16 41.39 38.34 58.30 54.93 52.72 45.18 41.95
BIC (Wu et al., 2019) 63.51 46.69 39.15 31.69 30.47 58.30 45.73 43.28 35.70 30.80
KCN (Cao et al., 2020) 63.51 51.17 46.80 38.72 38.58 58.30 54.71 52.88 44.93 41.10
KT (Yu et al., 2021) 63.51 52.36 47.24 39.51 39.34 58.30 55.41 53.95 45.00 42.62

EMP (Ours) 67.62 58.33 54.53 47.70 44.30 59.60 53.19 55.20 45.64 43.28

Upperbound (Ours) / / / / 66.68 / / / / 68.22

Table 1: Comparison between our approach and baselines in terms of micro F-1 (%) on 5 class-incremental tasks.
We report the averaged results on 5 permutations of tasks to alleviate the affect of task order.

Figure 1: Performance on old types and new types in
each lifelong task on MAVEN (best viewed in color).

to initialize the prompts is helpful in most tasks.266

We leave how to incorporate more effective prior267

knowledge into prompts for future work; (2) switch-268

ing the continuous prompts to discrete prompts269

degrades the performance significantly, suggest-270

ing that the continuous prompts is generally more271

promising than the discrete prompts.272

Task 1 2 3 4 5

EMP (Ours) 70.57 57.87 54.33 48.39 45.82
- w/o EInit 70.26 54.78 50.56 48.42 42.28
- w/o KD 70.57 54.82 53.24 45.37 41.22
- Discrete 67.57 54.86 49.99 45.51 39.08

Table 2: Ablation study on event-specific prompt initial-
ization (EInit), knowledge distillation (KD), and switch-
ing to discrete prompts (Discrete) on MAVEN.

5 Related Work273

Lifelong Event Detection Recent deep neural274

networks have shown state-of-the-art performance275

on conventional supervised event detection (Chen276

et al., 2015; Nguyen et al., 2016; Feng et al.,277

2016; Lu et al., 2019). However, when mov-278

ing to lifelong learning setting, the performance279

significantly drops (Kirkpatrick et al., 2017; Li280

and Hoiem, 2016; Aljundi et al., 2019; Cui et al.,281

2021). Episodic memory replay (EMR) (Lopez-282

Paz and Ranzato, 2017; Guo et al., 2020; de Mas- 283

son d’Autume et al., 2019; Wang et al., 2019; Han 284

et al., 2020) and knowledge distillation (Chuang 285

et al., 2020; Cao et al., 2020; Yu et al., 2021) have 286

been the two most effective techniques to overcome 287

the catastrophic forgetting problem. However, they 288

highly rely on the stored data from old tasks, which 289

is not the most realistic setting for lifelong learning. 290

Prompt Learning Conditioning on large-scale 291

pre-trained language models, prompt learn- 292

ing (Brown et al., 2020; Lester et al., 2021; Chen 293

et al., 2021; Liu et al., 2021; Wang et al., 2021a) 294

have shown comparable performance as language 295

model fine-tuning. Several recent studies explore 296

prompt learning in lifelong learning setting. Qin 297

and Joty (2021) use prompt tuning to train the 298

model as a task solver and data generator in their 299

proposed Lifelong Few-shot Language Learning 300

problem. Wang et al. (2021b) propose L2P for con- 301

tinual learning in the vision area. To the best of our 302

knowledge, we are the first work to adopt prompt 303

learning for class-incremental event detection. 304

6 Conclusion 305

In this paper, we propose a novel prompting frame- 306

work, namely Episodic Memory Prompts (EMP), 307

for class-incremental event detection. During each 308

training stage, EMP learns type-specific knowl- 309

edge via a continuous prompt for each event type. 310

The EMPs trained in previous tasks are kept in the 311

model, such that the acquired task-specific knowl- 312

edge can be transferred into the following new 313

tasks. Experimental results validate the effective- 314

ness of our method comparing with competitive 315

baselines. In addition, our extensive analysis shows 316

that by employing EMPs, both event detection it- 317

self and the incremental learning capability of our 318

approach are significantly improved. 319
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A Experimental Details553

Baselines We consider the following baselines554

for comparison: (1) BERT-ED: simply trains the555

BERT based event detection model on new tasks556

without prompts, experience replay or knowledge557

distillation. It’s the same as the span-based event558

detection baseline in Section 3.1. (2) KCN (Cao559

et al., 2020): use a prototype-based example sam-560

pling strategy and hierarchical distillation. As the561

original approach studied a different setting, we562

adapt their prediction-level and feature-level distil-563

lation as the baseline. (3) KT (Yu et al., 2021):564

transfer knowledge between old types and new565

types in two directions. (4) iCaRL* (Rebuffi et al.,566

2017): use nearest-mean-of-exemplars rules to per-567

form classification combined with knowledge dis-568

tillation. iCaRL adopts different strategies for clas-569

sification, experience replay, and distillation. We570

directly report the result in (Yu et al., 2021) for ref-571

erence. (5) EEIL (Castro et al., 2018): use an addi-572

tional finetuning stage on the balanced dataset. (6)573

BIC (Wu et al., 2019): use a bias correction layer574

after the classification layer. (7) Upperbound:575

trains the same model on all types in the datasets576

jointly. For iCaRL, EEIL, and BIC, we use the577

same implementation in (Yu et al., 2021). For fair578

comparison, our approach and all baselines (except579

for the Upperbound baseline) are built upon KCN580

and use the same experience replay and knowledge581

distillation strategies described in Section 3.2.582

Implementation Details During training, we use583

AdamW (Loshchilov and Hutter, 2019) optimizer584

with the learning rate set to 1e−4 and weight decay585

set to 1e − 2. Different from previous work (Yu586

et al., 2021), we set the batch size to 1 as we en-587

code each sentence once and consider all target588

spans in the sentence at the same time. We adopt589

gradient accumulation with the step set to 8. As590

the number of batches is large, we apply a periodic591

replay strategy with the interval set to 10 to reduce592

computational cost. For each lifelong task Dt, we593

set the maximum number of training epochs to 20.594

We adopt the early stopping strategy with patience595

Figure 2: Performance with different buffer size in each
task on MAVEN (best viewed in color).

5, i.e., the training stops if the performance on the 596

development set does not increase for 5 epochs. We 597

set the weighting factor λ = k/(s + k), where s 598

is the number of predicted spans and k is set to 50. 599

The temperature parameter used in prediction-level 600

distillation is set to 2. 601

The parameters of each prompt in EMPs are ini- 602

tialized with the corresponding event type name. 603

Specifically, there are three cases in the initializa- 604

tion: (1) If the type name is single-token and it is 605

contained in BERT’s vocabulary, we directly use 606

the pre-trained embedding of this token to initialize 607

the prompt; (2) If the type name is multiple-token 608

and the tokens are contained in BERT’s vocabu- 609

lary, we take the average of the pre-trained em- 610

beddings of these tokens to initialize the prompt; 611

(3) If the type name contains Out-of-Vocabulary 612

(OOV) tokens, we replace the OOV tokens with the 613

synonyms that are contained in BERT’s vocabulary. 614

B Effect of Exemplar Buffer Size 615

We conduct an analysis on the effect of exemplar 616

buffer size. We explore the buffer size for each 617

type in {0, 10, 20}. Note that although we reduced 618

the buffer size, we did not modify the replay fre- 619

quency, as we want to investigate the effect of data 620

diversity in memory buffer. We use KT as the 621

baseline when buffer size is 20 and 10. Note that 622

when buffer size is 0, we do not adopt either ex- 623

perience replay or knowledge distillation and thus 624

use BERT-ED as the baseline. We plot the results 625

on Figure 2. We observed that: (1) Decreasing the 626

buffer size for each type from 20 to 10 degrades the 627

performance of both models. This indicates that 628

reducing data diversity may result in the overfitting 629

on example data, and thus deteriorates the perfor- 630

mance; (2) The performance of our method is not 631

affected as much as the baseline, demonstrating our 632

prompting framework is more tolerant to smaller 633

7

https://doi.org/10.18653/v1/2021.emnlp-main.428
https://doi.org/10.18653/v1/2021.emnlp-main.428
https://doi.org/10.18653/v1/2021.emnlp-main.428


buffer size and remains very competitive perfor-634

mance when less data are available; (3) When the635

buffer size decreases to 0, the performance of both636

methods drops significantly. This shows that both637

approaches highly rely on the stored data to over-638

come the catastrophic forgetting problem. This639

calls for developing more advance techniques to re-640

duce the dependence on stored examples, as storing641

past data could result in data leakage in real-world642

applications.643
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