
Reinforcement Learning Journal 2025
∣

∣ Cover Page

Impoola: The Power of Average Pooling for

Image-Based Deep Reinforcement Learning

Raphael Trumpp, Ansgar Schäfftlein, Mirco Theile, Marco Caccamo

Keywords: Network architecture, network scaling, image encoder, Procgen Benchmark

Summary

As image-based deep reinforcement learning tackles more challenging tasks, increasing

model size has become an important factor in improving performance. Recent studies achieved

this by focusing on the parameter efficiency of scaled networks, typically using Impala-CNN,

a 15-layer ResNet-inspired network, as the image encoder. However, while Impala-CNN ev-

idently outperforms older CNN architectures, potential advancements in network design for

deep reinforcement learning-specific image encoders remain largely unexplored. We find that

replacing the flattening of output feature maps in Impala-CNN with global average pooling

leads to a notable performance improvement. This approach outperforms larger and more

complex models in the Procgen Benchmark, particularly in terms of generalization. We call

our proposed encoder model Impoola-CNN. A decrease in the network’s translation sensitivity

may be central to this improvement, as we observe the most significant gains in games without

agent-centered observations. Our results demonstrate that network scaling is not just about

increasing model size—efficient network design is also an essential factor.

Contribution(s)

1. This work proposes the Impoola-CNN as image encoder for image-based deep reinforce-

ment learning (DRL). Impoola-CNN is built upon the widely used Impala-CNN and en-

hances its network architecture by leveraging global average pooling (GAP).

Context: The state-of-the-art Impala-CNN image encoder does not utilize GAP. In con-

trast, GAP is used in many popular network architectures in computer vision (He et al.,

2016; Xie et al., 2017; Huang et al., 2017; Hu et al., 2018; Liu et al., 2022).

2. Our analysis for the full Procgen Benchmark demonstrates that Impoola-CNN excels at

generalization, especially in environments without agent-centered observations. We show

that Impoola-CNN outperforms other works on scaled networks in DRL.

Context: The Procgen Benchmark (Cobbe et al., 2020) allows for the evaluation of gener-

alization capabilities of image-based DRL agents, which is hard to assess in Atari games.

3. We identify reduced translation sensitivity in Impoola-CNN as a key distinction from

Impala-CNN. Moreover, we find that Impoola-CNN is affected by fewer dormant neurons.

Context: GAP reduces translation sensitivity (Lin, 2013) and is considered a strong induc-

tive bias in computer vision. Sokar et al. (2023) identified the dormant neuron phenomenon,

i.e., a large fraction of neurons yielding near-zero output during, as a cause of wide-ranging

performance decrease in scaled networks in DRL.

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

Impoola: The Power of Average Pooling for

Image-Based Deep Reinforcement Learning

Raphael Trumpp1, Ansgar Schäfftlein1, Mirco Theile1, Marco Caccamo1

{raphael.trumpp,ansgar.schaefftlein,mirco.theile,mcaccamo}@tum.de

1TUM School of Engineering and Design, Technical University of Munich, Germany

Abstract

As image-based deep reinforcement learning tackles more challenging tasks, increasing

model size has become an important factor in improving performance. Recent studies

achieved this by focusing on the parameter efficiency of scaled networks, typically us-

ing Impala-CNN, a 15-layer ResNet-inspired network, as the image encoder. However,

while Impala-CNN evidently outperforms older CNN architectures, potential advance-

ments in network design for deep reinforcement learning-specific image encoders re-

main largely unexplored. We find that replacing the flattening of output feature maps in

Impala-CNN with global average pooling leads to a notable performance improvement.

This approach outperforms larger and more complex models in the Procgen Bench-

mark, particularly in terms of generalization. We call our proposed encoder model

Impoola-CNN. A decrease in the network’s translation sensitivity may be central to this

improvement, as we observe the most significant gains in games without agent-centered

observations. Our results demonstrate that network scaling is not just about increasing

model size—efficient network design is also an essential factor. We make our code

available at https://github.com/raphajaner/impoola.

1 Introduction

Recent works on deep reinforcement learning (DRL) have revealed that apart from algorithmic im-

provements, considerable performance increases can come from the network architecture and train-

ing approach of the used deep neural networks (DNNs). Notably, the Impala-CNN model (Espeholt

et al., 2018), a 15-layer convolutional neural network (CNN) with residual connections, outper-

forms the previously widely used Nature-CNN1 as image encoder for image-based DRL substan-

tially (Cobbe et al., 2020; Schwarzer et al., 2023; Obando-Ceron et al., 2024a). However, raising

the parameter count of DNNs in DRL does not obey scaling laws for better performance as found in

other areas in deep learning (DL) (Kaplan et al., 2020; Zhai et al., 2022), e.g., scaling ResNets to up

to 152 layers improves performance for image classification (He et al., 2016).

There is high interest in finding methods for network scaling in image-based DRL in recent studies

(Nikishin et al., 2022; Schwarzer et al., 2023; Sokar et al., 2023; Obando-Ceron et al., 2024a;b).

Most of these works use the aforementioned Impala-CNN as the image encoder, typically scaling

the network’s width by increasing the output channels per Conv2d layer by a factor τ . Another

line of work (Sinha et al., 2020; Lee et al., 2024) has emphasized the impact of improved network

design in particular to scale fully connected networks in regular DRL. Similar design improvements

for image-based DRL are of high practical appeal, primarily due to the prominence of end-to-end

learning in robotic applications (Yang et al., 2021; Funk et al., 2022; Trumpp et al., 2023).

While experimenting with gradual magnitude pruning (Obando-Ceron et al., 2024a) for DRL, we

accidentally reduced only the Linear layer after the flattened feature maps in the Impala-CNN to

1The CNN model used by Mnih et al. (2015), which consists of three Conv2d layers with {32, 64, 64} filters.

https://github.com/raphajaner/impoola

Reinforcement Learning Journal 2025

0M 0.5M 1M 1.5M 2M 2.5M

0

0.2

0.4

0.6

τ=1
τ=3

τ=1

τ=3τ=1

τ=4
+17 %-35 %

Increasing width scale τ

Number of Network Parameters

N
o
rm

al
iz

ed
S

co
re

(I
Q

M
)

Nature-CNN

Impala-CNN

Impoola-CNN

Figure 1: Impoola-CNN shows higher generalization over the full Procgen Benchmark than the

Nature-CNN (Mnih et al., 2015) and Impala-CNN (Espeholt et al., 2018) image encoders when

scaling the network width τ . By reducing the encoder’s output dimension through GAP in Impoola-

CNN, the number of weights in its Linear layers is reduced and, subsequently, the total parameters.

The networks use a base configuration of {16, 32, 32} filters per block. The presented results are

obtained by evaluating the PPO agent on testing levels after 25M training steps. Normalized scores

are aggregated as IQM across environments with 5 independent runs each, using different seeds.

a tiny fraction—the agent still performed well. This finding motivated us to analyze the effect of

the Flatten layer in more detail, analyzing the dormant neuron distribution in scaled Impala-CNN

encoders. Sokar et al. (2023) identified the dormant neuron phenomenon, i.e., a large fraction of

neurons yielding near-zero output during DRL training, as a potential cause hindering wide-ranging

performance gains through network scaling. After training a proximal policy optimization (PPO)

(Schulman et al., 2017) agent in the Procgen Benchmark (Cobbe et al., 2020) using the Impala-

CNN, we found that the total amount of dormant neurons is especially prominent in the Linear

layer after the flattened features of the CNN-based encoder. Notably, this layer also has a very high

fraction of the network’s overall weights placed due to the high-dimensional embedding created

by the Flatten layer. For image input of 64 × 64 pixels, the Impala-CNN has a total of 626,256

parameters, of which 83.76 % are in this Linear layer.

The Power of Average Pooling: We hypothesize that flattening the output feature maps in the CNN-

based encoder is a root for training instabilities in image-based DRL as it creates a high-dimensional

embedding. This hypothesis is in parallel to the results of Sokar et al. (2024) on soft mixture-of-

experts (SoftMoE), discovering that tokenizing the feature maps, which replace the Flatten layer, is

key for the performance gain. In reference to this, we discover a significant architectural difference

between the Impala-CNN and standard ResNet models (He et al., 2016): There is a global average

pooling (GAP) layer placed before the block of Linear layers in standard ResNets. This GAP re-

duces the feature maps to single values, ensuring input size independence. Moreover, this aggregates

spatial information for reduced translation sensitivity while leading to a low-dimensional represen-

tation, potentially also enhancing gradient flow to earlier layers. Motivated by these benefits, we

propose extending the Impala-CNN with a GAP layer, naming the resulting model Impoola-CNN.

While this modification may seem subtle, we show in Figure 1 that the Impoola-CNN outperforms

the Impala-CNN for the Procgen Benchmark substantially while making efficient use of increased

network widths. Our results emphasize the value of GAP in image-based DRL with scaled networks.

Our main contributions are the following:

• We identify architectural constraints in the Impala-CNN and propose the improved Impoola-CNN

image encoder, which unlocks performance gains through efficient network scaling.

• We provide extensive experiments for the full Procgen Benchmark with PPO and deep Q-network

(DQN) agents. Our results show that our largest tested Impoola-CNN improves generalization in

Procgen by 17 % while using 35 % fewer parameters than Impala-CNN.

• Our analysis investigates the effect of the GAP layer on the network dynamics, identifying its

decreased translation sensitivity as a characteristic quality of Impoola-CNN.

• The used code can be accessed at https://github.com/raphajaner/impoola.

https://github.com/raphajaner/impoola

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

2 Related Work

Network Scaling in Deep RL: For many control applications, the typically used fully connected

networks do not or only marginally improve performance when scaling their parameter count (Hen-

derson et al., 2018). However, recent works (Sinha et al., 2020; Bjorck et al., 2021; Nauman et al.,

2024) demonstrate that gains can be unlocked by improving the network architecture itself first be-

fore scaling, e.g., by introducing a residual block (Lee et al., 2024). Similarly in image-based DRL,

updating the standard Nature-CNN (Mnih et al., 2015) encoder to the modern Impala-CNN model

(Espeholt et al., 2018) yielded significant performance improvements for Atari (Schwarzer et al.,

2023; Song et al., 2020) and Procgen games (Cobbe et al., 2019). Song et al. (2020) compare differ-

ent image encoder models in DRL, highlighting the performance of Impala-CNN as models perform

very differently in DRL than supervised learning. Further performance gains for the Impala-CNN

model by scaling the network width are the subject of recent studies. Nikishin et al. (2022); D’Oro

et al. (2022); Schwarzer et al. (2023); Sokar et al. (2023) stabilize training through periodic reini-

tialization of the full network or neurons. Obando-Ceron et al. (2024a) show that performance for

value-based DRL is improved by unstructured gradual magnitude pruning during training. Obando-

Ceron et al. (2024b) propose replacing the encoder’s Linear layer with a SoftMoE layer. Further

analysis by Sokar et al. (2024) identifies the tokenization of the feature maps for SoftMoEs, rather

than the use of multiple experts, to drive the performance gain found in Obando-Ceron et al. (2024b).

Translation Invariance: A strong inductive bias in computer vision is to incorporate translation

invariance, i.e., invariance to the shifts of an object in the input image. Intuitively, GAP (Lin, 2013)

induces translation invariance, as the average operation is invariant to position (Mouton et al., 2020).

However, Conv2d layers are not fully equivariant due to subsampling and boundary effects (Mouton

et al., 2020), e.g., they can exploit zero-padding and image orders to learn absolute positions (Islam*

et al., 2020; Kayhan & Gemert, 2020). Thus, CNNs are not fully translation invariant even if GAP

is used. However, networks with GAP are typically less sensitive to spatial translations of the input

(Lin, 2013). Translation sensitivity maps are a measure to quantify this property (Kauderer-Abrams,

2017). GAP is still effective in practice and used in many popular network architectures (He et al.,

2016; Xie et al., 2017; Huang et al., 2017; Hu et al., 2018; Liu et al., 2022).

Generalization in Deep Reinforcement Learning: Using the same environment for both train-

ing and testing results in high overfitting of DRL agents (Zhang et al., 2018; Cobbe et al., 2019).

Overfitting in DRL may be associated with a loss of network plasticity (Nikishin et al., 2022; Sokar

et al., 2023) and generalization is theoretically closely related to invariances (Lyle et al., 2019). The

Procgen Benchmark (Cobbe et al., 2020) introduces various procedurally generated environments

to quantify generalization. A number of invariance-based methods have been shown to facilitate

generalization for Procgen environments, ranging from auxiliary losses (Raileanu & Fergus, 2021)

to data augmentation (Lee et al., 2020; Kostrikov et al., 2020; Raileanu et al., 2021).

3 Background

3.1 Deep Reinforcement Learning

The iterative optimization in model-free DRL is formalized by a Markov decision process (MDP)

with tuple (S,A,T,R, γ). Here, S and A represent the state and action spaces, respectively, while

the transition function T : S × A → P(S) defines the probability distribution over the next state

given the current state and action. The reward function is defined as R : S × A → R and γ is

a discount factor. The mapping π : S → P(A) is called a stochastic action policy. A DNN with

weights θ parameterizes the policy πθ in DRL. The optimal policy π∗
θ maximizes the expected return

Vπθ
(s) = Eπθ

[
∑∞

t=0 γ
tR(st, at) | s0 = s].

Q-Network Methods: These DRL methods are typically based on an estimate of the Q-value func-

tion Qπθ
(s, a) := Eπθ

[
∑∞

t=0 γ
tR(st, at) | s0 = s, a0 = a]. This function can be learned itera-

tively by temporal difference learning (Sutton, 1988) and bootstrapping the current Q-value esti-

Reinforcement Learning Journal 2025

mate. DQN (Mnih et al., 2015) implements this by training a DNN with loss function L(θ) =

E(s,a,r,s′)∼D

[

(

r + γmaxa′ Q(s′, a′; θ̄−)−Q(s, a; θ̄)
)2
]

where transitions (s, a, r, s′) ∼ D are

sampled from the experience replay buffer D and by using a target network with θ− as delayed

copies of θ. Actions are obtained greedily by a = argmaxa Q(s, a; θ).

Actor-Critic Methods: In addition to a critic network, e.g., V (s;ϕ) that estimates the state value,

the action policy is defined as a dedicated actor network that can be directly optimized towards an

optimization goal. PPO (Schulman et al., 2017) is an on-policy DRL method, where the weights θ

are updated with respect to the advantage function A(s, a) = Q(s, a) − V (s). The generalized ad-

vantage estimate (GAE) (Schulman et al., 2015) is the common choice to estimate A(s, a). The loss

(clip version) of the PPO actor for a transition tuple e = (s, a, r, s′) of a trajectory τ = {e, e′, ...} is

given by L(θ) = Eτ [min {r(θ)A, clip(r(θ), 1− ϵ, 1 + ϵ)A}]. Here, r(θ) = πθ(a|s)
πθold

(a|s) is the proba-

bility ratio between the old and new policy, where the hyperparameter ϵ limits their deviation.

3.2 Convolutional Neural Networks

Impala-CNN: The Impala-CNN was introduced by Espeholt et al. (2018) as a 15-layer model with

residual connections specifically for encoding image inputs in DRL. The architecture combines

two building blocks. As visualized in Figure 2, the ConvSequence Sj blocks consist first of a

Conv2d layer with MaxPooling and ReLU activation and then 2 subsequent ResBlock blocks as

Sj : {Cj −→ P −→ R0,j −→ R1,j}; the ResBlock blocks Ri,j are based on two Conv2d layers with

ReLU activation and a residual connection. The vanilla Impala-CNN stacks three ConvSequences

{S0, S1, S2} with each block having the same amount of output channels {16, 32, 32}; scaled net-

work versions multiply this configuration by a width scaling factor τ . The original implementation

by Espeholt et al. (2018) adds a Linear layer with 256 neurons to project the flattened feature map

encodings e to a fixed-dimension encoder output z as part of the model.

Pooling Layers: This fundamental operation in CNNs reduces the spatial dimensions of feature

maps x ∈ R
C×H×W where C, H , and W represent channels, height, and width, respectively.

Average pooling computes the mean within a k × l window and stride s as

y(c, i, j) =
1

k · l

k−1
∑

p=0

l−1
∑

q=0

x (c, s · i+ p, s · j + q) ,

where y is the pooled output. Typically, the window is square k = l, and the stride equals the

window size. Global average pooling (GAP) (Lin, 2013) reduces the spatial dimensions of feature

maps x to a single value per map y ∈ R
C by setting k = H, l = W . GAP reduces a network’s

translation sensitivity (Lin, 2013) and simplifies its architecture by inducing no additional learnable

parameters, facilitating scalable and efficient architectures. Common machine learning frameworks

provide adaptive implementations of Pooling layers where only the required output map dimension

must be defined. We refer to this by writing XPool(n,m), which calculates the necessary s, k, l,

and padding such that the output feature maps are of dimension y ∈ R
C×n×m.

4 Impoola-CNN

The Impoola-CNN is a convolutional neural network with an intended use as image encoder for

image-based DRL. Typically, the encoder output z is fed into Linear layer prediction heads, e.g., an

actor and critic head for PPO. We discuss the essential design choices of this architecture below.

Network Design: The Impoola-CNN builds upon the Impala-CNN from Espeholt et al. (2018) and

adds a GAP layer after the last Conv2d layer as shown in Figure 2. This change has a vast influence

on the model architecture, as it reduces feature maps to single entries. As listed in Table C.7, the

scaled Impala-CNN (τ = 2) consists of 1,441,680 learnable parameters for an input image of 64x64,

of which 72.75 % are located in the encoder’s last Linear layer. In contrast, for the same width

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

ResBlock0,0

Input
Conv2dConv2d Conv2d

...

Residual
connection

RGB image

R
es

B
lo

ck
0,

1

ConvSeq0

C
on

vS
eq

1

Flatten

GAP

Linear

Linear

M
ax

Po
ol

Impala-CNN

Impoola-CNN (ours)

C
on

vS
eq

2

Figure 2: The Impala/Impoola-CNN models encode input images x through a ResNet design, con-

sisting of stacked ConvSeq blocks. ConvSeq blocks are built upon a first Conv2D layer, MaxPooling

with stride 2, and two consecutive ResBlocks. ResBlocks are based on two Conv2d layers with a

residual connection. The final feature maps are reduced to single values by using a GAP layer in

Impoola-CNN, while the Impala-CNN flattens all features directly, resulting in a high-dimensional

encoding e. This encoding is then projected to the encoder’s output variable z by a Linear layer.

scale τ , Impoola-CNN contains 409,488 parameters which are equally distributed over the network,

with 4.06 % in the Linear layer. We speculate that this balanced distribution, specifically reducing

the number of Linear layer weights, contributes to the performance increase of Impoola-CNN.

Implementation Details: The Impala/Impoola-CNN encoders are deployed with an output feature

dimension of z ∈ R
256 in all experiments (Espeholt et al., 2018; Huang et al., 2022). Setting

the correct learning rate η is crucial when comparing networks of different parameter counts. We

searched a parameter space {7.5, 5.0, 3.5, 2.5, 1.0}×10−4 for Impala/Impoola-CNN models, using a

scaled version with τ = 2 as the base configuration. We found that for PPO, both models work best

with a learning rate of η|τ=2 = 3.5×10−4, while setting η|τ=2 = 1.0×10−4 is favorable for DQN. We

also tested this learning rate for scaled versions and concluded that we can obtain consistent results

by adjusting the learning rate η according to the following scaling rule η|τ = η|τ=2 ·
τ
2 , which was

also shown to work well in (Obando-Ceron et al., 2024a).

5 Experiments

Experiment Design: We base our analysis on the Procgen Benchmark (Cobbe et al., 2020). Our

evaluation focuses on measuring the generalization of DRL agents, for which Atari games are un-

suitable. Unless otherwise stated, the presented results are based on the full benchmark with all 16

environments. A qualitative description of the environment characteristics is given in Appendix A.

The Procgen Benchmark allows for two tracks: efficiency, where each level is sampled from the full

level distribution, while the generalization track restricts the levels per environment to a fixed set of

200 or 1000 levels for easy and hard settings, respectively. We follow the training recommendation

of Cobbe et al. (2020) and train for 25M timesteps for the easy and 100M for the hard setting.

Evaluation Metrics: We run periodic evaluations during training, gathering the episodic returns of

2,500 episodes. We normalize episodic returns and report normalized scores S using the normal-

ization constants from Cobbe et al. (2020) so that 1.0 corresponds to an optimal policy and 0.0 is

equivalent to a random one. For statistical relevance with a reasonable computational cost, we run

all experiments for each environment with 5 independent runs using different seeds. We presented

results when aggregated across environments as interquantile mean (IQM) (Agarwal et al., 2021)

scores and corresponding 95-% stratified bootstrap confidence interval as shaded areas.

Deep Reinforcement Learning Agents: This work uses PPO and DQN agents. Our implementa-

tions are derived from CleanRL (Huang et al., 2022) for PyTorch (Paszke et al., 2017). The actor

and critic for PPO share the image encoder. Our DQN agent is extended by double Q-learning

(Van Hasselt et al., 2016), multi-step rewards (Sutton, 1988), and a simplified prioritized experience

replay (PER) (Schaul et al., 2015). Hyperparameters are listed in Appendix B.1. Implementation

details of other methods for benchmarking are given in Appendix B.2.

Reinforcement Learning Journal 2025

Figure 3: Generalization track for the easy (blue and orange) and hard setting (green and red) using

PPO and scaled networks of τ = 2. Results for the levels used during training are depicted as dotted

lines; test performance on unseen levels are solid lines. Agents in easy games are evaluated every

2.5M steps; the hard game setting requires longer training, so evaluations run every 10M steps. We

utilize linear learning rate annealing in the hard setting to stabilize the long training duration.

(a) Efficiency tracks for PPO. (b) Generalization track (easy setting) for DQN.

Figure 4: Further evaluation of Impala-CNN and Impoola-CNN encoders (τ = 2). We test PPO

additionally for the efficiency track (left) and show results for DQN-based agents (right).

5.1 Evaluation

Our initial experiment evaluates the effect of scaling the width of Impala-CNN and our proposed

Impoola-CNN from τ = 1 to 3 and 4, respectively. The results are shown in Figure 1 for PPO

for the full Procgen Benchmark. First, it can be seen that Impoola-CNN has substantially fewer

total parameters at the same width levels τ . Overall, the largest tested Impoola-CNN achieves a

17 % higher IQM score for generalization with 35 % less parameters than the Impala-CNN. These

results demonstrate the efficacy of the proportional weight distribution in the Impoola-CNN, as a

high parameter count in the Linear layer does not directly translate into higher performance.

Figure 3 presents the results for the generalization track with PPO in detail for τ = 2, comparing the

scores for the easy and hard settings. In addition to the usually only evaluated testing performance

on the full distribution of levels, we display results for the restricted set of levels used in training.

In the easy setting, the performance of Impala-CNN on training levels trails the proposed Impoola-

CNN only by a limited margin. However, Impala-CNN’s learned action policies generalize worse

to unseen testing levels than Impoola-CNN. This trend persists for the hard setting as Impoola-

CNN improves performance on unseen testing levels but additionally outperforms Impala-CNN on

the restricted training levels. We posit that in the easy setting, Impala-CNN is able to capture the

fundamental game mechanics for high training performance. However, in contrast to Impoola-

CNN, it fails to scale to the increased task complexity in hard. We hypothesize that its GAP layer

encourages the agent to learn more universal feature representations, which enable better adaptation

to new levels and facilitate learning under challenging conditions.

We conduct additional experiments, and first show results for PPO also in the efficiency track, i.e.,

training on the full level distribution, in Figure 4a. Impala-CNN’s performance drops from the easy

to hard setting meaningfully, while Impoola-CNN’s remains more consistent. This result is interest-

ing since the efficiency setting may favor larger networks due to their larger hypothesis space. Nev-

ertheless, the Impoola-CNN agent, consisting of 409,488 parameters, outperforms the Impala-CNN,

which has approximately a 3x higher parameter count of 1,441,680. Finally, Figure 4b shows another

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

(a) Benchmarking with other methods.

(b) Probability of improvement that Algorithm X

(left) performs better than Algorithm Y (right).

Figure 5: Benchmarking the Impoola-CNN (τ = 2) against other methods for the generalization

track (easy) across the full Procgen Benchmark. We extend the Impala-CNN (τ = 2) by gradual

magnitude pruning (Obando-Ceron et al., 2024a), SoftMoE (Obando-Ceron et al., 2024b), and ReDo

(Sokar et al., 2023) for comparison. We present the final IQM scores (left) and the probability of

improvement (right). The probability of improvement is a measure to estimate how likely it is that

an algorithm outperforms another one in a single environment on average.

experiment with DQN for the generalization track (easy). While DQN achieves overall substantially

lower performance than PPO in this track, the results affirm the previous trends. Impoola-CNN not

only improves testing performance for DQN agents but also training results. An experiment with

adding GAP to the classical Nature-CNN can be found in the Appendix D, but with inconclusive

results due to the Nature-CNN’s overall weak performance and potential underparametrization.

5.2 Benchmark

A comparison of Impoola-CNN to other recent methods related to network scaling is given in Fig-

ure 5a for the generalization track (easy). It is evident that the gradual magnitude pruning method

(Obando-Ceron et al., 2024a) and ReDo (Sokar et al., 2023) do not translate to performance in-

creases. We presume that this situation is due to the fact that these methods were initially developed

in the context of value-based DRL, potentially magnified by our relatively short training period of

25M time steps in the easy setting. However, using SoftMoE with 10 experts (Obando-Ceron et al.,

2024b) leads to a noteworthy increase compared to the vanilla Impala-CNN. This observation is

particularly significant, as Sokar et al. (2024) attribute the performance improvement of the method

primarily to the tokenization of the encoder’s output feature maps. This approach aligns conceptu-

ally to the GAP layer in Impoola-CNN, as both mitigate the need for an excessively large Linear

layer. Impoola-CNN achieves the highest performance gains among the discussed methods and

demonstrates the greatest likelihood of improvement over Impala-CNN in Figure 5b.

5.3 Understanding the Power of Average Pooling

Introducing a GAP layer in Impoola-CNN has two clear implications. First, GAP is well-known

to reduce translation sensitivity in CNNs (Lin, 2013). Second, the feature map encoding e is re-

duced to the number of output feature maps, thus decreasing the connections to the subsequent fully

connected Linear layer. To understand these implications better, we evaluate related alternative ap-

proaches and extend the Impala-CNN instead of a GAP layer, i.e., AvgPool(1,1), by AvgPool(2,2),

MaxPool(1,1), or add a fourth ConvSeq block. Moreover, we test a depthwise Conv2d layer, which

creates 1×1 feature maps.

Translation Sensitivity: We quantify the translation sensitivity of the actor network, following a

similar approach to Kauderer-Abrams (2017), by measuring the change in the action probability

distribution when translating the input image by (x,y) pixels.2 The corresponding translation maps

are displayed in Figure 6. Impala-CNN exhibits substantial variations in action distribution when

2We measure translation sensitivity as the L1 distance between action probabilities from a Categorical distribution, com-

puted from the actor’s output logits. This metric quantifies changes in action probabilities due to image translation and

ensures comparability across networks via Softmax normalization. Only the agent and non-player characters are shifted

against a stationary background to prevent artifacts. See Appendix B.3 for details.

Reinforcement Learning Journal 2025

Figure 6: Translation sensitivity maps for the actor network of PPO in Bigfish (non-agent-centered

game). The maps depict at each pixel (x,y) the corresponding sensitivity score that measures how the

action probability distribution deviates when translating the input image by (x,y) pixels compared to

the untranslated image. As the x and y axes are centered around 0, the center pixel’s sensitivity score

is always 0 as it references the untranslated image. Bright yellow colors indicate high translation

sensitivity, i.e., the action probabilities differ substantially when translating the input by (x,y).

Figure 7: Ablation study of Impoola-CNN (τ = 2) with results for generalization (easy) using a

subset of 10 Procgen games. Note that Caveflyer, Coinrun, and Ninja are environments with agent-

centered observations. We show the final IQM scores (bottom right) and training curves with mean

and standard deviation (rest).

the input image is shifted, leading to inconsistent actions. In contrast, Impoola-CNN-based agents

demonstrate reduced sensitivity to positional shifts, maintaining a stable action profile regardless

of the absolute positions of entities in the image observation. While MaxPooling(1,1) reduces the

output feature maps to single entries like GAP, the max-operation appears to reduce the translation

sensitivity less meaningfully. We also see that AvgPool(2,2) is more sensitive than Impoola-CNN;

the average pooling to (2,2) feature maps retains some spatial information. Given that Depthwise

Conv2D exhibits high translation sensitivity and performs substantially worse than models incorpo-

rating AvgPool(), despite identical parameter counts in the Linear layers, our hypothesis is further

supported that translation insensitivity is a primary contributor to the observed performance gains.

Agent-Centered Observations: We discuss the influence of translation sensitivity in relation to the

characteristics of the Procgen Benchmark games. The game-specific reward curves are presented in

Figure 7. First, it can be seen that Impala-CNN only exhibits favorable performance in the Coinrun

and Ninja environments, which have agent-centered observations, especially early in training. How-

ever, we find no advantage for Impala-CNN in Caveflyer, despite being an environment with agent-

centered observations, and the training curve in Coinrun indicates overfitting. As shown in Figure 8,

the advantage of Impala-CNN in environments with agent-centered observations diminishes in the

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

Figure 8: Results for games with agent-centered observa-

tions in the generalization track (hard) for PPO (τ = 2).

Figure 9: Fraction of dormant neurons

per layer throughout training for the

first two Conv2d layers of the encoder

(τ = 2), its output Linear layer, and

for the total network.

hard setting. Impoola-CNN achieves comparable final performance for these environments as the

generalization performance of Impala-CNN saturates early. We reason that positional information

may only be a helpful inductive bias early in training for agent-centered games. However, it is

also prone to overfitting, leading to networks that show weaker generalization than networks that

pose low translation sensitivity. The results for AvgPool(2,2) highlight an interesting trade-off as

seen in Figure 7. While falling short of Impoola-CNN in non-agent-centered games, it outperforms

Impala-CNN for them and meets Impala-CNN’s performance in agent-centered games.

Dormant Neurons: When monitoring the fraction of dormant neurons (Sokar et al., 2023) during

PPO training in the generalization track (easy), we see in Figure 9 that the total number of dormant

neurons decreases during training for both encoder models. While the Linear layer in Impala-CNN

has a higher initial dormant fraction, it decreases during training to the same fraction. However,

we find a distinct difference for the second Conv2d layer (1), which has no residual connection

such as the first Conv2d layer (0): while Impoola-CNN’s count decreases, Impala-CNN’s dormant

neuron count increases here during training. We reason that this may be attributed to better training

stability and gradients to this early network layer in Impoola-CNN, as the Impala-CNN unbalanced

distribution of network weights along the network depths might reduce effective gradient flow.

6 Conclusion and Future Work

This work introduces the Impoola-CNN model, an improved image encoder for DRL that is based on

the widely used Impala-CNN architecture. Our advancement is based on the introduction of a GAP

layer to the Impala-CNN, which has a two-fold implication. First, it leads to a reduction of required

weights in the encoder’s Linear layer and creates a balanced weight distribution along the network’s

depth. Second, we find that this change effectively reduces the network’s translation sensitivity.

Our experiments for the full Procgen Benchmark show that Impoola-CNN leads to a significant

performance increase, most prominent in environments without agent-centered observations. We

also find that the stronger dependence on absolute positions of Impala-CNN may become detrimental

during the longer training for the hard setting. We hypothesize that its GAP layer encourages the

agent to learn more universal feature representations, which enable better adaptation to new levels

and facilitate learning under challenging conditions.

For future work, we plan to conduct further experiments outside the Procgen Benchmark. While

results for other game-inspired environments, e.g., Atari games, would double-down our results,

we see a stronger need for evaluation in real-world image-based DRL applications, e.g., automated

driving (Trumpp et al., 2023) or vision-guided quadrupedal locomotion (Yang et al., 2021).

Reinforcement Learning Journal 2025

Acknowledgments

Marco Caccamo was supported by an Alexander von Humboldt Professorship endowed by the Ger-

man Federal Ministry of Education and Research.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.

Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-

tion processing systems, 34:29304–29320, 2021.

Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning

with spectral normalization. Advances in neural information processing systems, 34:8242–8255,

2021.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-

tion in reinforcement learning. In International conference on machine learning, pp. 1282–1289.

PMLR, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to

benchmark reinforcement learning. In International conference on machine learning, pp. 2048–

2056. PMLR, 2020.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and

Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.

In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam

Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-

portance weighted actor-learner architectures. In International conference on machine learning,

pp. 1407–1416. PMLR, 2018.

Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters. Learn2assemble with struc-

tured representations and search for robotic architectural construction. In Conference on Robot

Learning, pp. 1401–1411. PMLR, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770–778, 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.

Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial

intelligence, volume 32, 2018.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 4700–4708, 2017.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-

nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep

reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Md Amirul Islam*, Sen Jia*, and Neil D. B. Bruce. How much position information do convolutional

neural networks encode? In International Conference on Learning Representations, 2020.

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language

models. arXiv preprint arXiv:2001.08361v1, 2020.

Eric Kauderer-Abrams. Quantifying translation-invariance in convolutional neural networks. arXiv

preprint arXiv:1801.01450v1, 2017.

Osman Semih Kayhan and Jan C van Gemert. On translation invariance in cnns: Convolutional

layers can exploit absolute spatial location. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 14274–14285, 2020.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing

deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649v4, 2020.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,

Peter R Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling

up parameters in deep reinforcement learning. arXiv preprint arXiv:2410.09754v1, 2024.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple tech-

nique for generalization in deep reinforcement learning. In International Conference on Learning

Representations, 2020.

M Lin. Network in network. arXiv preprint arXiv:1312.4400v3, 2013.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.

A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pp. 11976–11986, 2022.

Clare Lyle, Marta Kwiatkowksa, and Yarin Gal. An analysis of the effect of invariance on gen-

eralization in neural networks. In International conference on machine learning Workshop on

Understanding and Improving Generalization in Deep Learning, volume 1, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-

mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level

control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Coenraad Mouton, Johannes C Myburgh, and Marelie H Davel. Stride and translation invariance in

cnns. In Southern African Conference for Artificial Intelligence Research, pp. 267–281. Springer,

2020.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-

ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In

ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists and Theorists, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The

primacy bias in deep reinforcement learning. In International conference on machine learning,

pp. 16828–16847. PMLR, 2022.

Johan Samir Obando-Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep rein-

forcement learning, a pruned network is a good network. In Forty-first International Conference

on Machine Learning, 2024a.

Johan Samir Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nico-

laus Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of

experts unlock parameter scaling for deep RL. In Forty-first International Conference on Machine

Learning, 2024b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in

pytorch. 2017.

Reinforcement Learning Journal 2025

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement

learning. In International Conference on Machine Learning, pp. 8787–8798. PMLR, 2021.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic

data augmentation for generalization in reinforcement learning. Advances in Neural Information

Processing Systems, 34:5402–5415, 2021.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.

CoRR, abs/1511.05952, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and P. Abbeel. High-dimensional

continuous control using generalized advantage estimation. CoRR, abs/1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347v2, 2017.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agar-

wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level effi-

ciency. In International Conference on Machine Learning, pp. 30365–30380. PMLR, 2023.

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense

architectures in reinforcement learning. arXiv preprint arXiv:2010.09163v2, 2020.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-

nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.

32145–32168. PMLR, 2023.

Ghada Sokar, Johan Obando-Ceron, Aaron Courville, Hugo Larochelle, and Pablo Samuel Castro.

Don’t flatten, tokenize! unlocking the key to softmoe’s efficacy in deep RL. arXiv preprint

arXiv:2410.01930v1, 2024.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfit-

ting in reinforcement learning. In International Conference on Learning Representations, 2020.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,

3:9–44, 1988.

Raphael Trumpp, Martin Büchner, Abhinav Valada, and Marco Caccamo. Efficient learning of urban

driving policies using bird’s eye-view state representations. In 2023 IEEE 26th International

Conference on Intelligent Transportation Systems (ITSC), pp. 4181–4186, 2023.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-

learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-

formations for deep neural networks. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 1492–1500, 2017.

Ruihan Yang, Minghao Zhang, Nicklas Hansen, Huazhe Xu, and Xiaolong Wang. Learning vision-

guided quadrupedal locomotion end-to-end with cross-modal transformers. In Deep RL Workshop

NeurIPS, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.

12104–12113, 2022.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep

reinforcement learning. arXiv preprint arXiv:1804.06893v2, 2018.

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

Supplementary Materials
The following content was not necessarily subject to peer review.

A Procgen Benchmark

Description: The Procgen Benchmark was developed by Cobbe et al. (2020) to test generalization

and sample efficiency of DRL agents. The Benchmark consists of 16 games and allows for hard

and easy game settings to balance computation demand accordingly. For the generalization track, a

restricted fixed set of 200 levels is used for training in the easy setting, while all possible procedurally

generated levels are used for evaluation. Cobbe et al. (2020) recommend training for 25M steps in

this setting. When the hard setting is used, 1000 training levels are used with 100M training steps.

The efficiency tracks do not restrict the set of training levels but use the full distribution of levels.

The action space of the Procgen environments consists of 15 discrete actions. Observations are RGB

images with 3 × 64 × 64 pixels. No stacking of images is required, as we utilize the environments

without the setting that requires memory. We show example image observations for the games in

Figure A.1 and list specific game characteristics in Table A.1.

Figure A.1: All ProcGen environments depicted with a single image observation (64x64 pixels):

Bigfish, Bossfight, Caveflyer, Chaser, Climber, Coinrun, Dodgeball, Fruitbot, Heist, Jumper, Leaper,

Maze, Miner, Ninja, Plunder, and Starpilot (left to right).

Normalized Score: As suggested by Cobbe et al. (2020), we report normalized scores S by

S =
R−Rmin

Rmax −Rmin

,

where R is the raw return collected by the agent, Rmin is the score for the environment by a random

agent, Rmax is the maximum possible score. The normalization constants are shown in Table A.2

and Table A.3 for easy and hard game settings, respectively.

Reinforcement Learning Journal 2025

Table A.1: Game characteristics of the Procgen Benchmark environments. Fixed translation in the x

and y directions means the image is centered on the agent, i.e., there is no relative movement of the

agent in the image. Agent-centered images convey that the map observation is not fixed but moves

relatively to the agent.

Game X Translation Y Translation Rotation Map

Bigfish Free Free Left/right Fixed

Bossfight Free Limited No Fixed

Caveflyer Fixed Fixed Free Free

Chaser Free Free No Fixed

Climber Free Fixed Left/right Fixed

Coinrun Fixed Fixed No Free

Dodgeball Free Free Free Fixed

Fruitbot Free Fixed No Free

Heist Free Free No Fixed

Jumper Fixed Fixed Left/right Free

Leaper Free Free Free Fixed

Maze Free Free Free Fixed

Miner Free Free Fixed Fixed

Ninja Fixed Fixed Left/right Free

Plunder Free Fixed No Fixed

Starpilot Free Free Free Free

Table A.2: Normalization constants from Cobbe et al. (2020) for all Procgen Benchmark environ-

ments in the easy setting.

Game Rmin Rmax Game Rmin Rmax

Bigfish 1 40 Jumper 3 10

Bossfight 0.5 13 Leaper 3 10

Caveflyer 3.5 12 Maze 5 10

Chaser 0.5 13 Miner 1.5 13

Climber 2 12.6 Ninja 3.5 10

Coinrun 5 10 Plunder 4.5 30

Dodgeball 1.5 19 Starpilot 2.5 64

Fruitbot -1.5 32.4 Heist 3.5 10

Table A.3: Normalization constants from Cobbe et al. (2020) for all Procgen Benchmark environ-

ments in the hard setting.

Game Rmin Rmax Game Rmin Rmax

Bigfish 0 40 Jumper 1 10

Bossfight 0.5 13 Leaper 1.5 10

Caveflyer 2 13.4 Maze 4 10

Chaser 0.5 14.2 Miner 1.5 20

Climber 1 12.6 Ninja 2 10

Coinrun 5 10 Plunder 3 30

Dodgeball 1.5 19 Starpilot 1.5 35

Fruitbot -0.5 27.2 Heist 2 10

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

B Experiment Details

B.1 Hyperparameters List

Table B.4: Hyperparameters for Proximal Policy Optimization (PPO).

Hyperparameter Values

Number Parallel Environments 64

Environment Steps 256

Learning Rate (τ = 2) 3.5× 10−4

Batch Size 2048

Epochs 3

Discount Factor γ 0.99

GAE Lambda (λ) 0.95

Clip Range 0.2

Value Function Coefficient 0.5

Entropy Coefficient 0.01

Max Gradient Norm 0.5

Optimizer Adam

Shared Policy and Value Network Yes

Table B.5: Hyperparameters for Deep Q-Network (DQN).

Hyperparameter Values

Number Parallel Environments 128

Learning Rate (τ = 2) 1× 10−4

Batch Size 512

Discount Factor γ 0.99

Target Network Update Frequency 64,000 steps

Learning Starts 250,000 steps

Train Frequency 1

Replay Buffer Size 1× 106

Exploration Initial ϵ 1.0

Exploration Final ϵ 0.025

Exploration Decay Fractions 0.1

Max Gradient Norm 10.0

Optimizer Adam

B.2 Benchmark Methods

• Unstructured gradual magnitude pruning (Obando-Ceron et al., 2024a): PyTorch provides tools

for unstructured pruning. We use a target sparsity of 0.9 and follow the proposed schedule that

starts pruning 20 % into training and stops at 80 %.

• SoftMoE (Obando-Ceron et al., 2024b): PyTorch reimplementation on base of the official code re-

lease https://github.com/google/dopamine/tree/master/dopamine/labs/

moes. We deploy 10 experts.

• ReDo (Sokar et al., 2023): PyTorch reimplementation from https://github.com/

timoklein/redo that was based on the official code release. We initialize neurons every

100 iterations and set τ = 0.025.

https://github.com/google/dopamine/tree/master/dopamine/labs/moes
https://github.com/google/dopamine/tree/master/dopamine/labs/moes
https://github.com/timoklein/redo
https://github.com/timoklein/redo

Reinforcement Learning Journal 2025

B.3 Translation Sensitivity Maps

Adapting Translation Sensitivity Maps for Procgen: Originally, translation sensitivity maps were

generated by shifting MNIST digits, which feature unicolor backgrounds. In this case, the back-

grounds fuse naturally and no artifacts are introduced. This approach cannot be transferred to Proc-

gen as the backgrounds are not unicolor. Moreover, it is more meaningful to simply measure the

agent’s sensitivity to translations of the entities in the foreground, while keeping the original 64×64
pixel background. Translation sensitivity maps can then be created as a visualization where each

pixel (x,y) of a heatmap corresponds to the translation sensitivity score s given an image xtrans that

was translated by (x,y) pixels compared to an original image xorig. As shown in Figure B.2, the x

and y axes in these maps are centered around 0 which means the center pixel’s sensitivity score is

always 0 as it references the untranslated image.

Base image,
 no background,

 border region
Base image

 with background

-8 +8

-8

+8

Translation
 Sensitivity

 Map

x= + 8, y= 8

x= + 8, y= + 8

Figure B.2: Generation of translation sensitivity maps. For the arrangement of fish, we require a free

border region (white) with a width of 10 pixels, which ensures that translations by ±8 pixels do not

remove any fish from the frame (left). We then add the background to obtain the base image, which

provides the base actor output (middle left). Each pixel of the translation sensitivity map (middle

right) corresponds to a translation of the entities in the foreground relative to the base image. For

example, the pixel in the right upper corner corresponds to the maximal translation to the right and

upward (upper right).

Data Generation: We select the Bigfish game for evaluation and data generation, as its Procgen

game engine allows us to create images of the background and fish entities independently. We

originate data from different episodes to ensure data diversity and constrain the agent to be in the

center 22 × 22 pixels square of the frame to mitigate the effect of proximity to the image border.

We also ensure that the agent is not alone in the frame, so only interactions with other fish are

investigated. As shown in Figure B.2, the collected fish images can then be translated independently

over different background scenarios to create translated images xtrans given the original image xorig.

Measuring Translation Sensitivity The actor network Actorθ in PPO with discrete actions outputs

the logits of a Categorical distribution, from which actions a ∈ {1, . . . , 15} are sampled. We define

the translation sensitivity score s as follows

s =
∥

∥SoftMax(Actorθ(xorig))− SoftMax(Actorθ(xtrans))
∥

∥

1
,

quantifying how much the action probabilities change when translating the input image xorig to

xtrans while not altering the relative positioning of the entities. Unlike the approach of Kauderer-

Abrams (2017) that measures translation sensitivity by computing distances of the network’s output

vector and then normalizes the score, our method directly operates in the action probability space.

By computing the L1 distance between probability distributions, our method ensures a common

probability space that directly allows for comparisons between different networks, in contrast to the

normalization of the output vector, where finding a meaningful normalization is not obvious.

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

C Network Architecture

Table C.6: Model summary of the Impala-CNN (τ = 2) for PPO with 64 x 64 input images. The

overall parameter count is 1,441,680, with a total of 118.26M multi-adds.

Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds

ImpalaPPOActorCritic [3, 64, 64] [15] – – – –

Impala-CNN [3, 64, 64] [256] – – – –

ConvSequence [3, 64, 64] [32, 32, 32] – – – –

Conv2d [3, 64, 64] [32, 64, 64] 896 [3, 3] 0.06% 3,670,016

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

ConvSequence [32, 32, 32] [64, 16, 16] – – – –

Conv2d [32, 32, 32] [64, 32, 32] 18,496 [3, 3] 1.28% 18,939,904

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

ConvSequence [64, 16, 16] [64, 8, 8] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

Flatten [64, 8, 8] [4096] – – – –

Linear [4096] [256] 1,048,832 – 72.75% 1,048,832

Actor [256] [15] 3,855 – 0.27% 3,855

Critic [256] [1] 257 – 0.02% 257

Table C.7: Model summary of the Impoola-CNN (τ = 2) for PPO with 64 x 64 input images. The

overall parameter count is 409,488, with a total of 117.23M multi-adds.

Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds

ImpoolaPPOActorCritic [3, 64, 64] [15] – – – –

Impoola-CNN [3, 64, 64] [256] – – – –

ConvSequence [3, 64, 64] [32, 32, 32] – – – –

Conv2d [3, 64, 64] [32, 64, 64] 896 [3, 3] 0.22% 3,670,016

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

ConvSequence [32, 32, 32] [64, 16, 16] – – – –

Conv2d [32, 32, 32] [64, 32, 32] 18,496 [3, 3] 4.52% 18,939,904

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

ConvSequence [64, 16, 16] [64, 8, 8] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

AdaptiveAvgPool2d [64, 8, 8] [64, 1, 1] – – – –

Linear [64] [256] 16,640 – 4.06% 16,640

Actor [256] [15] 3,855 – 0.94% 3,855

Critic [256] [1] 257 – 0.06% 257

Reinforcement Learning Journal 2025

D Nature-CNN with GAP

As suggested during the reviewing process, we also evaluate the effect of adding GAP to the Nature-

CNN (Mnih et al., 2015). This experiment aims to improve the understanding of the effect of adding

a GAP layer. However, as the overall performance of the Nature-CNN is weak and there are limited

scaling gains, the results are not fully conclusive.

It can be seen in Figure D.3 that for Nature-CNN, adding the GAP layer is not beneficial. We hy-

pothesize that the reason for this finding is that the Nature-CNN, even when increasing the network

width, has too little depth and is still underparameterized. The Nature-CNN with τ=2 has 342,448

parameters in total, of which 262,400 are located in the Linear layer after flattening. In contrast,

when adding the GAP, this Linear layer is reduced to 16,640 parameters, resulting in a total of

merely 96,688 network parameters. As such, the parameter reduction, which was beneficial for the

overparametrized Impala-CNN, consisting of 15 layers and 1,441,680 parameters for τ=2, may have

a degrading effect, even if other network characteristics may be improved.

We plan further experiments with an altered, deeper network version of the Nature-CNN in future

work, as a more complex experiment design is required to investigate this finding meaningfully.

5M 10M 15M 20M 25M

−0.005

0.000

0.005

0.010

Bigfish

5M 10M 15M 20M 25M

−0.03

−0.02

−0.01

0.00

0.01

Dodgeball

5M 10M 15M 20M 25M

0.00

0.05

0.10

0.15

0.20

Caveflyer

5M 10M 15M 20M 25M

0.05

0.10

0.15

0.20

0.25

Ninja

5M 10M 15M 20M 25M

0.05

0.10

0.15

0.20

Starpilot

5M 10M 15M 20M 25M

0.3

0.4

0.5

0.6

Coinrun

5M 10M 15M 20M 25M

0.025

0.050

0.075

0.100

0.125

Chaser

5M 10M 15M 20M 25M

−0.3

−0.2

−0.1

0.0

Heist

5M 10M 15M 20M 25M

−0.06

−0.04

−0.02

0.00

Plunder

5M 10M 15M 20M 25M

0.0

0.1

0.2

0.3

0.4

Fruitbot

Steps

N
or

m
al

iz
ed

S
co

re

Nature (τ = 1) Nature (τ = 2) Nature (τ = 3) Nature (τ = 2, w/ GAP) Nature (τ = 3, w/ GAP) Nature (τ = 4, w/ GAP)

0.08 0.12 0.16 0.20

Final Normalized Score (IQM)

Nature (τ = 4, w/ GAP)

Nature (τ = 3, w/ GAP)

Nature (τ = 2, w/ GAP)

Nature (τ = 3)

Nature (τ = 2)

Nature (τ = 1)

Figure D.3: Scaled Nature-CNN with results for generalization (easy) using a subset of 10 Procgen

games. The original Nature-CNN is shown as dotted lines; results with GAP are solid. We show the

final IQM scores (bottom right) and training curves with mean and standard deviation (rest).

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

E Additional Material for Experiments

Learning curves based on the evaluation runs which run every 2.5M and 10M, respectively, time

steps. The results show the mean and standard deviation values of the normalized scores S per

Procgen environment, i.e., 1.0 corresponds to an optimal policy.

Figure E.4: Detailed results for PPO with different width scalings τ in the easy generalization track

for training levels. Impala-CNN is depicted as dotted lines.

Figure E.5: Detailed results for PPO with different width scalings τ in the easy generalization track

for testing levels. Impala-CNN is depicted as dotted lines.

Reinforcement Learning Journal 2025

Figure E.6: Detailed results for PPO (τ = 2) in the easy generalization track for training and testing

levels. Training levels are depicted as dotted lines.

Figure E.7: Detailed results for PPO (τ = 2) in the hard generalization track for training and testing

levels. Training levels are depicted as dotted lines.

The Power of Average Pooling for Image-Based Deep Reinforcement Learning

Figure E.8: Detailed results for PPO (τ = 2) in the efficiency track (easy and hard). Easy levels are

depicted as dotted lines.

Figure E.9: Detailed results for DQN (τ = 2) in the generalization track (easy) for training and

testing levels. Training levels are depicted as dotted lines.

Reinforcement Learning Journal 2025

Figure E.10: Detailed results for the benchmark of Impoola-CNN (τ = 2) against other methods in

the generalization track (easy) for testing levels.

