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ABSTRACT

Out-of-Distribution (OOD) detection is essential for safety-critical applications
of deep neural networks. OOD detection is challenging since DNN models may
produce very high logits value even for OOD samples. Hence, it is of great dif-
ficulty to discriminate OOD data by directly adopting Softmax on output logits
as the confidence score. Differently, we detect the OOD sample with Hopfield
energy in a store-then-compare paradigm. In more detail, penultimate layer out-
puts on the training set are considered as the representations of in-distribution
(ID) data. Thus they can be transformed into stored patterns that serve as an-
chors to measure the discrepancy of unseen data for OOD detection. Starting
from the energy function defined in Modern Hopfield Network for the discrep-
ancy score calculation, we derive a simplified version SHE with theoretical anal-
ysis. In SHE, we utilize only one stored pattern to present each class, and these
patterns can be obtained by simply averaging the penultimate layer outputs of
training samples within this class. SHE has the advantages of hyperparameter-
free and high computational efficiency. The evaluations of nine widely-used
OOD datasets show the promising performance of such a simple yet effective
approach and its superiority over State-of-the-Art models. Code is available at
https://github.com/zjs975584714/SHE ood detection.

1 INTRODUCTION

Deep Neural Network (DNN) has yielded remarkable achievements in a broad range of fields in
recent years (He et al., 2016; Huang et al., 2017), and is extensively deployed in numerous real-world
scenarios (Krizhevsky et al., 2017; Redmon & Farhadi, 2017). One of its powerful capabilities lies in
the promising generalization ability from training data to unseen in-distribution (ID) data. However,
the finite training data cannot guarantee the completeness of data distribution, so it is inevitable to
encounter out-of-distribution (OOD) data. The Softmax-based prediction allows OOD samples to
gain high confidence in specific classes, which is unacceptable in practice, especially for safety-
related areas. It can lead to erroneous collisions in autonomous driving or irreparably large financial
losses. Therefore, OOD detection is critical with respect to AI safety (Amodei et al., 2016).

Existing efforts on OOD detection for DNN can be roughly divided into two categories. The first
group of approaches requires designing and retraining new auxiliary networks specifically for OOD
detection rather than directly using already trained models (Denouden et al., 2018; DeVries & Tay-
lor, 2018; Yu & Aizawa, 2019; Zhang et al., 2020). The objective should be modified accordingly
and OOD samples are sometimes introduced to train the new networks. However, it is almost im-
possible to exhaust all kinds of OOD samples, and retraining can also be cumbersome. The methods
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of the second category elaborate on the confidence design for the network outputs, e.g., the logits,
the Softmax probability (Liang et al., 2017; Liu et al., 2020; Sun et al., 2021) or embedding features
(Lee et al., 2018; Sehwag et al., 2021; Sun et al., 2022). By these means, there is no need to modify
the backbone model and the objective, which motivates us to explore OOD detection in this manner.

In deep learning, the intermediate layer output can be regarded as the representation of input data in
the latent space. Further, as shown in Figure. 1 (left), guided by the training process, such repre-
sentations of ID samples of the same category tend to present some common patterns for prediction
accuracy. In contrast, these representations of OOD samples should deviate from such commonality
since they are not considered during the training process. Based on this intuition, OOD detection
can be formulated as a store-then-compare process: representations of ID samples within each
category are maintained during the training procedure as stored patterns, and a test pattern will be
compared with the store patterns. If there is a noticeable discrepancy, then it can be judged as an
OOD sample.

The critical question is how to measure the discrepancy between the OOD sample and the stored
patterns under this setting? To accomplish this goal, we adopt the key idea of a classic memory
network, Hopfield Network. The Hopfield Network (binary state) was first introduced in (Hopfield,
1982) and (Hopfield, 1984) proposed continuous state version. Modern Hopfield Network (both
continuous and binary) was introduced in (Krotov & Hopfield, 2016), and (Ramsauer et al., 2020)
proposed a new energy function for continuous state Hopfield networks and point out the relationship
with the transformer.

Hopfield Network targets recovering distorted test patterns so that the recovered patterns are as
close to the stored patterns as possible. It achieves this goal by specific update rules that minimize
the predefined energy function. The more the recovered pattern resembles the stored pattern, the
lower the energy is. Therefore, the energy function serves a vital role as it indicates the gap between
the recovered patterns and the stored patterns. For OOD detection tasks, the energy function of the
Hopfield Network is well-suited as a desirable measure of the discrepancy between the OOD sample
and the stored patterns.

In this paper, we propose a new OOD detection method HE with memorization of ID data patterns
and the Modern Hopfield Energy function (Ramsauer et al., 2020). In more detail, the representa-
tions of training ID samples are stored as patterns for each category in advance, and OOD samples
are detected under the energy function. As the intermediate results are more informative than the
highly-compressed final output logits, we preserve the outputs of the penultimate layer (i.e., the input
of the final output layer) as representations. Furthermore, to address the challenges of the memory
cost of pattern memorization, we derive a Simplified Hopfield Energy function-based method SHE.
In SHE, only one pattern is required for each category and there is no hyperparameter to be tuned.
Theoretical analysis proves the effectiveness of our design. The remarkable performances on nine
widely-used OOD detection datasets on three different networks demonstrate the superiority of our
proposed SHE (and HE) over state-of-the-art methods. We summarize the main contributions of our
paper as follows:

• We propose a Modern Hopfield Energy-based method HE for out-of-distribution detection.
It uses store-then-compare paradigm that compares test samples with pre-stored patterns to
measure the discrepancy from in-distribution data according to Hopfield energy.

• We derive a simplified version of HE, named as SHE, which greatly reduces the memory
and the computation cost. In addition, SHE is hyperparameter-free. Theoretical analysis is
conducted to illustrate the effectiveness of SHE.

• Extensive experiments on nine OOD detection datasets of three prominent computer vi-
sion backbone networks indicate both the effectiveness and the efficiency of our designed
methods. Experiments on large-scale datasets (e.g., ImageNet-1k) also show the superior
of our approach. In-depth analysis and ablation studies are also included to shed light on
the mechanism behind it.

2 RELATED WORK

Network Redesign and Retrain. Given original network architectures are designed for target tasks
like classification, a straightforward paradigm of OOD detection is to elaborate on the network ar-
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Figure 1: Visualization of the distribution of ID/OOD patterns (left) and ID/Stored patterns (right)
by t-SNE (Van der Maaten & Hinton, 2008), the ID/OOD refers to CIFAR10 (Krizhevsky et al.,
2009) and LSUN (Yu et al., 2015), respectively. The backbone network is ResNet18 (He et al.,
2016). In the left figure, the OOD patterns are away from the ID patterns. In the right figure, each
pentagram denotes the stored pattern in SHE corresponding to each category, from the figure we can
see the stored pattern can represent the corresponding ID patterns well.

chitecture and the objective, and retrain a new network for OOD detection. (Denouden et al., 2018)
used ID data to train an AutoEncoder, and OOD samples were supposed to have high reconstruction
errors. (DeVries & Taylor, 2018) expanded the original network with an extra branch to predict a
confidence score and obtained the final output with this confidence score. (Zhang et al., 2020) pro-
posed a flow-based model that retrieved the feature map of test samples and fed it into an additional
network. Such an additional network was designed only for forecasting whether the test sample is
ID or not. (Yu & Aizawa, 2019) firstly trained an encoder in a supervised way, and then two clas-
sifiers for ID samples and OOD samples were trained with an unsupervised objective, respectively.
All these methods aim to redesign or introduce new layers or auxiliary networks with corresponding
objectives for OOD detection. Retraining a network can be extremely time-consuming, especially
when the parameter scale is substantially large. The modified objective that considers OOD detec-
tion in addition to the original task may also have side effects of degrading model performance on
the original task. In addition, some methods require OOD samples as input, which imposes addi-
tional requirements on the datasets. A potential risk is that the model will achieve poor results on
data beyond the distribution of the trained OOD samples. Unlike those approaches, our method does
not need to make any changes (including both architecture and objective) to the original network and
does not need to do any additional training, which is a plausible property for real applications.
Network Output Transformation. Apart from adjusting network structure or retraining the net-
work with revised objectives, transforming network outputs to obtain the desired measure is the
other classic OOD detection paradigm. The first study on network output transformation was pro-
posed by (Hendrycks & Gimpel, 2016), which used the Maximum Softmax Probability (MSP) to
measure the confidence of test samples. Intuitively, ID data is more likely to obtain high confi-
dence from Softmax measure than OOD samples. In (Liang et al., 2017), input data were perturbed
with ID-sample-friendly perturbations and the Softmax probability was re-scaled by a temperature
parameter T ; thus OOD data and ID data are more separable. (Lee et al., 2018) first generated
class-conditional Gaussian distribution from middle layer outputs of the already trained network
on training data and then calculated the confidence of test samples under the Mahalanobis distance
measure. (Serrà et al., 2019) made assumptions about the complexity of output and input images,
and they advocated estimating the complexity of the input image to impact the output for efficient
OOD detection. (Liu et al., 2020) detected the OOD samples by an energy-based score function
on the final output logits. Note that such energy function is different from ours as it calculates
such score merely based on the output logits of the testing sample instead of comparing with stored
patterns. Based on the observation that the mean activation of the OOD sample had larger varia-
tions, (Sun et al., 2021) set a threshold to clip the output of the penultimate layer, thereby reducing
the output magnitude of OOD samples in the last layer. These approaches can be directly applied to
OOD detection tasks without additional training, which is more practical for real-world applications.
(Sehwag et al., 2021) utilize the advantage of self-supervised training. (Sun et al., 2022) calculate
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all the Euclidean distance with each pattern of train sample and use the k-th sorted distance as the
metric for OOD detection.

3 METHODOLOGY

In this section, we first introduce the preliminaries of the OOD detection task and the Hopfield Net-
work. Then we elaborate on how to leverage the critical concepts of the Hopfield Network on OOD
detection. More precisely, the energy function defined in the Modern Hopfield Network (Ram-
sauer et al., 2020) is introduced as the basis of our store-then-compare OOD detection paradigm.
A simplified energy function is further proposed to reduce the memory demand, which is of high
computational efficiency and free of hyperparameters. Finally, we compare the difference in pattern
choice, i.e., patterns derived from the penultimate layer outputs versus final logits. We also conduct
in-depth theoretical analyses of our method.

3.1 OUT-OF-DISTRIBUTION DETECTION

A neural network f aims to learn a mapping function from a training sample x to its corresponding
label y as y = f(x;θ) with parameter θ. Then a testing sample x′ is fed into the trained network
f for the prediction y′. When x′ and training sample x are from the same data distribution, then
x′ is called an ID sample; otherwise, it is regarded as an OOD sample. Prediction results for OOD
samples in turn fail to be meaningful. More severely, blindly classifying OOD samples into any
existing class may raise fatal risks in safety-critical scenarios. Thus, the OOD detection task is to
design a measure function D(f ;x′) that allows OOD samples to be as clearly distinguishable from
ID samples as possible. Eventually, OOD detection can be formulated as follows:

x′ ∼
{

OOD if D(f ;x′) = 0

ID if D(f ;x′) = 1.
(1)

3.2 HOPFIELD NETWORK

Hopfield Network (Hopfield, 1984; Krotov & Hopfield, 2016; Ramsauer et al., 2020) can store
and retrieve continuous patterns. By minimizing the predefined energy function, it can gradually
update the input test pattern ξ ∈ Rd×1 to a certain converged pattern that is similar to one of the
stored patterns. We denote all stored patterns as a stored pattern set S ∈ Rd×N with each column
sj ∈ Rd×1 representing one specific stored pattern, and N is the total number of the stored pattern.
Here d is the dimension of patterns. Thus, the energy function aims to guide the updating procedure
in the Modern Hopfield Network can be written as:

Energy = −LSE
(
β, ξTS

)
+

1

2
ξT ξ + c (2)

LSE(β, e) = β−1 log

 N∑
j=1

exp (βej)

 , (3)

where LSE denotes the log-sum-exp function and is defined in Eq. 3. β and c are two constant.
The vector e denotes ξTS, where ej represents the inner product of the input test pattern ξ and the
j-th stored pattern sj . The second term ξT ξ on the right of Eq. 2 serves as a regularization on
the magnitude of ξ. Revisiting the energy function, we can find that it is essentially a measure that
depicts the similarity between training patterns and testing patterns.

3.3 HE: OOD DETECTION WITH MODERN HOPFIELD ENERGY

As described above, it is obvious that the energy function of Modern Hopfield Network can be an
appropriate candidate for measuring the discrepancy between OOD instances and ID instances. We
denote all stored patterns for class i as a stored pattern set Si ∈ Rd×Ni with each column sij ∈ Rd×1

representing one specific stored pattern, and Ni is the total number of the stored patterns within
class i. More precisely, we preserve the penultimate layer outputs of ID training samples as stored
patterns: for each class i, a corresponding stored pattern set Si is derived from the penultimate layer
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outputs of ID training samples that are correctly classified by the network within this class. When
testing a new sample, we can obtain its penultimate layer output ξ as well as its prediction result,
e.g., class i, from the trained model. Then, we just need to conduct the calculation between ξ and
the corresponding stored pattern set Si to obtain the similarity score.

Notice that, there is the magnitude regularization item ξT ξ in the energy function Eq. 2. Since
it is introduced to prevent the input pattern from scaling-up during the pattern updating process of
Modern Hopfield Network, it is not necessary when measuring the discrepancy between the input
pattern and the stored patterns. Thus we omit such a term as the magnitude of the input pattern ξ
can also provide some information for the ID and OOD discrimination. Also, we omit the constant
c in Eq. 2 because the constant in the measure function does not change the OOD detection result.
In summary, the Hopfield energy-based OOD detection measure can be denoted as (i denotes the
classfication result of ξ by the already trained model):

HE(ξ) = LSE
(
β, ξTSi

)
. (4)

Note that, Eq. 4 measures the similarity instead of discrepancy, which means the higher score
indicates ID data while lower score as OOD data. It is worth mentioning that, different from most
traditional OOD detection methods that only consider the information from the input test sample
itself with the trained network, we leverage the information from all training samples of the predicted
class to make the comparison for better OOD detection.

3.4 SHE: OOD DETECTION WITH SIMPLIFIED HOPFIELD ENERGY

Although HE has the theoretical foundation from the Modern Hopfield network and is proven to be
effective through empirical evaluation, the need to store patterns of all correctly classified training
samples may prevent it from generalization to real-world applications. Particularly when the scale
of the dataset is extremely large or the latent representation is ultra-high dimensional, it will impose
a considerable burden on the storage and the computation. During the evaluation, we discover that
the hyperparameter β in Eq. 4 should be small enough in case that there is any element eij (denotes
the inner product between the testing pattern and the j-th stored pattern of class i) with extra large
value, which will degrade the robustness of OOD detection with large β. When β is relatively small,
we can transform Eq. 4 with Taylor series (here we use two Taylor series as exp(x) ≈ 1 + x and
log(1 + x) ≈ x) by:

LSE(β, ei) =
1

β
log

 Ni∑
j=1

exp (βeij)

 ≈ 1

β
log

 Ni∑
j=1

(1 + βeij)


=
1

β
log

Ni +

Ni∑
j=1

βeij

 =
1

β
logNi

(
1 + β

∑Ni

j=1 eij

Ni

)

=
1

β
logNi +

1

β
log

(
1 + βξT

∑Ni

j=1 sij

Ni

)
.

(5)

All test samples that are predicted to be class i share the same stored patterns size Ni, so the first
term β−1 logNi remains the same for them and can be regarded as a constant. Thus, we ignore the
first term, and the measure function Eq. 4 can be simplified from the LSE function (Eq. 3) to the
inner product of ξ and S̄i because LSE(β, ei) is positively related to ξT S̄i:

SHE(ξ) = ξT S̄i. (6)

Here S̄i is defined as:

S̄i =
1

Ni

Ni∑
j=1

sij . (7)

We can interpret SHE from another perspective: S̄i can be viewed as the average of vectors from the
stored pattern set Si. In other words, a stored pattern set Si is degraded to a representation vector S̄i.
Considering the redundancy of patterns that frequently appears in deep learning and samples from
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the same class usually have similar patterns, it is reasonable to prune the stored pattern set into a
single average vector, which is also shown in Figure. 1 (right). It enables us to eliminate the memory
overhead of storing a large amount of ID data patterns, and further reduces the computational cost
as well. Besides, the only hyperparameter β also disappears, indicating that we do not need to tune
any hyperparameter. In summary, SHE is highly efficient regarding both storage and computation
and does not have any hyper parameter to tune. Such properties can indeed facilitate the deployment
of SHE in practice.

3.5 PENULTIMATE LAYER VERSUS LOGITS LAYER FOR PATTERN STORAGE

In this section, we analyze the benefits of choosing outputs from the penultimate layer, compared
with the logits layer, as the pattern.

Intuitive Explanation. Given that most OOD detection methods usually use the output logits, one
interesting question is how to choose the layer output as the patterns, the penultimate layer output,
or the output logits. Note that, when we calculate the energy function by Eq. 6, the stored pattern
S̄i comes from the same category i as the testing pattern ξ is classified. Therefore, when we use
the output logits as patterns, no matter ξ comes from an ID or OOD sample, its maximum value
position of logits is always the same as the maximum value position of logits of S̄i by design, which
is the category index of ξ. We call such alignment of maximum value position of logits as “Peak
Alignment” which leads to a high energy function score for the OOD pattern more easily. It in turn
raises the difficulty of discriminating ID and OOD samples. However, when we use the penultimate
layer output as patterns, there is no such “Peak Alignment” effect between ξ and S̄i since the value
of the penultimate layer output is not so concentrated distributed, promoting the similarity score
calculated from energy function more separable for ID and OOD patterns as shown in Figure. 2.
Moreover, we provide the theoretical analysis in the Appendix B.

Figure 2: Distribution of the Hopfield Energy Score calculated from 2,000 ID and 2,000 OOD
samples, the pattern is derived from penultimate layer (left) and output logits (right), respectively.
When using penultimate layer, the score can be distinguished more for ID and OOD samples. The
ID and OOD is CIFAR10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011) respectively, and
the backbone network is ResNet18.

4 EXPERIMENTS

In this section, we conduct experiments on nine OOD detection datasets with three backbone net-
works and two ID datasets to evaluate the performance of our methods.

4.1 DATASET

There are two types of datasets in the experiments: The in-distribution (ID) dataset and the Out-
of-distribution (OOD) dataset. The former is only utilized during the training procedure, while the
latter serves to test models and does not contain any ID dataset sample.
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ID Dataset. CIFAR10, CIFAR100 and ImageNet-1k are three ID datasets in our experiments. CI-
FAR10 (Krizhevsky et al., 2009) is composed of 60,000 images with 10 categories, each containing
5,000 training images and 1,000 testing images. CIFAR100 Krizhevsky et al. (2009) consists of
60,000 images with 100 categories with 500 training images and 100 testing images for each class.
ImageNet-1k (Deng et al., 2009) is composed of 1,350,000 images 1000 different object categories,
each containing 1,300 training images and 50 testing images.

OOD Dataset. There are nine OOD dataset for evaluation, including SVHN (Netzer et al., 2011),
LSUN-C (Yu et al., 2015) (crop) and LSUN-R (Yu et al., 2015) (resize), iSUN (Xu et al., 2015),
Places (Zhou et al., 2017), DTD (Cimpoi et al., 2014), SUN (Xiao et al., 2010), iNaturalist (Van Horn
et al., 2018), Tiny-Imagenet (resize) (Deng et al., 2009). Details can be found in the original papers.

4.2 EXPERIMENT SETTINGS

Backbone Network. We choose ResNet18 (He et al., 2016), ResNet34 (He et al., 2016) and
WRN40-2 (Zagoruyko & Komodakis, 2016) as our backbone networks, which are trained on the
ID dataset CIFAR10 and CIFAR100, respectively. For ImageNet, we choose ResNet50 (He et al.,
2016) as our backbone network.

Baseline Methods. To evaluate the performance of our proposed design, We also conduct exper-
iments on the Softmax-based approach “MSP” (Hendrycks & Gimpel, 2016) and other excellent
methods, “Energy” (Liu et al., 2020) , “ODIN” (Liang et al., 2017), “Mahalanobis” (Lee et al.,
2018) and “ReAct” (Sun et al., 2021), the “ReAct” here is combined with Energy as described in
(Sun et al., 2021) and is the state-of-the-art method before.

Evaluation Metrics. The evaluation metrics are: (1) the False Positive Rate (FPR95) of OOD
samples when the True Positive Rate of in-distribution samples is at 95%; (2) the area under the
receiver operating characteristic curve (AUROC). Models with smaller FPR95 and higher AUROC
results are regarded as effective. All experimental values are expressed as percentages (%) and the
bolded numbers (sometimes colored with gray cell background) denote the best result.

4.3 EXPERIMENTAL RESULT

Figure 3: Confidence distribution of ID data and OOD data calculated from ResNet18. ID/OOD
refers to CIFAR10 and SUN (Xiao et al., 2010), performance is compared with MSP (Hendrycks &
Gimpel, 2016) and Energy (Liu et al., 2020).

4.3.1 OVERALL RESULTS OF SHE.

In this section, we demonstrate the effectiveness of our method “SHE” through extensive experi-
ments. The experimental results on nine OOD datasets are organized in Table 1 taking CIFAR10
as ID training data. As shown in Table 1, MSP has the worse results, while Energy has a lot of
improvement, illustrating the potential of energy-based solutions for OOD detection. Our approach
SHE obtains almost all (26/27) of the best performance on nine OOD datasets for three different
backbones. More precisely, our approach reduces the average FPR95 by 16.81% for ResNet18,
6.29% for ResNet34, and 12.18% for WRN40-2 compared with the best baseline. Our approach
performs well when CIFAR100 or ImageNet-1k is choosed as the ID training data while with some
limitation, the detailed table 5 (CIFAR100) and table 7 (ImageNet-1k) is put in the Appendix A.
We also illustrate Figure 3 to demonstrate model performance directly. Under the peak of ID score
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Table 1: OOD detection performance of SHE using CIFAR10 as ID dataset.
Methods

MSP Energy ReAct SHE (Ours)Backbone
Network

OOD
Datasets FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)

SVHN 74.99 85.83 51.81 91.05 54.35 90.52 5.87 98.74
LSUN-C 44.59 94.36 14.91 97.21 14.73 97.20 7.94 98.45
LSUN-R 38.93 94.75 14.98 97.45 14.51 97.49 6.67 98.42

iSUN 35.82 95.24 11.99 97.76 11.78 97.80 4.16 98.85
Places 39.16 94.39 21.06 96.57 17.36 97.14 6.31 98.70
DTD 54.93 89.67 54.58 86.95 48.99 91.42 32.02 89.11

Tiny Imagenet 44.49 93.76 27.76 95.83 28.06 95.81 11.81 97.86
SUN 38.34 94.65 20.80 96.80 15.08 97.44 3.58 99.24

iNaturalist 68.40 88.80 65.16 89.59 52.10 92.80 27.32 95.02

ResNet18

Average 48.85 92.38 31.45 94.36 28.55 95.29 11.74 97.15

SVHN 38.67 95.27 14.87 97.48 15.36 97.38 3.16 99.34
LSUN-C 27.27 96.43 6.05 98.62 6.77 98.53 2.37 99.44
LSUN-R 34.53 95.38 9.25 98.15 8.08 98.29 5.73 98.71

iSUN 33.15 95.56 8.69 98.21 8.06 98.32 4.13 99.04
Places 32.99 95.34 12.37 97.63 11.81 97.64 2.86 99.32
DTD 37.38 94.27 26.10 94.63 21.07 95.98 12.76 96.57

Tiny Imagenet 44.26 93.31 24.17 95.80 21.91 95.98 16.66 97.03
SUN 29.86 95.77 10.03 98.02 9.85 97.99 1.47 99.63

iNaturalist 22.64 96.73 11.07 97.55 7.85 98.17 5.05 99.08

ResNet34

Average 33.42 95.34 13.62 97.34 12.31 97.59 6.02 98.68

SVHN 54.05 92.34 30.80 95.09 36.93 93.96 12.58 97.70
LSUN-C 49.58 92.85 23.91 96.03 25.89 95.46 32.33 93.94
LSUN-R 42.86 94.04 15.91 97.34 14.91 97.42 9.19 98.10

iSUN 44.43 94.01 16.76 97.23 16.77 97.26 8.32 98.30
Places 42.88 94.01 16.98 97.06 20.30 96.44 5.27 98.84
DTD 40.00 94.25 27.97 95.00 25.12 95.86 13.26 96.10

Tiny Imagenet 55.44 91.37 38.77 93.87 38.22 94.34 24.20 95.56
SUN 41.04 94.49 15.31 97.41 18.80 96.76 3.51 99.18

iNaturalist 41.65 94.64 36.85 95.30 33.19 95.52 5.05 98.84

WRN40-2

Average 45.77 93.56 24.81 96.04 25.57 95.89 12.63 97.40

Table 2: OOD detection performance comparison of HE and SHE. All values are averaged over the
nine OOD datasets described in Section 4.1. The detailed Table 9 is displayed in the Appendix A.

CIFAR10 CIFAR100
HE SHE HE SHEBackbone

Network FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)
ResNet18 11.77 97.13 11.74 97.15 48.73 87.16 48.86 87.14
ResNet34 6.03 98.69 6.02 98.68 63.23 81.42 63.28 81.48
WRN40-2 12.69 97.35 12.63 97.40 37.22 91.66 36.16 92.17

distribution (colored red), the less data in blue indicates the better capability in distinguish OOD
data and ID data. It can be seen that SHE can obtain the minimum blue areas under the red peak
among three methods.

4.3.2 SHE VERSUS HE

Notice that SHE is derived from HE that is inspired by Modern Hopfield Network, we make a com-
parison between them. We can discover from Table 2 that SHE and HE are competitive, indicating
that the patterns of samples from the same class are similar and contain redundancy for OOD detec-
tion. As mentioned in chapter 3, HE detects OOD samples via the energy function as shown in Eq.
4. We evaluate the feasibility of HE and show the results in Table 2, which demonstrates that the
energy function (Eq. 4) is able for OOD detection. For SHE, memory cost is reduced to the number
of classes instead of the number of samples and the energy-based measure can be simplified into
frequently used inner products without any hyperparameter, which is elegant and efficient. We also
provide detailed comparison results on nine OOD detection in Table 9, proving that in most cases
SHE can achieve similar performance to HE.

4.3.3 PERTURBATIONS ON SHE

Adding perturbations to input samples for OOD detection is proposed by (Liang et al., 2017), which
can be formulated as follows:

x̃′ = x′ + ε sign (∇x′ logS(x′)) , (8)

where x′ denotes the testing sample to be detected while x̃′ is the perturbed one. S(x′) is the
maximum Softmax probability of network outputs, and ε is the perturbation magnitude. Such

8
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perturbation-based methods have been proved to be more beneficial for ID data than OOD data,
and are adopted in extensive studies (Lee et al., 2018; Hsu et al., 2020; DeVries & Taylor, 2018).
To verify whether perturbation applies to SHE, we also carry out the experiments and organize the
results in Table 3. It demonstrates that introducing perturbations can be beneficial to SHE as the
performance of SHE could be further improved with perturbations.

Note that, the perturbation requires an additional “forward-backward” procedure to retrieve the gra-
dient, leading to an increase in computational complexity and time. As a comparison, we record
the time overhead before and after adding perturbation to SHE: when we choose ResNet34 as the
backbone with CIFAR100 as ID data and TinyImagenet as OOD data, the consuming time raises
from 35.61s to 105.88s that is around 3 times. Therefore, a balance between efficiency and compu-
tational overhead needs to be considered when adopting perturbation. Nevertheless, SHE is always
efficient and effective, which can be combined with perturbations to achieve even higher accuracy.

Table 3: OOD detection performance comparison of SHE and SHEP (i.e., SHE + Perturbation). All
values are averaged over the nine OOD datasets described in Section 4.1. The detailed Table 10 is
displayed in the Appendix.

Backbone
Network

CIFAR10 CIFAR100
SHE SHEP SHE SHEP

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)
ResNet18 11.74 97.15 6.52 98.46 48.86 87.14 43.62 88.40
ResNet34 6.02 98.68 4.26 99.09 63.28 81.48 57.54 84.50
WRN40-2 12.63 97.40 13.69 96.97 36.16 92.17 41.42 90.26

Table 4: OOD detection performance comparison deriving pattern from penultimate and logits layer.
All values are averaged over the nine OOD datasets described in Section 4.1. The detailed Table 11
is displayed in the Appendix.

Backbone
Network

CIFAR10 CIFAR100
Logits Penultimate Logits Penultimate

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)
ResNet18 31.70 94.32 11.74 97.15 76.94 77.77 48.86 87.14
ResNet34 13.92 97.33 6.02 98.68 80.75 77.88 63.28 81.48
WRN40-2 24.28 96.02 12.63 97.40 55.99 88.12 36.16 92.17

4.3.4 PENULTIMATE LAYER VS. LOGITS LAYER

Note that all the stored patterns or test patterns in our approach are obtained from the penultimate
layer output of neural networks. But in most methods, logits layer (i.e., the last layer) output is
adopted for the confidence computation (Hendrycks & Gimpel, 2016; Liang et al., 2017; Liu et al.,
2020; Sun et al., 2021). To verify the significance of layer selection, we also provide an experi-
mental evaluation on SHE that chooses patterns from the penultimate layer outputs or final logits,
respectively, for comparison. The average results on nine datasets are presented in Table 4. We can
conclude that our approach gets much better performance when using the penultimate layer output,
instead of final logits, as patterns to apply SHE.

5 CONCLUSION

In this paper, we propose a novel approach named HE for OOD detection based on a new “store-
then-compare” paradigm. The key idea is to store patterns of ID data and then leverage the energy
function defined in the Modern Hopfield Network (Ramsauer et al., 2020) for measuring the simi-
larity between the new test patterns and the stored ID patterns. To reduce storage and computational
overhead, we simplify the energy function with the theoretical analysis by appropriate approxi-
mations and obtain the simplified approach named SHE. In addition to the great efficiency and
effectiveness, SHE does not have any hyperparameters to tune, which is more convenient than most
OOD detection methods with cumbersome hyperparameters tuning. Also, different from most OOD
detection methods focusing on final output logits, we find that the penultimate layer output, rather
than the final output logits, is more suitable to be used as patterns in our approach for OOD detec-
tion. The conducted evaluations demonstrate the superiority of our proposed simple yet effective
approach on nine widely-used OOD datasets.
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A EXPERIMENTAL RESULTS.

Table 5: OOD detection performance of SHE using CIFAR100 as ID dataset.
Methods

MSP Energy ReAct SHE (Ours)Backbone
Network

OOD
Datasets

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)

SVHN 61.61 87.54 46.01 92.74 53.07 89.90 12.56 97.64
LSUN-C 63.09 84.66 43.98 91.68 19.95 96.67 27.93 95.15
LSUN-R 89.15 62.05 77.84 78.65 60.06 88.66 67.36 86.59

iSUN 88.25 66.06 76.66 80.16 58.08 89.78 53.33 90.10
Places 87.14 74.96 85.84 74.81 75.66 84.94 51.14 88.03
DTD 91.47 68.50 93.16 60.86 86.07 78.30 65.30 68.16

Tiny Imagenet 84.02 69.32 72.28 81.33 58.44 89.66 58.25 89.13
SUN 89.42 72.85 88.63 73.08 79.69 83.56 44.48 90.62

iNaturalist 92.95 67.60 94.31 68.45 85.15 81.73 59.42 78.85

ResNet18

Average 83.01 72.62 75.41 77.97 64.02 87.02 48.86 87.14

SVHN 58.43 88.65 42.75 93.08 26.46 94.43 14.38 97.32
LSUN-C 78.25 81.79 69.77 87.41 35.10 94.98 33.04 94.29
LSUN-R 92.01 62.75 85.38 74.81 72.59 83.30 80.26 76.60

iSUN 90.54 65.62 84.92 75.92 71.05 84.45 72.51 80.20
Places 88.13 75.94 88.77 73.61 59.71 89.05 77.51 77.63
DTD 87.83 73.33 88.56 69.91 60.17 88.35 68.59 72.49

Tiny Imagenet 88.94 67.08 84.08 75.83 71.73 84.11 79.07 76.59
SUN 91.84 72.72 92.62 69.75 65.09 88.45 77.94 77.88

iNaturalist 88.41 79.13 90.03 79.67 54.06 91.37 66.22 80.29

ResNet34

Average 84.93 74.11 80.76 77.78 57.33 88.72 63.28 81.48

SVHN 69.45 84.07 52.60 92.37 52.05 91.86 19.15 96.54
LSUN-C 59.67 85.31 33.43 94.35 31.13 94.10 25.94 95.47
LSUN-R 87.28 64.19 72.26 82.67 71.56 84.00 75.04 82.34

iSUN 86.06 67.06 69.92 84.04 66.83 85.68 63.44 86.05
Places 68.05 82.24 47.22 90.26 45.28 90.33 24.26 95.13
DTD 65.29 80.26 47.35 87.92 36.56 89.82 25.17 93.27

Tiny Imagenet 80.42 70.35 63.44 85.91 56.69 88.64 62.71 86.66
SUN 71.00 80.81 49.33 90.13 47.33 90.26 20.76 95.95

iNaturalist 47.20 90.85 17.76 96.76 18.82 96.38 9.25 98.11
iNaturalist 70.49 78.35 50.37 89.38 47.36 90.12 36.19 92.17

The ReAct in this table refers to ‘Energy + ReAct’ as described in Sun et al. (2021), as an auxillary
method combined with other SOTA methods, we can also combine the ReAct with SHE (better than
Energy) , which will also outperform SHE itself, the results are shown in Table. 6.

Table 6: OOD detection performance comparison of “ReAct + SHE” and “ReAct + Energy”.
FPR95 (↓) OOD Datasets

Method SVHN LSUN-C Place365 DTD SUN iNaturalist Avg
ReAct+Energy 14.38 33.04 77.51 68.59 77.94 66.22 56.28
ReAct+SHE 23.94 36.79 62.38 52.53 56.50 57.28 48.24
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Figure 4: The distribution of output num for each class from nine OOD datasets. The backbone
network is ResNet34 and the ID dataset is CIFAR100.

Epoch 10 Epoch 40

Epoch 70 Epoch 100

Figure 5: Visualization of the training process by t-SNE (Van der Maaten & Hinton, 2008). From
the The backbone network is ResNet18, and ID data and OOD data are CIFAR10 (Krizhevsky et al.,
2009) and SUN (Xiao et al., 2010) respectively.
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Table 7: OOD detection performance of SHE using ImageNet-1k as ID dataset and ResNet50 as
backbone network.

OOD

Datasets

Methods

MSP Energy ODIN Mahalanobis KNN SHE (Ours)

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)

Places 54.99 87.74 55.72 89.95 47.66 89.66 97.00 52.65 59.00 86.47 45.35 90.15

DTD 70.83 80.86 59.26 85.89 60.15 84.59 98.50 42.41 68.82 80.72 45.09 87.93

SUN 73.99 79.76 64.92 82.86 67.89 81.78 98.40 41.79 76.28 75.76 54.19 84.69

iNaturalist 68.00 79.61 53.72 85.99 50.23 85.62 55.80 85.01 11.77 97.07 34.22 90.18

Average 66.95 81.99 58.41 86.17 56.48 85.41 87.43 55.47 53.97 85.01 44.71 88.24

Table 8: OOD detection performance of Energy+ReAct and SHE+ReAct using ImageNet as ID
dataset. From the results, ReAct+Energy is better which is limitation of our method and we will
explore it in the future.

FPR95(%) Place365 DTD SUN iNaturalist Avg
Energy+ReAct 20.38 24.20 33.85 47.30 31.43
SHE+ReAct 49.91 32.06 41.70 35.99 39.92

Table 9: OOD detection performance comparison of HE and SHE. All values are percentages. Bold
numbers with gray cell are superior results. The hyperparameter β used for HE is 0.01 for ResNet18,
ResNet34, 0.2 for WRN40-2.

CIFAR10 CIFAR100
HE SHE HE SHE

Backbone
Network

OOD
Datasets

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)

SVHN 6.31 98.70 5.87 98.74 12.97 97.63 12.56 97.64
LSUN-C 7.95 98.45 7.94 98.45 27.51 95.24 27.93 95.15
LSUN-R 6.93 98.42 6.67 98.42 66.81 86.78 67.36 86.59

iSUN 4.13 98.86 4.16 98.85 53.24 90.15 53.33 90.10
Places 6.44 98.66 6.31 98.70 50.95 88.17 51.14 88.03
DTD 32.18 88.95 32.02 89.11 65.41 67.87 65.30 68.16

Tiny Imagenet 11.62 97.86 11.81 97.86 57.60 89.31 58.25 89.13
SUN 3.51 99.23 3.58 99.24 44.46 90.65 44.48 90.62

iNaturalist 26.88 95.06 27.32 95.02 59.58 78.63 59.42 78.85

ResNet18

Average 11.77 97.13 11.74 97.15 48.73 87.16 48.86 87.14

SVHN 3.34 99.30 3.16 99.34 14.19 97.28 14.38 97.32
LSUN-C 2.17 99.46 2.37 99.44 33.37 94.21 33.04 94.29
LSUN-R 5.59 98.76 5.73 98.71 79.84 76.95 80.26 76.6

iSUN 4.14 99.05 4.13 99.04 72.52 80.28 72.51 80.2
Places 2.93 99.35 2.86 99.32 77.43 77.40 77.51 77.63
DTD 12.84 96.61 12.76 96.57 69.75 71.91 68.59 72.49

Tiny Imagenet 16.67 96.99 16.66 97.03 78.39 76.43 79.07 76.59
SUN 1.42 99.64 1.47 99.63 77.53 78.01 77.94 77.88

iNaturalist 5.17 99.07 5.05 99.08 66.08 80.31 66.22 80.29

ResNet34

Average 6.03 98.69 6.02 98.68 63.23 81.42 63.28 81.48

SVHN 12.84 97.65 12.58 97.7 23.49 95.29 19.15 96.54
LSUN-C 32.96 93.66 32.33 93.94 25.01 95.31 25.94 95.47
LSUN-R 8.83 98.18 9.19 98.1 73.38 82.67 75.04 82.34

iSUN 7.83 98.40 8.32 98.3 62.75 86.02 63.44 86.05
Places 5.12 98.87 5.27 98.84 25.46 94.85 24.26 95.13
DTD 14.44 95.67 13.26 96.1 29.94 91.28 25.17 93.27

Tiny Imagenet 23.83 95.66 24.2 95.56 61.85 86.32 62.71 86.66
SUN 3.58 99.18 3.51 99.18 23.36 95.19 20.76 95.95

iNaturalist 4.79 98.86 5.05 98.84 9.70 98.03 9.02 98.11

WRN40-2

Average 12.69 97.35 12.63 97.40 37.22 91.66 36.16 92.17
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Table 10: OOD detection performance comparison of SHE and SHEP (SHE + Perturbation). All
values are percentages. Bold numbers with gray cell are superior results.

CIFAR10 CIFAR100
SHE SHEP SHE SHEP

Backbone
Network

OOD
Datasets

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)

SVHN 5.87 98.74 11.11 97.92 12.56 97.64 34.61 93.62
LSUN-C 7.94 98.45 8.23 98.32 27.93 95.15 26.97 95.31
LSUN-R 6.67 98.42 3.32 99.15 67.36 86.59 66.96 83.84

iSUN 4.16 98.85 2.69 99.30 53.33 90.10 53.54 87.61
Places 6.31 98.70 1.89 99.49 51.14 88.03 36.83 90.71
DTD 32.02 89.11 17.04 95.14 65.30 68.16 52.17 76.23

Tiny Imagenet 11.81 97.86 5.70 98.76 58.25 89.13 55.36 88.07
SUN 3.58 99.24 0.91 99.72 44.48 90.62 30.17 92.93

iNaturalist 27.32 95.02 7.76 98.32 59.42 78.85 35.96 87.32

ResNet18

Average 11.74 97.15 6.52 98.46 48.86 87.14 43.62 88.40

SVHN 3.16 99.34 8.04 98.49 14.38 97.32 42.71 91.2
LSUN-C 2.37 99.44 3.40 99.31 33.04 94.29 33.57 93.62
LSUN-R 5.73 98.71 2.79 99.31 80.26 76.6 78.51 77.35

iSUN 4.13 99.04 2.03 99.42 72.51 80.2 70.73 80.6
Places 2.86 99.32 1.52 99.62 77.51 77.63 62.41 83.34
DTD 12.76 96.57 7.05 98.21 68.59 72.49 54.34 81.4

Tiny Imagenet 16.66 97.03 9.76 98.17 79.07 76.59 74.25 79.64
SUN 1.47 99.63 0.87 99.77 77.94 77.88 60.77 84.37

iNaturalist 5.05 99.08 2.91 99.49 66.22 80.29 40.56 89.02

ResNet34

Average 6.02 98.68 4.26 99.09 63.28 81.48 57.54 84.50

SVHN 12.58 97.7 20.37 95.99 19.15 96.54 37.69 92.09
LSUN-C 32.33 93.94 43.62 89.08 25.94 95.47 34.04 93.57
LSUN-R 9.19 98.1 8.84 98.27 75.04 82.34 79.11 78.58

iSUN 8.32 98.3 8.01 98.43 63.44 86.05 67.84 82.55
Places 5.27 98.84 4.96 98.94 24.26 95.13 28.54 94.47
DTD 13.26 96.1 10.57 97.23 25.17 93.27 25.31 93.94

Tiny Imagenet 24.2 95.56 19.91 96.34 62.71 86.66 66.18 83.84
SUN 3.51 99.18 3.71 99.19 20.76 95.95 24.39 95.27

iNaturalist 5.05 98.84 3.24 99.27 9.02 98.11 9.68 98.05

WRN40-2

Average 12.63 97.40 13.69 96.97 36.16 92.17 41.42 90.26
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Table 11: OOD detection performance comparison deriving pattern from penultimate and logits
layer. All values are percentages. Bold numbers with gray cell are superior results.

CIFAR10 CIFAR100
Logits Penultimate Logits Penultimate

Backbone
Network

Backbone
Network

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)

SVHN 54.81 90.61 5.87 98.74 49.30 92.31 12.56 97.64
LSUN-C 15.09 97.15 7.94 98.45 48.06 91.11 27.93 95.15
LSUN-R 15.77 97.39 6.67 98.42 82.23 77.38 67.36 86.59

iSUN 12.66 97.70 4.16 98.85 80.23 79.01 53.33 90.10
Places 21.56 96.52 6.31 98.70 86.03 75.32 51.14 88.03
DTD 53.37 87.21 32.02 89.11 92.35 61.60 65.30 68.16

Tiny Imagenet 27.43 95.85 11.81 97.86 76.37 80.50 58.25 89.13
SUN 20.04 96.81 3.58 99.24 88.95 73.47 44.48 90.62

iNaturalist 64.59 89.63 27.32 95.02 88.95 69.19 59.42 78.85

ResNet18

Average 31.70 94.32 11.74 97.15 76.94 77.77 48.86 87.14

SVHN 15.17 97.4 3.16 99.34 44.22 92.78 14.38 97.32
LSUN-C 6.45 98.56 2.37 99.44 69.95 87.14 33.04 94.29
LSUN-R 9.84 98.06 5.73 98.71 87.03 74.19 80.26 76.6

iSUN 9.79 98.09 4.13 99.04 85.93 75.33 72.51 80.2
Places 12.44 97.62 2.86 99.32 87.77 74.25 77.51 77.63
DTD 25.46 94.82 12.76 96.57 87.69 70.78 68.59 72.49

Tiny Imagenet 24.69 95.67 16.66 97.03 84.4 75.36 79.07 76.59
SUN 10.65 97.97 1.47 99.63 91.56 70.84 77.94 77.88

iNaturalist 10.79 97.74 5.05 99.08 88.22 80.24 66.22 80.29

ResNet34

Average 13.92 97.33 6.02 98.68 80.75 77.88 63.28 81.48

SVHN 30.15 95.17 12.58 97.7 57.21 91.55 19.15 96.54
LSUN-C 23.74 96.05 32.33 93.94 42.27 92.69 25.94 95.47
LSUN-R 17.18 97.13 9.19 98.1 77.8 81.12 75.04 82.34

iSUN 18.23 97.05 8.32 98.3 76.09 82.46 63.44 86.05
Places 17.43 96.99 5.27 98.84 52.59 89 24.26 95.13
DTD 26.25 95.11 13.26 96.1 51.65 86.94 25.17 93.27

Tiny Imagenet 38.79 93.75 24.2 95.56 68.91 84.33 62.71 86.66
SUN 16.29 97.23 3.51 99.18 55.59 88.68 20.76 95.95

iNaturalist 30.46 95.69 5.05 98.84 21.81 96.3 9.02 98.11

WRN40-2

Average 24.28 96.02 12.63 97.40 55.99 88.12 36.16 92.17
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Figure 6: Heatmap of the Stored/ID/OOD pattern derived by ResNet18, the ID dataset, and OOD
dataset is CIFAR10 and SUN (Xiao et al., 2010) respectively. For visualization, the pattern is re-
shaped to 32*16 from the dimension of 512. From the figure, we can see the expectation of the
ID/Stored pattern is larger than the expectation of the OOD pattern, which supports the theory men-
tioned below.

Let y := [y1, y2, ...ym] and z := [z1, z2, ...zn] be the output logits and the penultimate layer output,
respectively. Here, m is the dimension of logits output (i.e., the number of classes) and n is the
dimension of the penultimate layer output. We superscript the vector id and ood (e.g., yid denotes
logits output derived from an ID sample) to indicate the input type of the vector. For every zoodj in
zood, we assume that they are independent random variables following the same Gaussian distribu-
tion, i.e., zoodj ∼ N

(
0, σ2

)
. Let [v1,v2, ...vm] be the weight matrix of the last layer (linear layer)

with each vj denotes the categorical vector for class i. Thus, we have y = [v1,v2...,vm]
T
z.

For a test sample ξ from OOD data, we assume that it is classified as the category k, and we have the
following formula. Among them, M represents a distribution of the maximum value of m Gaussian
random variables.

yood
k = max

(
v1

Tzood,v2
Tzood, ...vm

Tzood
)

yood
k ∼ Mood = max

(
N
(
0, σ2∥v1∥22

)
,N
(
0, σ2∥v2∥22

)
...,N

(
0, σ2∥vm∥22

))
yood
q ̸=k ∼ N

(
0, σ2∥vq∥22

) (9)

For yid
k , we assume that it follows another distribution I whose expected value is a positive number

larger than the expected value of yood
q ̸=k. When calculated by Eq. 6, the expectation calculated from

output logits and penultimate layer outputs are shown as follows (∗ denotes inner product):

E
[
yid ∗ yood

]
= E

zidTvkvk
Tzood +

m∑
j=1,j ̸=k

zidTvjvj
Tzood


= E

[
Iid
]
E
[
Mood

]
+

m∑
j=1,j ̸=k

n∑
p=1

n∑
q=1

vjpvjqE
[
zp

id
]
E
[
zq

ood
]

= E
[
Iid
]
E
[
Mood

]
> 0

(10)

E
[
zid ∗ zood

]
= E

[
zid
]
E
[
N ood

]
= 0 < E

[
yid ∗ yood

]
(11)

Therefore, compared with using the penultimate layer as the pattern to calculate the energy function,
logits output will assign OOD samples with higher scores. Therefore, it will be more challenging to
distinguish ID samples from OOD samples.
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C ABLATION EXPERIMENT.

The ablation experiment consists of two parts. First, we evaluate different metrics instead of the
inner product which is used in our approach to measuring the similarity of the stored pattern and
test pattern. To be specific, we use “Euclidean Distance” and “Cosine Similarity”, the results are
shown in Table. 12. Second, we use the output from other layers (e.g., layer3 in ResNet) instead of
the penultimate layer (layer4 in ResNet) to act as the representation of our approach. The results are
shown in Table. 13.

Table 12: OOD detection performance with different metrics, the ID dataset is CIFAR10. From the
results, the inner product used in our approach performs better than another two metrics.

Backbone
Network

OOD
Datasets

Metric
Euclidean Distance Cosine Similarity Inner Product (Ours)

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)

ResNet18

SVHN 38.59 93.76 39.59 93.70 5.87 98.74
LSUN-C 22.57 96.07 13.22 97.65 7.94 98.45
LSUN-R 20.50 96.35 17.95 96.93 6.67 98.42

iSUN 14.72 97.14 14.90 97.35 4.16 98.85
Places 12.18 97.53 17.73 96.84 6.31 98.70
DTD 13.59 97.22 13.42 97.57 32.02 89.11

Tiny Imagenet 27.65 95.01 25.15 95.53 11.81 97.86
SUN 8.98 98.12 12.89 97.68 3.58 99.24

iNaturalist 21.69 95.84 22.04 96.19 27.32 95.02
Average 20.05 96.34 19.65 96.60 11.74 97.15

ResNet34

SVHN 15.78 97.03 28.70 95.52 3.16 99.34
LSUN-C 11.78 97.71 13.94 97.62 2.37 99.44
LSUN-R 16.31 96.86 22.79 96.00 5.73 98.71

iSUN 14.39 97.15 23.16 95.95 4.13 99.04
Places 19.09 96.26 20.69 96.27 2.86 99.32
DTD 10.28 98.01 12.07 98.00 12.76 96.57

Tiny Imagenet 30.16 94.04 37.07 92.76 16.66 97.03
SUN 14.92 96.92 16.80 96.81 1.47 99.63

iNaturalist 8.11 98.37 9.36 98.40 5.05 99.08
Average 15.65 96.93 20.51 96.37 6.02 98.68

WRN40-2

SVHN 42.96 92.27 39.79 93.21 12.58 97.70
LSUN-C 42.92 91.67 38.33 93.11 32.33 93.94
LSUN-R 31.19 94.57 29.55 94.77 9.19 98.10

iSUN 29.35 94.96 28.51 95.01 8.32 98.30
Places 35.18 93.55 38.38 93.15 5.27 98.84
DTD 14.41 97.25 15.74 97.27 13.26 96.10

Tiny Imagenet 48.18 90.67 43.30 91.78 24.20 95.56
SUN 30.93 94.43 35.22 93.87 3.51 99.18

iNaturalist 23.50 95.77 20.35 96.53 5.05 98.84
Average 33.18 93.90 32.13 94.30 12.63 97.40

Table 13: OOD detection performance comparison of shallow layer (the layer before penultimate
layer) and penultimate layer as the representation. All values are averaged over the nine OOD
datasets.

CIFAR10 CIFAR100
shallow layer penultimate layer shallow layer penultimate layer

Backbone
Network

FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑) FPR95 (↓) AUROC (↑)
ResNet18 86.83 34.25 11.74 97.15 86.75 43.43 48.86 87.14
ResNet34 83.87 51.30 6.02 98.68 73.77 60.83 63.28 81.48
WRN40-2 91.84 47.13 12.63 97.40 89.97 48.65 36.16 92.17
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D EXPERIMENTAL DETAILS.

Software and Hardware. The experiments are performed on one linux server (Operation system:
Ubuntu Linux 18.04.1). For GPU resource, four NVIDIA GeForce RTX 3090 are used for ResNet
and WRN. The python environment is 3.7 and the libraries we use to implement our experiments is
PyTorch 1.12.1 ,

Number of Evaluation RunsReported Following (Liu et al., 2020; Hendrycks et al., 2018), per-
formance for each OOD dataset is averaged over 10 random batches of samples.

Training Details. During the training procedure, some data augmentation (e.g., rotation, flipping,
resizing) and training techniques (e.g., learning rate decay) are adopted to improve the model’s
accuracy. In more detail, we set the batch size as 128, the image size as 112 for ResNet, and 64 for
WRN, respectively. And we use SGD as the optimizer with 0.1 as the initial learning rate and apply
the learning rate decay at epochs 50 and 75, respectively.
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