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Abstract

With the widespread adoption of vision-language models (VLMs), users increas-
ingly transmit large amounts of visual information, making context-aware privacy
protection essential. Existing benchmarks for privacy detection are limited: some
degrade image quality by blurring sensitive regions, others narrowly target prede-
fined categories, and most overlook the contextual nature of privacy. As a result,
current static evaluations fail to capture VLMs’ real-world privacy recognition
capabilities.

To address this, we introduce SituationalPriv, a benchmark for evaluating context-
aware privacy understanding. It contains 440 high-quality, privacy-relevant images
from the DIPA2 dataset, each paired with two distinct usage contexts that assign
different privacy attributes to the same content. This design realistically simulates
privacy-sensitive scenarios, enabling more comprehensive evaluation.

We further propose a training-free framework that leverages pretrained VLMs and
large language models (LLMs) to improve context-aware privacy detection. Unlike
prior fine-tuning approaches limited to fixed domains, our method demonstrates
strong generalization across open-domain datasets.

1 Introduction

People today routinely share vast numbers of images through online applications, many of which
contain sensitive personal information. Users often expose such data unintentionally, making it crucial
for VLMs to detect potential privacy leaks in context and alert users. However, existing benchmarks
for privacy detection face significant limitations: some degrade image quality by blurring sensitive
regions [2], while others restrict evaluation to predefined categories and single scenarios [3| [10].
More importantly, they overlook the contextual nature of privacy [12]], where identical content may or
may not constitute a privacy risk depending on situational factors (e.g., a license plate shared with an
insurance company vs. on social media). As a result, static evaluations fail to reflect VLMs’ ability to
handle real-world privacy-sensitive use cases.

To address these gaps, we introduce SituationalPriv, a benchmark designed for context-aware privacy
detection. It includes 440 high-quality, privacy-relevant images curated from the DIPA2 dataset [14]],
each expanded into two distinct scenarios where the same object can be privacy-sensitive in one
context but not in the other. This pairwise setup enables realistic and comprehensive evaluation of
VLMs’ ability to interpret contextual privacy.

We further propose a training-free framework that combines pretrained VLMs and LLMs. By using
LLM:s to guide object-level queries and reason over contextual information, our method significantly
improves context-aware privacy detection without fine-tuning, ensuring generalization across domains
and unseen privacy categories.
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Our contributions are threefold:

* We present SituationalPriv, the first benchmark to systematically evaluate VLMs’ context-
aware privacy understanding with paired sensitive vs. non-sensitive scenarios.

* We design a training-free LLM-VLM framework that leverages pretrained knowledge for
privacy detection without domain-specific fine-tuning.

* We demonstrate significant performance improvements on SituationalPriv, showing that
our approach generalizes beyond in-domain data and fixed privacy categories, making it
suitable for real-world applications.

2 Related Work

Vision-Language Models have demonstrated strong performance across various tasks [S[7,9]. As
VLMs are increasingly integrated into everyday applications, concerns regarding privacy and security
have also gained significant attention [2| [L0]. Several new benchmarks have been proposed to
assess VLMs’ ability to recognize and protect privacy-sensitive information [2} [13]. However, these
benchmarks often struggle to accurately reflect model performance in real-world applications.

For example, the VizWiz dataset [2} 4] is designed to evaluate a model’s ability to detect privacy-
sensitive objects in images; however, it employs mosaic obfuscation on those regions—which, while
preserving privacy, also degrades image quality and obscures critical visual features. PRIVBENCH
[LO] evaluates VLMs’ ability to identify sensitive objects in images, such as passports, license plates,
debit cards, and faces. Similarly, Caldarella et al. [3]] developed a face dataset to test VLMs’ facial
recognition performance under varying input conditions. In another study, Tomekge et al. [13]
introduced a dataset to assess how well VLMs can infer personal attributes from image inputs.

While these benchmarks provide valuable insights, they often overlook the context-dependent nature
of privacy [12]. Privacy is a highly situational attribute. For example, sharing an image with a visible
license plate might be appropriate when communicating with the DMV or an auto insurance company,
but sharing the same image on public social media could lead to privacy breaches. The existing
benchmarks predominantly focus on static detection methods that measure VLMs’ ability to identify
specific object categories without considering the contextual nuances of privacy. This limitation can
result in scenarios where a model performs well on a static benchmark but fails to handle real-world
tasks effectively, posing potential privacy risks.

Our work aims to bridge this gap by introducing a novel approach that emphasizes the context of
privacy. We selected 440 high-quality images from the DIPA2 dataset and generated both privacy-
sensitive and privacy-insensitive contexts for each image. This design simulates the application of
VLMs in real-world scenarios, offering a more robust evaluation of their privacy awareness.

In addition to dataset innovations, there has been growing interest in leveraging Large Language
Models due to their superior language understanding and reasoning capabilities compared to VLMs.
Previous research has explored using LLMs as agents or guides to assist VLMs in tasks like visual
question answering [} 16} [8], enhancing overall task performance. However, the potential of LLMs to
guide VLMs specifically for privacy detection and protection remains largely unexplored. Our work
contributes to this emerging field by proposing a framework where LLMs act as privacy-aware guides,
dynamically interpreting context and instructing VLMs to enhance privacy protection in practical
applications.

3 SituationalPriv

In this section, we introduce the situationalPriv framework, which includes an automated data
construction pipeline and a context-aware evaluation of privacy detection in VLMs.

3.1 Privacy leakage in SituationalPriv

Following Shao et al. [[L1]], we focus on the risk of unintentional personal information leakage that
arises when data senders are unaware that sharing certain data in a given context may inadvertently
expose sensitive personal information. For example, consider an image Img containing m objects:
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LLM-guidance framework

Model Type | VLM Q-LLM D-LLM | Recall Precision  Fl Accuracy
Hybrid LLaVA-1.513B GPT-4o GPT4o0 77.73 60.21 67.86 63.18
Hybrid LLaVA-1.513B GPT-40 GPT-40 mini | 26.59 58.21 36.51 53.75
Hybrid LLaVA-1.513B GPT-4omini GPT-40 59.77 44.65 51.12 42.84
Hybrid LLaVA-1.513B GPT-4omini GPT-40 mini | 25.23 37.12 30.04 41.25
Hybrid LLaVA-1.6 7B GPT-40 GPT-40 48.86 75.97 59.47 66.70
Hybrid LLaVA-1.6 7B GPT-40 mini  GPT-40 mini | 10.23 70.31 17.86 52.95
Hybrid GPT-40 GPT-40 GPT-40 34.55 81.28 48.48 63.30
Baselines
Model Type | VLM LLM - | Recall Precision  Fl Accuracy
LLM-only - GPT-40 - 62.87 68.49 65.56 67.01
VLM-only LLaVA-1513B - - 13.18 93.55 23.11 56.14

Table 1: Results of different models on the SituationalPriv benchmark. The LLM-guidance framework
with LLaVA-1.5 13B achieves the best performance, with Recall substantially surpassing all other
models, highlighting its strong sensitivity to privacy-related information.

01,09, ...,0m, Where each object o; may convey potential personal information /;. In a particular
context C, the data sender may intend to share Img to communicate the object o; and its associated
information I; with the recipient. However, sharing Img in such context C' may also expose another
object o; and its corresponding sensitive information I;, which the sender did not intend to disclose.
We define such unintended exposure of I; as a privacy leakage, to which should be paid special
attention in real-world application.

3.2 SituationalPriv data Construction

Context-Aware Privacy Seed We selected 440 images from the DIPA2 dataset that were manually
annotated as highly informative and containing personal information. Inspired by Shao et al. [11]], we
define a context-aware privacy seed as a tuple (IMG,;, PO;), where IMG; denotes the transmitted
image and PO); represents a privacy-sensitive object within the image.

Constructing Privacy Scenario Each context-aware privacy seed is further expanded into a 5-tuple
scenario: (IMG,;, PO;, DataSender;, DataRecipient;,

Context;), where DataSender; refers to the individual sharing the image, DataRecipient; refers to
the data receiver, and Context; describes the context or situational setting of the image transmission.

For each seed, we construct two S-tuple scenarios: one non-privacy-sensitive and one privacy-
sensitive. In the non-privacy-sensitive case, the data sender intentionally shares the privacy-sensitive
object PO; within IMG; under the given context, and thus no privacy leakage occurs. In contrast,
in the privacy-sensitive case, the data sender want to share other information while unintentionally
reveals PO, to the data recipient under the given context, despite not intending to do so. This
unintended disclosure constitutes a privacy leakage.

4 Context-Aware Privacy Detection

4.1 Evaluation setup

Our evaluation procedure involves providing the model with an input image to be transmitted, along
with the scenario, which includes the data sender, data recipient, and the context. The model is then
requested to determine whether sharing such an image in the given scenario would result in a privacy
leakage.

Baseline We assess a VLM on its ability to perform context-aware privacy detection. Specifically,
for each image, we evaluate the model’s performance in both a privacy-sensitive and a non-privacy-
sensitive scenario. This pairwise evaluation setup enables us to analyze the model’s ability to
understand the context-dependent attribute of privacy information, and to examine whether it can
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accurately distinguish privacy risks under different contextual conditions—or whether it tends to
exhibit over-sensitivity or under-sensitivity toward privacy sensitive content.

LLM-guidance framework We propose an LLM-guided framework to enhance the context-aware
privacy detection capabilities of VLMs. An overview of the framework is shown in Figure[T} We
begin by using the Recognize Anything Model[[15] to identify all objects within the input image and
generate a corresponding tag list. The tag list and the context are then jointly input into a LLM, which
is prompted to select potentially privacy-sensitive objects from the tag list based on the given context
and generates a set of questions Q = [q1, 2, - - . , ¢ related to selected objects to be asked to the
VLM.

The VLM answers each question based on the input image, producing a response set A =
[a1,az2,...,ay]. This answer set, along with the context, is then passed to the LLM with the
context, which is prompted to assess whether a privacy leakage occurs in the given scenario, based
on the responses and the contextual information.

Our framework leverages the LLM both to guide the VLM to focus on the context-relevant objects in
the image and to reason about whether privacy leakage happens in the given context. By combining
VLM’s visual grounding with LLM’s contextual reasoning, our approach enhances dynamic, context-
aware privacy detection in multimodal settings.

Metric We use

Recall and F1 for m .

evaluation. Re- = | Question:

call measures the 2 Please provide
RAM—Grounded—SAM suggestions to prevent

proportion of privacy-
sensitive images
correctly  identified,
indicating  whether
a model is “under-
sensitive” to privacy
detection. Preci-
sion, the counterpart
of Recall, reflects
whether a model is
“over-sensitive,” 1i.e.,
how many predicted
privacy-sensitive cases
are truly sensitive. In Figure 1: LLM-guidance privacy detection and protection framework.
practice, missing privacy leaks (low Recall) is more harmful than raising occasional false alarms
(lower Precision). Therefore, we report both metrics and use F1, the harmonic mean of Precision and
Recall, to capture overall performance.

aprivacy breach.

tags + bounding boxes

\4

| answer;,(suggestions) |

Question:
Leak or not?

4.2 Results

In Table [T} we report the performance of proposed LLM-guidance framework and two baselines
(LLM-only and VLM-only) on primary metrics. Within the LLM-guidance framework, Q-LLM is
responsible for jointly identifying potentially privacy-sensitive objects from the provided tag list and
context, generating questions for the VLM. D-LLM assesses whether privacy leakage occurs based
on the VLM’s answer set and context. We employ widely adopted and size-varying VLMs (Llava-1.5
13B and Llava-1.6 7B) and LLMs (GPT-40 and GPT-40 mini).

Comprehensive Performance Evaluation Based on the harmonic mean of precision and recall
(F1 score), our evaluation shows that the LLM-guidance framework significantly outperforms both
the VLM-only baseline and the LLM-only baseline using identical models, clearly demonstrating its
effectiveness in enhancing privacy leakage detection. Moreover, introducing advanced VLMs and
Q-LLMs further improves the framework’s overall F1 score, indicating that better question quality and
more accurate visual analyses of potentially privacy-sensitive objects positively contribute to detection
performance. Notably, when GPT-4o0 is employed as the D-LLM, all combinations consistently yield
F1 scores above 50, substantially surpassing combinations involving lower-performing D-LLMs. This
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observation highlights the critical importance of effectively aggregating and analyzing contextual
information and question-answer interactions concerning potential privacy-sensitive objects within
the LLM-guidance framework.

Analysis of Detection Sensitivity and Precision Trade-offs We analyze Recall to assess the
models’ ability to detect actual privacy leakage cases. The VLM-only baseline shows very low Recall
(13.18), missing most violations, while the LLM-guidance framework achieves much higher Recall,
confirming its stronger sensitivity. Consistent with F1 trends, more advanced VLMs and Q-LLMs
further improve detection, and the D-LLM plays a key role in boosting overall capability.

For Precision, the VLM-only baseline performs well but mainly captures only the most explicit
cases, explaining its high Precision but low Recall. The LLM-guidance framework, though slightly
more prone to false positives, maintains Precision above 30 across all settings, effectively controlling
false alarms. Stronger Q-LLM and D-LLM components further enhance reliability. Notably, the
combination of LLaVA-1.5 13B and GPT-40 achieves the best balance, with a Recall of 77.73 and
Precision of 60.21, demonstrating the framework’s ability to capture subtle privacy risks without
sacrificing accuracy.

5 Conclusion

We presented SituationalPriv, a dataset with scenario-specific contexts to systematically evaluate
VLMs’ ability in context-aware privacy detection. We further introduced a training-free LL.M-
guidance framework that leverages LLMs to enhance VLMs’ performance in detecting privacy-
sensitive content. Experiments demonstrate clear improvements over baseline methods, showing that
our approach provides a robust solution for real-world privacy protection tasks.
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