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Abstract
This study explores enhancing grammatical001
error correction (GEC) through artificial er-002
ror generation (AEG) using language models003
(LMs). Specifically, we fine-tune Llama 2-004
based LMs for error generation and find that005
this approach yields synthetic errors akin to006
human errors. Next, we train GEC Llama mod-007
els with the help of these artificial errors and008
outperform previous state-of-the-art error cor-009
rection models, with gains ranging between 0.8010
and 6 F0.5 points across all tested languages011
(German, Ukrainian, and Estonian). Moreover,012
we demonstrate that generating errors by fine-013
tuning smaller sequence-to-sequence models014
and prompting large commercial LMs (GPT-015
3.5 and GPT-4) also results in synthetic errors016
beneficially affecting error generation models.017
We openly release trained models for error gen-018
eration and correction and all the synthesized019
error datasets for the covered languages.020

1 Introduction021

The grammatical error correction (GEC) task aims022

to correct spelling and grammatical errors in the023

input text. The best-performing approaches to024

this task currently use neural networks (Junczys-025

Dowmunt et al., 2018; Omelianchuk et al., 2020;026

Rothe et al., 2021, and several others), which are027

known to be data-hungry. At the same time, openly028

available human error correction data is severely029

limited even for high-resource languages like Ger-030

man, Arabic, and Czech (Bryant et al., 2023).031

The lack of error correction data is commonly032

addressed through the creation of synthetic data,033

where errors are automatically added into correct034

sentences – also called artificial error generation035

(AEG). The most common approach to AEG is036

applying random probabilistic perturbation (dele-037

tion, insertion, replacement) of words and/or char-038

acters in the correct sentence (Zhao et al., 2019;039

Grundkiewicz et al., 2019; Rothe et al., 2021), al-040

ternatives include usage of intricate hand-crafted041

rules and confusion sets (Rozovskaya and Roth, 042

2010; Xu et al., 2019; Kara et al., 2023; Bondarenko 043

et al., 2023) and automatically learning to gener- 044

ate errors (Xie et al., 2018; Kiyono et al., 2019; 045

Stahlberg and Kumar, 2021) – also referred to as 046

back-translation (BT)1. However, to the best of our 047

knowledge, none of the related work on AEGmakes 048

use of pre-trained foundation models. 049

This gap is precisely the focus of the present 050

work: using pre-trained language models for syn- 051

thetic error generation. We approach the task by 052

fine-tuning open language models (LMs) that are 053

based on Llama 2 (Touvron et al., 2023) and show 054

that this can result in successful AEG results even 055

when very limited amounts of human error data are 056

available. Our analysis shows that the resulting er- 057

rors are much more similar to natural human errors. 058

We also compare the approach to prompting com- 059

mercial LMs (GPT-3.5 and GPT-4: OpenAI, 2023) 060

to perform AEG, as well as include other open mod- 061

els commonly employed for GEC and tune them 062

for AEG: mT5 (Rothe et al., 2021; Palma Gomez 063

et al., 2023) and NLLB (Luhtaru et al., 2024). The 064

details of our proposed methodology are given in 065

Section 3. 066

Our final goal and evaluation setting is improv- 067

ing grammatical error correction for low-resource 068

languages. In particular, we focus on German, 069

Ukrainian, and Estonian GEC. For error correction, 070

we also fine-tuned Llama 2 and compared it to the 071

prompting of variants of GPT-4. Our experimen- 072

tal results show that Llama-based language mod- 073

els with fewer learned parameters can sometimes 074

beat state-of-the-art results achieved with a bigger 075

model. When pre-trained on our LM-generated syn- 076

thetic errors, the resulting GEC models achieve the 077

best current results on the included benchmarks in 078

all three evaluated cases, including previous state- 079

of-the-art and 4-shot GPT-4. 080

1by analogy with the machine translation technique (Sen-
nrich et al., 2016)
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We publicly release both AEG and GEC models081

resulting from our work and the generated data082

for reproducibility. The datasets include 1 million083

sentences for German, Ukrainian, and Estonian,084

each processed with three different models, as well085

as an additional set of 100k sentences with GPT086

models.087

In summary, our contributions are as follows:088

• We show that pre-trained language models089

can be fine-tuned to generate high-quality syn-090

thetic errors.091

• We compare the influence of different models092

applied to AEG (LLama/GPT/mT5/NLLB) on093

subsequent GEC models.094

• We achieve new state-of-the-art GEC results095

across all tested languages with Llama 2-based096

models outperforming related work as well as097

GPT-4.098

• We openly release GEC and AEG models as099

well as AEG datasets to facilitate future re-100

search2.101

The paper is structured as follows. We outline re-102

lated work in Section 2, methodology experimental103

settings in Section 3, and results in Section 4. Addi-104

tional questions on the same topic are discussed in105

Section 5 and the paper is concluded in Section 6.106

2 Related Work107

The use of synthetic data is a common concept in108

GEC. The first effective neural method proposed by109

Junczys-Dowmunt et al. (2018) approaches GEC as110

low-resource Machine Translation (MT), making111

it a relatively resource-heavy method encouraging112

synthetic data generation. Over the years, there113

have been different approaches to deliberately intro-114

ducing errors into monolingual text, like rule-based115

and probabilistic methods, methods based on con-116

fusion sets and error patterns, models trained for117

error generation and using round-trip translation118

(Bryant et al., 2023).119

One widely adopted approach to generating syn-120

thetic data involves the probabilistic addition of er-121

rors to monolingual corpora. This technique encom-122

passes inserting, deleting, substituting, or moving123

characters or words without considering the context,124

2Models: huggingface.co/anonymous-acl/
models, datasets: huggingface.co/datasets/
anonymous-acl/aeg_data

as described by Grundkiewicz et al. (2019), Zhao 125

et al. (2019), and Rothe et al. (2021). Additionally, 126

Grundkiewicz et al. (2019) introduced a "reverse 127

speller" approach that suggests word replacements 128

from confusion sets based on the speller’s correc- 129

tions. This method has been applied to several lan- 130

guages such as German, Czech, Russian, Ukrainian, 131

Icelandic and Estonian (Náplava and Straka, 2019; 132

Trinh and Rozovskaya, 2021; Náplava et al., 2022; 133

Palma Gomez et al., 2023; Ingólfsdóttir et al., 2023; 134

Luhtaru et al., 2024). As we show later, errors gen- 135

erated with the context-free probabilistic method 136

differ from human errors and thus cover a much 137

smaller number of error types, shown by signifi- 138

cantly lower GEC recall. 139

Learned methods of error generation typically 140

require more resources. Before the widespread 141

adoption of transformers and MT, various studies 142

explored alternative approaches for training mod- 143

els for error generation. For instance, Felice and 144

Yuan (2014) and Rei et al. (2017) utilized statistical 145

machine translation to generate errors, while Xie 146

et al. (2018) and Yuan et al. (2019) experimented 147

with convolutional neural networks (CNNs) for this 148

purpose. Additionally, Kasewa et al. (2018) investi- 149

gated using RNN-based sequence-to-sequencemod- 150

els with attention mechanisms. 151

Moving towards more modern MT architectures, 152

Htut and Tetreault (2019) tested various model 153

frameworks, including transformers, and Kiyono 154

et al. (2019) specifically employed transformermod- 155

els. Both of the latter studies trained models from 156

scratch, utilizing datasets ranging from approxi- 157

mately 500,000 to over a million error correction 158

examples to train the artificial error generation sys- 159

tem. In contrast, our work generates up to 1 million 160

sentences with synthetic error while using between 161

9k and 33k human error sentences to fine-tune the 162

base models. 163

During the last few years, there has been no one 164

error-generation method that has proved its supe- 165

riority. It depends on language and available re- 166

sources. For English Stahlberg and Kumar (2021) 167

train Seq2Edit models (Stahlberg and Kumar, 2020) 168

from scratch for learning to create diverse sets of 169

errors. As mentioned in the beginning, synthetic 170

probabilistic errors have found wide use for dif- 171

ferent languages. For instance, Ingólfsdóttir et al. 172

(2023) combine probabilistic character/word per- 173

mutations with a rule-based approach for Icelandic 174

and Kara et al. (2023) curate special rules for gen- 175

2

https://huggingface.co/anonymous-acl/models
https://huggingface.co/anonymous-acl/models
https://huggingface.co/datasets/anonymous-acl/aeg_data
https://huggingface.co/datasets/anonymous-acl/aeg_data


erating Turkish data.176

In addition, Oda (2023) shows that generating177

new targets for synthetic datasets can be beneficial.178

Fang et al. (2023) argue that translationese can be179

closer in domain to language learner’s text than180

traditional monolingual corpora, which can cause181

domain mismatch problems.182

Next, we present the key methodological details183

of our work.184

This step is done analogically to error genera-185

tion fine-tuning; however, this time, the prompt is186

phrased so that the task is to correct the errors. Step187

3 is based on the synthetic error data: sentences188

with artificially introduced errors as input and orig-189

inal correct sentences as output. For Step 4, the190

same is done with the original human error data.191

3 Methodology and Experiments192

The primary target of our work is to apply gener-193

ative language models to grammatical error gen-194

eration (AEG) via fine-tuning. Additionally, we195

experiment with prompting large language models196

to perform the same task and include two seq2seq197

models that are fine-tuned to do the same.198

The efficiency of proposed AEG solutions is eval-199

uated using them to improve grammatical error cor-200

rection (GEC). Thus, we also fine-tune generative201

LMs to perform the GEC task and compare the re-202

sults to prompting-based GEC results and related203

work.204

The general pipeline of our approach is straight-205

forward:206

1: Fine-tune an LM to generate errors using hu-207

man error data, with correct sentences as input208

and sentences with errors as output.209

2: Apply that AEG LM to correct sentences in210

order to add a synthetically erroneous counter-211

part212

3: Fine-tune an LM on that synthetic dataset to213

correct grammatical errors. Equivalent to Step214

1, with the sentence pair direction reversed.215

4: Continue fine-tuning GEC LM on the (typi-216

cally smaller) dataset with human errors.217

5: Apply the models to the erroneous sentences218

of the benchmark test sets and evaluate the219

results220

Next, we describe the technical details of our221

implementation and the experimental setup.222

Corpus Language Train Test
UT-L2 GEC ET 8,935 -
EstGEC-L2 ET - 2,029
UA-GEC UK 31,038 1,271
FM DE 19,237 2,337

ENC 2021 ET 1M/100k -
CC-100 UK/DE 1M/100k -

Table 1: Data used for training and testing.

3.1 Data 223

We use two distinct types of data in our work. 224

Firstly, we rely on datasets containing examples 225

of grammatical error corrections to train our error 226

generation systems and correction models. Sec- 227

ondly, we incorporate monolingual data to create 228

synthetic datasets by introducing errors. See an 229

overview of used data in Table 1. 230

We use the language learners’ corpus from 231

the University of Tartu (UT-L2 GEC) (Rummo 232

and Praakli, 2017) for gold data in Estonian. In 233

Ukrainian, we use the UA-GEC corpus (Syvokon 234

et al., 2023) used in the UNLP 2023 Shared Task 235

on Grammatical Error Correction for Ukrainian 236

(Syvokon and Romanyshyn, 2023), using the 237

GEC+Fluency data for training. For German, we 238

rely on the widely used Falko-Merlin (FM) corpus 239

(Boyd, 2018). 240

For monolingual Estonian data, we employ the 241

Estonian National Corpus 2021 (Koppel and Kallas, 242

2022). We randomly sample equal sets from the lat- 243

est Wikipedia, Web, and Fiction subsets and shuffle 244

these together. For Ukrainian and German, we use 245

the CC-100 dataset (Conneau et al., 2020; Wenzek 246

et al., 2020). Depending on the experiments, we 247

sample the required number of sentences from the 248

larger corpora (i.e., one million or 100 thousand 249

sentences or a set equal to gold corpora sizes). 250

3.2 Models and Training 251

Llama-2-based models. We fine-tune models that 252

have been enhanced with bilingual capabilities us- 253

ing continued pre-training from Llama-2-7B (Tou- 254

vron et al., 2023). For Estonian, we use Llammas- 255

base3, and for German, LeoLM4. For Ukrainian, 256

we apply continued pre-training to replicate the 257

conditions of Estonian LM by training with 5B to- 258

kens from CulturaX (Nguyen et al., 2023) with 259

3huggingface.co/tartuNLP/Llammas-base
4huggingface.co/LeoLM/leo-hessianai-7b

3

https://huggingface.co/tartuNLP/Llammas-base
https://huggingface.co/LeoLM/leo-hessianai-7b


25% of the documents being in English and the260

rest in Ukrainian. For GEC and AEG fine-tuning,261

we formatted the training data with a prompt (see262

Table 8 and 9) loosely based on Alpaca (Taori et al.,263

2023). During fine-tuning, the loss is calculated264

on the tokens of the correct sentence. Fine-tuning265

details (including hyperparameters) are discussed266

in Appendix B.1.267

Other models we use are NLLB (Team et al.,268

2022) and mT5 (Xue et al., 2021). Specifically, we269

use the NLLB-200-1.3B-Distilled and mt5-large270

(1.2B parameter) models for our experiments and271

train NLLB models using Fairseq (Ott et al., 2019)272

and mT5 with HuggingFace Transformers (Wolf273

et al., 2020). When training in two stages, first with274

synthetic data and later with human errors, we keep275

the state of the learning rate scheduler, following276

the fine-tuning approach rather than retraining as277

defined by Grundkiewicz et al. (2019). See Appen-278

dices B.2 and B.3 for further details.279

3.3 Generation280

Fine-tuned models. We use sampling instead of281

beam search to generate the synthetic errors and282

sample from the top 50 predictions with a tempera-283

ture of 1.0. During error correction, beam search284

with a beam size of 4 is used without sampling as285

regularly.286

Prompt engineering. We perform iterative287

prompt engineering, analyzing intermediate qualita-288

tive results and updating the prompt. For instance,289

we initially started with a simple 2-shot prompt290

(temperature = 0.1) asking GPT-3.5 to add gram-291

matical and spelling mistakes into the input text but292

noticed that some error types were missing. We293

then improved the prompt by specifying the miss-294

ing error types, adding two more examples, and295

upping the temperature. Our final prompt uses four296

examples and a model temperature of 1.0. See Ap-297

pendix A for the prompts. We randomly pick the298

examples from each language’s train set for few-299

shot prompting. When comparing the prompting300

between GPT-4-Turbo and GPT-3.5-Turbo, we use301

an identical random set of examples to ensure com-302

parability.303

Finally, we converged on using GPT-3.5-turbo304

for more massive error generation (100,000 sen-305

tence pairs per language). The motivation for that306

is partially financial (as GPT-4/GPT-4-turbo are sev-307

eral times more expensive) as well as performance-308

driven (see Figure 1 and description for details).309

We apply simple post-processing to the resulting 310

set because, in some cases, parts from the prompt 311

are duplicated in the output. If the model didn’t 312

generate a response due to safety model activation 313

or the response was too short or too long compared 314

to the input sentence, we replaced the output with 315

the source text (equivalent to adding no errors). 316

The precise model versions we prompt are 317

gpt-4-1106-preview for GPT-4-Turbo (us- 318

ing the OpenAIAPI) andgpt-3.5-turbo (GPT- 319

3.5-Turbo) and gpt-4 (GPT-4) (using Azure Ope- 320

nAI API, version 0613 for both). 321

Probabilistic errors. We generate rule-based 322

synthetic errors as done in prior work (Grund- 323

kiewicz et al., 2019; Náplava and Straka, 2019; 324

Palma Gomez et al., 2023; Luhtaru et al., 2024) 325

using the same method and also employing the As- 326

pell speller5 for replacing subwords. 327

3.4 Evaluation 328

We evaluate the performance of our GEC models 329

using test sets and evaluation metrics consistent 330

with those employed in previous works (see datasets 331

in Table 1). 332

For Estonian, we evaluate our models using the 333

Estonian learner language corpus (EstGEC-L2)6, 334

alongside a modified version of the MaxMatch 335

scorer7, following Luhtaru et al. (2024). The Esto- 336

nian scorer also outputs recall per error category 337

for error category, accounting for both other er- 338

rors within the word order error scope and not 339

accounting for these. We report the ones that do 340

consider other errors separately. For Ukrainian, 341

our evaluation methodology aligns with that of 342

the UNLP 2023 Shared Task (Syvokon and Ro- 343

manyshyn, 2023), utilizing the CodaLab platform 344

for submissions to a closed test set that uses the 345

ERRANT scorer for evaluation(Bryant et al., 2017). 346

We follow the GEC+Fluency track setting since it 347

encompasses a wider range of challenging errors. 348

For German, we use the test set from the Falko- 349

Merlin (FM) corpus (Boyd, 2018) that several works 350

have reported their scores on and the original Max- 351

Match scorer (Dahlmeier and Ng, 2012). 352

4 Results 353

In this section, we evaluate the performance of 354

Llama-based models for GEC and AEG tasks. 355

5aspell.net
6github.com/tlu-dt-nlp/EstGEC-L2-Corpus/
7github.com/TartuNLP/estgec/tree/main/

M2_scorer_est
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Method Estonian Ukrainian German

P R F0.5 P R F0.5 P R F0.5
GPT-4-turbo (4-shot) 70.86 57.35 67.67 39.62 42.13 40.1 64.15 69.34 65.12
GPT-4 (4-shot) 70.04 59.03 67.52 36.25 37.77 36.54 65.22 69.75 66.08

Old SOTA (rel. work) 71.27 55.38 67.40 79.13 43.87 68.17 - - 75.96

Llama + gold 71.52 55.23 67.54 79.98 51.76 72.12 76.86 65.60 74.31
Llama + 1M prob + gold 72.59 54.72 68.14 80.37 53.19 72.92 78.22 67.65 75.85
Llama + 1M BT + gold 73.85 57.83 69.97 82.03 53.41 74.09 79.08 68.66 76.75

Table 2: Comparison of Llama 2-based models (denoted as Llama) after extended pre-training and GEC fine-tuning:
Models without synthetic data (LLM + gold) versus models with synthetic data generated with a probabilistic
reverse-speller method (LLM + 1M prob + gold) and back-translation style learned synthetic data (LLM + 1M BT +
gold). State-of-the-art benchmarks include Luhtaru et al. (2024) for Estonian (NLLB-200-1.3B-Distilled with mixed
synthetic and translation data training), Bondarenko et al. (2023) for Ukrainian (mBART-based model with synthetic
data), and Rothe et al. (2021) for German (mT5 xxl with multilingual synthetic data and GEC fine-tuning).

Lang/Model Llama NLLB mT5

ET (AEG only) 65.30 65.34 59.40
ET (AEG + gold) 69.97 69.73 68.57

UK (AEG only) 28.39 27.04 16.79
UK (AEG + gold) 74.09 72.30 72.51

DE (AEG only) 71.29 69.13 54.96
DE (AEG + gold) 76.75 76.28 74.77

Table 3: F0.5-scores for Llama-based models fine-tuned
with 1M sentences generated with different AEGmodels
and then further fine-tuned with gold GEC data. The
errors are generated with 7B Llama-2-based models,
1.3B NLLB model and 1.2B mT5 model.

We then compare the AEG effectiveness between356

NLLB and mT5 models against Llama-based mod-357

els to see if smaller, more efficient models can gener-358

ate quality data. Separately, we assess AEG through359

prompting with GPT-3.5-turbo versus Llama mod-360

els with trained error generation. Finally, we exam-361

ine the quality of generated errors against human362

data and probabilistic reverse-speller errors.363

4.1 Artificial Error Generation and364

Correction with Llama365

We compare LLama-based large language model366

(LLM) fine-tuning error corrections across three367

configurations: (1) the baseline approach of training368

exclusively on human error GEC data, (2) the estab-369

lished related work approach of training on proba-370

bilistic reverse-speller AEG data and then continu-371

ing training with human error GEC data, and (3) our372

approach of training on back-translation style AEG373

data produced by fine-tuned Llama-based models 374

first, followed by fine-tuning on human data. 375

The resulting scores are compared in Table 2, 376

along with previous state-of-the-art (SOTA) scores 377

and results of GEC via 4-shot prompting of GPT- 378

4/GPT-4-turbo. Results show that llama-based 379

models, further enhanced through continued pre- 380

training, exhibit strong correction capabilities 381

across our study languages. Even without synthetic 382

data, these models outperform current state-of-the- 383

art (SOTA) methods in Estonian and Ukrainian er- 384

ror correction, and are not too far behind in Ger- 385

man, trailing the best score by less than two points. 386

However, it’s important to note the discrepancy in 387

model sizes for a fair comparison; our 7B Llama 388

model significantly exceeds the NLLB-200-1.3B- 389

Distilled model (Team et al., 2022) used for Esto- 390

nian (Luhtaru et al., 2024) and the mBART model 391

(Tang et al., 2021) for Ukrainian (Bondarenko et al., 392

2023) in size. At the same time, it is smaller than 393

the 13B mT5-xxl model used for German (Rothe 394

et al., 2021). 395

Incorporating synthetic data as a preliminary step 396

to fine-tuning significantly enhances performance 397

across all languages and synthetic data types. No- 398

tably, our back-translation style synthetic data con- 399

sistently delivers superior precision and recall com- 400

pared to the probabilistic reverse-speller (or prob- 401

abilistic) method. This approach results in a 2-2.4 402

point increase in the F0.5 score relative to solely us- 403

ing gold data for fine-tuning. Conversely, the gains 404

from using probabilistic reverse-speller data are 405

more modest, ranging from 0.6 to 1.5 points, high- 406

lighting the enhanced utility of our learned AEG 407
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Prompting Fine-tuning

Lang/Model GPT-3.5-turbo (100k) Llama (100k)

P R F0.5 P R F0.5
ET (AEG only) 71.72 44.20 63.78 67.57 50.89 63.41
ET (AEG + gold) 71.11 56.56 67.63 71.51 56.51 67.91

UK (AEG only) 28.61 22.16 27.04 40.00 19.87 33.26
UK (AEG + gold) 80.82 51.33 72.49 80.89 50.31 72.12

DE (AEG only) 70.55 49.61 65.05 70.07 59.11 67.56
DE (AEG + gold) 78.06 67.06 75.58 78.80 67.52 76.25

Table 4: Scores of Llama-based models fine-tuned with 100k sentences generated by Llama-based model fine-tuned
for error generation and GPT-3.5-model prompted to add errors.

errors.408

Our systems consistently outperformGPT-4mod-409

els regarding precision across all languages studied.410

However, GPT-4 models exhibit higher recall rates411

for Estonian and German. This discrepancy indi-412

cates that while our systems are more accurate in413

identifying correct instances, GPT-4 models better414

retrieve a broader range of relevant errors in these415

languages. On the other hand, the performance of416

GPT-4 models on the Ukrainian test set is notably417

lower compared to other methods and languages.418

4.2 Artificial Error Generation with Smaller419

Models420

Since error generation with 7B Llama-based mod-421

els can be costly and time-consuming and many422

other architectures have proved useful for correc-423

tion, we also explore smaller models for AEG: the424

1.3B NLLB model and 1.2B mT5-large. The goal425

here is to see if these can also produce useful errors.426

Table 3 shows the results of the analysis. Both427

models can learn valuable information that im-428

proves performance beyond what is achieved with429

fine-tuning on gold data alone. Notably, errors gen-430

erated by the NLLBmodel are particularly effective,431

delivering results close to those achieved by LLM-432

generated errors in Estonian and German, almost433

matching the performance of LLama-based models.434

However, for Ukrainian, NLLB-generated errors435

fall behind probabilistic reverse-speller errors. The436

Ukrainian NLLB zero-shot GEC performance is437

also significantly lower than for Estonian or German438

(see more in Appendix C) or English that Luhtaru439

et al. (2024) also tested.440

The mT5 models, in contrast, appear less adept441

at error generation. The errors produced by mT5442

lag behind those from probabilistic reverse speller 443

for Ukrainian and German and offer only a minimal 444

improvement for Estonian. 445

We can also see that the scores before gold fine- 446

tuning highlight that Ukrainian scores are notably 447

low across all methods. However, these scores re- 448

cover well after fine-tuning, suggesting the syn- 449

thetic data may not align well with the text domain 450

or error types specific to the Ukrainian language. 451

Estonian and German models show higher scores 452

for models trained with just AEG data and improve 453

less drastically with fine-tuning. 454

4.3 Artificial Error Generation with 455

Prompting 456

To assess the capability of generating errors with- 457

out additional LM training, we utilize advanced 458

commercial models, specifically exploring the effi- 459

ciency of error generation through prompting GPT- 460

3.5-turbo with datasets comprising 100,000 sen- 461

tences. We later also explore the effectiveness of 462

GPT-4-turbo in a more limited setting (see Sec- 463

tion 4.4). 464

The generation cost depends on the sum of input 465

and completion tokens. Ukrainian, our most expen- 466

sive language, had the highest number of tokens per 467

100,000 sentences: 98 million input and 12 million 468

completion tokens. The cost for input tokens with 469

GPT-3.5-Turbo in USD is $147, and for comple- 470

tion tokens, it is $25 – in total, $172 for generating 471

100,000 Ukrainian sentences. In comparison, the 472

costs with GPT-4-Turbo would have been $983 and 473

$370, respectively8. 474

Table 4 shows the results of continued pre- 475

training Llama-based models on the same amount 476

8openai.com/pricing
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Figure 1: Quality of generated errors compared to gold and probabilistic, as shown by GEC results of tuning
Llama-based models on same-sized synthetic or human (gold) error sets. GPT-3.5-turbo and GPT-4-turbo errors are
generated via prompting, Llama stands for Llama 2-based model fine-tuned on the AEG task.
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Figure 2: Recall scores for most frequent categories in
Estonian EstGEC-L2 test set. The first letter corresponds
to the operation type (R - replaced, M - missing, U -
unnecessary).

of sentences (100,000) with synthetic errors from477

prompting or fine-tuning. In terms of error correc-478

tion quality after gold fine-tuning, employing GPT-479

3.5-turbo for prompting and fine-tuning Llama-2-480

based models are both viable strategies for artifi-481

cial error generation, as they lead to very close F0.5482

scores in all three languages (with a slight difference483

in favor of fine-tuning errors for German: 75.58 vs484

76.25).485

Analyzing the performance before gold fine-486

tuning reveals distinct differences between the two487

methods. For Estonian and German, recall rates are488

significantly higher with fine-tuning than prompt-489

ing, though precision is slightly compromised.490

Conversely, Ukrainian exhibits the reverse pattern.491

However, it’s important to note that any dispari-492

ties observed before gold fine-tuning are greatly493

diminished after training on actual error correction494

examples. The most considerable remaining differ- 495

ence is under 0.7 points for German, with smaller 496

discrepancies for Estonian and Ukrainian. 497

When comparing LLama model scores for 100k 498

to the ones with only gold tuning (see Table 2), we 499

can see that although scores increase more mod- 500

estly, only 100k examples of synthetic data increase 501

the scores more for German (almost 2 F0.5-score 502

points), a bit for Estonian (around 0.4 points) and 503

stay the same for Ukrainian with higher precision 504

and lower recall. This shows a possible text do- 505

main mismatch between the human error train/test 506

data and our choice of monolingual sentences. This 507

negative effect is alleviated with higher numbers of 508

pretraining AEG data in the 1M sentence experi- 509

ments. 510

4.4 Error Generation Quality 511

Finally, we run a direct comparison between hu- 512

man errors and artificial ones. To do so we train 513

models using the same number of sentences as the 514

respective human error set sizes: 19k sentence pairs 515

for German, 33k for Ukrainian, and 9k sentence 516

pairs for Estonian. We include comparing these 517

models to ones based on one million probabilistic 518

sentences. 519

Our findings indicate that the precision of all 520

synthetic data closely matches that of high-quality 521

(gold) data in both Estonian and German, as illus- 522

trated in Figure 1. A notable distinction, however, is 523

observed in recall rates. For Estonian and German, 524

the recall for errors generated by LLMs is more 525

comparable to human-generated (gold) data than 526

errors produced through probabilistic methods. 527

Ukrainian scores with synthetic data are substan- 528

tially worse than gold data, regardless of the AEG 529
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method. Still, recall for LLM-generated errors is530

significantly higher than for simple probabilistic531

errors. This might be due to a larger mismatch532

in the text domain or error frequency. Ukrainian533

UA-GEC data predominantly contains punctuation534

errors (43%) and has a two times smaller error rate535

than German (8.2 vs 16.8) (Syvokon et al., 2023).536

Comparing GPT-3.5-turbo with GPT-4-turbo, we537

find similar performance overall. However, for Es-538

tonian, GPT-4-turbo exhibits higher recall but lower539

precision. For German, GPT-4-turbo shows reduc-540

tions in both precision and recall. Performance541

is nearly identical for Ukrainian between the two542

models. Overall, the F0.5 scores of GPT-4-turbo543

are slightly lower for Estonian and German and544

marginally higher for Ukrainian compared to GPT-545

3.5.546

When analyzing the recall for various error cat-547

egories in Estonian, it is evident that our models548

trained with AEG data particularly face challenges549

in inserting missing punctuation marks and cor-550

recting errors related to word order, as depicted551

in Figure 2. Errors generated probabilistically ex-552

cel in identifying spelling mistakes and can correct553

certain errors in noun and verb forms. However,554

they generally perform poorly in addressing issues555

beyond spelling errors. This comparison suggests556

that our learned and prompted synthetic errors are557

much more similar to naturally made human errors.558

5 Discussion559

We investigated contemporary methods for gener-560

ating artificial errors (AEG) for Estonian, German,561

and Ukrainian languages with relatively scarce re-562

sources. These languages have approximately 10k,563

20k, and 30k error correction examples derived564

from corpora with varied error type distributions.565

The Estonian and Ukrainian corpora notably in-566

clude language learner texts, characterized by a567

high frequency of errors, whereas the Ukrainian568

corpus also contains many native-speaker texts.569

Across these languages, our primary approach570

(AEG using Llama-based models and grammar er-571

ror correction with Llama-based language models)572

demonstrated consistent efficacy after fine-tuning573

with error correction examples. This success un-574

derscores the value of the learned error generation575

method over the probabilistic reverse-speller ap-576

proach, as evidenced by improved precision and re-577

call based on reference metrics. The other methods578

– prompting and smaller models – also consistently579

prove useful. 580

However, before fine-tuning with gold-standard 581

GEC examples, we observed divergent language 582

behaviors, raising questions about potential over- 583

fitting to these test sets and the generalizability of 584

methods trained on specific datasets. For instance, 585

our Ukrainian test set presented challenges for all 586

methods lacking specific training data, including 587

those involving GPT-4 models. It remains unclear 588

whether methods that tend towards paraphrasing 589

and fluency edits, including GPT models (Coyne 590

et al., 2023), fail to align with the precise edits 591

needed, overcorrect, or generate incorrect correc- 592

tions. Critiques of current GEC metrics, which are 593

argued to poorly correlate with human judgments 594

(Sakaguchi et al., 2016; Östling et al., 2023), sug- 595

gest that true quality assessment may require human 596

evaluation — a step beyond the scope of our study. 597

The observed performance with generated errors 598

may also relate to mismatches between the cho- 599

sen monolingual sentences and the original GEC 600

human data. While our study utilizes web texts, 601

resembling the essay-like texts typically employed 602

in GEC and differing from native speaker construc- 603

tions, these sentences might be simpler than those 604

the model is accustomed to handling. 605

6 Conclusion 606

In conclusion, our research demonstrates the signif- 607

icant potential of Llama-based LMs in addressing 608

the challenges of GEC for low-resource languages. 609

We have successfully developed state-of-the-art sys- 610

tems for Estonian, Ukrainian, and German by lever- 611

aging these models as both correctors and synthetic 612

data generators. We also explore other methods for 613

AEG and show that prompting stronger commer- 614

cial LLMs is another way of generating high-quality 615

data, and fine-tuning smaller models also has po- 616

tential when the resources are more limited. 617

Potential directions for future work include tun- 618

ing LMs to perform AEG and GEC multilingually 619

(like Rothe et al., 2021; Luhtaru et al., 2024), ap- 620

plying our proposed AEG methods to monolingual 621

data of a more similar text domain to the bench- 622

marks (Oda, 2023). An interesting direction would 623

be to test these methods with high-resource GEC 624

languages (English, Chinese). 625

7 Limitations 626

Our work focuses on three languages, recognizing 627

that numerous other languages with grammar error 628

8



correction (GEC) datasets exist outside our study’s629

scope. We selected languages based on recent rele-630

vant research activities: Ukrainian due to its recent631

Shared Task; Estonian, a newly emerging language632

in GEC research; and German for comparison with633

a robust 13B model. To comprehensively validate634

our method, further exploration across additional635

languages is necessary.636

Our objective was not to devise the optimal sys-637

tem exhaustively. Therefore, several avenues re-638

main unexplored, such as varying generation meth-639

ods, testing different temperatures, and adjusting640

parameters. Moreover, we capped the generation of641

synthetic sentences at one million, below the vol-642

ume utilized in many (though not all) synthetic data643

studies. Questions about the ideal amount of data644

needed its dependency on the quality of synthetic645

and gold examples, remain unanswered.646

Furthermore, our study lacks human evaluation,647

a component for more reliably assessing the real-648

world efficacy of GEC systems.649
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A Prompts989

We present the prompts used to generate 1) 100,000990

sets with GPT-3.5-Turbo and 2) preliminary sets991

with GPT-4-Turbo in Tables 5, 6, 7 for Estonian,992

German, and Ukrainian respectively.993

Muuda sisendteksti, genereerides sinna vigu, mida võib teha
eesti keele õppija. Väljundtekstina tagasta sisendtekst, kuhu
oled genereerinud vead. Sisendteksti genereeri õigekirja-,
grammatika-, sõnavaliku-, sõnajärje-, kirjavahemärgi- ning
stiilivigu. Kui sisendtekstis on vigu, siis ära neid paranda, vaid
genereeri vigu juurde. Ülesande kohta on neli näidet:

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {input}
Väljundtekst:

Table 5: GPT prompt - Estonian

B Training details994

B.1 Llama-based models995

The models are trained on 4 AMD MI250x GPUs996

(each acting as 2 GPUs).997

Erzeugen Sie im Eingabetext Fehler, wie sie jemand, der
Deutsch lernt, machen könnte. Geben Sie als Ausgabe-
text den Eingabetext zurück, in den Sie Fehler eingefügt
haben. Erzeugen Sie Rechtschreib-, Grammatik-, Wortwahl-,
Wortreihenfolge-, Zeichensetzungs- und Stilfehler im Einga-
betext. Sollten im Eingabetext bereits Fehler vorhanden sein,
korrigieren Sie diese nicht, sondern erzeugen Sie zusätzliche
Fehler. Es gibt vier Beispiele für die Aufgabe:

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {input}
Ausgabetext:

Table 6: GPT prompt - German

For fine-tuning, we used a learning rate of 5e-6 998

linearly decayed to 5e-7 (10%). The learning rate 999

was selected from {4e-5, 2e-5, 1e-5, 5e-6, 2.5e- 1000

6} based on highest Estonian GEC development 1001

set F0.5 score. The models were trained for three 1002

epochs, although we chose the first epoch since 1003

it almost always achieved the highest F0.5 score. 1004

Table 10 provides an overview of the hyperparame- 1005

ters. 1006

For GEC and AEG fine-tuning, sentences are in 1007

non-tokenized format or detokenized (for Estonian 1008

and German). The crawled data used for AEG is 1009

normalized with Moses (Koehn et al., 2007) for 1010

Estonian and German. 1011

For continued pre-training, we follow the param- 1012

eters used by Llammas-base (see Table 11). The 1013

training data is packed to fill the whole sequence 1014

length. 1015

B.2 NLLB-based models 1016

We follow the training process specified by Luhtaru 1017

et al. (2024), including hyperparameters. The train- 1018

ing is conducted on an AMDMI250x GPU. We are 1019

training the AEG models for 20 epochs and picking 1020

the 15th after arbitrary manual evaluation and test- 1021

ing sets on checkpoints 5, 10, 15, and 20. The data 1022

for NLLB models is first normalized with Moses 1023

script9, and we use the SentencePiece model (Kudo 1024

and Richardson, 2018) for untokenized text. 1025

9https://github.com/pluiez/NLLB-
inference/blob/main/preprocess/normalize-punctuation.perl
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Змiнiть вхiдний текст шляхом генерацiї в ньому помилок,
якi мiг би зробити учень, що вивчає українську мову. На
виходi повертайте вхiдний текст, у який ви внесли помилки.
У вхiдному текстi генеруйте помилки правопису, грамати-
ки, вибору слiв, порядку слiв, роздiлових знакiв та стилю.
Якщо у вхiдному текстi є помилки, то не виправляйте
їх, а генеруйте додатковi помилки. Далi наведенi чотири
приклади до цiєї задачi

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {input}
Вихiдний текст:

Table 7: GPT prompt - Ukrainian

### Instruction:
Reply with a corrected version of the input sentence in
{language} with all grammatical and spelling errors fixed.
If there are no errors, reply with a copy of the original sen-
tence.

### Input:
{input}

### Response:
{correction}

Table 8: Llama-based model GEC instruction format
loosely based on Alpaca (Taori et al., 2023). The instruc-
tion is based on Coyne et al. (2023).

B.3 mT5-based models1026

To learn to generate errors, we train on reversed hu-1027

man GEC data for three epochs with batch size 32,1028

max sequence length of 128, half-precision train-1029

ing, and a learning rate of 0.0001 without warmup1030

and scheduling. For generation, we use top 50 prob-1031

abilistic sampling.1032

C NLLB correction1033

The GEC performance of the NLLB model with-1034

out any synthetic data is in Table 12. The zero-1035

shot results for Estonian and German are signifi-1036

cantly higher than for Ukrainian. We notice that the1037

Ukrainian dataset contains characters not present1038

in NLLB vocabulary, like special quotation marks,1039

which the normalization script unifies but appear1040

as errors while testing. In addition, the Ukrainian1041

### Instruction:
Reply with a grammatically incorrect version of the
{language} input sentence.

### Input:
{input}

### Response:
{correction}

Table 9: Llama-based model AEG instruction format
loosely based on Alpaca (Taori et al., 2023).

Parameter Value

LR 5e-6
LRfinal 5e-7
LR-schedule linear
Epochs 3
Max sequence length 1024
Batch size (total) 128
Gradient clipping 1.0
Weight decay 0.1
Optimizer AdamW
Precision bf16
DeepSpeed Zero Stage 2

Table 10: Llama-based GEC model fine-tuning parame-
ters.

Parameter Value

LR 2e-5
LRfinal 2e-6
LR-schedule linear
Updates 19080
Max sequence length 1024
Batch size (total) 256
Gradient clipping 1.0
Weight decay 0.1
Optimizer AdamW
Precision bf16
DeepSpeed Zero Stage 2

Table 11: Llama continued pre-training parameters.

test set contains far fewer edits, which, especially in 1042

a zero-shot scenario, means worse scores because 1043

NLLB paraphrases more rigorously (Luhtaru et al., 1044

2024). 1045
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Lang Zero-shot Gold fine-tuning

P R F0.5 P R F0.5
Estonian 43.89 45.31 44.17 61.14 49.48 58.39
Ukrainian 8.24 31.57 9.67 35.62 34.1 35.31
German 43.66 41.52 43.22 73.71 67.75 72.44

Table 12: Zero-shot and gold fine-tuning scores of NLLB-200-1.3B-Distilled models on Ukrainian UA-GEC
gec+fluency test set.
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