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ABSTRACT

Pruning has become a widely adopted technique for compressing and accelerat-
ing deep neural networks. However, most pruning approaches rely on lengthy
retraining procedures to restore performance, rendering them impractical in many
real-world settings where data privacy regulations or computational constraints
prohibit extensive retraining. To address this limitation, we propose a novel frame-
work for rapidly pruning pre-trained models without any retraining. Our frame-
work focuses on structured pruning. It first groups coupled structures across layers
based on their dependencies and comprehensively measures and marks the least
important channels in a group. Then we introduce a two-phase layer reconstruc-
tion strategy utilizing a small amount of unlabeled data to recover the accuracy
drop induced by pruning. The first phase imposes a sparsity penalty on less im-
portant channels to squeeze information into the remaining components before
pruning. The second phase executes pruning and calibrates the layer output dis-
crepancy between the pruned and original models to reconstruct the output signal.
Experiments demonstrate that our framework achieves significant improvements
over retraining-free methods and matches the accuracy of pruning approaches that
require expensive retraining. With access to about 0.2% samples from the Ima-
geNet training set, our method achieves up to 1.73x reduction in FLOPs, while
maintaining 72.58% accuracy for ResNet-50. Notably, our framework prunes net-
works within a few minutes on a single GPU, which is orders of magnitude faster
than retraining-based techniques.

1 INTRODUCTION

The recent emergence of edge computing applications calls for the necessity for deep neural com-
pression. Main compression techniques include pruning (Han et al., 2015), quantization (Banner
et al., 2018), knowledge distillation (Hinton et al., 2015), and low-rank decomposition (Jaderberg
et al., 2014). Among these, pruning has proven widely effective for network compression and accel-
eration (Li et al., 2017; Lin et al., 2020; Lee et al., 2019; Dong et al., 2017). The different pruning
methods can be roughly categorized into two schemes: unstructured pruning that zeros individual
weights (Tanaka et al., 2020; Evci et al., 2020) and structured pruning that removes entire channels
or blocks (Wang et al., 2021; He et al., 2019). Unstructured pruning produces sparse weight matri-
ces and relies on special hardware to translate into faster execution. In contrast, structured pruning
methods align well with hardware architectures, thereby enabling wider practical application.

Previous approaches involve a training process, regardless of whether pruning after training (Li et al.,
2017), pruning during training (You et al., 2019; He et al., 2018), and pruning at initialization (Lee
et al., 2019; Wang et al., 2020). The training process presents significant obstacles to their adoption
in real-world settings. Due to privacy or commercial concerns, the original training data may be
inaccessible or restricted for training pruned models. For example, commercial companies only
publish pre-trained models, or users are unwilling to upload data when using the model compression
service. Moreover, even given access to the training data, the computational costs of retraining
models are often prohibitive in deployment scenarios. The inaccessibility of training data and the
computational costs of retraining present obstacles to their widespread utilization.

In this work, we study the challenging task of pruning pre-trained networks without retraining, uti-
lizing only a small unlabeled calibration set. Indeed, post-training compression has been widely
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Figure 1: A visual overview of our post-training structured pruning framework. It outputs pruned
models within a few minutes.

studied for quantization with promising results (Nagel et al., 2020; Hubara et al., 2021b; Li et al.,
2021). These methods decompose the quantization task into layer-wise sub-problems, reconstruct-
ing each layer’s output to approximate the task loss degeneration based on the calibration data.
Due to its retraining-free advantages, post-training quantization is often preferred over quantization-
aware training in practice. Recently, AdaPrune (Hubara et al., 2021a) demonstrated that this cal-
ibration approach can also be effective for unstructured pruning. However, effective post-training
structured pruning is still an open problem.

The inherent nature of structured pruning makes post-training structured pruning of modern deep
neural networks challenging. The complete removal of channels results in the inability to fully
recover the intermediate representational features of the original model. As errors propagate across
layers, we must handle compound errors. Moreover, complex inter-layer dependencies necessitate
the simultaneous pruning of coupled channels to maintain network structure correctness. However,
inconsistent sparsity distributions among coupled layers may result in removing channels encoding
valuable information during pruning.

To address these challenges, we propose a novel post-training structured pruning framework that
does not require retraining. As illustrated in Figure 1, our proposed framework takes a pre-trained
model and a predefined pruning ratio as inputs. It firstly groups the network parameters according
to layer dependencies and comprehensively gauges the grouped salience of coupled layers to inform
pruning (see Section 3.1). Subsequently, a two-phase layer reconstruction procedure is conducted.
The first phase intends to mitigate information loss before pruning. Since coupled layers are pruned
simultaneously and expect consistent sparsity across layers, we impose an increasing regularization
penalty on less important channels to condense representations into the retained components. The
second phase executes pruning and calibrates the pruned model on a small calibration set to recover
the accuracy (see Section 3.2). Our framework avoids expensive retraining, generally completing
the whole process within minutes.

Our contributions can be summarized as follows:

• We propose a novel framework for efficient structured pruning in a post-training setting
where only a small amount of unlabeled data is available. It integrates systematic pipeline
components, including coupled channel pruning and a two-phase reconstruction procedure.

• Post-training structured pruning presents challenges due to the inevitable propagation of
errors across layers and the inconsistent sparsity between coupled layers. To address these
problems, the proposed two-phase reconstruction procedure first sparsifies channels sched-
uled for removal to force consistent sparsity before pruning. It then performs a holistic
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reconstruction of the layer outputs to optimize composite error and recover the representa-
tion capacity of the original model.

• We conduct extensive experiments to validate the efficiency and effectiveness of our frame-
work. Using merely about 0.2% of the ImageNet training set, our framework achieves
72.58% top-1 accuracy pruning ResNet-50, reducing FLOPs by 42%, comparable to full-
data retraining methods. Notably, our framework generates pruned models within a few
minutes, which is over 100x faster than the retraining-based methods.

2 RELATED WORK

Network Pruning and Sparsity. Pruning, as one of the popular network compression technique,
has been widely studied (Hassibi et al., 1993; Han et al., 2015; He et al., 2017; Li et al., 2017).
Mainstream pruning approaches can be broadly categorized into structured and unstructured meth-
ods. Unstructured pruning (Lee et al., 2020; Sanh et al., 2020; Frantar & Alistarh, 2022b) zeros out
individual weights without altering the network structure, maintaining performance even at higher
sparsity levels. However, unstructured pruning often necessitates specialized hardware or software
for actual acceleration. In contrast, structured pruning (Liu et al., 2017; Molchanov et al., 2017; He
et al., 2019) removes entire structured components from networks, thereby accelerating inference
across diverse hardware.

Pruning Coupled Structure. Recent studies have developed methods for structured pruning of
complex network architectures that contain coupled components that must be pruned simultane-
ously. While existing techniques utilize empirical rules or predefined architectural patterns to han-
dle coupled structures Li et al. (2017); Liu et al. (2021); Luo & Wu (2020), these approaches have
limited generalizability to new network topologies. Recent advances have focused on automated
analysis of layer dependencies to tackle general structural pruning of arbitrary architecture. Nar-
shana et al. (2023) introduced the notion of Data Flow Couplings (DFCs) to characterize couplings
by enumerating the associated layers and transformations. Meanwhile, Fang et al. (2023) devised a
dependency graph framework to capture layer associations and dependencies in a generalized man-
ner. This work adopts a dependency graph approach (Fang et al., 2023) to identify coupled structures
for structured pruning.

Post-training Pruning. Pruning without retraining is gaining interest owing to privacy concerns and
computational costs associated with fine-tuning. Early efforts in this regime merged similar neurons
to prune networks (Srinivas & Babu, 2015; Yvinec et al., 2021; Kim et al., 2020). These methods did
not consider complex structural dependencies and failed to preserve performance under high com-
pression ratios. Inspired by post-training quantization techniques, Hubara et al. (2021a); Frantar &
Alistarh (2022b;a) solved a layer-wise reconstruction problem to minimize output change on cali-
bration data. However, these approaches only support unstructured pruning and N: M sparse mode.
Tang et al. (2020) directly developed new compact filters for structured pruning using original filters
in their proposed Reborn technique. Although achieving acceptable accuracy under moderate spar-
ity, the accuracy drop became larger with high sparsity. Kwon et al. (2022) proposed a post-training
structured pruning method for Transformers, but it did not extend to convolutional networks due to
the lack of consideration of complex multi-branched structures. Our work addresses the challenge
of structured pruning of modern deep convolutional networks under limited data constraints.

3 METHOD

3.1 PRUNING COUPLED STRUCTURES

As insufficient data precludes retraining, correctly removing channels with minimal damage be-
comes imperative when pruning coupled channels. This highlights the precise measurement of
channel importance in complex networks. We adopt the dependency defined in (Fang et al., 2023),
abstracting both the layers and the non-parameterized operations in a network.

The network F is formalized as F = {f1, f2, ..., fl}, where fi refers to either a parameterized
layer or a non-parameterized operation. The input and output of component fi are denoted as f−

i

and f+
i , which represent different pruning schemes for the same component. Dependencies are
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Figure 2: An instance of a residual block in ResNet-50 with a downsample layer. We show its
pruning groups on the right.

categorized as inter-layer, determined by adjacent layer connectivity, or intra-layer, where input
and output share pruning schemes, such as residual adding. By traversing all components, coupled
structures are automatically analyzed and divided into different pruning groups, allowing tailored
pruning schemes. Figure 2 shows an example of dividing pruning groups of a residual block in
ResNet-50.

Group Importance Estimation Existing works have proposed algorithms for estimating the im-
portance of individual channels, such as norm-based criterion (Li et al., 2017), channel similarity
(He et al., 2019), and first-order Taylor error (Molchanov et al., 2019). However, as coupled layers
within the same group should be pruned simultaneously, it is necessary to estimate the group-level
importance. We first estimate the importance of individual channels using existing metrics. Due to
the data limit, we only compare data-free measures: L1, L2, cosine distance, euclidean distance, and
random, which we compare in the appendix. In this work, we select the L2-norm-based criterion to
estimate individual channel importance. Next, individual importance scores are aggregated to eval-
uate group-level importance. We also compare different aggregation ways and decide to aggregate
scores by average.

3.2 TWO-PHASE LAYER RECONSTRUCTION STRATEGY WITH HOLISTIC LAYER
RECONSTRUCTION LOSS

Recently, several works (Frantar & Alistarh, 2022b; Hubara et al., 2021a) suggested lightweight cal-
ibration techniques, such as layer-wise reconstruction, to minimize the discrepancy between original
and pruned model layer outputs:

min
W̃
||f (l)(W,X)− f (l)(W̃, X̃)|| (1)

where f (l)(W,X) and f (l)(W̃, X̃) are the output of layer l of the original model and pruned model
respectively. These methods achieve impressive performance in unstructured pruning settings. How-
ever, their direct application to structured pruning settings does not produce satisfying results (see
Table 2). We argue that this stems from their failure to consider the inherent properties of the struc-
tured pruning paradigm. To adjust calibration techniques into structured settings, we extensively
investigate the inherent properties of structured pruning and summarize as follows:

• Grouped layers exhibit structural dependency: In the structured pruning setting, layers
are not independently pruned. Previous work by Hubara et al. (2021a) optimized the out-
put of each layer independently, thereby shielding the influence of the accumulated errors
propagated from previous layers.

• Layers are grouped while information is scattered: The sparsity of different layers is
inconsistent (Narshana et al., 2023; Fang et al., 2023) in a pruning group. Some removed
channels may still encode useful information. We calculate the grouped L2-norm distri-
bution of a pre-trained ResNet-50. As shown in Figure 3(a), even if 30% of the channels
are removed, we prune many channels that contain useful information. Since output re-
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construction can only obtain information from the remaining channels/filters in the original
model, the information in the pruned channel is difficult to recover.

The first property indicates that the objective function of layer reconstruction should be holistic. The
second property suggests that information should be concentrated and coherent with the grouped
structure before pruning to enable superior pruning performance. To this end, we propose a holistic
layer reconstruction loss with the layer-variant update rate to improve the independent layer-wise
modeling of (1). We then propose a two-phase layer reconstruction strategy where we concentrate
the information via L2-penalized optimization as a pre-reconstruction step. The details of our ap-
proach are elaborated in the subsequent sections.

3.2.1 HOLISTIC LAYER RECONSTRUCTION LOSS

In structured pruning, the number of input and output channels is reduced for most layers, thereby
restricting the features available for reconstructing the original layer outputs. The cumulative impact
of previous layers cannot be ignored, especially when pruning channels in complex networks. To
model this impact, we employ a compounding reconstruction loss to jointly optimize each layer in
context based on the remaining channels:

Lre(W̃) =

L∑
l=1

||[f (l)(W,X)]s(l),:,: − f (l)(W̃, X̃)||22 (2)

where s(l) indexes the remaining output channels of layer l. Eq. 2 extracts output features corre-
sponding to the retained channels in the original model to calculate the reconstruction loss. Naive
optimizing Eq. 2 induces imbalanced parameter updates, with earlier layers being over-optimized.
We normalize the gradient norm of each layer by their weight norm to fairly compare updates at
each layer and visualize layer-wise update rates as follows:

R = lr ∗ ||G||2
||W||2

(3)

where G and W are the gradient and weight of a layer. To mitigate this imbalance, we propose
scaling the learning rate layer-wise as 1/(L − j + 1) ∗ base lr for layer j, where L is the total
number of layers. Our ablation studies demonstrate that this calibrated rate schedule significantly
improves output reconstruction, substantiating our approach. (See Section 4.3).

3.2.2 TWO-PHASE LAYER RECONSTRUCTION PROCEDURE

In order to produce consistent sparsity across grouped layers for better pruning, we propose a two-
phase layer reconstruction strategy. The key idea is to consolidate the information in the channels
scheduled for removal through a pre-reconstruction step before actually pruning them. Given a
pre-trained model with parameters w and the reconstruction error, we formulate this problem as a
structural L2-penalized regression problem as follows:

Lsp(W̃) = Lre(W̃) +
1

2

∑
l,i

λ
(l)
i ||W̃

(l)

i,:,:||22 (4)

where Lre is the holistic reconstruction loss (Eq. 2) as fidelity term, W̃
(l)

i,:,: is the i-th channel of

the weight of layer l, and λ
(l)
i is the L2 regularization co-efficient for that channel. λ

(l)
i > 0 if

the channel will be removed. Otherwise, λ(l)
i = 0 since we do not penalize reserved weights. We

gradually increase the penalty strength to mitigate the side effect of the sparse penalty: λ = λ + δ,
where δ is a pre-defined constant. By gradually increasing the penalty intensity, we can concentrate
the information into the retained channels while sparsifying the unimportant ones.

After this specification phase, the unimportant channels exhibit high sparsity and can be safely
removed (See Figure 3(b)). We track the L2-norm trends of the reserved and soon-to-be pruned
channels over each iteration in Figure 3(c). The norm sum of remaining channels maintains a high
level, and those to be pruned drop steadily to very small values, which indicates the informative fea-
tures are squeezed into the remaining channels. Because the information is compactly concentrated
in the first phase of the procedure, the second phase is much more trivial and just optimizes holistic
layer reconstruction loss to achieve good results.
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Figure 3: (a & b) Distribution of L2-norm of weights for each grouped channel in a ResNet-50
model. The channel norm of each pruning group is normalized by the mean of the norms. The
statistical data in (a) and (b) come from the pre-trained model and the model after the sparsity
penalty, respectively. We marked the threshold at a pruning rate of 0.3. (c) The L2-norm sum of
reversed channels and those to be pruned (logarithmic scale).

3.3 POST-TRAINING STRUCTURED PRUNING

Algorithm 1 summarizes the pruning process of our framework. The layers in the copy of a pre-
trained model are first partitioned into pruning groups based on layer dependencies. Then the
group-level importance of channels is estimated across layers within each group. Channels with
the lowest importance scores, up to a predefined pruning ratio r, are marked for removal. Before
removing these marked channels, channel sparsification is performed by minimizing Eq. 4 over sev-
eral iterations. This transfers the expressive capacity of the less important channels to the remaining
components. Upon completion of the sparsification process, the marked channels are pruned to
obtain a compact model. Finally, the original model output is reconstructed to recover accuracy.

Algorithm 1 PSP: Post-training Structured Pruning
Input: A pre-trained model F1(W), pruning ratio p, calibration dataset, penalty coefficient λ and
its increment δ, iteration Ts,Tr.
Init: Copy F1(W) to form F2(W̃).
Init: Divide the layers in model F2(W̃) into different pruning groups.
Init: Mark indexes of channels to be pruned by group-level L2-norm sorting.
for i = 0 to Ts − 1 do

Compute reconstruction loss Lre(W̃) on calibration dataset and update model F2(W̃):
W̃← W̃− η(∇W̃Lre(W̃) + λW̃)
λ← λ+ δ

end for
Prune marked channels of the model F2(W̃).
for j = 0 to Tr − 1 do

Compute reconstruction loss Lre(W̃) on calibration dataset and update model F2(W̃).
W̃← W̃− η(∇W̃Lre(W̃))

end for
Output: Pruned model F2(W̃).

4 EXPERIMENTS

4.1 SETTINGS

Datasets and architectures. We conducted extensive experiments on three representative datasets,
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). For CIFAR
datasets, we train the base models from scratch with a batch size of 128, and the learning rate
schedule initialized as 0.1, multiplied by 0.1 at epoch 50 and 75 for total 100 epochs. For ImageNet,
we use the official PyTorch (Paszke et al., 2019) pre-trained models as the base models.
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Table 1: Pruning results on CIFAR-10/100. RP denotes the reduction in parameters, and RF denotes
the reduction in FLOPs. Due to the random sampling during calibration, we report the average
accuracy over 10 runs.

Method CIFAR-10 CIFAR-100

Acc(%) RP RF Acc(%) RP RF

ResNet-50 94.36 - - 78.86 - -
L1-norm (retrained) 92.80 2.36x 1.94x 74.58 2.22x 3.02x

Neuron Merging 87.24 2.19x 1.76x 65.27 1.64x 2.03x
AdaPrune 93.04 4.00x 3.42x 67.52 3.32x 4.33x

gAP 93.58 4.00x 3.42x 68.34 3.32x 4.33x
Reborn Filters 91.56 2.58x 2.15x 70.40 1.75x 1.90 x

PSP (Ours) 94.01 4.00x 3.42x 75.16 3.32x 4.33x
VGG-19 93.01 - - 72.27 - -

L1-norm (retrained) 91.57 3.56x 2.14x 69.65 2.57x 1.67x

Neuron Merging 90.70 2.85x 1.50x 67.63 2.86x 1.74x
AdaPrune 90.55 4.30x 2.67x 68.53 3.02x 1.82x

gAP 91.69 4.30x 2.67x 68.37 3.02x 1.82x
Reborn Filters 90.46 3.87x 2.25x 69.03 2.33x 1.54x

PSP (Ours) 92.15 4.30x 2.67x 70.58 3.02x 1.82x

Implementation details. We randomly sample 512 images from the training set for CIFAR-10/100
and 2048 images for ImageNet for pruning,. We do not use any data augmentation. The batch size
is set to 128 for CIFAR and 64 for ImageNet. The sparsity regularization coefficient λ in Eq.4 is
initialized to 0.02 and increased by 0.02 each iteration. We optimize all models using the ADAM
optimizer with a base learning rate 10−3. The number of iterations for sparsity penalty and output
reconstruction is 20 and 10, respectively.

Baselines. We baseline our work against diverse representative retraining-free pruning approaches
to evaluate the effectiveness of our pruning framework. Specifically, we make comparisons to the
following retraining-free techniques: (i) Neuron Merging (Kim et al., 2020), which compensates for
the information loss from pruned neurons/filters by merging similar neurons. (ii) AdaPrune (Hubara
et al., 2021a), which independently reduces the discrepancy between the pruned and original layer
outputs. (iii) gAP (Frantar & Alistarh, 2022b), a of variants AdaPrune. (iv)Reborn Filters (Tang
et al., 2020), which directly constructs new compact filters using the original filters.AdaPrune and
gAP are designed for unstructured pruning, and we extend them to structured pruning. We im-
plement AdaPrune and gAP using the same group importance estimation as our method. Other
baselines use the channel importance evaluation method presented in their paper. We also compare
with retraining-based methods to show the gap with them, including L1-norm-based pruning (Li
et al., 2017), DepGraph (Fang et al., 2023) and GReg-2 (Wang et al., 2021).

4.2 PSP CAN EFFECTIVELY RESTORE PERFORMANCE

Our proposed approach demonstrates consistent and notable improvements over other retraining-free
pruning techniques on the CIFAR-10 and CIFAR-100 datasets, as shown in Table 1. Specifically,
utilizing a ResNet-50 architecture pruned to over 3x reduction in FLOPs, our method achieves an
accuracy of 94.01% on CIFAR-10 and 75.16% on the more complex CIFAR-100, outperforming ex-
isting retraining-free techniques with similar parameter and FLOP budgets. Compared to AdaPrune
and gAP, the advantages of our framework are particularly pronounced on the intricate CIFAR-100
task, highlighting the importance of concentrating information before pruning. Surprisingly, our
framework attains equivalent or superior accuracy relative to the retraining pruning baseline, em-
pirically evidencing that retraining may be obviated in pruning pipelines, at least for small datasets.
Besides, techniques using no data, like Neuron Merging, suffer from huge accuracy drops and cannot
be applied to higher sparsity. This indicates that a small amount of calibration data is necessary to
maintain accuracy. Overall, our proposed post-training structured pruning framework demonstrates
highly competitive performance.
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Table 2: Pruning ResNet-50 trained on ImageNet. We randomly sampled 2048 samples from the
training set as calibration data. RP denotes the reduction in parameters, and RF denotes the reduction
in FLOPs

Method Retraining? Acc(%) RP RF Acc(%) RP RF

ResNet-50 - 76.13 - - 76.13 - -
L1-norm Yes 72.27 1.45x 1.82x 71.32 1.78x 2.55x

DepGraph Yes 75.83 - 2.07x - - -
GReg-2 Yes 75.36 - 1.50x - - -

Neuron Merging No 39.58 1.36 1.67x - - -
AdaPrune No 62.49 1.38x 1.73x 50.97 1.66x 2.36x

gAP No 56.88 1.38x 1.73x 54.30 1.66x 2.36x
Reborn Filters No 59.08 1.22x 1.49x 57.11 1.54x 2.13x

PSP (Ours) No 72.58 1.38x 1.73x 69.85 1.66x 2.36x
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Figure 4: Accuracy of pruning pre-trained models on CIFAR-10, CIFAR-100, and ImageNet w.r.t.
different number of calibration samples. We plot results with different FLOPs reductions.

Table 2 presents the pruning results of ResNet-50 on the ImageNet dataset. This work aims to prune
pre-trained models when only a small amount of data is available. As such, we only use L1-norm
pruning as a baseline to demonstrate the gap compared to expensive retraining methods. Due to
the scale of ImageNet, the model has little channel redundancy, and structured pruning unavoidably
discards valuable information. While techniques such as AdaPrune and gAP have shown accept-
able accuracy degradation on smaller datasets like CIFAR, their utility decreases for large-scale
datasets like ImageNet. In contrast, our proposed framework can recover accuracy using only 0.2%
of the ImageNet training data, demonstrating efficacy even for large-scale datasets. In particular, our
framework attains 72.58% top-1 accuracy and a 1.73x reduction in FLOPs using only 2048 samples
and a few iterations. By using sparse penalty and holistic reconstruction, we can achieve comparable
performance without retraining, even on large-scale datasets.

4.3 ABLATION STUDY

Impact of the number of calibration samples. We conduct experiments incrementally increasing
the number of calibration samples to further investigate the influence of varying calibration sample
sizes on our pruning framework. The results are presented in Figure 4. Overall, model accuracy
tends to improve as more calibration data is used. This trend is expected, as additional calibration
samples provide the pruned model with greater information about the original model’s behavior. The
rate of accuracy improvement decreases and begins to stabilize as the calibration set size approaches
1% of the training data for the CIFAR datasets. For the ImageNet dataset, the accuracy can still
be improved when the amount of data increases from 5k to 10k. We finally achieved 73.96% top-1
accuracy with a 1.50x FLOPs reduction using 10k calibration data. Notably, our approach maintains
acceptable accuracy even when very limited calibration data is available. For instance, with only 64
samples from CIFAR-10, ResNet-50 pruned by our method retains 91.9% accuracy while reducing
FLOPs to 29%.

8



Under review as a conference paper at ICLR 2024

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of parameters removed

20

40

60

80

Ac
cu

ra
cy

(%
)

w/o REC
REC
REC + SRP

ResNet18 on CIFAR10

0.2 0.4 0.6 0.8
Fraction of parameters removed

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

(%
)

w/o REC
REC
REC + SRP

ResNet18 on CIFAR100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of parameters removed

20

40

60

80

Ac
cu

ra
cy

(%
)

w/o REC
REC
REC+SP

ResNet50 on CIFAR10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of parameters removed

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

(%
)

w/o REC
REC
REC+SP

ResNet50 on CIFAR100

Figure 5: Figures comparing Accuracy versus Sparsity (through parameters) for our method. We
use the corresponding parameter removal ratio as the horizontal axis. In each figure, the plots show
the performance under three conditions: doing nothing (w/o REC), only reconstruction (REC),and
reconstruction with sparse penalty (REC+SP).
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Figure 6: (a)Update rates for convolutions and fully-connected layers in a ResNet-50 model. Statis-
tics are accumulated over 1024 samples. (b) Updates become balanced through the layer-wise learn-
ing rate adjustment. (c) Accuracy versus Sparsity with ResNet-50 on ImageNet. In order to exclude
the influence of other factors, we did not perform sparsity penalty.

Effect of sparse penalty and holistic reconstruction. In order to investigate the effects of the
sparse penalty and holistic reconstruction, we conduct an ablation study across a range of prun-
ing rates from 0.1 to 0.8 in increments of 0.1. Given the potential for irrecoverable damage from
aggressive one-shot pruning at high sparsity levels, we employed an iterative approach with five iter-
ations. Figure 5 demonstrates that at low pruning rates, holistic reconstruction alone is sufficient to
recover model accuracy, owing to the presence of redundant channels. However, as the pruning rate
increases, the benefit of sparse penalty becomes evident, indicating it compressed the information
from removed channels into the remaining components.

Update rate balance. As shown in Figure 6(a), we observe that update rates show a decreasing trend
as the layer depth increases. However, by using our proposed layer-wise learning rate calibration
strategy, update rates across layers become more balanced, as shown in Figure 6(b). To exclude the
effect of smaller learning rates, we also evaluate the accuracy when the base learning rate is reduced
by a factor of 10 in Figure 6(b). The results demonstrate that our approach significantly improves
the performance of output reconstruction.

5 CONCLUSION

This work proposes an effective framework for structured pruning of networks with limited data.
Our framework first groups coupled channels by layer dependencies and determines pruning priori-
ties based on group-level importance. Sparse regularization is then applied to the channels scheduled
for removal, concentrating information into the remaining channels before pruning. Our framework
finally reconstructs the original layer outputs using the preserved channels of the pruned network.
Experiments demonstrate remarkable improvements against baseline methods in a post-training set-
ting. Notably, when using only 1% of the ImageNet training data, our framework reduced FLOPs
in ResNet-50 by 1.73x with just a 3.55% drop in accuracy. By enabling highly efficient structured
pruning without expensive retraining, our work provides an important advancement for pruning
models in deployment scenarios.
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A MORE EXPERIMENTS AND ABLATION STUDIES

A.1 TIME COST OF OUR FRAMEWORK

Hardward and software details. The time cost measurements are performed using a Tesla V100
with CUDA 11.7 and a memory of 16GB. The software stack used for inferencing consisted of
Python 3.9.16, PyTorch 1.13.1, and Torchvision 0.14.1.

We systematically analyze the time cost of our framework to produce a pruned model. As shown
in Table 3, our framework requires only about 43 seconds to prune ResNet-50 on CIRAR-10 and 8
minutes to prune ResNet-50 on ImageNet. In contrast, retraining-based approaches typically take
dozens of hours to complete pruning on ImageNet, which is 2-3 orders of magnitude slower. We
highlight that the little time consumption and data requirements make it feasible to apply pruning at
deployment time.

Table 3: Pruning costs of our framework. We report the time cost (in seconds) of different phases as
well as the whole pipeline. The results are tested on a single Tesla V100.

Model Dataset (number of samples) Sparse penalty Reconstruction All

ResNet-18
CIFAR-10 (512)

14.4 6.0 21.6
ResNet-50 30.5 11.1 42.8
VGG-19 12.8 5.2 19.3

ResNet-50 ImageNet (2k) 337.9 127.4 467.4

A.2 COMPARISONS OF DIFFERENT CRITERIA AND AGGREGATION APPROACHES

To investigate the effectiveness of different criteria for ranking and pruning channels at a group level,
we evaluate five criteria for pruning ResNet-18 on the CIFAR-10 dataset, including random, L2/L1-
norm of weights, cosine distance, and Euclidean distance. In order to exclude the influence of
other operations, we fix the aggregation method to the averaging and compare the pruning accuracy
across criteria without output reconstruction. As shown in Figure 7(a), L2-norm demonstrates strong
performance at all sparsity levels and slightly outperforms other criteria at high sparsities. This
suggests that L2-norm is an effective metric for producing independent scores of channel importance
in group-level pruning.

We further compare three different aggregation strategies, including (i) Mean: Ig = 1
N

∑N
i=1 IWi ,

(ii)Max: Ig = maxNi=1 IWi
, and (iii)Product: Ig =

∏N
i=1 IWi

, where IW is L2-norm magnitude of
each W ∈ g. As shown in Figure 7(b), mean and max aggregation yield similar accuracy, while
product aggregation does not produce meaningful accuracy. This implies the maximum value in
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Figure 7: Figures comparing Accuracy versus Sparsity (through parameters) for different criteria and
aggregation methods. We prune ResNet-18 trained on CIFAR-10 under pruning rates selected from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and use the corresponding parameter removal ratio as the horizontal
axis.

Table 4: Pruning results of various models on ImageNet. We randomly sampled 2048 samples from
the training set as calibration data. The pruning rates are set to 0.2 and 0.3, respectively.

Method Acc-1(%) RP RF Acc-1(%) RP RF

ResNet101: Baseline accuracy 77.37%, #Params: 44.55M, FLOPs: 7.85G

AdaPrune 70.49
1.38x 1.59x

66.69
1.76x 2.14xgAP 60.09 57.49

PSP (Ours) 73.84 72.52
GoogLeNet: Baseline accuracy 69.78%, #Params: 6.62M, FLOPs: 1.51G

AdaPrune 52.23
1.40x 1.84x

34.83
1.76x 2.36xgAP 54.37 40.15

PSP (Ours) 60.27 51.38
MobileNetV2: Baseline accuracy 71.88%, #Params: 3.5M, FLOPs: 0.32G

AdaPrune 45.00
1.14x 1.45x

10.00
1.24x 1.78xgAP 61.25 51.47

PSP (Ours) 66.74 60.06
EfficientNetV2: Baseline accuracy 81.31%, #Params: 21.46M, FLOPs: 2.88G

AdaPrune 70.97
1.26x 1.16x

51.59
1.45x 1.27xgAP 68.79 64.33

PSP (Ours) 73.35 69.51

each channel of a pruning group may determine whether that channel is pruned. In contrast, product
aggregation is affected by small values in coupled channels, failing to correctly estimate group-level
channel importance. This result instructs us to prune channels whose all parameters are consistently
unimportant. The sparsification process of our framework produces strong sparsity at the group
level, which is beneficial for pruning coupled channels.

A.3 PRUNE VARIOUS MODELS ON IMAGENET

We evaluate the scalability of our framework to different network architectures in Table 4. The
results demonstrate that the proposed framework achieves superior performance compared to
AdaPrune and gAP baselines across diverse convolutional neural network architectures. An in-
teresting observation is that pruning tended to remove channels with small parameters and compu-
tational complexity for EfficientNetV2 while removing larger channels for GoogLeNet. This may
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Table 5: Comparisons of one-shot pruning and iterative pruning with ResNet-50 trained on CIFAR-
10 and CIFAR-100. We randomly sampled 512 samples from the training set as calibration data.

ResNet50 on CIFAR10: Baseline accuracy 94.36%, #Params: 23.52M, FLOPs: 1.30G

Pruning ratio 0.4 0.5 0.6 0.7 0.8
#Params (M)/FLOPs (G) 8.40/0.55 5.88/0.38 3.79/0.24 2.12/0.13 0.95/0.05

Acc. (% One-shot) 94.10 94.01 93.69 92.17 90.14
Acc.(% Iteration-5) 94.13 94.08 93.84 92.62 91.05

Acc.gain(%) 0.03 0.07 0.15 0.45 0.91

ResNet50 on CIFAR100: Baseline accuracy 78.86%, #Params: 23.71M, FLOPs: 1.30G

Pruning ratio 0.4 0.5 0.6 0.7 0.8
#Params (M)/FLOPs (G) 10.68/0.42 7.13/0.30 4.14/0.21 1.99/0.13 0.77/0.07

Acc.(% One-shot) 77.07 75.16 70.74 56.92 24.38
Acc.(% Iteration-5) 77.18 75.20 71.39 68.40 53.60

Acc.gain(%) 0.11 0.04 0.65 11.48 29.22

be attributed to the multi-branch nature of GoogLeNet, causing simultaneous pruning across layers.
We also observe that even when pruning lightweight networks like MobileNetV2, our framework
achieves acceptable accuracy degradation. Overall, our framework achieves consistent accuracy
improvements over baselines across various networks, reflecting our framework’s generalization
ability.

A.4 ITERATIVE POST-TRAINING STRUCTURED PRUNING

Algorithm 2 summarizes the iterative pruning version for our post-training structured framework.
The algorithm progressively removes less important channels over multiple iterations. In each it-
eration, the framework recalculates channel importance and performs a two-stage reconstruction
process. This iterative structured pruning procedure circumvents a sharp drop in model accuracy
that can occur when an excessive number of channels are removed simultaneously. Table 5 shows
the comparisons of one-shot and iterative pruning applied to ResNet-50 models trained on the CI-
FAR10 and CIFAR100 datasets. On the relatively simple CIFAR-10 dataset, both techniques yield
comparable performance across all sparsity levels, reflecting the high degree of redundancy within
the network. However, as evidenced by the CIFAR100 results, iterative pruning achieves significant
gains in preserving accuracy over one-shot pruning as the sparsity increases, with improvements of
11.48% and 29.22% attained at pruning rates of 70% and 80%, respectively. By gradually removing
less important channels, the iterative approach largely overcomes catastrophic loss of information.

Algorithm 2 Iterative Post-training Structured Pruning
Input: A pre-trained model F1(W), pruning ratio p, calibration dataset, penalty coefficient λ and
its increment δ, iteration Ts,Tr,T .
Init: Copy F1(W) to form F2(W̃).
Init: Divide the layers in the model F2(W̃) into different pruning groups.
for t = 0 to T do

Mark indexes of channels to be pruned by group-level L2-norm sorting.
Doing sparse penalty over Ts iterations
Prune marked channels
Doing output reconstruction over Tr iterations

end for
Output: Pruned model F2(W̃).
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Figure 8: Accuracy of pruning pre-trained ResNet-50 on ImageNet dataset. We prune the model
to a 1.73x FLOPs reduction. (Left)Accuracy of reconstructions performed with different iterations
when the number of iterations of the sparsity penalty is fixed at 20. (Right) Accuracy of performing
sparse penalty for different iterations when the number of iterations of reconstruction is fixed to 10.
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Figure 9: Width of layers in pruned models and original models. We prune 50% channels of a
ResNet-50 trained on ImageNet.

A.5 THE IMPACT OF THE NUMBER OF ITERATIONS FOR THE SPARSITY PENALTY AND
RECONSTRUCTION

We further investigated the impact of the number of iterations for the sparsity penalty and recon-
struction processes on model accuracy when pruning ResNet-50 on ImageNet. The results in Figure
8 demonstrate that increasing iterations for both processes improves accuracy, although benefits de-
crease after 10 reconstruction iterations. Specifically, even just one reconstruction iteration after 20
sparsity penalty iterations boosts accuracy by 11 percentage points compared to no reconstruction.
This highlights the importance of the interplay between the two iterative processes for retaining
accuracy post-pruning.

A.6 THE PRUNED RESNET-50 ARCHITECTURE

In Figure 9, we present the remaining channels of a pruned ResNet-50. Except for the final fully
connected layer, all layers have been pruned. We can also observe that coupled layers possess an
equivalent number of remaining channels. This property ensures the pruned model can run correctly.
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