
Under review as a conference paper at ICLR 2021

IMPROVING GENERALIZABILITY OF PROTEIN SE-
QUENCE MODELS WITH DATA AUGMENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

While protein sequence data is an emerging application domain for machine learn-
ing methods, small modifications to protein sequences can result in difficult-to-
predict changes to the protein’s function. Consequently, protein machine learning
models typically do not use randomized data augmentation procedures analogous
to those used in computer vision or natural language, e.g., cropping or synonym
substitution. In this paper, we empirically explore a set of simple string manip-
ulations, which we use to augment protein sequence data when fine-tuning semi-
supervised protein models. We provide 276 different comparisons to the Tasks
Assessing Protein Embeddings (TAPE) baseline models, with Transformer-based
models and training datasets that vary from the baseline methods only in the data
augmentations and representation learning procedure. For each TAPE validation
task, we demonstrate improvements to the baseline scores when the learned pro-
tein representation is fixed between tasks. We also show that contrastive learn-
ing fine-tuning methods typically outperform masked-token prediction in these
models, with increasing amounts of data augmentation generally improving per-
formance for contrastive learning protein methods. We find the most consistent
results across TAPE tasks when using domain-motivated transformations, such as
amino acid replacement, as well as restricting the Transformer attention to ran-
domly sampled sub-regions of the protein sequence. In rarer cases, we even find
that information-destroying augmentations, such as randomly shuffling entire pro-
tein sequences, can improve downstream performance.

1 INTRODUCTION

Semi-supervised learning has proven to be an effective mechanism to promote generalizability for
protein machine learning models, as task-specific labels are generally very sparse. However, with
other common data types there are simple transformations that can be applied to the data in order
to improve a model’s ability to generalize: for instance, vision models use cropping, rotations, or
color distortion; natural language models can employ synonym substitution; and time series data
models benefit from window restriction or noise injection. Scientific data, such as a corpus of
protein sequences, have few obvious transformations that can be made to it that unambiguously
preserve the meaningful information in the data. Often, an easily understood transformation to a
protein sequence (e.g., replacing an amino acid with a chemically similar one) will unpredictably
produce either a very biologically similar or very biologically different mutant protein.

In this paper, we take the uncertainty arising from the unknown effect of simple data augmentations
in protein sequence modeling as an empirical challenge that deserves a robust assessment. To our
knowledge, no study has been performed to find out whether simple data augmentation techniques
improve a suite of protein tasks. We focus on fine-tuning previously published self-supervised mod-
els that are typically used for representation learning with protein sequences, viz. the transformer-
based methods of Rao et al. (2019) which have shown the best ability to generalize on a set of
biological tasks, which are referred to as Tasks Assessing Protein Embeddings (TAPE). We test one
or more of the following data augmentations: replacing an amino acid with a pre-defined alternative;
shuffling the input sequences either globally or locally; reversing the sequence; or subsampling the
sequence to focus only on a local region (see Fig. 1).
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(a) Replacement (Dictionary) (b) Replacement (Alanine) (c) Global Random Shuffling

(d) Local Sequence Shuffling (e) Sequence Reversion (f) Subsampling

Figure 1: Diagram of data augmentations. We study randomly replacing residues (with probability
p) with (a) a chemically-motivated dictionary replacement or (b) the single amino acid alanine. We
also consider randomly shuffling either (c) the entire sequence or (d) a local region only. Finally, we
look at (e) reversing the whole sequence and (f) subsampling to a subset of the original.

We demonstrate that the protein sequence representations learned by fine-tuning the baseline models
with data augmentations results in relative improvements between 1% (secondary structure accu-
racy) and 41% (fluorescence ρ), as assessed with linear evaluation for all TAPE tasks we studied.
When fine-tuning the same representations during supervised learning on each TAPE task, we show
significant improvement as compared to baseline for 3 out of 4 TAPE tasks, with the fourth (fluo-
rescence) within 1σ in performance. We also study the effect of increasingly aggressive data aug-
mentations: when fine-tuning baseline models with contrastive learning (Hadsell et al., 2006; Chen
et al., 2020a) we see a local maximum in downstream performance as a function of the quantity
of data augmentation, with “no augmentations” generally under-performing modest amounts of data
augmentations. Conversely, performing the same experiments but using masked-token prediction in-
stead of contrastive learning, we detect a minor trend of decreasing performance on the TAPE tasks
as we more frequently use data augmentations during fine-tuning. We interpret this as evidence that
contrastive learning techniques, which require the use of data augmentation, are important methods
that can be used to improve generalizibility of protein models.

2 RELATED WORKS

Self-supervised and semi-supervised methods have become the dominant paradigm in modeling pro-
tein sequences for use in downstream tasks. Rao et al. (2019) have studied next-token and masked-
token prediction, inspired by the BERT natural language model (Devlin et al., 2018). Riesselman
et al. (2019) have extended this to autoregressive likelihoods; and Rives et al. (2019), Heinzinger
et al. (2019) and Alley et al. (2019) have shown that unsupervised methods trained on unlabeled
sequences are competitive with mutation effect predictors using evolutionary features.Of impor-
tance to this work are self-supervised learning algorithms employed for other data types that use
or learn data augmentations. For example, Gidaris et al. (2018) learn image features through ran-
dom rotations; Dosovitskiy et al. (2014) and Noroozi & Favaro (2016) study image patches and
their correlations to the original samples. van den Oord et al. (2018) uses contrastive methods to
predicts future values of an input sequence. We consider sequence augmentations in natural lan-
guage as the most relevant comparison for the data augmentations we study in this paper. Some
commonly applied augmentations on strings include Lexical Substitution (Zhang et al., 2015), Back
Translation (Xie et al., 2019a), Text Surface TransformationPermalink (Coulombe, 2018), Random
Noise Injection (Xie et al., 2019b; Wei & Zou, 2019), and Synonym Replacement, Random Swap,
Random Deletion (RD) (Wei & Zou, 2019). However, sequence augmentations designed for natural
languages often require the preservation of contextual meaning of the sentences, a factor that is less
explicit for protein sequences.

Contrastive Learning is a set of approaches that learn representations of data by distinguishing pos-
itive data pairs from negative pairs (Hadsell et al., 2006). SimCLR (v1 & v2) (Chen et al., 2020a;b)
describes the current state-of-the-art contrastive learning technique.; we use this approach liberally
in this paper not only because it performs well, but because it requires data transformations to ex-
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Figure 2: Diagram of experimental approach (see Sect. 3.1). We use dashed boxes to indicate
different steps: semi-supervised pre-training, augmented learning, linear evaluation, and finally fine-
tuning the best performing augmented models on downstream tasks. In each box, we include the
general model architectures, with major sub-modules in different colors. The model freezer indicates
the semi-supervised model is not updated during linear evaluation;.

ist. Since we focus on protein sequence transformations, the contrastive learning part described in
both (Chen et al., 2020a;b) is our focus. Following Chen et al. (2020a;b), we denote input data as
x ∈ D, with D being our training set; we then define an embedding function, fω : x 7→ h with
h ∈ RN , and a mapping function gθ : h 7→ z, with z ∈ RM , where ω and θ are the learned model
weights. For any x, we form two copies x1 = t1(x) and x2 = t2(x) given functions t1, t2 ∼ T ,
where T denotes the distribution of the augmentation functions. Given D is of sizeN , the contrastive
loss is written as:

L =
1

2N

N∑
k=1

[l(z
(1)
k , z

(2)
k ) + l(z

(2)
k , z

(1)
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w 6=u e
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Here, zi,k = gθ(fω(ti(xk))), sim(·, ·) is cosine similarity, and τ ∈ (0,∞) is a scalar temperature;
we choose τ = 0.2. By minimizing the contrastive loss, we obtain the learned h as the encoded
feature for other downstream tasks. Note, the contrastive loss takes z’s as inputs, whereas the
encoded feature is h, which is the variable after the function fω(·) and before gθ(·).

3 METHOD

3.1 EVALUATION PROCEDURE & APPROACH TO EXPERIMENT CONTROL

Our goal is to demonstrate that training self-supervised protein sequence models, with simple string
manipulations as data augmentations, will lead to better performance on downstream tasks. To
attempt to control external variables, we study the following restricted setting; we provide the pro-
cedural diagram in Figure 2 and the corresponding explanations of the four major steps below (See
Appendix A for training setups in details.):

Baseline.— A self-supervised model M0 is trained on non-augmented sequence data Dseq to do
representation learning. To have a consistent baseline, we set M0 to the Transformer-based model
trained and published in Rao et al. (2019), without modification. This was trained with masked-
token prediction on Pfam protein sequence data (El-Gebali et al., 2019); it has 12 self-attention
layers, 8 heads per layer, and 512 hidden dimensions, yielding 38M parameters in total.

Augmented training on validation set.— We fine-tune M0 on augmented subsets Dval ⊂ Dseq,
given a set of pre-defined data transformations Taug. We define Maug as the final trained model
derived from Taug(Dseq) with M0 as the initial conditions for the model parameters. We explore
two different methods of fine-tuning on augmented data — a contrastive task (as in Eq. 1) and a

3



Under review as a conference paper at ICLR 2021

masked-token task (exponentiated cross entropy loss) — as well as different combinations of data
augmentations. We use reduced subsets |Dval| � |Dseq| to both reduce the computational cost
of running bulk experiments, as well as to protect against overfitting. For consistency, we inherit
the choice of Dval from the cross-validation split used to train M0 in Rao et al. (2019). To adapt
the same baseline model M0 to different self-supervised losses, we add a loss-specific randomly-
initialized layer to theM0 architecture: contrastive learning with a fully connected layer that outputs
256 dimensional vectors and masked-token uses fully connected layers with layer normalization to
output one-hot vectors for each of the masked letters. We define our different choices of Taug in the
next section.

Linear evaluation on TAPE.— To assess the representations learned by Maug, we evaluate perfor-
mance on four TAPE downstream training tasks (Rao et al., 2019): stability, fluorescence, remote
homology, and secondary structure. For consistency, we use the same training, validation, and test-
ing sets. The first two tasks are evaluated by Spearman correlation (ρ) to the ground truth and the
latter two by classification accuracy. However, we do not consider the fifth TAPE task, contact map
prediction, as this relies only on the single CASP12 dataset, which has an incomplete test set due to
data embargoes (AlQuraishi, 2019). Secondary structure prediction is a sequence-to-sequence task
where each input amino acid is classified to a particular secondary structure type (helix, beta sheet,
or loop), which is evaluated on data from CASP12, TS115, and CB513 (Berman et al., 2000; Moult
et al., 2018; Klausen et al., 2019), with specifically “3-class” classification accuracy being the metric
in this paper. The remote homology task classifies sequences into one of 1195 classes, representing
different possible protein folds, which are further grouped hierarchically into families, then super-
families; the datasets are derived from Fox et al. (2013). The fluorescence task regresses a protein
sequence to a real-valued log-fluorescence intensity measured in Sarkisyan et al. (2016). The sta-
bility task regresses a sequence to a real-valued measure of the protein maintaining its fold above a
concentration threshold (Rocklin et al., 2017). We perform linear evaluation by training only a single
linear layer for each downstream task for each contrastive-learning model Maug, but not changing
the parameters of Maug, and its corresponding learned encodings, across all tasks. To compare the
contrastive learning techniques to further fine-tuning with masked-token prediction, we identify the
best-performing data augmentations per-task, then replace the MCL

aug with the masked-token model
with the same augmentation MMT

aug , then also do linear evaluation on MMT
aug .

Full fine-tuning on TAPE.— For the best-performing augmented models in the linear evaluation
task (eitherMCL

aug orMMT
aug ), we further study how the models improve when allowing the parameters

of Maug to vary along with the linear model during the task-specific supervised model-tuning.

3.2 DATA AUGMENTATIONS

We focus on random augmentations to protein primary sequences, both chemically and non-
chemically motivated (see Fig. 1). Each of these data augmentations has reasons why it both might
help generalize the model and might destroy the information contained in the primary sequence.

Replacement (Dictionary/Alanine) [RD & RA].— We randomly replace, with probability p, the
ith amino acid in the primary sequence S = {Ai}Ni=1 with the most similar amino acid to it A′

i, ac-
cording to a replacement rule; we do this independently for all i. We treat p as a hyperparameter and
will assess how p affects downstream TAPE predictions. For Replacement (Dictionary), following
French & Robson (1983), we pair each naturally-occuring amino acid with a partner that belongs to
the same class (aliphatic, hydroxyl, cyclic, aromatic, basic, or acidic), but do not substitute anything
for proline (only backbone cyclic), glycine (only an H side-chain), tryptophan (indole side chain),
or histidine (basic side chain with no size or chemical reaction equivalent). We experimented with
different pairings, finding little difference in the results; our best results were obtained with the final
mappings: [[A,V], [S,T], [F,Y], [K,R], [C,M], [D,E], [N,Q], [V,I]]. We also study replacing residues
with the single amino acid, alanine (A), as motivated by alanine-scanning mutagenesis (Cunning-
ham & Wells, 1989). Single mutations to A are used experimentally to probe the importance of an
amino acid because Alanine resembles a reduction of any amino acid to its Cβ , which eliminates
functionality of other amino acids while maintaining a certain backbone rigidity and is thus consid-
ered to be minimally disruptive to the overall fold of a protein, although many interesting exceptions
can still occur by these mutations.

4



Under review as a conference paper at ICLR 2021

Table 1: Best linear evaluation results. Bold refers to cases that outperform the TAPE baselines;
and red is the task-wise best-performing result. MT and CL refer to training with masked-token
prediction and contrastive learning, respectively. Stability and fluorescence are scored by Spearman
correlation and remote homology (fold, family, superfamily) and secondary structure (CASP12,
TS115, CB513) by classification accuracy. Bootstrap errors are reported per task by taking the
maximum error found for any of the models. (Also see Appendix C.)

Scenario Stability Fluor. Remote Homology 2nd Structure

MT: TAPE Baseline 0.498 0.256 [0.200, 0.625, 0.231] [0.699, 0.756, 0.727]
MT: No Aug. (γ = 0) 0.534 0.275 [0.206, 0.636, 0.241] [0.706, 0.771, 0.729]
MT: Best Aug. 0.516 0.301 [0.207, 0.637, 0.241] [0.716, 0.771, 0.735]

CL: No Aug. 0.512 0.334 [0.146, 0.529, 0.163] [0.667, 0.725, 0.678]
CL: Single Aug. 0.562 0.343 [0.183, 0.720, 0.243] [0.700, 0.757, 0.727]
CL: Leave-one-out 0.337 0.323 [0.168, 0.686, 0.222] [0.700, 0.756, 0.723]
CL: Pairwise 0.537 0.361 [0.219, 0.718, 0.255] [0.702, 0.759, 0.726]

Bootstrap 1σ (<) ±0.011 ±0.006 ±[0.015, 0.014, 0.012] ±[0.021, 0.009, 0.015]

Global/Local Random Shuffling [GRS & LRS].— We reshuffle the protein sequence, both glob-
ally and locally. For S = {Ai}Ni=1, we define an index range i ∈ [α, β] with α < β ≤ N , then
replace amino acids Ai in this range with a permutation chosen uniformly at random. We define
Global Random Shuffling (GRS) with α = 1 and β = N and Local Random Shuffling (LRS) with
the starting point of intervals chosen randomly between α ∈ [1, N − 2] and β = min(N,α + 50),
ensuring at least two amino acids get shuffled. While shuffling aggressively destroys protein infor-
mation, models trained with shuffling can focus more on permutation-invariant features, such as the
overall amino acid counts and sequence length of the original protein.

Sequence Reversion & Subsampling [SR & SS].— For Sequence Reversion, we simply reverse
the sequence: given S = {Ai}Ni=1 we map i→ i′ = N − i. Note that a protein sequence is oriented,
proceeding sequentially from the N- to the C-terminii; reversing a protein sequence changes the
entire structure and function of the protein. However, including reversed sequences might encourage
the model to use short-range features more efficiently, as it has for seq2seq LSTM models (Sutskever
et al., 2014). For Subsampling, we let the sequence index range from i ∈ [α, β], then uniformly
sample α ∈ [1, N − 2] and then preserve Ai, for i = (α, α + 1, ...,min(N,α + 50)). While
many properties pertaining to the global fold of a protein are due to long-range interactions between
residues that are well-separated in the primary sequence, properties such as proteosomal cleavage or
docking depend more heavily on the local sequence regime, implying that training while prioritizing
local features might still improve performance.

Combining Augmentations.— We consider applying augmentations to the fine-tuning of semi-
supervised models both individually and together. For Single Augmentations we consider only one
of the augmentations at a time. With Leave-One-Out Augmentation we define lists of augmentations
to compare together; for each list of augmentations, we iteratively remove one augmentation from
the list and apply all other augmentations during training. Finally, in Pairwise Augmentation all
pairs of augmentations are considered.

4 RESULTS

Assessing data-augmented representations with linear evaluation.— The core result of this
paper uses linear evaluation methods to probe how well data augmentations are able to improve the
learned representation of protein sequences. In Table 1 we summarize the best results from various
data augmentation procedures, highlighting all the cases that outperform the TAPE Baseline. We
compare identical model architectures trained with the same data, but using various data augmen-
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RD(0.01)

RD(0.5)

RA(0.01)

GRS

LRS

SR

SS

0.562 0.537 0.149 0.134 0.265 0.390

0.562 0.527 0.121 0.013 0.155 0.426

0.537 0.527 0.528 0.218 0.284 0.203 0.309

0.149 0.121 0.218 0.289 0.087 0.276

0.134 0.013 0.284 0.338 0.157 0.302

0.265 0.155 0.203 0.087 0.157 0.258 0.263

0.390 0.426 0.309 0.276 0.302 0.263 0.355

Stability

0.09
0.14
0.19
0.23
0.28
0.33
0.38
0.43
0.48
0.53 0.297 0.316 0.341 0.361 0.308 0.268

0.259 0.271 0.341 0.341 0.335 0.289

0.316 0.271 0.277 0.286 0.314 0.281 0.256

0.341 0.341 0.286 0.336 0.332 0.283

0.361 0.341 0.314 0.343 0.303 0.276

0.308 0.335 0.281 0.332 0.303 0.333 0.296

0.268 0.289 0.256 0.283 0.276 0.296 0.281

Fluorescence

0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35

RD(0.01)

RD(0.5)

RA(0.01)
GRS LRS SR SS

RD(0.01)

RD(0.5)

RA(0.01)

GRS

LRS

SR

SS

0.674 0.683 0.665 0.654 0.664 0.701

0.683 0.644 0.624 0.637 0.631 0.700

0.683 0.644 0.680 0.672 0.663 0.665 0.702

0.665 0.624 0.672 0.668 0.671 0.663

0.654 0.637 0.663 0.666 0.663 0.695

0.664 0.631 0.665 0.671 0.663 0.664 0.692

0.701 0.700 0.702 0.663 0.695 0.692 0.705

Secondary Structure (CASP12)

0.62
0.63
0.64
0.65
0.66
0.67
0.67
0.68
0.69
0.70

RD(0.01)

RD(0.5)

RA(0.01)
GRS LRS SR SS

0.660 0.696 0.419 0.449 0.422 0.730

0.529 0.594 0.405 0.403 0.446 0.688

0.696 0.594 0.491 0.449 0.349 0.444 0.718

0.419 0.405 0.449 0.439 0.362 0.440

0.449 0.403 0.349 0.475 0.434 0.674

0.422 0.446 0.444 0.362 0.434 0.433 0.683

0.730 0.688 0.718 0.440 0.674 0.683 0.720

Remote Homology (Family)

0.35
0.39
0.43
0.47
0.51
0.55
0.59
0.62
0.66
0.70

Figure 3: Contrastive learning performance with pairwise & single augmentations in linear evalua-
tion for 4 different tasks. The axes refer to different augmentations, with diagonal being a single aug-
mentation. The values in the heatmaps are correlation (stability and fluorescence) and classification
accuracy (remote homology and secondary structure). We do not consider two pairs: RD(p = 0.01)
& RD(p = 0.5) and GRS & LRS, due to redundancy. The per-task performance of the masked-token
TAPE Baseline model is colored white in each subfigure; red is better performance, blue is worse.
(Also see Appendix B.)

tations, to two baselines: (1) the transformer-based self-supervised model from Rao et al. (2019),
which we call the TAPE Baseline; and (2) a contrastive learning model trained in the SimCLR ap-
proach, but using no data augmentations, i.e., we only use the negative sampling part of SimCLR;
we call this the Contrastive Baseline. We also report standard deviation (σ) for the major figures of
this paper by bootstrapping the testing results 5,000 times, with convergence after∼ 3, 000 samples.

We see broad improvement when using contrastive learning with data augmentations in comparison
to both baselines for the stability, fluorescence, and remote homology tasks, and better-or-similar
results for secondary structure prediction. For stability, we find +0.064 in Spearman correlation (ρ)
(best augmentation: RD(p = 0.01/0.5)) in comparison to the TAPE Baseline and +0.050 compared
to the Contrastive Baseline. For fluorescence and remote homology, we see improvement to both
the TAPE and Contrastive Baselines, with the pairwise combination of RD(p = 0.01) & LSS) and
RA(p = 0.01) & SS yielding the best results, respectively. Compared to the TAPE Baseline, we
obtain +0.105 in ρ for fluorescence and [+1.9%, +9.3%, +2.4%] in classification accuracy for re-
mote homology on the three test sets; compared to the Contrastive Baseline, we find +0.027 in ρ and
[+7.3%, +18.9%, +9.2%] in classification accuracy. The masked-token prediction model trained
with RA(p = 0.01) & SS performs the best on secondary structure, with [+1.7%, +1.5%, +0.8%]
in the classification accuracy on the 3 test sets compared to the TAPE Baseline and [+4.9%, +4.6%,
+5.7%] compared to the Contrastive Baseline. The best-performing contrastive learning model for
secondary structure provides [+3.5%, +3.4%, +4.8%] in classification accuracy compared to Con-
trastive Baseline. Our interpretation is that augmentation and contrastive learning provide better
encoded feature spaces that help improving the performance on protein’s downstream tasks. See
Appendix B for the complete results of linear evaluation experiments.

Figure 3 demonstrates our linear evaluation results using contrastive learning based on the compo-
sition of pairs of data augmentations. For stability, amino acid replacement (with either a dictionary
(RD) or alanine alone (RA)) consistently improves performance compared to the TAPE baseline, as
well as to other augmentation strategies, which typically underperform the baseline. Fluorescence
sees improvements using all data augmentations, but random shuffling (LRS & GRS) as well as the
binomial replacement of both types result in the best individual performance. For remote homology,
it is apparent that subsampling plays an important role in model performance given the improve-
ment it introduces on the three testing sets; the “family” homology level is included here and the
other remote homology tasks are qualitatively similar. Similarly, we see that data augmentation
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Figure 4: Top row: Effects of Binomial Replacement p for linear evaluation on constrastive learn-
ing models for TAPE tasks. Bottom row: Effects of augmentation ratio γ for linear evaluation
on TAPE’s self-supervised model with the best performing task-specific augmentations (see “Best
Aug.” row in Table 2) , using masked token prediction. The subfigures include linear evaluation
results with different augmentation ratios, γ. “γ=0.0” refers to fine-tuning with no data augmenta-
tions, whereas “Baseline” refers to the TAPE pre-trained model with no further training. (Also see
Appendix C.)

procedures that use subsampling tends to yield better performance than alternatives, with the best
performing approach using subsampling alone. For complete heatmaps for the 6 remote homology
and secondary structure testing sets, please refer to Fig. 5 in Appendix B.

Effect of increasing augmentation rates.— Fig. 4 presents results on the effect of varying data
augmentations in two cases: (1) increasing the amino acid replacement probability p for the Re-
placement Dictionary [RD] strategy with contrastive learning (top row); and (2) by augmenting
increasingly larger fractions of the input data according to the best augmentations (see “Best Aug.”
row in Table 2) found in linear evaluation for masked-token prediction (bottom row). We define
the augmentation ratio γ as the fraction of the samples in the validation dataset that are randomly
augmented per epoch; for contrastive learning fine-tuning, data augmentations are required for every
data element.

For masked-token prediction, we see little change in performance for any task as a function of γ
using the for any of the best corresponding augmentation strategies. However, there is a small, but
consistent, reduction in performance with increasing γ, implying that masked-token prediction is
not always able to significantly improve its performance by using data augmentations. It is clear that
large augmentation ratios γ ∼ 1 hurt the model performance on Stability, Fluorescence and Remote
Homology tasks. We also see that the TAPE Baseline model generally performs worse than further
training with no data augmentation, indicating further training of the baseline model with the same
data and procedure can improve the performance of Rao et al. (2019).

However, for contrastive learning, we see clear evidence that data augmentations can help general-
ization. We see increasing Spearman correlation for stability and fluorescence tasks and increasing
accuracy for remote homology and secondary structure with increasing p for p < 0.01. We see a
consistent decrease in all metrics, to the lowest seen amount for each task, for replacement prob-
ability p = 0.1 and then a recovery to larger (sometimes the largest seen) for higher replacement
p = 0.5. However, no augmentation, p = 0, consistently underperforms as compared to alternative
values of p > 0.
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Table 2: Model fine-tuning results, with associated training method and data augmentation proce-
dure for each task. Testing sets for remote homology: (fold, family, superfamily), and for secondary
structure: (CASP12, TS115, CB513).

Scenario Stability Fluor. Remote Homology 2nd Structure

TAPE Best 0.730 0.680 [0.210, 0.880, 0.340] [0.710, 0.770, 0.730]

Our Best
[0.209±0.015, [0.711±0.015,

0.748±0.005 0.677±0.004 0.921±0.008, 0.778±0.008,
0.377±0.014] 0.739±0.003]

Best Models CL CL CL MT
Best Aug. RD(0.01 or 0.5) RD(0.01) & LRS RA(0.01) & SS RA(0.01) & SS

Effect of contrastive learning.— To assess the relative effects of contrastive learning and masked-
token prediction, we compare results between the two approaches with or without data augmenta-
tions. All information for this comparison is in Fig. 4 and Table 1. It is unsurprising that using
the identity function as a data transform in SimCLR (Eq. 1) yields little increase in generalizabil-
ity; indeed, we see that masked-token prediction has better performance than contrastive learning
for all tasks with no data augmentations (Fig. 4, γ = 0 vs p = 0). However, we see mixed re-
sults when comparing contrastive learning vs masked-token prediction methods with the same data
augmentation techniques. As seen in Table 1 (“MR: Best Aug.” row vs highest/red numbers in
“CL: *” rows): contrastive learning significantly improves over masked-token prediction for stabil-
ity (+0.046 in ρ), fluorescence (+0.061 in ρ), and remote homology ([+1.2%, +8.1%, +1.4%] in
classification accuracy); and masked-token prediction improves over contrastive learning for sec-
ondary structure ([+1.4%, +1.2%, +0.9%] in classification accuracy). Overall, we cannot conclude
from these pairs of linear evaluation studies that contrastive learning definitively performs better or
worse than masked-token prediction on all downstream tasks: different tasks benefit from different
training procedures and different combinations of data augmentations. However, we observe that the
overall best results from Table 1 utilize the combination of contrastive learning with pairs of data
augmentation for all tasks besides secondary structure prediction.

Exploring the best performance via full fine-tuning.— We provide results of the best perform-
ing fine-tuned models (on downstream tasks) and the comparison to the TAPE’s original baselines
in Table 2, in order to verify whether the learned representations of the best models provide good
initialization points for transfer learning. Here, we have done full fine-tuning only on the best per-
forming, per-task models found during the linear evaluation study (see Table 1). Notice that the
baseline comparison changes in this table than for the linear evaluation results above because we
allow the optimization to also adjust the parameters of the self-supervised models for every task (the
TAPE baselines in Table 2 are from Rao et al. (2019)). The fine-tuned, data-augmented models out-
perform the TAPE baseline on stability (+0.018 in Spearman correlation ρ), remote homology and
secondary structure; and they perform within one σ on fluorescence, although the large difference in
performance between full fine-tuning and linear evaluation on the fluorescence tasks indicates that
most of the model’s predictive capacity is coming from the supervised learning task itself. The ran-
dom amino acid replacement strategy is a consistent approach that achieved our best performance
for all tasks and subsampling performed well on tasks that depend on the structural properties of pro-
teins (remote homology and secondary structure): [+0.0%, +4.1%, +3.7%] classification accuracy
for remote homology and [+0.1%, +0.8%, +0.9%] classification accuracy for secondary structure.

5 CONCLUSION

We experimentally verify that relatively naive string manipulations can be used as data augmenta-
tions to improve the performance of self-supervised protein sequence on the TAPE validation tasks.
We demonstrate that, in general, augmentations will boost the model performance, in both linear
evaluation and model fine-tuning cases. However, different downstream tasks benefit from different
protein augmentations; no single augmentation that we studied was consistently the best. However,
the approach that we have taken, where we fine-tune a pretrained model on the validation set re-
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quires significantly lower computational cost than training on the full training set. Consequently, a
modeler interested in a small number of downstream tasks would not be over-burdened to attempt
fine-tuning of the semi-supervised model on a broad range of data augmentation transformations.
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Table 3: Hyperparmeter Setups for Models in Different Tasks

Levels Hyperparmeters
Batch Size Learning Rate # GPUs # Epochs Gradient Acc

SimCLR / TAPE Baseline 512 1e-4/1e-5 8 30 8
Stability 256 1e-4/1e-5 1 60 4
Fluorescence 256 1e-4/1e-5 1 60 16
Remote Homology 256 5e-4/5e-5 1 60 8
Secondary Structure 256 1e-4/1e-5 1 40 8

APPENDIX

A TRAINING DETAILS

For the augmented training, we focused on training the self-supervised part of the model. Namely,
we apply the hyperparameters in Table 3, Row 1, on the self-supervised part in either the SimCLR
(contrastive learning) or the masked-toke prediction model. Here we train all the models for 30
epochs on the Pfam validation set in order to make a relatively fair comparison. As discussed in the
main paper, after the augmented training is finished, we perform linear evaluations on the pre-trained
model in the previous steps with the hyperparameters listed in Table 3, Row 2-5 for the 4 downstream
tasks. All of the linear evaluation results shown in the main paper and appendix are based on the
best results we find after the augmented training and linear evaluation with the hyperparameters
in Table 3. For model fine-tuning, since models trained with contrastive learning and with TAPE’s
semi-supervised learning models have different statistics (model parameters are different), we do not
consider using the same set of hyperparameters. Instead, we report the best results in comparison
to the TAPE’s result. The corresponding hyperparameter setups of the best cases described above,
including the augmented training and linear evaluation, can be found in Table 4. In addition, the
optimizer being applied is AdamW, which is identical to the one in TAPE. Given the NVIDIA V100
GPUs we use have 16 GB memory, a memory limitation, we constrain the sequence length ≤ 512
to enable the training. The batch size we report in appendix are the total batch that considers the
number of GPUs. ”Gradient Acc” in Table 3 is short for ”Gradient Accumulation Steps”, which
describes how many steps per gradient update to the model.

B LINEAR EVALUATION RESULTS

Here we provide comprehensive linear evaluation results of contrastive learning with single aug-
mentation, leave-one-out and pairwise augmentation. To Simplify the tables, we use the same ab-
breviations applied in the main paper to indicate the augmentations. We summarize the best results
after the training and evaluation according to Section A for both single augmentation and pairwise
augmentations in Figure 5. We use diverging palette with the center (gray/white) being the best
linear evaluation baseline results with TAPE’s pre-trained model and warmer colors refering to the
better-than-baseline results and cooler colors being worse-than-baseline results. The diagonal values
come from single augmentation setup and all other values come from pairwise augmentation setup.
Table 5 and Table 6 also include Figure 5’s corresponding values. By checking the values of the
figure and tables, we observe the following: (1) For stability, the binomial replacement works well
with single augmentation and pairwise augmentation. There is no improvement from leave-one-out
augmentation cases. (2) For fluorescence, the pairwise augmentation with binomial replacement and
shuffling can improve the model performance. (3) For remote homology, we clearly see improve-
ments coming from subsampling on all of the three testing sets. And this is independent of other
augmentations in the pairwise case. (4) For secondary structure, we do not observe gains from either
single or pairwise augmentation, which is consistent with the discussion in the main paper. The best
case for secondary structure comes from the masked-token prediction model with augmentations.
Besides the results above, we also provide leave-one-out results in Table 8 with different leave-
one-out cases that contain different augmentations. With leave-one-out augmentations, we observe
only several cases where the leave-one-out cases outperform TAPE’s baselines across 4 downstream
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Table 4: Configurations of the best models

Configurations of Best Models in Augmented Training
Stability Fluorescence Remote Homology Secondary Structure

Model Type SimCLR-based SimCLR-based SimCLR-based TAPE-based
Batch Size 512 512 512 512
Gradient Acc 8 8 8 8
Learning Rate 1e-5 1e-5 1e-5 1e-5
# GPUs 8 8 8 8
# Epochs 30 30 30 30
Aug. Type Single Pairwise Pairwise Pairwise
Aug. Config RD(p = 0.01/0.50) RD(p = 0.01) + LRS RA + SS RA + SS

Configurations of Best Models in Linear Evaluation
Stability Fluorecsence Remote Homology Secondary Structure

Model Type SimCLR-based SimCLR-based SimCLR-based TAPE-based
Batch Size 256 256 256 64
Gradient Acc 4 4 16 8
Learning Rate 1e-4 1e-4 5e-4 1e-4
# GPUs 1 1 1 1
# Epochs 60 60 60 40

Configurations of Best Models in Fine-tuning
Stability Fluorecsence Remote Homology Secondary Structure

Model Type SimCLR-based SimCLR-based SimCLR-based TAPE-based
Batch Size 256 32 32 64
Gradient Acc 4 16 16
Learning Rate 1e-4 3e-5 3e-5 1e-4
# GPUs 1 1 1 1
# Epochs 60 60 20 50

Table 5: Linear Evaluation Results of Single Augmentation

Scenario Stability Fluorescence Remote Homology Secondary Structure

Baseline 0.489 0.256 [0.200, 0.625, 0.231] [0.699, 0.756, 0.727]
RD(p = 0.01) 0.562 0.297 [0.173, 0.660, 0.210] [0.674, 0.713, 0.679]
RD(p = 0.5) 0.562 0.259 [0.153 ,0.529 ,0.166] [0.683, 0.724, 0.684]
RA(p = 0.01) 0.528 0.277 [0.164, 0.491, 0.160] [0.680, 0.706, 0.674]
GRS 0.289 0.336 [0.110, 0.439, 0.100] [0.668, 0.683, 0.646]
LRS 0.338 0.343 [0.100, 0.475, 0.095] [0.666, 0.679, 0.646]
SR 0.258 0.333 [0.104, 0.433, 0.200] [0.664, 0.682, 0.646]
SS 0.355 0.281 [0.183, 0.720, 0.243] [0.705, 0.735, 0.707]

tasks. Nevertheless, the leave-one-out results provide insights that one should not combine arbitrary
augmentations given the decrease in the performance we observe in leave-one-out cases.
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Figure 5: Contrastive Learning Performance with Pairwise & Single Augmentation in Linear Eval-
uation. The heatmaps include the performance of contrastive learning models with pairwise/single
augmentations for 4 different downstream tasks considering all possible testing sets. Both x and
y axes refer to different augmentations. The diagonal of heatmaps refer to the single augmentation
cases. All other cells refer to cases with pairwise augmentations. The values in the heatmaps refer to
evaluation results: “ρ” for Stability and Fluorescence, and “Classification Accuracy” for Secondary
Structure and Remote Homology.
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Table 6: Linear Evaluation Results of Pairwise Augmentation

Scenario Stability Fluorescence Remote Homology Secondary Structure

Baseline 0.489 0.256 [0.200, 0.625, 0.231] [0.699, 0.756, 0.727]
RD(p = 0.01) & RA(p = 0.01) 0.537 0.316 [0.189, 0.696, 0.223] [0.683, 0.737, 0.688]
RD(p = 0.01) & GRS 0.149 0.341 [0.101, 0.419, 0.095] [0.665, 0.676, 0.645]
RD(p = 0.01) & SR 0.265 0.308 [0.111, 0.422, 0.091] [0.664, 0.682, 0.646]
RD(p = 0.01) & LRS 0.134 0.361 [0.097, 0.449, 0.089] [0.654, 0.675, 0.633]
RD(p = 0.01) & SS 0.390 0.268 [0.185, 0.730, 0.262] [0.701, 0.759, 0.725]
RD(p = 0.5) & RA(p = 0.01) 0.527 0.271 [0.159, 0.594, 0.185] [0.644, 0.701, 0.663]
RD(p = 0.5) & GRS 0.121 0.341 [0.092, 0.405, 0.077] [0.624, 0.649, 0.603]
RD(p = 0.5) & SR 0.155 0.335 [0.092, 0.446, 0.095] [0.631, 0.646, 0.603]
RD(p = 0.5) & LRS 0.013 0.341 [0.095, 0.403, 0.083] [0.637, 0.633, 0.605]
RD(p = 0.5) & SS 0.426 0.289 [0.181, 0.688, 0.232] [0.700, 0.753, 0.722]
RA(p = 0.01) & GRS 0.218 0.286 [0.125, 0.449, 0.103] [0.672, 0.679, 0.644]
RA(p = 0.01) & SR 0.203 0.281 [0.123, 0.444, 0.104] [0.665, 0.680, 0.645]
RA(p = 0.01) & LRS 0.284 0.314 [0.111, 0.349, 0.082] [0.663, 0.679, 0.646]
RA(p = 0.01) & SS 0.309 0.256 [0.219, 0.718, 0.255] [0.702, 0.759, 0.726]
GRS & SR 0.087 0.332 [0.131, 0.362, 0.099] [0.671, 0.681, 0.641]
GRS & SS 0.276 0.283 [0.115, 0.440, 0.108] [0.663, 0.700, 0.668]
SR & LRS 0.157 0.303 [0.129, 0.434, 0.098] [0.663, 0.681, 0.647]
SR & SS 0.263 0.296 [0.186, 0.683, 0.205] [0.692, 0.753, 0.724]
LRS & SS 0.302 0.276 [0.174, 0.674, 0.212] [0.695, 0.756, 0.724]

Table 7: Best linear evaluation results. Bold refers to cases that outperform the TAPE baselines;
and red is the task-wise best-performing result. MT and CL refer to training with masked-token
prediction and contrastive learning, respectively. Stability and fluorescence are scored by Spearman
correlation (ρ) and remote homology and secondary structure by Cross Entropy. Bootstrap errors
are reported per task by taking the maximum error found for any of the models.

Scenario Stability Fluor. Remote Homology 2nd Structure

MT: TAPE Baseline 0.498 0.256 [4.433, 1.862, 4.378] [0.661, 0.541, 0.616]
MT: No Aug. (γ = 0) 0.534 0.275 [4.445, 1.860, 4.381] [0.643, 0.532, 0.608]
MT: Best Aug. 0.516 0.301 [4.437, 1.872, 4.404] [0.649, 0.529, 0.602]

CL: No Aug. 0.512 0.334 [4.884, 2.283, 4.900] [0.753, 0.625, 0.713]
CL: Single Aug. 0.562 0.343 [4.709, 1.285, 4.214] [0.672, 0.561, 0.649]
CL: Leave-one-out 0.337 0.323 [5.001, 1.479, 4.460] [0.705, 0.574, 0.674]
CL: Pairwise 0.537 0.361 [4.433, 1.279, 4.045] [0.676, 0.560, 0.638]

Bootstrap 1σ (<) ±0.011 ±0.006 ±[0.010, 0.005, 0.007] ±[0.038, 0.018, 0.009]

C SUPPLEMENTARY

In this section, we provide supplementary results. Specifically, we provide the complete comparison
table on the masked-token prediction model with different augmentation ratio γ in Table 9. We
also provide the corresponding plot in Figure 4 and analylsis in the main paper. Besides, Table 7
provides similar information as Table 2 in the main paper, except for values for remote homolody
and secondary structure here being the cross entropy, rather than classification error.
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Table 8: Linear Evaluation Results with Leave-one-out Augmentations

Meta Description
Cases Leave-one-out Augmentations
Case 1 [RD(p = 0.01), RA, GRS, SR, SS]
Case 2 [RD(p = 0.50), RA, GRS, SR, SS]
Case 3 [RD(p = 0.01), RA, LRS, SR, SS]
Case 4 [RD(p = 0.50), RA, LRS, SR, SS]

Stability
Case 1 Case 2 Case 3 Case 4

All entries 0.337 0.161 0.212 0.248
No RD(0.01 or 0.5) 0.230 0.230 0.335 0.230
No RA 0.136 0.113 0.207 0.195
No GRS or LRS 0.222 0.088 0.222 0.088
No SR 0.326 0.145 0.243 0.138
No SS 0.103 -0.082 0.054 -0.018
MT: TAPE Baseline 0.489

Fluorescence
Case 1 Case 2 Case 3 Case 4

All entries 0.293 0.314 0.281 0.281
No RD(0.01 or 0.5) 0.250 0.250 0.284 0.250
No RA 0.229 0.222 0.280 0.283
No GRS or LRS 0.288 0.323 0.288 0.323
No SR 0.260 0.268 0.286 0.308
No SS 0.288 0.263 0.308 0.251
MT: TAPE Baseline 0.256

Remote Homology
Case 1 Case 2 Case 3 Case 4

All entries [0.104, 0.435, 0.102] [0.091, 0.407, 0.097] [0.132, 0.624, 0.179] [0.128, 0.543, 0.153]
No RD(0.01 or 0.5) [0.111, 0.441, 0.100] [0.111, 0.441, 0.100] [0.128, 0.614, 0.178] [0.111, 0.441, 0.100]
No RA [0.108, 0.433, 0.106] [0.085, 0.411, 0.099] [0.125, 0.615, 0.178] [0.130, 0.537, 0.148]
No GRS or LRS [0.166, 0.688, 0.214] [0.152, 0.609, 0.180] [0.166, 0.688, 0.214] [0.152, 0.609, 0.180]
No SR [0.105, 0.436, 0.100] [0.084, 0.296, 0.086] [0.168, 0.686, 0.222] [0.135, 0.636, 0.192]
No SS [0.104, 0.428, 0.08] [0.105, 0.339, 0.086] [0.105, 0.435, 0.089] [0.095, 0.363, 0.084]
MT: TAPE Baseline [0.200, 0.625, 0.231]

Secondary Structure
Case 1 Case 2 Case 3 Case 4

All entries [0.664, 0.680, 0.648] [0.671, 0.702, 0.673] [0.690, 0.750, 0.718] [0.691, 0.744, 0.715]
No RD(0.01 or 0.5) [0.659, 0.701, 0.666] [0.659, 0.701, 0.666] [0.688, 0.751, 0.720] [0.659, 0.701, 0.666]
No RA [0.663, 0.701, 0.667] [0.581, 0.588, 0.567] [0.125, 0.615, 0.178] [0.685, 0.745, 0.715]
No GRS or LRS [0.695, 0.754, 0.723] [0.687, 0.746, 0.718] [0.695, 0.754, 0.723] [0.152, 0.609, 0.180]
No SR [0.673, 0.703, 0.668] [0.670, 0.705, 0.675] [0.700, 0.756, 0.723] [0.700, 0.747, 0.719]
No SS [0.665, 0.684, 0.645] [0.638, 0.658, 0.615] [0.665, 0.682, 0.645] [0.630, 0.658, 0.624]
MT: TAPE Baseline [0.699, 0.756, 0.727]
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Table 9: Ratio Effects on the Masked-Token Model
Scenarios γ Results Baselines Augmentations

Stability
0.1 0.516±0.007
0.5 0.503±0.007 0.489±0.007 RD(p = 0.01/0.5)
1.0 0.488±0.007

Fluorescence
0.1 0.301±0.005
0.5 0.279±0.006 0.256±0.006 RD(p = 0.01) & LRS
1.0 0.287±0.006

Remote Homology

[0.207±0.015,
0.1 0.637±0.014,

0.241±0.012]
[0.201±0.015, [0.200±0.014,

0.5 0.618±0.013, 0.625±0.014, RA(p = 0.01) & SS
0.223±0.012] 0.231±0.012]
[0.181±0.015,

1.0 0.614±0.015,
0.218±0.012]

Secondary Structure

[0.706±0.016,
0.1 0.770±0.008,

0.727±0.004]
[0.712±0.016, [0.699±0.016,

0.5 0.771±0.008, 0.756±0.008, RA(p = 0.01) & SS
0.727±0.004] 0.727±0.004]
[0.716±0.015,

1.0 0.771±0.008,
0.735±0.003]
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