
BACKTIME: Backdoor Attacks on
Multivariate Time Series Forecasting

Xiao Lin
University of Illinois

Urbana-Champaign, IL, USA
xiaol13@illinois.edu

Zhining Liu
University of Illinois

Urbana-Champaign, IL, USA
liu326@illinois.edu

Dongqi Fu
Meta AI

CA, USA
dongqifu@meta.com

Ruizhong Qiu
University of Illinois

Urbana-Champaign, IL, USA
rq5@illinois.edu

Hanghang Tong
University of Illinois

Urbana-Champaign, IL, USA
htong@illinois.edu

Abstract

Multivariate Time Series (MTS) forecasting is a fundamental task with numerous
real-world applications, such as transportation, climate, and epidemiology. While
a myriad of powerful deep learning models have been developed for this task,
few works have explored the robustness of MTS forecasting models to malicious
attacks, which is crucial for their trustworthy employment in high-stake scenarios.
To address this gap, we dive deep into the backdoor attacks on MTS forecasting
models and propose an effective attack method named BACKTIME. By subtly
injecting a few stealthy triggers into the MTS data, BACKTIME can alter the
predictions of the forecasting model according to the attacker’s intent. Specifically,
BACKTIME first identifies vulnerable timestamps in the data for poisoning, and
then adaptively synthesizes stealthy and effective triggers by solving a bi-level
optimization problem with a GNN-based trigger generator. Extensive experiments
across multiple datasets and state-of-the-art MTS forecasting models demonstrate
the effectiveness, versatility, and stealthiness of BACKTIME attacks. The code is
available at https://github.com/xiaolin-cs/BackTime.

1 Introduction

Time series forecasting finds its applications across diverse domains such as climate [71, 42, 7, 32, 27],
epidemiology [17, 15, 66, 24], transportation [63, 76, 45, 37], and financial markets [61, 26, 72, 51].
Multivariate time series (MTS) represent a collection of time series with multiple variables, and MTS
forecasting aims to predict future data for each variable based on their historical data and the complex
inter-variable relationship among them. Due to its wide applications and complexity, it has become
an important research area. The rapid advancement of deep learning [75, 73, 74, 33, 58, 6, 47]
has significantly contributed to solving time series forecasting challenges. Many deep learning
models have been developed to tackle this problem, including Transformer-based [80, 53, 68, 25],
GNN-based [31, 63, 29, 12, 11] and RNN-based [3, 34] models.

Despite the remarkable capacity of deep learning models, there is an alarming concern that they are
susceptible to backdoor attacks [64, 28, 79, 50, 46]. The attack involves the surreptitious injection
of triggers into datasets, causing poisoned models to provide wrong predictions when the inputs
contain malicious triggers. Extensive works have shown that backdoor attack poses a serious risk
across various classification tasks, including time series classification [38, 18]. However, the threat
to time series forecasting remains unexplored and is of great importance to be investigated. For

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/xiaolin-cs/BackTime

example, data-driven traffic forecasting systems are used in multiple countries to control traffic light
timing, e.g., Google’s Project Green Light [1]. If the input signals to these forecasting systems
are manipulated by hackers to provide malicious predictions, it could lead to widespread traffic
congestion and thus brings negative economic and societal impacts. Similar situations, such as attacks
to stock prediction [8, 61, 77] and climate forecasting [59, 60, 62, 30], would significantly weaken
the reliability of forecasting models and do great harm.

To address this critical and imminent issue, we extend the application landscape of backdoor attack
from MTS classification to forecasting. Unlike traditional backdoor attacks that focus on specific
class labels, our approach aims to induce poisoned models to predict future data as a predefined
target pattern. This new problem prompts several questions that deserve exploration in this paper:
First, stealthy attack, i.e., to what extent can such a manipulation on datasets be imperceptible by
minimizing the amplitude of triggers and maintaining a low injection rate [46, 22]? Second, sparse
attack, i.e., how can data manipulation be confined to a small subset of variables within MTS [48]?

In this paper, we present a novel generative framework for generating stealthy and sparse attacks
on MTS forecasting. To begin with, we first describe a threat model that introduces attackers’
abilities and goals, paving the way for formally defining the problem of MTS forecasting attacks.
Then, to realize the conceptual attackers, we formalize the trigger generation within a bi-level
optimization process and design an end-to-end generative framework called BACKTIME, which
adaptively constructs a graph that measures inter-variable correlations and iteratively solves the
bi-level optimization by employing a GNN-based trigger generator. The intuition behind this is that
triggers effective for one variable are likely to be successful in attacking similar variables. During
the optimization, generated triggers can be sparsely added to only a subset of variables, thereby
only altering the model’s prediction behavior for these target variables. Moreover, to ensure the
stealthiness of the attack, we introduce a non-linear scaling function into the trigger generator to
limit the amplitude of triggers and also leverage a shape-aware normalization loss to ensure that the
frequency of the generated triggers closely match those of the normal time series data.

In summary, our main contributions are as follows:
• Problem. To the best of our knowledge, we are the first to extend the concept of backdoor attacks

to MTS forecasting. We identify two crucial properties of backdor attacks on MTS forecasting:
stealthiness and sparsity; and further devise a novel threat model on this basis.

• Methodology. We propose a bi-level optimization framework for backdoor attacks on MTS
forecasting, aiming to generate effective triggers under stealthy constraints. Based on this frame-
work, we leverage a GNN-based trigger generator to design triggers based on the inter-variable
correlations.

• Evaluation. We conduct extensive experiments on five widely used MTS datasets, demonstrating
that BACKTIME achieves state-of-the-art (SOTA) backdoor attack performance. Our results show
that BACKTIME can effectively control the attacked model to give predictions according to the
attacker’s intent when faced with poisoned inputs, while maintaining its high forecasting ability
for clean inputs.

2 New Backdoor Attack Setting for MTS Forecasting

2.1 Preliminary

Multivariate time series forecasting. In multivariate time series, the dataset encompasses time
series with multiple variables, denoted as X = {x1,x2, . . . ,xN} ∈ RT×N where T represents the
time spans, N represents the number of variables, and xi is the time series sequence of the i-th
variable. For forecasting tasks, a widely used method for training is to slice time windows from the
dataset as the training inputs. Let tIN denote the length of time windows. Then for any timestamp ti
1, the input will consist of historical sequences spanning from timestamps ti − tIN to ti, expressed
as X[ti − tIN : ti]

2. The objective of MTS forecasting is to predict future time series denoted
X[ti : ti + tOUT] where tOUT represents the prediction timestamp. In the following paper, we use Xti,h

to represent historical data X[ti − tIN : ti] and Xti,f to represent future data X[ti : ti + tOUT] for
notation convenience. The main notations in this paper are listed in Table 5.

1For simplicity, in this paper we assume all timestamps ti satisfy tIN ≤ ti ≤ T − tOUT.
2We use seq[i : j] to denote a slice of seq that contains its elements with index from i to j − 1.

2

Table 1: Comparisons of the backdoor attack on MTS forecasting and other backdoor attack tasks.

Backdoor Attack Paradigm
Task-wise Challenges Data-wise Challenges

Target Real-time Constraint on Soft Human Inter-variable
Object Attack Target Object Identification Unreadability Dependence

Image/Text Classification [28, 64, 43, 57] Discrete scalar (label) × × × × ×
Univariate Time Series Classification [18, 38] Discrete scalar (label) × × × ✓ ×

Multivariate Time Series Classification [18, 38] Discrete scalar (label) × × × ✓ ✓
Multivariate Time Series Forecasting (Ours) Sequence (pattern) ✓ ✓ ✓ ✓ ✓

Backdoor Attacks on Classifications Traditional backdoor attacks have proven highly effective
in classification tasks across diverse data formats. Given a dataset D = {X ,Y} with X and Y
representing the set of samples (e.g., images, text, time series) and corresponding labels, respectively,
attackers generate some special and commonly invisible patterns, which are called triggers. For
example, triggers could be specific pixels in images, [28, 64, 10], particular sentences in text
[43, 57, 13], and designed perturbations on time series [38, 18]. These triggers are then inserted into
a small subset of samples in D, with their labels flipped to a predefined target label. After training on
the poisoned dataset, models will predict the class as the target label if the inputs contain triggers
while still performing normally when facing clean inputs, i.e., the inputs without triggers.

2.2 Differences from Attacks on Forecasting w.r.t Tasks and Data Formats

Compared with the traditional backdoor attack [10, 64, 28, 38, 18, 43, 57], the backdoor attack on
MTS forecasting bears several important and unique challenges, as shown in Table 1.

Considering tasks, traditional backdoor attack is applied for classification while this paper focuses on
forecasting, which in turn brings the following four crucial differences. (1) Target object. Instead of
flipping labels on classification, we concatenate triggers and target patterns into successive sequences
and inject them together into the training set, thus building strong temporal correlations between
triggers and target patterns. (2) Real-time attack. Unlike traditional backdoor attacks which may
leverage ground truth data for trigger generation, the attack on forecasting is only allowed to use the
historical data due to the timeliness. For example, if a hacker aims to alter the traffic flow data to
reach a specific value at time ti, then this specific value should be determined before ti. Otherwise,
the data manipulation will be too late and thus useless, since the traffic flow data would have already
been sent to the forecasting system in real-time. It indicates that the shape of triggers at the timestamp
of ti should be known ahead of ti. Therefore, the generation of triggers can only utilize data of ti − 1
at most. (3) Constraint on target object. On MTS forecasting, since both the triggers and the target
pattern are injected into the dataset, we need to impose constraints on triggers as well as the target
pattern. (4) Soft identification. Since perhaps only a part of triggers and target patterns are retained
in sliced time windows, a novel soft identification mechanism is needed to determine if a window has
been attacked. Detailed explanations of (3) and (4) are provided in Section 3.1.

w/o attack

w/ attack

history future

trigger
injection

target pattern
injection

Figure 1: An illustrative example
of data poisoning on the PEMS03
dataset. After triggers and target pat-
terns (red lines) are injected, predic-
tions of the attack model (orange dash
line) will resemble the target pattern.

Considering data, MTS data bears the following uniqueness.
(1) Human unreadability. Analyzing time series data of-
ten requires specialized knowledge, like financial expertise
for stock prices. This makes it harder for humans to detect
modifications in time series data compared to images or texts.
Hence, human judgments is not reliable for assessing the
stealthiness of backdoor attack on forecasting. As a result,
we leverage anomaly detection methods as the stealthiness
indicator, since if a trigger is not stealthy, it will differ sig-
nificantly from the original data, making it detectable as an
anomaly. (2) Inter-variable dependence. Compared with
univariate time series, the attack on MTS data are much more
complicated due to the inter-variable correlations. Since ad-
vanced forecasting models [68, 81, 9, 31, 80] tend to leverage
correlations between variables to enhance their forecasting
performances, if a trigger can successfully attack the pre-
diction of one variable, similar triggers might also work for
closely correlated variables. Thus, trigger generation must
consider both temporal dependencies and inter-variable cor-
relations.

3

Based on all these differences, we present the detailed treat model of backdoor attack on MTS
forecasting as follows.

2.3 Threat Model of Attacks on MTS Forecasting

Capability of attackers: Given a training dataset, the attacker can select αT timestamps to poison,
denoted as T ATK. Then, for each timestamp ti ∈ T ATK, the attacker generates an invisible trigger
g ∈ RtTGR×|S|, where tTGR denotes the length of the trigger, and S ⊆ {1, . . . , N} denotes the selected
variables to poison. After that, the attacker starts to poison the corresponding time series by injecting
the trigger, i.e., X [ti − tTGR : ti,S] ← X [ti − tTGR − 1,S] ⊕ g, and also replacing the future data
with the target pattern, i.e., X [ti : ti + tPTN,S]← X [ti − tTGR − 1,S]⊕ p, where ⊕ represents the
addition with Python broadcasting mechanism, and tPTN is the length of a predefined target pattern.
The data poisoning example is illustrated in Figure 1.

Goals of attackers: (1) Attacked forecasting models predict the future as the ground truth when
facing clean inputs. (2) Attacked forecasting models predicts the future of the target variables as the
given target pattern when the poisoned historical data contains triggers.

2.4 Formal Problem Definition

Problem 1 Backdoor attacks on multivariate time series forecasting.

Input: (1) a clean dataset X ∈ RT×N where T represents the time span and N represents the number
of variables; (2) a predefined target pattern p with a length of tPTN; (3) the length tTGR of triggers to be
added, (4) a temporal injection rate αT, and (5) a set of target variables S satisfying |S|

N ≥ αS with αS
being the spatial injection rate.
Output: a poisoned dataset XATK by poisoning αT timestamps such that the performances of attacked
models will align with goals of attackers if models are trained on a poisoned dataset.

3 Backdoor Attacks on MTS Forecasting

In this section, we introduce our comprehensive threat model proposed for backdoor attacks on MTS
forecasting. First, we formalize the general objective of our threat model in Section 3.1. Then, we
introduce how to instance this objective with our BACKTIME in Section 3.2.

3.1 General Goal and Formulation

In this section, we propose two unique designs for backdoor attacks on MTS forecasting based on the
key differences discussed in Section 2.2.

Stealthiness constraints on triggers and target patterns. To uphold stealthiness in backdoor
attacks, it is imperative to ensure that the poisoned data closely resembles the ground truth data
[38, 46, 67]. However, as Section 2 shows, the insertion of triggers is intended to be applied on
the unknown future. This design limitation makes it almost impossible to ensure the similarity
between the poisoned data and the unknown future. To alleviate this issue, we consider the similarity
between the poisoned data and the recent historical data as a pragmatic alternative, indicating that
the amplitude of generated triggers should be controlled under a small budget. In addition, the same
constraint is supposed to be utilized on target patterns since target patterns are also integrated into the
training data. Mathematically, we use L∞ norm for stealthiness constraints like [20, 19]. Therefore,
the stealthiness constraints could be formally written as:

∥g∥∞ ≤ ∆TGR, ∥p∥∞ ≤ ∆PTN (1)

where ∆TGR and ∆PTN are the budgets for triggers and target patterns, respectively.

Soft identification on poisoned samples. In Multivariate Time Series (MTS) forecasting, a common
practice [68, 35, 81, 9] involves slicing datasets into time windows to serve as inputs for forecasting
models. However, in a poisoned dataset XATK, identifying whether these sliced time windows are
poisoned poses significant challenges for two primary reasons. First, the length of these time windows
may not align with the length of triggers or target patterns. Second, when slicing datasets into time
windows, these windows may encompass only a fraction of the triggers or target patterns. To solve

4

these problems, we propose a soft identification mechanism. Specifically, we assume that the injected
backdoor is activated only when inputs encompass all components of the triggers. Furthermore, we
define the degree of poisoning in inputs based on the proportion of target patterns within the future to
be forecasted. The rationale behind is that when the backdoor begins to be activated, its influence
should be most pronounced, resulting in a significant impact on the forecasting process. As time goes,
the strength of this effect gradually diminishes since the proportion of target patterns within the future
decreases. Mathematically, for any timestamp ti, the soft identification mechanism is formalized as
follows:

β(ti) = η

(
cPTNti

tPTN

)
1
(
cTGRti = tTGR

)
(2)

where β(ti) represents the soft identification mechanism at the timestamp ti, cTGRti and cPTNti are the
length of triggers within XATK

ti,h
and target patterns within XATK

ti,f
, respectively. η is a monotonically

decreasing function satisfying η(1) = 1 and η(0) = 0, which measures the significance attributed to
the degree of poisoning. For example, if η rapidly decreases within the range of (0, 1), it implies that
once the triggers are activated, the expected effects of triggers will diminish rapidly over time.

To sum up, we refine the basic optimization problem [19, 20] of typical backdoor attack by integrating
the above adjustments, hence providing a general mathematical framework for backdoor attack on
MTS forecasting:

min
g

Eti∼T
[
LATK

(
f
(
XATK

ti,h; θ
∗) ,XATK

ti,f

)
· β(ti)

]
s.t. θ∗ = argminEti∼T

[
LCLN

(
f
(
XATK

ti,h; θ
)
,XATK

ti,f

)]
,

∥g∥∞ ≤ ∆TGR, ∥p∥∞ ≤ ∆PTN.

(3)

where XATK represents the poisoned dataset, T represents the set of timestamps in XATK, f(·) denotes
the forecasting model with its parameters of θ, LCLN is the clean loss for forecasting tasks, and LATK
is the attack loss designed to make the model’s output resemble the target pattern. The key idea here
is that, after a model is trained on the poisoned dataset XATK through the lower-level optimization, we
aim to minimize the expectation of difference between the output of this model and the target pattern,
as shown in the upper-level optimization. This is based on the fact that in the upper optimization,
XATK

ti,f
contains at least a part of the target pattern g when β(ti) ̸= 0. Additionally, although constraints

are imposed on both the triggers and the target pattern, the constraint on the target pattern does not
actively participate in the optimization process. Instead, it serves as a constraint that the attacker is
expected to adhere to when determining the shape of the target pattern.

3.2 BACKTIME Algorithm

To successfully achieve backdoor attack on MTS forecasting, we need to determine three key elements:
(RQ1) where to attack, i.e., identifying which variable to target; (RQ2) when to attack, i.e., selecting
which timestamps to attack; and (RQ3) how to attack, i.e., specifying the trigger to inject. Regarding
(RQ1) where to attack, as outlined in Problem 1, the target variables are determined by the attacker
and can be any variable desired. Subsequently, we will discuss (RQ2) when to attack in Section
3.2.1, and provide the details of (RQ3) how to attack in Sections 3.2.2 and 3.2.3.

3.2.1 Selecting Timestamps for Poisoning

In this section, we design an illustrative experiment to investigate the properties of the timestamps
that are more susceptible to attack. The main idea of the experiment is, given a simple and weak
backdoor attack, to observe the change of attack effect when choosing timestamps with different
properties for attack. Based on the experiment results, we find that timestamps w.r.t. high prediction
errors for a clean model are more susceptible to attacks.

We investigate the properties of timestamps on the PEMS03 dataset. Specifically, we first train a
forecasting model (i.e., clean model fCLN) on the original dataset X and record the Mean Absolute
Error (MAE) of the predictions for each timestamp. A higher MAE indicates poorer prediction
performance for that timestamp. We then sort the timestamps in ascending order based on their
MAE and divide them into ten groups, with average MAE percentiles of 0.05, 0.15, · · · , 0.95, as
shown on the x-axis of Figure 2. Then, for each group, we implement a simple backdoor attack,
where a shape-fixed trigger and target pattern are injected to all the timestamps and variables within
the timestamp group, and train a new model (i.e., attacked model fATK) on the poisoned data XATK.

5

Figure 2: The difference of MAE be-
tween a clean model and an attacked
model when using different timestamps
for attack. A lower MAE difference (y-
axis) indicates more susceptible times-
tamps to attack.

The shapes of the trigger and the target pattern are shown
in Appendix D. Intuitively, a timestamp ti that is suscepti-
ble to backdoor attack will have a low poisoned MAE, i.e.,
MAE(fATK,XATK

ti,h
,XATK

ti,f
). It means that at timestamp ti, the

predictions of the attacked model can be greatly altered by
the attack to fit the target pattern. However, relying solely
on poisoned MAE is insufficient because if the target pat-
tern closely resembles the ground truth, the poisoned MAE
will still be low even if the attack fails. To address this
problem, we test a clean model on the poisoned dataset
and further record its clean MAE for each poisoned times-
tamp ti, i.e., MAE(fCLN,XATK

ti,h
,XATK

ti,f
). Then, a lower MAE

difference between poisoned MAE and clean MAE can
reliably indicate more vulnerable timestamps, since the
clean MAE will be quite low, leading to a high MAE differ-
ence, when the target pattern is similar to the ground truth.
The experiment results, as shown in Figure 2, demonstrate
that the group with higher MAE percentile can continu-
ously lead to a lower MAE difference. These findings imply that timestamps where a clean model
performs poorly are more susceptible to backdoor attacks. Therefore, to ensure the strength of
backdoor attack, for each timestamp ti, we leverage a pretrained clean model to calculate MAE
between predictions and the ground truth Xti,f , and further select the top αT timestamps with the
highest MAE, denoted as T ATK.

3.2.2 Trigger Generation

Once the poisoned timestamps are determined, the next step is to generate adaptive triggers to poison
the dataset. First, we generate a weighted graph by leveraging an MLP to capture the inter-variable
correlation within the target variables S. Then, we further utilize a Graph Convolutional Network
(GCN) [40] for trigger generation based on the learned weighted graph.

Graph structure generation. Since we aim to activate backdoor in any timestamps, we do not
expect that the generated graph is closely related to specific local temporal properties in the training
set. Thus, we focus on building a static graph by learning the global temporal features within the
target variables S. Motivated by this goal, we take as the entire input time series data xi, i ∈ S
instead of using sliced time windows. However, the time span T of time series data is often
very large, and hence it is inefficient to directly use total data without preprocessing. Therefore,
we apply the discrete Fourier transform (DFT) [54] to effectively reduce the dimension while
maintaining useful information. Intuitively, long-time-scale features, such as trends and periodicity,
play a pivotal role in the global temporal correlation among variables, compared with the local
noise or high-frequency fluctuations. Consequently, after DFT, we retain only the low-frequency
features of the time series data. Mathematically, for any target variable i ∈ S, this transform
could be expressed as zi = Filter(DFT(xi), k) where DFT(·) represents the DFT transformation,
and Filter(·, k) represents preserving the top k low-frequency features. Furthermore, we employ
Multilayer Perceptron (MLP) to adaptively learn features of different frequencies. Subsequently,
we utilize the output of the MLP to construct a graph that measures the correlation between target
variables. The aforementioned process can be expressed as:

Ai,j = cos(MLP(zi),MLP(zj)), i, j ∈ S (4)

where Ai,j represents the element of learned graph A at the i-th row and the j-th column, and
cos(·, ·) represents the cosine similarity.

Adaptive trigger generation. Once a correlation graph has been obtained, our objective shifts to the
generation of learnable triggers that can be seamlessly integrated into various models with efficacy
and imperceptibility. To ensure semantic consistency between triggers and historical data, we employ
a time window with a length of tBEF to slice the historical data preceding the trigger. Then, we utilize
a GCN for trigger generation based on the sliced historical data:

ĝti = GCN(XATK[ti − tBEF − tTGR : ti − tTGR,S],A), ∀ ti ∈ T ATK (5)

In experiments, we find the following phenomenon: the GCN intends to aggressively increase the
amplitude of output ĝti . Even if an extra penalty on the amplitude is introduced, it still requires

6

much effort to adjust the hyperparameters to control the trigger amplitude. One potential explanation
for this behavior is that a large trigger amplitude leads to substantial deviation, and data points
characterized by such deviations are more readily learned by forecasting models although they violate
the requirements of stealthiness. To address this issue, we propose to introduce a non-linear scaling
function, tanh(·), to generate stealthy triggers by imposing mandatory limitations on the amplitude
of outputs ĝti . Mathematically, the generated triggers can be formalized as follows:

gti = ∆TGR · tanh(ĝti), ∀ti ∈ T ATK (6)

3.2.3 Bi-level Optimization

After introducing the model architecture of the adaptive trigger generator fg in Eqs. (5) and (6), we
aim to optimize the trigger generator through a bi-level optimization problem in Eq. (3) to ensure the
effectiveness of the generated triggers. Recognizing the inherent complexity of bi-level optimization,
we introduce a surrogate forecasting model fs to provide a practical approximation of the precise
solution. This allows us to solve Eq. (3) by iteratively updating the surrogate model and the trigger
generator. However, we further find that if we randomly initialize the surrogate model fs, then
the performance of the trigger generator tends to fluctuates in the initial stage, posing a significant
difficulty in convergence. Therefore, we introduce an additional warm-up phase. During the warm-up
phase, we only train the surrogate model to make it have a reasonable forecasting ability. Once the
warm-up phase is over, we will update both the surrogate model and trigger generator. Specifically,
in this phase, we will divide the training process for each epoch into two stages: (1) the surrogate
model update, and (2) the trigger generator update.

Algorithm 1: BACKTIME

Input :A MTS dataset X, a surrogate
forecasting model fs, a trigger
generator fg , a temporal injection
rate αT, and a set of target
variables S

Output :A poisoned dataset XATK

1 Initialize T as the set of timestamps in X
// Warm-up phase

2 Train fs on X for epochwarm epochs
// Selecting poisoned timestamps

3 sti ← MAE(fs(Xti,h),Xti,f), ∀ti ∈ T ;
4 T ATK ← top αT timestamps with highest sti ;
// Bi-level training phase

5 for epoch = 1→ epochtrain do
6 Update gti w.r.t. Eq. (6) and get XATK;
7 Update fs w.r.t. Eq. (7);
8 Update fg w.r.t. Eqs. (8), (9) and (10);

9 Update gti w.r.t. Eq. (6) and get XATK;
10 return XATK;

At the first stage, we poison the clean dataset,
as mentioned in Section 2.3. Then we aim to
improve the forecasting ability of the surrogate
model fs on the poisoned dataset XATK. Specifi-
cally, we employ a natural forecasting loss func-
tion, denoted as LCLN, to update the surrogate
model fs while fixing the parameters of the trig-
ger generator fg:

lcln = LCLN
(
fs

(
XATK

ti,h

)
,XATK

ti,f

)
, ∀ti ∈ T

(7)
In this paper, we use smooth L1 loss [36] as the
forecasting loss LCLN.

As for the second stage, we aim to update the
trigger generator fg for effective and unnotice-
able triggers. Following Section 2.3, for each
poisoned timestamp ti ∈ T ATK, we will utilize
the trigger generator fg to obtain the trigger gti
based on Eqs (5) and (6), and then re-inject those
triggers to obtain the poisoned dataset XATK.
The main difference of trigger injection between
this stage and the first stage is that the gradient
∂XATK

∂gti
here would be preserved. Then, we aim to implement the attack loss in Eq. (3) to ensure the

effectiveness of triggers. Specifically, after fixing the parameter of the surrogate model fs, the attack
loss could be formalized as:

latk =

t+tPTN∑
ti=t

LATK
(
fs

(
XATK

ti,h

)
,XATK

ti,f

)
· η(ti), ∀t ∈ T ATK (8)

In the paper, we set η(x) = x for simplicity, and set LATK as the MSE loss.

Furthermore, we introduce a normalization loss to regulate the shape of triggers, thereby enhancing
their stealthiness. The main intuition is that high-frequency fluctuations or noises widely exist in
MTS data of real-world datasets [35], but the bi-level optimization in Eq. (3) does not inherently
guarantee that triggers will have high-frequency signals. Therefore, to bridge this gap, the following

7

normalization loss is introduced:

lnorm = AVG

∣∣∣∣ tTGR∑
i=0

gti [i, :]

∣∣∣∣
 , ∀ti ∈ T ATK (9)

where AVG(·) represents the average operation. The key idea is that triggers will exhibit alternating
positive and negative components, i.e., fluctuations, if the summation of triggers along the temporal
dimension approaches zero. To sum up, the loss function for the trigger generator in the second stage
can be expressed as:

ltgr = latk + λ lnorm, ∀t ∈ T ATK (10)
where λ is a hyperparameter. All the above training procedures are summarized in Algorithm 1.

4 Experiments

Table 2: Main results of backdoor attack on MTS forecasting. For all the metrics, the lower the better.
Bold font indicates the best performance for the attack effectiveness. Due to space limitation, we
report the key performance results averaged over three MTS forecasting models and omit some minor
detailed values. Please refer to Appendix E for full results.

Dataset Model Clean Random Inverse Manhattan BACKTIME
MAEC MAEA MAEC MAEA MAEC MAEA MAEC MAEA MAEC MAEA

PEMS03

TimesNet 20.00 28.63 20.92 29.30 20.03 26.62 19.89 26.33 21.23 20.83
FEDformer 15.78 39.86 16.14 15.70 16.18 16.05 16.42 17.10 16.34 14.05
Autoformer 16.03 38.38 17.09 20.98 17.23 20.55 16.75 22.13 17.12 17.68

Average 17.27 35.62 18.05 21.99 17.81 21.07 17.69 21.85 18.23 17.52
PEMS04 Average 24.34 46.82 21.50 30.01 22.61 26.17 22.69 30.95 22.60 26.17
PEMS08 Average 19.30 40.66 19.81 34.69 20.09 30.39 20.37 24.47 19.67 21.48
Weather Average 12.75 94.43 14.53 23.76 13.67 65.56 15.54 73.88 8.43 15.49
ETTm1 Average 1.25 2.58 1.28 1.59 1.32 1.53 1.28 1.82 1.14 1.41

Table 3: Attack performance on the PEMS03 dataset when using different shapes of target patterns.
Bold font indicates the best performance for natural forecasting and attacked forecasting, and
underlined number indicates the second best.

Methods Cone Upward trend Up and down
MAEC RMSEC MAEA RMSEA MAEC RMSEC MAEA RMSEA MAEC RMSEC MAEA RMSEA

Clean 20.00 34.18 28.63 46.69 20.11 34.27 29.32 47.21 19.50 33.78 33.09 50.52
Random 20.92 34.02 29.30 47.07 19.86 33.99 31.41 48.74 19.21 33.31 33.90 51.42
Inverse 20.03 34.21 26.62 38.20 19.91 34.07 30.12 41.44 19.89 34.03 23.14 33.34

Manhattan 19.89 34.05 26.33 36.50 20.17 34.53 24.70 34.14 19.45 33.63 29.88 40.28
BACKTIME 21.23 35.22 20.83 30.94 20.93 35.04 21.96 32.15 20.14 34.21 20.96 31.16

Datasets. We conduct experiments on five real-world datasets, including PEMS03 [63], PEMS04 [63],
PEMS08 [63], weather [2] and ETTm1 [80]. The detailed information of these datasets are provided
in Appendix B. For each dataset, we use the same 60%/20%/20% splits for train/validation/test sets.

Experiment protocal. For the basic setting of backdoor attacks, we adopt tTGR = 4 and tPTN = 7, with
αT of 0.03 and αS of 0.3. More details of attack settings are provided in Appendix C.2. Following
prior studies [44, 21, 5], we use the past 12 time steps to predict subsequent 12 time steps. We
compare BACKTIME with four different training strategies (Clean, Random, Inverse, and Manhattan)
and three SOTA forecasting models [81, 68, 9] under all possible combinations to fully validate
BACKTIME’s effectiveness and versatility. More details of these forecasting models are provided
in Appendix C.1. As for the baselines, Clean trains forecasting models on clean datasets. Random
randomly generates triggers from a uniform distribution. Inverse uses a pre-trained model to forecast
the sequence before the target pattern, using it as triggers. Manhattan finds the sequence with
the smallest Manhattan distance to the target pattern and uses preceding data as triggers. Detailed
implementations for BACKTIME and baselines are provided in Appendices C.2 and C.3, respectively.

Metrics. To evaluate the natural forecasting ability, we use Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) between the model’s output and the ground truth when the input is clean,
denoted as MAEC and RMSEC, respectively. To evaluate attack effectiveness, we use MAE and
RMSE between the model’s output and the target pattern when the input contains triggers, denoted as
MAEA and RMSEA, respectively. For all these metrics, the lower, the better.

8

Table 4: Results of detecting modified segments of poisoned datasets by anomaly detection methods.

Anomaly Detection PEMS03 PEMS04 PEMS08 Weather ETTm1
F1-score AUC F1-score AUC F1-score AUC F1-score AUC F1-score AUC

GDN 0.5006 0.5448 0.4971 0.5270 0.4986 0.5331 0.6015 0.6450 0.4970 0.5365
USAD 0.0000 0.5147 0.0000 0.5183 0.0668 0.4980 0.0000 0.5389 0.0000 0.5279

Figure 3: The impact of the temporal injection rate αT and the spatial injection rate αS on clean
metrics, MAEC and RMSEC, and attack metrics, MAEA and RMSEA.

Effectiveness evaluation. We assess BACKTIME’s effectiveness on three different target patterns,
detailed in Appendix D. Table 2 shows the main results for natural forecasting ability (MAEC) and
attack effectiveness (MAEA) with a cone-shaped target pattern. Note that only for the Clean row,
MAEA and RMSEA are calculated with clean inputs. Similar results for different target patterns,
where we poison PEMS03 with FEDformer [81] (the surrogate model) and test on TimesNet [68],
are in Table 3. Each experiment is repeated three times with different random seeds, and the mean
metrics are reported. Regarding the attack effectiveness, BACKTIME achieves lowest average MAEA
among all the datasets and baselines. It also continuously reduces MAEA to a low degree for all the
model architectures and datasets compared with clean training, indicating a strong effectiveness and
versatility of BACKTIME. Specifically, on the five dataset, MAEA decrease on average by 50.8%,
44.10%, 52.64%, 83.52% , and 45.40%, respectively. Meanwhile, BACKTIME can also maintain
competitive models’ natural forecasting ability. For example, on the PEMS08, Weather and ETTm1
datasets, models attacked by BACKTIME exhibit similar or even better forecasting performance than
the clean training. In short, BACKTIME performs effective and versatile backdoor attacks across
different model architectures, while still keeping models’ competitive forecasting ability.

Stealthiness evaluation. To verify that the data modifications of BACKTIME are imperceptible, we
employ anomaly detection methods, GDN [16] and USAD [4], to identify the poisoned time slots.
Specifically, for each dataset, we train anomaly detection methods on the clean test set and then
record the F1-score and the Area under the ROC Curve (ROC-AUC) on the poisoned training set. The
experimental results are presented in Table 4. The results show that, across all datasets, ROC-AUC is
around 0.5 and F1-score is either around 0.5 or near 0, suggesting that the detection results are nearly
close to that of random guess. These strongly demonstrates the stealthiness of BACKTIME.

Ablation study. To investigate the impact of injection rates on the attack effectiveness, we conduct
experiments on the PEMS03 dataset, with different temporal and spatial injection rates. The experi-
mental results are shown in Figure 3. Based on the results, as the temporal injection rate αT increases,
a decreasing MAEA and RMSEA imply that the effect of BACKTIME gradually improves. However,
even when αT = 0.015, BACKTIME still implements an effective attack. On the other hand, as the
spatial injection rate αS increases, the effect of BACKTIME first improves and then decreases. This
phenomenon may be due to the combined effects of two factors. First, an increase in αS leads to
more poisoned data, which reduces the difficulty of backdoor attack. Second, an increase in αS leads
to an increasing number of target variables, making the correlations among target variables more
complicated and harder to learn. It increases the attack difficulty. Nonetheless, under all injection
rates shown in Figure 3, BACKTIME successfully achieves the attack, demonstrating its superiority.

5 Related Work
Multivariate time series forecasting. Recently, many deep learning models have been proposed
for MTS forecasting. TCN-based methods [55, 23, 65] capture temporal dependencies using con-
volutional kernels. GNN-based methods [39, 78, 31, 63] model inter-variable relationships in
spatio-temporal graphs. Transformers [68, 80, 81, 49] excel in MTS forecasting by using attention
mechanisms to capture temporal dependencies and inter-variable correlations.

Adversarial attack on times series forecasting. Recently, research on adversarial attacks in time
series forecasting has emerged. Pialla et al. [56] propose an adversarial smooth perturbation by

9

adding a smoothness penalty to the BIM attack [41]. Dang et al. [14] use Monte-Carlo estimation
to attack deep probabilistic autoregressive models. Wu et al. [69] generate adversarial time series
through slight perturbations based on importance measurements. Mode et al. [52] employ BIM
to target deep learning regression models. Xu et al. [70] use a gradient-based method to create
imperceptible perturbations that degrade forecasting performance.

Backdoor attacks. Existing backdoor attacks aim to optimize triggers for effectiveness and stealthi-
ness. Extensive works focus on designing special triggers, such as a single pixel [64], a black-and-
white checkerboard [28], mixed backgrounds [10], natural reflections [50], invisible noise [46], and
adversarial patterns [79, 67]. On time series classification, TimeTrojon [18] employs random noise
as static triggers and adversarial perturbations as dynamic triggers, demonstrating that both types
of triggers can successfully execute backdoor attacks. Jiang et al. [38] generate triggers that are as
realistic as real-time series patterns for stealthy and effective attack.

6 Future Directions And Potential Defenses

Backdoor attacks on Multivariate Time Series (MTS) represent a novel area of research, presenting
numerous promising avenues for both attack and defense. In terms of attacks, beyond pursuing
stealthier and more efficient triggers, there are several intriguing challenges that BACKTIME does not
address.

First, attacking MTS imputation tasks remains unexplored and is difficult for BACKTIME to tackle.
To achieve an effective backdoor attack, BACKTIME concatenates the trigger and target pattern
sequentially to establish a strong temporal association, which is the foundation of its attack effec-
tiveness. However, in time series imputation tasks, deep learning models infer missing values based
on both preceding and subsequent data. This dual-direction inference reduces reliance on the data
preceding the missing values, thus breaking BACKTIME’s core assumption. Therefore, designing
triggers that can influence both future and past data could be an interesting direction to explore.

Second, backdoor attacks on MTS forecasting with missing values pose a significant challenge.
BACKTIME’s attack depends on the inclusion of a complete trigger in the input to predict the target
pattern. If the trigger is incomplete due to missing values, the attacked model might fail to recognize
the trigger, rendering the backdoor attack ineffective. Hence, it would be highly interesting to design
triggers that remain effective even when only partial triggers are included.

In terms of backdoor defense, detecting triggers in MTS is an intriguing problem and we provide
some potential solutions here. First, there may be a frequency difference between the generated
triggers and the real data. Therefore, detecting distribution shifts in the frequency domain could be a
promising approach. Additionally, the generated triggers may lack the diversity present in real-world
data. As a result, in the feature space, the (trigger, target pattern) pairs might cluster closely together,
making it feasible to detect backdoor attacks using clustering algorithms.

7 Conclusion

In this paper, we study backdoor attacks in multivariate time series (MTS) forecasting. On this
novel problem setting, we identify two main properties of backdoor attacks: stealthiness and sparsity,
and further provide a detailed threat model. Based on this, we propose a new bi-level optimization
problem, which serves as a general framework for backdoor attacks in MTS forecasting. Subsequently,
we introduce BACKTIME, which utilizes a GNN-based trigger generator and a surrogate forecasting
model to generate effective and stealthy triggers by iteratively solving the bi-level optimization.
Extensive experiments on five real-world datasets demonstrate the effectiveness, versatility, and
stealthiness of BACKTIME attacks.

Acknowledgement

This work is supported by NSF (2416070), NIFA (2020-67021-32799), and IBM-Illinois Discovery
Accelerator Institute. The content of the information in this document does not necessarily reflect
the position or the policy of the Government, and no official endorsement should be inferred.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

10

References
[1] Project green light. https://sites.research.google/greenlight/.

[2] Wetterstation. the weather dataset. https://www.bgc-jena.mpg.de/wetter/.

[3] Hossein Abbasimehr and Reza Paki. Improving time series forecasting using lstm and attention
models. Journal of Ambient Intelligence and Humanized Computing, 13(1):673–691, 2022.

[4] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga.
Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pages
3395–3404, 2020.

[5] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional
recurrent network for traffic forecasting. Advances in neural information processing systems,
33:17804–17815, 2020.

[6] Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Ee-net: Exploitation-exploration
neural networks in contextual bandits. arXiv preprint arXiv:2110.03177, 2021.

[7] MR Bendre, RC Thool, and VR Thool. Big data in precision agriculture: Weather forecasting for
future farming. In 2015 1st international conference on next generation computing technologies
(NGCT), pages 744–750. IEEE, 2015.

[8] Jiasheng Cao and Jinghan Wang. Stock price forecasting model based on modified convolution
neural network and financial time series analysis. International Journal of Communication
Systems, 32(12):e3987, 2019.

[9] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching trans-
formers for visual recognition. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 12270–12280, 2021.

[10] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[11] Weilin Cong, Jian Kang, Hanghang Tong, and Mehrdad Mahdavi. On the generalization
capability of temporal graph learning algorithms: Theoretical insights and a simpler method.
arXiv preprint arXiv:2402.16387, 2024.

[12] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
arXiv preprint arXiv:2302.11636, 2023.

[13] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against lstm-based text
classification systems. IEEE Access, 7:138872–138878, 2019.

[14] Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, and Martin Vechev. Adversarial attacks
on probabilistic autoregressive forecasting models. In International Conference on Machine
Learning, pages 2356–2365. PMLR, 2020.

[15] Philemon Manliura Datilo, Zuhaimy Ismail, and Jayeola Dare. A review of epidemic forecasting
using artificial neural networks. Epidemiology and Health System Journal, 6(3):132–143, 2019.

[16] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate
time series. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages
4027–4035, 2021.

[17] Angel N Desai, Moritz UG Kraemer, Sangeeta Bhatia, Anne Cori, Pierre Nouvellet, Mark
Herringer, Emily L Cohn, Malwina Carrion, John S Brownstein, Lawrence C Madoff, et al.
Real-time epidemic forecasting: challenges and opportunities. Health security, 17(4):268–275,
2019.

11

https://sites.research.google/greenlight/
 https://www.bgc-jena.mpg.de/wetter/

[18] Daizong Ding, Mi Zhang, Yuanmin Huang, Xudong Pan, Fuli Feng, Erling Jiang, and Min
Yang. Towards backdoor attack on deep learning based time series classification. In 2022 IEEE
38th International Conference on Data Engineering (ICDE), pages 1274–1287. IEEE, 2022.

[19] Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent
modification. Advances in Neural Information Processing Systems, 34:18944–18957, 2021.

[20] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 11966–11976, 2021.

[21] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode
networks for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pages 364–373, 2021.

[22] Le Feng, Sheng Li, Zhenxing Qian, and Xinpeng Zhang. Stealthy backdoor attack with
adversarial training. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2969–2973. IEEE, 2022.

[23] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable represen-
tation learning for multivariate time series. Advances in neural information processing systems,
32, 2019.

[24] Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, and Jingrui He. Meta-learned metrics
over multi-evolution temporal graphs. In KDD ’22: The 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pages
367–377. ACM, 2022.

[25] Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey
Malevich, Jingrui He, and Bo Long. Vcr-graphormer: A mini-batch graph transformer via
virtual connections. CoRR, abs/2403.16030, 2024.

[26] Dongqi Fu, Dawei Zhou, and Jingrui He. Local motif clustering on time-evolving graphs. In
KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, CA, USA, August 23-27, 2020, pages 390–400. ACM, 2020.

[27] Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, and Jingrui
He. Generating fine-grained causality in climate time series data for forecasting and anomaly
detection. CoRR, abs/2408.04254, 2024.

[28] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[29] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics
and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on
Knowledge and Data Engineering, 34(11):5415–5428, 2021.

[30] Yoo-Geun Ham, Jeong-Hwan Kim, Eun-Sol Kim, and Kyoung-Woon On. Unified deep learning
model for el niño/southern oscillation forecasts by incorporating seasonality in climate data.
Science Bulletin, 66(13):1358–1366, 2021.

[31] Haoyu Han, Mengdi Zhang, Min Hou, Fuzheng Zhang, Zhongyuan Wang, Enhong Chen,
Hongwei Wang, Jianhui Ma, and Qi Liu. Stgcn: a spatial-temporal aware graph learning method
for poi recommendation. In 2020 IEEE International Conference on Data Mining (ICDM),
pages 1052–1057. IEEE, 2020.

[32] James W Hansen, Simon J Mason, Liqiang Sun, and Arame Tall. Review of seasonal climate
forecasting for agriculture in sub-saharan africa. Experimental agriculture, 47(2):205–240,
2011.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

12

[34] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks
for time series forecasting: Current status and future directions. International Journal of
Forecasting, 37(1):388–427, 2021.

[35] Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and
Yang Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refine-
ment. Advances in Neural Information Processing Systems, 36, 2024.

[36] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics:
Methodology and distribution, pages 492–518. Springer, 1992.

[37] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert
Systems with Applications, 207:117921, 2022.

[38] Yujing Jiang, Xingjun Ma, Sarah Monazam Erfani, and James Bailey. Backdoor attacks on time
series: A generative approach. In 2023 IEEE Conference on Secure and Trustworthy Machine
Learning (SaTML), pages 392–403. IEEE, 2023.

[39] Baoyu Jing, Hanghang Tong, and Yada Zhu. Network of tensor time series. In Proceedings of
the Web Conference 2021, pages 2425–2437, 2021.

[40] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[41] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC,
2018.

[42] Koichi Kurumatani. Time series forecasting of agricultural product prices based on recurrent
neural networks and its evaluation method. SN Applied Sciences, 2(8):1434, 2020.

[43] Hyun Kwon and Sanghyun Lee. Textual backdoor attack for the text classification system.
Security and Communication Networks, 2021:1–11, 2021.

[44] Shiyong Lan, Yitong Ma, Weikang Huang, Wenwu Wang, Hongyu Yang, and Pyang Li. Dstagnn:
Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In Interna-
tional conference on machine learning, pages 11906–11917. PMLR, 2022.

[45] Ibai Lana, Javier Del Ser, Manuel Velez, and Eleni I Vlahogianni. Road traffic forecasting:
Recent advances and new challenges. IEEE Intelligent Transportation Systems Magazine,
10(2):93–109, 2018.

[46] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun Zhu, and David Miller. Backdoor em-
bedding in convolutional neural network models via invisible perturbation. arXiv preprint
arXiv:1808.10307, 2018.

[47] Xiao Lin, Jian Kang, Weilin Cong, and Hanghang Tong. Bemap: Balanced message passing for
fair graph neural network. In Learning on Graphs Conference, pages 37–1. PMLR, 2024.

[48] Linbo Liu, Youngsuk Park, Trong Nghia Hoang, Hilaf Hasson, and Jun Huan. Robust multi-
variate time-series forecasting: adversarial attacks and defense mechanisms. arXiv preprint
arXiv:2207.09572, 2022.

[49] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers:
Exploring the stationarity in time series forecasting. Advances in Neural Information Processing
Systems, 35:9881–9893, 2022.

[50] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16, pages 182–199. Springer, 2020.

[51] Abdul Quadir Md, Sanjit Kapoor, Chris Junni AV, Arun Kumar Sivaraman, Kong Fah Tee,
H Sabireen, and N Janakiraman. Novel optimization approach for stock price forecasting using
multi-layered sequential lstm. Applied Soft Computing, 134:109830, 2023.

13

[52] Gautam Raj Mode and Khaza Anuarul Hoque. Adversarial examples in deep learning for multi-
variate time series regression. In 2020 IEEE Applied Imagery Pattern Recognition Workshop
(AIPR), pages 1–10. IEEE, 2020.

[53] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730,
2022.

[54] Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

[55] Ashutosh Pandey and DeLiang Wang. Tcnn: Temporal convolutional neural network for
real-time speech enhancement in the time domain. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6875–6879. IEEE,
2019.

[56] Gautier Pialla, Hassan Ismail Fawaz, Maxime Devanne, Jonathan Weber, Lhassane Idoumghar,
Pierre-Alain Muller, Christoph Bergmeir, Daniel F Schmidt, Geoffrey I Webb, and Germain
Forestier. Time series adversarial attacks: an investigation of smooth perturbations and defense
approaches. International Journal of Data Science and Analytics, pages 1–11, 2023.

[57] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong Sun. Mind
the style of text! adversarial and backdoor attacks based on text style transfer. arXiv preprint
arXiv:2110.07139, 2021.

[58] Yunzhe Qi, Yikun Ban, and Jingrui He. Graph neural bandits. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1920–1931, 2023.

[59] Jim Salinger, AJ Hobday, RJ Matear, TJ O’Kane, JS Risbey, Piers Dunstan, JP Eveson, EA Ful-
ton, M Feng, EE Plaganyi, et al. Decadal-scale forecasting of climate drivers for marine
applications. Advances in Marine Biology, 74:1–68, 2016.

[60] Sebastian Scher. Toward data-driven weather and climate forecasting: Approximating a simple
general circulation model with deep learning. Geophysical Research Letters, 45(22):12–616,
2018.

[61] Tej Bahadur Shahi, Ashish Shrestha, Arjun Neupane, and William Guo. Stock price forecasting
with deep learning: A comparative study. Mathematics, 8(9):1441, 2020.

[62] Qi Shao, Wei Li, Guijun Han, Guangchao Hou, Siyuan Liu, Yantian Gong, and Ping Qu. A
deep learning model for forecasting sea surface height anomalies and temperatures in the south
china sea. Journal of Geophysical Research: Oceans, 126(7):e2021JC017515, 2021.

[63] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal network data forecasting.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 914–921,
2020.

[64] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks.
Advances in neural information processing systems, 31, 2018.

[65] Renzhuo Wan, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. Multivariate temporal
convolutional network: A deep neural networks approach for multivariate time series forecasting.
Electronics, 8(8):876, 2019.

[66] Lijing Wang, Jiangzhuo Chen, and Madhav Marathe. Defsi: Deep learning based epidemic
forecasting with synthetic information. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 9607–9612, 2019.

[67] Tong Wang, Yuan Yao, Feng Xu, Shengwei An, Hanghang Tong, and Ting Wang. An invisible
black-box backdoor attack through frequency domain. In European Conference on Computer
Vision, pages 396–413. Springer, 2022.

[68] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The eleventh international
conference on learning representations, 2022.

14

[69] Tao Wu, Xuechun Wang, Shaojie Qiao, Xingping Xian, Yanbing Liu, and Liang Zhang. Small
perturbations are enough: Adversarial attacks on time series prediction. Information Sciences,
587:794–812, 2022.

[70] Aidong Xu, Xuechun Wang, Yunan Zhang, Tao Wu, and Xingping Xian. Adversarial attacks
on deep neural networks for time series prediction. In 2021 10th International Conference on
Internet Computing for Science and Engineering, pages 8–14, 2021.

[71] Tae-Woong Yoo and Il-Seok Oh. Time series forecasting of agricultural products’ sales volumes
based on seasonal long short-term memory. Applied sciences, 10(22):8169, 2020.

[72] Kyung Keun Yun, Sang Won Yoon, and Daehan Won. Interpretable stock price forecasting
model using genetic algorithm-machine learning regressions and best feature subset selection.
Expert Systems with Applications, 213:118803, 2023.

[73] Zhichen Zeng. Position-aware regularized optimal transport for network alignment. PhD thesis,
University of Illinois at Urbana-Champaign, 2023.

[74] Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui
He, and Hanghang Tong. Graph mixup on approximate gromov–wasserstein geodesics. In
Forty-first International Conference on Machine Learning.

[75] Zhichen Zeng, Ruike Zhu, Yinglong Xia, Hanqing Zeng, and Hanghang Tong. Generative graph
dictionary learning. In International Conference on Machine Learning, pages 40749–40769.
PMLR, 2023.

[76] Chaoyun Zhang and Paul Patras. Long-term mobile traffic forecasting using deep spatio-
temporal neural networks. In Proceedings of the Eighteenth ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pages 231–240, 2018.

[77] Chuanjun Zhao, Meiling Wu, Jingfeng Liu, Zening Duan, Lihua Shen, Xuekui Shangguan,
Donghang Liu, Yanjie Wang, et al. Progress and prospects of data-driven stock price forecasting
research. International Journal of Cognitive Computing in Engineering, 4:100–108, 2023.

[78] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE transactions on
intelligent transportation systems, 21(9):3848–3858, 2019.

[79] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang.
Clean-label backdoor attacks on video recognition models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 14443–14452, 2020.

[80] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,
2021.

[81] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
conference on machine learning, pages 27268–27286. PMLR, 2022.

15

A Key Symbols of BACKTIME

Table 5: Key symbols.
Symbol Definition
ti The timestamps
tIN The length of time windows
tOUT The prediction time steps
T The time span
N The number of variables
k The number of selected low-frequency features
αT The temporal injection rate
αS The spatial injection rate
∆TGR The budget for the trigger
∆PTN The budget for the target pattern
cTGRti The length of triggers within XATK

ti,h

cPTNti The length of target patterns within XATK
ti,f

xi The time series sequence of the i-th variable
zi The low-frequency features of Xi after DFT

g The trigger
p The target pattern
A The learned graph
X The clean MTS dataset
Xti,h/X[ti − tIN : ti] The historical data in X at the timestamp ti
Xti,f/X[ti : ti + tOUT] The future data in X at the timestamp ti
XATK The poisoned MTS dataset
XATK

ti,h
/XATK[ti − tIN : ti] The historical data in XATK at the timestamp ti

XATK
ti,f

/XATK[ti : ti + tOUT] The future data in XATK at the timestamp ti

S The set of target variables to be attacked
T The set of all the timestamps
T ATK The set of the timestamps to be attacked

f The forecasting model
fs The surrogate forecasting model
fg The trigger generator

B Descriptions of Datasets

Table 6: Statistics of datasets
Datasets Time span The number of variables

PEMS03 26208 358
PEMS04 16992 307
PEMS08 17856 170
Weather 52696 21
ETTm1 69680 7

In this paper, we demonstrate the effectiveness of BACKTIME on five different real-world dataset,
PEMS03 [63], PEMS04 [63], PEMS08 [63], Weather [2], and ETTm1 [80]. The statistics of datasets
are provided in Table 6, and the detailed information is listed below.

• PEMS datasets. These datasets are collected by the Caltrans Performance Measurement
System(PeMS) in real time every 30 seconds[4]. The traffic data are aggregated into 5-
minutes intervals, which means there are 288 time steps in the traffic flow for one day. The

16

system has more than 39,000 detectors deployed on the highway in the major metropolitan
areas in California. There are three kinds of traffic measurements contained in the raw data,
including traffic flow, average speed, and average occupancy.

• Weather dataset. This dataset contains local climatological data for nearly 1,600 U.S.
locations, 4 years from 2010 to 2013, where data points are collected every 1 hour. Each
data point consists of the target value “wet bulb” and 11 climate features.

• ETTm1 dataset. The ETT is a crucial indicator in the electric power long-term deployment.
We collected 2-year data from two separated counties in China. The ETTm1 data is collected
for 15-minute-level. Each data point consists of the target value ”oil temperature” and 6
power load features.

C Experiment Protocol

C.1 Forecasting Models

To validate that BACKTIME is model-agnostic, we train three state-of-the-art forecasting models,
including TimesNet [68], FEDformer [81], and Autoformer[9], on poisoned datasets. In the experi-
ment, for each forecasting model, we use the default hyperparameter settings in the released code
of corresponding publications 3. We use Adam optimizer with a learning rate of 0.0002 to update
these models. These models serve as benchmarks for evaluating the effectiveness and versatility
of BACKTIME across different model architectures. More details of these models are provided as
follows.

• TimesNet [68]. This model discovers the multi-periodicity adaptively and extract the
complex temporal variations from transformed 2D tensors by a parameter-efficient inception
block.

• FEDformer [81]. This model utilizes Fourier transform to develop a frequency enhanced
Transformer, aiming to enhance the performance and efficiency of Transformer for long-term
prediction.

• Autoformer [9]. By employing Auto-Correlation mechanism based on the series periodicity,
this model conducts the dependencies discovery and representation aggregation at the
sub-series level, demonstrating progressive decomposition capacities for complex time
series.

C.2 Training Settings of BACKTIME

We utilize FEDformer [81] as the surrogate forecasting model for trigger generation. Concerning
BACKTIME, we adopt tTGR = 4, tPTN = 7 and tBEF = 6, with the temporal injection rate αT being
0.03 and the spatial injection rate αS being 0.3. We further set k = 200, ∆TGR = 0.2std and
∆PTN = 0.4std for each dataset where std represents the standard deviation of the training set.
Moreover, we set λ = 2, 000 for PEMS03, PEMS04, PEMS08, and Weather datasets, while λ = 5
for ETTm1 dataset. We use 2-layer MLP with the hidden layer of 64 for graph structure generation
in Eq. 4 and use 2-layer GCN with the hidden layer of 64 as the backbone of our trigger generator.

C.3 Baseline Methods

We compare BACKTIME with clean training strategy and three different trigger generation methods.

• Clean. Models will not be attacked and will be trained on clean datasets.
• Random. Timestamps for attack are randomly selected, and the trigger is generated from a

uniform distribution ranging from −∆TGR to ∆TGR. This trigger is repeatedly used at each
selected timestamp.

• Inverse. This attack method flips the dataset along the temporal dimension and further trains
a “forecasting” model that forecasts the history based on future data. By using the target
pattern as input, the outputs of the prediction model are chosen as the trigger. In experiments,

3https://github.com/thuml/Time-Series-Library

17

https://github.com/thuml/Time-Series-Library

FEDformer [81] is used as the forecasting model. Please note that, for this attack method,
the amplitude of generated triggers may exceed the trigger constraints, i.e., ∆TGR.

• Manhattan. This attack method locates time segments in the training set with the smallest
Manhattan distance to the target pattern and uses the preceding time series data of those
segments as triggers. Please note that, for this attack method, the amplitude of generated
triggers may exceed the trigger constraints, i.e., ∆TGR.

D Description of Triggers and Target Patterns

Table 7: The value of triggers on the timestamp selection experiment.

Timestamp 1 2 3 4
Trigger -0.05 0.05 -0.05 0.05

(a) The cone-shaped target pat-
tern.

(b) The target pattern with a up-
ward trend.

(c) The target pattern with an up
and down shape

Figure 4: The shapes of all the target patterns we evaluated in this paper.

In Section 3.2.1, we implement a simple and weak backdoor attack for identifying the properties of
timestamps that are more vulnerable to attack. As for the setting of this backdoor attack, we use a
shape-fixed trigger, whose data are listed in Table 7, and a cone-shaped target pattern, whose data are
shown in Figure 4. For each timestamp group, we will inject this trigger and target pattern into every
timestamp within the group, thus poisoning 10% timestamps in the training set. The experimental
results show that timestamps where a clean model performs poorly are more susceptible to backdoor
attacks.

In Section 4, we validate the effectiveness of BACKTIME on three different shapes of the target
patterns. These target patterns will be inserted into datasets with data standardization, and the specific
shapes of the three target patterns are shown in Figure 4. The endpoints of the three target patterns
are equal to, higher than, or lower than their starting points, respectively. Intuitively, flipping the
target patterns vertically should yield similar effects. Therefore, this paper focuses on target patterns
that exhibit an upward trend after the starting point. Under these three target patterns, this paper
demonstrates that BackTime can effectively attack various target patterns in MTS forecasting.

E Main Experiment Results

The full results for BACKTIME and baselines with the cone-shaped target pattern are provided in
Table 8. From the results, we can observe that BACKTIME can continuously decrease MAEA to
a low degree under any model architecture and any dataset. On PEMS03, PEMS04, and Weather
datasets, BACKTIME surpass all the attack baselines, achieving the lowest MAEA across all the model
architectures. It strongly demonstrates the effectiveness and versatility of BACKTIME.

18

Table 8: Main results of backdoor attack on MTS forecasting. For all the metrics, the lower the better.
Bold font indicates the best performance for the attack effectiveness.

Dataset Models Clean Random Inverse Manhattan BACKTIME
MAEC MAEA MAEC MAEA MAEC MAEA MAEC MAEA MAEC MAEA

PEMS03

TimesNet 20.00 28.63 20.92 29.30 20.03 26.62 19.89 26.33 21.23 20.83
FEDformer 15.78 39.86 16.14 15.70 16.18 16.05 16.42 17.10 16.34 14.05
Autoformer 16.03 38.38 17.09 20.98 17.23 20.55 16.75 22.13 17.12 17.68

Average 17.27 35.62 18.05 21.99 17.81 21.07 17.69 21.85 18.23 17.52

PEMS04

TimesNet 22.95 51.43 23.94 46.27 24.47 33.56 23.91 38.55 24.43 25.66
FEDformer 28.83 44.75 17.95 16.67 21.23 20.52 21.37 25.89 21.51 25.92
Autoformer 21.24 44.28 22.62 27.08 22.12 24.43 22.80 28.41 21.86 26.94

Average 24.34 46.82 21.50 30.01 22.61 26.17 22.69 30.95 22.60 26.17

PEMS08

TimesNet 21.66 55.66 22.21 39.18 22.68 37.20 22.61 31.00 23.17 27.60
FEDformer 17.87 27.83 18.08 31.35 18.29 28.03 19.07 18.47 17.70 16.59
Autoformer 18.38 38.48 19.13 33.54 19.30 25.95 19.44 23.94 18.13 20.24

Average 19.30 40.66 19.81 34.69 20.09 30.39 20.37 24.47 19.67 21.48

Weather

TimesNet 17.95 91.86 21.73 18.39 18.74 46.71 24.87 44.84 8.38 14.97
FEDformer 9.83 97.07 11.13 16.88 9.85 77.74 10.35 95.50 8.64 15.87
Autoformer 10.47 94.36 10.73 36.01 12.42 72.23 11.41 81.31 8.28 15.63

Average 12.75 94.43 14.53 23.76 13.67 65.56 15.54 73.88 8.43 15.49

ETTm1

TimesNet 1.25 2.50 1.31 1.67 1.33 1.49 1.31 1.63 1.20 1.45
FEDformer 1.19 2.55 1.21 1.56 1.27 1.70 1.20 1.87 1.10 1.35
Autoformer 1.32 2.68 1.32 1.54 1.36 1.41 1.34 1.97 1.12 1.42

Average 1.25 2.58 1.28 1.59 1.32 1.53 1.28 1.82 1.14 1.41

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clarify that scope of our method in both Abstract and Introduction, and
also provide detailed contributions in Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

19

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed setting as well as the hyperparameters in the Experi-
ment section
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often

20

one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: After our paper is accepted, we will provide open access to our data and codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the information about the algorithms, the model architecture
and hyperparameters.
Guidelines:

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Due to the page limitation, we don’t provide error bars in this paper, but we
provide the mean results for all the experiment settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our algorithm do not require a high computer resources, and thus we do not
think it is a need for us to specify it.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

22

https://neurips.cc/public/EthicsGuidelines

Justification: Our research strictly follows NeurIPS COde of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work has no series societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

23

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide the links for all the assets we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

24

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	New Backdoor Attack Setting for MTS Forecasting
	Preliminary
	Differences from Attacks on Forecasting w.r.t Tasks and Data Formats
	Threat Model of Attacks on MTS Forecasting
	Formal Problem Definition

	Backdoor Attacks on MTS Forecasting
	General Goal and Formulation
	BackTime Algorithm
	Selecting Timestamps for Poisoning
	Trigger Generation
	Bi-level Optimization

	Experiments
	Related Work
	Future Directions And Potential Defenses
	Conclusion
	Key Symbols of BackTime
	Descriptions of Datasets
	Experiment Protocol
	Forecasting Models
	Training Settings of BackTime
	Baseline Methods

	Description of Triggers and Target Patterns
	Main Experiment Results

