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Summary

As image-based deep reinforcement learning tackles more challenging tasks, increasing

model size has become an important factor in improving performance. Recent studies achieved

this by focusing on the parameter efficiency of scaled networks, typically using Impala-CNN,

a 15-layer ResNet-inspired network, as the image encoder. However, while Impala-CNN ev-

idently outperforms older CNN architectures, potential advancements in network design for

deep reinforcement learning-specific image encoders remain largely unexplored. We find that

replacing the flattening of output feature maps in Impala-CNN with global average pooling

leads to a notable performance improvement. This approach outperforms larger and more

complex models in the Procgen Benchmark, particularly in terms of generalization. We call

our proposed encoder model Impoola-CNN. A decrease in the network’s translation sensitivity

may be central to this improvement, as we observe the most significant gains in games without

agent-centered observations. Our results demonstrate that network scaling is not just about

increasing model size—efficient network design is also an essential factor.

Contribution(s)

1. This work proposes the Impoola-CNN as image encoder for image-based deep reinforce-

ment learning (DRL). Impoola-CNN is built upon the widely used Impala-CNN and en-

hances its network architecture by leveraging global average pooling (GAP).

Context: The state-of-the-art Impala-CNN image encoder does not utilize GAP. In con-

trast, GAP is used in many popular network architectures in computer vision (He et al.,

2016; Xie et al., 2017; Huang et al., 2017; Hu et al., 2018; Liu et al., 2022).

2. Our analysis for the full Procgen Benchmark demonstrates that Impoola-CNN excels at

generalization, especially in environments without agent-centered observations. We show

that Impoola-CNN outperforms other works on scaled networks in DRL.

Context: The Procgen Benchmark (Cobbe et al., 2020) allows for the evaluation of gener-

alization capabilities of image-based DRL agents, which is hard to assess in Atari games.

3. We identify reduced translation sensitivity in Impoola-CNN as a key distinction from

Impala-CNN. Moreover, we find that Impoola-CNN is affected by fewer dormant neurons.

Context: GAP reduces translation sensitivity (Lin, 2013) and is considered a strong induc-

tive bias in computer vision. Sokar et al. (2023) identified the dormant neuron phenomenon,

i.e., a large fraction of neurons yielding near-zero output during, as a cause of wide-ranging

performance decrease in scaled networks in DRL.
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Abstract

As image-based deep reinforcement learning tackles more challenging tasks, increasing1

model size has become an important factor in improving performance. Recent studies2

achieved this by focusing on the parameter efficiency of scaled networks, typically us-3

ing Impala-CNN, a 15-layer ResNet-inspired network, as the image encoder. However,4

while Impala-CNN evidently outperforms older CNN architectures, potential advance-5

ments in network design for deep reinforcement learning-specific image encoders re-6

main largely unexplored. We find that replacing the flattening of output feature maps in7

Impala-CNN with global average pooling leads to a notable performance improvement.8

This approach outperforms larger and more complex models in the Procgen Bench-9

mark, particularly in terms of generalization. We call our proposed encoder model10

Impoola-CNN. A decrease in the network’s translation sensitivity may be central to this11

improvement, as we observe the most significant gains in games without agent-centered12

observations. Our results demonstrate that network scaling is not just about increasing13

model size—efficient network design is also an essential factor.14

1 Introduction15

Recent works on deep reinforcement learning (DRL) have revealed that apart from algorithmic im-16

provements, considerable performance increases can come from the network architecture and train-17

ing approach of the used deep neural networks (DNNs). Notably, the Impala-CNN model (Espeholt18

et al., 2018), a 15-layer convolutional neural network (CNN) with residual connections, outper-19

forms the previously widely used Nature-CNN1 as image encoder for image-based DRL substan-20

tially (Cobbe et al., 2020; Schwarzer et al., 2023; Obando-Ceron et al., 2024a). However, raising21

the parameter count of DNNs in DRL does not obey scaling laws for better performance as found in22

other areas in deep learning (DL) (Kaplan et al., 2020; Zhai et al., 2022), e.g., scaling ResNets to up23

to 152 layers improves performance for image classification (He et al., 2016).24

There is high interest in finding methods for network scaling in image-based DRL in recent studies25

(Nikishin et al., 2022; Schwarzer et al., 2023; Sokar et al., 2023; Obando-Ceron et al., 2024a;b).26

Most of these works use the aforementioned Impala-CNN as the image encoder, typically scaling27

the network’s width by increasing the output channels per Conv2d layer by a factor τ . Another28

line of work (Sinha et al., 2020; Lee et al., 2024) has emphasized the impact of improved network29

design in particular to scale fully connected networks in regular DRL. Similar design improvements30

for image-based DRL are of high practical appeal, primarily due to the prominence of end-to-end31

learning in robotic applications (Yang et al., 2021; Funk et al., 2022; Trumpp et al., 2023).32

Sokar et al. (2023) identified the dormant neuron phenomenon, i.e., a large fraction of neurons33

yielding near-zero output during DRL training, as a potential cause hindering wide-ranging per-34

formance gains through network scaling. Thus, with the goal of identifying improvements for the35

1The CNN model used by Mnih et al. (2015), which consists of three Conv2d layers with {32, 64, 64} filters.

1



Under review for RLC 2025, to be published in RLJ 2025

0M 0.5M 1M 1.5M 2M 2.5M

0

0.2

0.4

0.6

τ=1
τ=3

τ=1

τ=3τ=1

τ=4

+17 %
-35 %

Increasing width scale τ

Number of Network Parameters
N

o
rm

al
iz

ed
S

co
re

(I
Q

M
)

Nature-CNN

Impala-CNN

Impoola-CNN

Figure 1: Impoola-CNN shows higher generalization over the full Procgen Benchmark than the

Nature-CNN (Mnih et al., 2015) and Impala-CNN (Espeholt et al., 2018) image encoders when

scaling the network width τ . By reducing the encoder’s output dimension through global average

pooling in Impoola-CNN, the number of weights in its Linear layers is reduced and, subsequently,

the total parameters. The networks use a base configuration of {16, 32, 32} filters per block. The

presented results are obtained by evaluating the PPO agent on testing levels after 25M training steps.

Normalized scores are aggregated as IQM scores across environments, with 5 independent runs each.

Impala-CNN, we analyzed the distribution of dormant neurons in scaled Impala-CNN encoders.36

After training a proximal policy optimization (PPO) (Schulman et al., 2017) agent in the Procgen37

Benchmark (Cobbe et al., 2020) using the Impala-CNN, we found that the total amount of dormant38

neurons is especially prominent in the Linear layer after the flattened features of the CNN-based39

encoder. Notably, this layer also has a very high fraction of the network’s overall weights placed.40

For an image input of 64× 64 pixels, the Impala-CNN has a total of 626,256 parameters, of which41

83.76 % are in this Linear layer. Moreover, the fraction of dormant neurons is also high in the sec-42

ond Conv2d layer, suggesting that gradients are becoming unstable at this early layer as this is not43

the case for the first Conv2d layer which may profit from its direct residual connection.44

The Power of Average Pooling: We hypothesize that flattening the output feature maps in the CNN-45

based encoder is a root for training instabilities in image-based DRL as it creates a high dimensional46

output. This hypothesis is in parallel to the results of Sokar et al. (2024) on soft mixture-of-experts47

(SoftMoE), discovering that tokenizing the encoder output, which replaces the Flatten layer, is key48

for the performance gain. In reference to this, we discover a significant architectural difference be-49

tween the Impala-CNN and standard ResNet models (He et al., 2016): There is a global average50

pooling (GAP) layer placed before the block of Linear layers in standard ResNets. This global pool-51

ing layer reduces the feature maps to single values, ensuring input size independence. Moreover, this52

aggregates spatial information for reduced translation sensitivity while leading to a low-dimensional53

representation, potentially also enhancing gradient flow to earlier layers. Motivated by these bene-54

fits, we propose extending the Impala-CNN with a GAP layer, naming the resulting model Impoola-55

CNN. While this modification may seem subtle, we show in Figure 1 that the Impoola-CNN out-56

performs the Impala-CNN as image encoder for the Procgen Benchmark substantially while making57

efficient use of increased parameter counts for scaled networks. Our results emphasize the value of58

GAP as an essential element in designing scalable networks for image-based DRL.59

Our main contributions are the following:60

• We identify architectural constraints in the Impala-CNN and propose the improved Impoola-CNN61

image encoder, which unlocks performance gains through efficient network scaling.62

• We provide extensive experiments for the full Procgen Benchmark with PPO and deep Q-network63

(DQN) agents. Our results show that our largest tested Impoola-CNN improves generalization in64

Procgen by 17 % while using 35 % fewer parameters than Impala-CNN.65

• Our analysis investigates the effect of the GAP layer on the encoder, identifying its decreased66

translation sensitivity as a characteristic quality.67

• The used code will be made publicly available.68

2



The Power of Average Pooling for Image-Based Deep Reinforcement Learning

2 Related Work69

Network Scaling in Deep RL: For many control applications, the typically used fully connected70

networks do not or only marginally improve performance when scaling their parameter count (Hen-71

derson et al., 2018). However, recent works (Sinha et al., 2020; Bjorck et al., 2021; Nauman et al.,72

2024) demonstrate that gains can be unlocked by improving the network architecture itself first be-73

fore scaling, e.g., by introducing a residual block (Lee et al., 2024). Similarly in image-based DRL,74

updating the standard Nature-CNN (Mnih et al., 2015) encoder to the modern Impala-CNN model75

(Espeholt et al., 2018) yielded significant performance improvements for Atari (Schwarzer et al.,76

2023; Song et al., 2020) and Procgen games (Cobbe et al., 2019). Song et al. (2020) compare differ-77

ent image encoder models in DRL, highlighting the performance of Impala-CNN as models perform78

very differently in DRL than supervised learning. Further performance gains for the Impala-CNN79

model by scaling the network width are the subject of recent studies. Nikishin et al. (2022); D’Oro80

et al. (2022); Schwarzer et al. (2023); Sokar et al. (2023) stabilize training through periodic reini-81

tialization of the full network or neurons. Obando-Ceron et al. (2024a) show that performance for82

value-based DRL is improved by unstructured gradual magnitude pruning during training. Obando-83

Ceron et al. (2024b) propose replacing the encoder’s Linear layer with a SoftMoE layer. Further84

analysis by Sokar et al. (2024) identifies the tokenization of the feature maps for SoftMoEs, rather85

than the use of multiple experts, to drive the performance gain found in Obando-Ceron et al. (2024b).86

Translation Invariance: A strong inductive bias in computer vision is to incorporate translation87

invariance, i.e., invariance to the shifts of an object in the input image. Intuitively, GAP (Lin, 2013)88

induces translation invariance, as the average operation is invariant to position (Mouton et al., 2020).89

However, Conv2d layers are not fully equivariant due to subsampling and boundary effects (Mouton90

et al., 2020), e.g., they can exploit zero-padding and image orders to learn absolute positions (Islam91

et al., 2020; Kayhan & Gemert, 2020). Thus, CNNs are not fully translation invariant even if GAP92

is used. However, networks with GAP are typically less sensitive to spatial translations of the input93

(Lin, 2013). Translation sensitivity maps are a measure to quantify this property (Kauderer-Abrams,94

2017). GAP is still effective in practice and used in many popular network architectures (He et al.,95

2016; Xie et al., 2017; Huang et al., 2017; Hu et al., 2018; Liu et al., 2022).96

Generalization in Deep Reinforcement Learning: Using the same environment for both train-97

ing and testing results in high overfitting of DRL agents (Zhang et al., 2018; Cobbe et al., 2019).98

Overfitting in DRL may be associated with a loss of network plasticity (Nikishin et al., 2022; Sokar99

et al., 2023) and generalization is theoretically closely related to invariances (Lyle et al., 2019). The100

Procgen Benchmark (Cobbe et al., 2020) introduces various procedurally generated environments101

to quantify generalization. A number of invariance-based methods have been shown to facilitate102

generalization for Procgen environments, ranging from auxiliary losses (Raileanu & Fergus, 2021)103

to data augmentation (Lee et al., 2019; Kostrikov et al., 2020; Raileanu et al., 2021).104

3 Background105

3.1 Deep Reinforcement Learning106

The iterative optimization in model-free DRL is formalized by a Markov decision process (MDP)107

with tuple (S,A,T,R, γ). Here, S and A represent the state and action spaces, respectively, while108

the transition function T : S × A → P(S) defines the probability distribution over the next state109

given the current state and action. The reward function is defined as R : S × A → R and γ is110

a discount factor. The mapping π : S → P(A) is called a stochastic action policy. A DNN with111

weights θ parameterizes the policy πθ in DRL. The optimal policy π∗
θ maximizes the expected return112

Vπθ
(s) = Eπθ

[
∑∞

t=0 γ
tR(st, at) | s0 = s].113

Q-Network Methods: These DRL methods are typically based on an estimate of the Q-value func-114

tion Qπθ
(s, a) := Eπθ

[
∑∞

t=0 γ
tR(st, at) | s0 = s, a0 = a]. This function can be learned itera-115

tively by temporal difference learning (Sutton, 1988) and bootstrapping the current Q-value esti-116
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mate. DQN (Mnih et al., 2015) implements this by training a DNN with loss function L(θ) =117

E(s,a,r,s′)∼D

[

(

r + γmaxa′ Q(s′, a′; θ̄−)−Q(s, a; θ̄)
)2
]

where transitions (s, a, r, s′) ∼ D are118

sampled from the experience replay buffer D and by using a target network with θ− as delayed119

copies of θ. Actions are obtained greedily by a = argmaxa Q(s, a; θ).120

Actor-Critic Methods: In addition to a critic network, e.g., V (s;φ) that estimates the state value,121

the action policy is defined as a dedicated actor network that can be directly optimized towards an122

optimization goal. PPO (Schulman et al., 2017) is an on-policy DRL method, where the weights θ123

are updated with respect to the advantage function A(s, a) = Q(s, a) − V (s). The generalized ad-124

vantage estimate (GAE) (Schulman et al., 2015) is the common choice to estimate A(s, a). The loss125

(clip version) of the PPO actor for a transition tuple e = (s, a, r, s′) of a trajectory τ = {e, e′, ...} is126

given by L(θ) = Eτ [min {r(θ)A, clip(r(θ), 1− ǫ, 1 + ǫ)A}]. Here, r(θ) = πθ(a|s)
πθold

(a|s) is the proba-127

bility ratio between the old and new policy, where the hyperparameter ǫ limits their deviation.128

3.2 Convolutional Neural Networks129

Impala-CNN: The Impala-CNN was introduced by Espeholt et al. (2018) as a 15-layer model with130

residual connections specifically for encoding image inputs in DRL. The architecture combines131

two building blocks. As visualized in Figure 2, the ConvSequence Sj blocks consist first of a132

Conv2d layer with MaxPooling and ReLU activation and then 2 subsequent ResBlock blocks as133

Sj : {Cj −→ P −→ R0,j −→ R1,j}; the ResBlock blocks Ri,j are based on two Conv2d layers with134

ReLU activation and a residual connection. The vanilla Impala-CNN stacks three ConvSequences135

{S0, S1, S2} with each block having the same amount of output channels {16, 32, 32}; scaled net-136

work versions multiply this configuration by a width scaling factor τ . The original implementation137

by Espeholt et al. (2018) adds a Linear layer with 256 neurons to project the flattened feature map138

encodings e to a fixed-dimension encoder output z as part of the model.139

Pooling Layers: This fundamental operation in CNNs reduces the spatial dimensions of feature140

maps x ∈ R
C×H×W where C, H , and W represent channels, height, and width, respectively.141

Average pooling computes the mean within a k × l window and stride s as142

y(c, i, j) =
1

k · l

k−1
∑

p=0

l−1
∑

q=0

x (c, s · i+ p, s · j + q) , (1)

where y is the pooled output. Typically, the window is square k = l, and the stride equals the143

window size. Global average pooling (GAP) (Lin, 2013) reduces the spatial dimensions of feature144

maps x to a single value per map y ∈ R
C by setting k = H, l = W . GAP reduces a network’s145

translation sensitivity (Lin, 2013) and simplifies its architecture by inducing no additional learnable146

parameters, facilitating scalable and efficient architectures. Common machine learning frameworks147

provide adaptive implementations of Pooling layers where only the required output map dimension148

must be defined. We refer to this by writing XPool(n,m), which calculates the necessary s, k, l,149

and padding such that the output feature maps are of dimension y ∈ R
C×n×m.150

4 Impoola-CNN151

The Impoola-CNN is a convolutional neural network with an intended use as image encoder for152

image-based DRL. Typically, the encoder output z is fed into Linear layer prediction heads, e.g., an153

actor and critic head for PPO. We discuss the essential design choices of this architecture below.154

Network Design: The Impoola-CNN builds upon the Impala-CNN from Espeholt et al. (2018) and155

adds a GAP layer after the last Conv2d layer as shown in Figure 2. This change has a vast influence156

on the model architecture, as it reduces feature maps to single entries. As listed in Table D.7, the157

scaled Impala-CNN (τ = 2) consists of 1,441,680 learnable parameters for an input image of 64x64,158

of which 72.75 % are located in the encoder’s last Linear layer. In contrast, for the same width159
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Supplementary Materials417

The following content was not necessarily subject to peer review.418

419

A Procgen Benchmark420

Description: The Procgen Benchmark was developed by Cobbe et al. (2020) to test generalization421

and sample efficiency of DRL agents. The Benchmark consists of 16 games and allows for hard422

and easy game settings to balance computation demand accordingly. For the generalization track, a423

restricted fixed set of 200 levels is used for training in the easy setting, while all possible procedurally424

generated levels are used for evaluation. Cobbe et al. (2020) recommend training for 25M steps in425

this setting. When the hard setting is used, 1000 training levels are used with 100M training steps.426

The efficiency tracks do not restrict the set of training levels but use the full distribution of levels.427

The action space of the Procgen environments consists of 15 discrete actions. Observations are RGB428

images with 3 × 64 × 64 pixels. No stacking of images is required, as we utilize the environments429

without the setting that requires memory. We show example image observations for the games in430

Figure A.1 and list specific game characteristics in Table A.1.431

Figure A.1: All ProcGen environments depicted with a single image observation (64x64 pixels):

Bigfish, Bossfight, Caveflyer, Chaser, Climber, Coinrun, Dodgeball, Fruitbot, Heist, Jumper, Leaper,

Maze, Miner, Ninja, Plunder, and Starpilot (left to right).

Normalized Score: As suggested by Cobbe et al. (2020), we report normalized scores S by432

S =
R−Rmin

Rmax −Rmin

, (A.1)

where R is the raw return collected by the agent, Rmin is the score for the environment by a random433

agent, Rmax is the maximum possible score. The normalization constants are shown in Table A.2434

and Table A.3 for easy and hard game settings, respectively.435
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Table A.1: Game characteristics of the Procgen Benchmark environments. Fixed translation in the x

and y directions means the image is centered on the agent, i.e., there is no relative movement of the

agent in the image. Agent-centered images convey that the map observation is not fixed but moves

relatively to the agent.

Game X Translation Y Translation Rotation Map

Bigfish Free Free Left/right Fixed

Bossfight Free Limited No Fixed

Caveflyer Fixed Fixed Free Free

Chaser Free Free No Fixed

Climber Free Fixed Left/right Fixed

Coinrun Fixed Fixed No Free

Dodgeball Free Free Free Fixed

Fruitbot Free Fixed No Free

Heist Free Free No Fixed

Jumper Fixed Fixed Left/right Free

Leaper Free Free Free Fixed

Maze Free Free Free Fixed

Miner Free Free Fixed Fixed

Ninja Fixed Fixed Left/right Free

Plunder Free Fixed No Fixed

Starpilot Free Free Free Free

Table A.2: Normalization constants from Cobbe et al. (2020) for all Procgen Benchmark environ-

ments in the easy setting.

Game Rmin Rmax Game Rmin Rmax

Bigfish 1 40 Jumper 3 10

Bossfight 0.5 13 Leaper 3 10

Caveflyer 3.5 12 Maze 5 10

Chaser 0.5 13 Miner 1.5 13

Climber 2 12.6 Ninja 3.5 10

Coinrun 5 10 Plunder 4.5 30

Dodgeball 1.5 19 Starpilot 2.5 64

Fruitbot -1.5 32.4 Heist 3.5 10

Table A.3: Normalization constants from Cobbe et al. (2020) for all Procgen Benchmark environ-

ments in the hard setting.

Game Rmin Rmax Game Rmin Rmax

Bigfish 0 40 Jumper 1 10

Bossfight 0.5 13 Leaper 1.5 10

Caveflyer 2 13.4 Maze 4 10

Chaser 0.5 14.2 Miner 1.5 20

Climber 1 12.6 Ninja 2 10

Coinrun 5 10 Plunder 3 30

Dodgeball 1.5 19 Starpilot 1.5 35

Fruitbot -0.5 27.2 Heist 2 10
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C Experiment Details440

C.1 Hyperparameters List441

Table C.4: Hyperparameters for Proximal Policy Optimization (PPO).

Hyperparameter Values

Number Parallel Environments 64

Environment Steps 256

Learning Rate (τ = 2) 3.5× 10−4

Batch Size 2048

Epochs 3

Discount Factor γ 0.99

GAE Lambda (λ) 0.95

Clip Range 0.2

Value Function Coefficient 0.5

Entropy Coefficient 0.01

Max Gradient Norm 0.5

Optimizer Adam

Shared Policy and Value Network Yes

Table C.5: Hyperparameters for Deep Q-Network (DQN).

Hyperparameter Values

Number Parallel Environments 128

Learning Rate (τ = 2) 1× 10−4

Batch Size 512

Discount Factor γ 0.99

Target Network Update Frequency 64,000 steps

Learning Starts 250,000 steps

Train Frequency 1

Replay Buffer Size 1× 106

Exploration Initial ǫ 1.0

Exploration Final ǫ 0.025

Exploration Decay Fractions 0.1

Max Gradient Norm 10.0

Optimizer Adam

C.2 Benchmark Methods442

• Unstructured gradual magnitude pruning (Obando-Ceron et al., 2024a): PyTorch provides tools443

for unstructured pruning. We use a target sparsity of 0.9 and follow the proposed schedule that444

starts pruning 20 % into training and stops at 80 %.445

• SoftMoE (Obando-Ceron et al., 2024b): PyTorch reimplementation on base of the official code re-446

lease https://github.com/google/dopamine/tree/master/dopamine/labs/447

moes. We deploy 10 experts.448

• ReDo (Sokar et al., 2023): Pytorch reimplementation from https://github.com/449

timoklein/redo that was based on the official code release. We initialize neurons every450

100 iterations and set τ = 0.025.451
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D Network Architecture480

Table D.6: Model summary of the Impala-CNN (τ = 2) for PPO with 64 x 64 input images. The

overall parameter count is 1,441,680, with a total of 118.26M multi-adds.

Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds

ImpalaPPOActorCritic [3, 64, 64] [15] – – – –

Impala-CNN [3, 64, 64] [256] – – – –

ConvSequence [3, 64, 64] [32, 32, 32] – – – –

Conv2d [3, 64, 64] [32, 64, 64] 896 [3, 3] 0.06% 3,670,016

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 0.64% 9,469,952

ConvSequence [32, 32, 32] [64, 16, 16] – – – –

Conv2d [32, 32, 32] [64, 32, 32] 18,496 [3, 3] 1.28% 18,939,904

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

ConvSequence [64, 16, 16] [64, 8, 8] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 2.56% 9,453,568

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 2.56% 2,363,392

Flatten [64, 8, 8] [4096] – – – –

Linear [4096] [256] 1,048,832 – 72.75% 1,048,832

Actor [256] [15] 3,855 – 0.27% 3,855

Critic [256] [1] 257 – 0.02% 257

Table D.7: Model summary of the Impoola-CNN (τ = 2) for PPO with 64 x 64 input images. The

overall parameter count is 409,488, with a total of 117.23M multi-adds.

Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds

ImpoolaPPOActorCritic [3, 64, 64] [15] – – – –

Impoola-CNN [3, 64, 64] [256] – – – –

ConvSequence [3, 64, 64] [32, 32, 32] – – – –

Conv2d [3, 64, 64] [32, 64, 64] 896 [3, 3] 0.22% 3,670,016

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

ResidualBlock [32, 32, 32] [32, 32, 32] – – – –

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

Conv2d [32, 32, 32] [32, 32, 32] 9,248 [3, 3] 2.26% 9,469,952

ConvSequence [32, 32, 32] [64, 16, 16] – – – –

Conv2d [32, 32, 32] [64, 32, 32] 18,496 [3, 3] 4.52% 18,939,904

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

ResidualBlock [64, 16, 16] [64, 16, 16] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

ConvSequence [64, 16, 16] [64, 8, 8] – – – –

Conv2d [64, 16, 16] [64, 16, 16] 36,928 [3, 3] 9.02% 9,453,568

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

ResidualBlock [64, 8, 8] [64, 8, 8] – – – –

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

Conv2d [64, 8, 8] [64, 8, 8] 36,928 [3, 3] 9.02% 2,363,392

AdaptiveAvgPool2d [64, 8, 8] [64, 1, 1] – – – –

Linear [64] [256] 16,640 – 4.06% 16,640

Actor [256] [15] 3,855 – 0.94% 3,855

Critic [256] [1] 257 – 0.06% 257
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