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Abstract

With the widespread adoption of vision-language models (VLMs), users increas-1

ingly transmit large amounts of visual information, making context-aware privacy2

protection essential. Existing benchmarks for privacy detection are limited: some3

degrade image quality by blurring sensitive regions, others narrowly target prede-4

fined categories, and most overlook the contextual nature of privacy. As a result,5

current static evaluations fail to capture VLMs’ real-world privacy recognition6

capabilities.7

To address this, we introduce SituationalPriv, a benchmark for evaluating context-8

aware privacy understanding. It contains 440 high-quality, privacy-relevant images9

from the DIPA2 dataset, each paired with two distinct usage contexts that assign10

different privacy attributes to the same content. This design realistically simulates11

privacy-sensitive scenarios, enabling more comprehensive evaluation.12

We further propose a training-free framework that leverages pretrained VLMs and13

large language models (LLMs) to improve context-aware privacy detection. Unlike14

prior fine-tuning approaches limited to fixed domains, our method demonstrates15

strong generalization across open-domain datasets.16

1 Introduction17

People today routinely share vast numbers of images through online applications, many of which18

contain sensitive personal information. Users often expose such data unintentionally, making it crucial19

for VLMs to detect potential privacy leaks in context and alert users. However, existing benchmarks20

for privacy detection face significant limitations: some degrade image quality by blurring sensitive21

regions [2], while others restrict evaluation to predefined categories and single scenarios [3, 10].22

More importantly, they overlook the contextual nature of privacy [12], where identical content may or23

may not constitute a privacy risk depending on situational factors (e.g., a license plate shared with an24

insurance company vs. on social media). As a result, static evaluations fail to reflect VLMs’ ability to25

handle real-world privacy-sensitive use cases.26

To address these gaps, we introduce SituationalPriv, a benchmark designed for context-aware privacy27

detection. It includes 440 high-quality, privacy-relevant images curated from the DIPA2 dataset [14],28

each expanded into two distinct scenarios where the same object can be privacy-sensitive in one29

context but not in the other. This pairwise setup enables realistic and comprehensive evaluation of30

VLMs’ ability to interpret contextual privacy.31

We further propose a training-free framework that combines pretrained VLMs and LLMs. By using32

LLMs to guide object-level queries and reason over contextual information, our method significantly33

improves context-aware privacy detection without fine-tuning, ensuring generalization across domains34

and unseen privacy categories.35



Our contributions are threefold:36

• We present SituationalPriv, the first benchmark to systematically evaluate VLMs’ context-37

aware privacy understanding with paired sensitive vs. non-sensitive scenarios.38

• We design a training-free LLM–VLM framework that leverages pretrained knowledge for39

privacy detection without domain-specific fine-tuning.40

• We demonstrate significant performance improvements on SituationalPriv, showing that41

our approach generalizes beyond in-domain data and fixed privacy categories, making it42

suitable for real-world applications.43

2 Related Work44

Vision-Language Models have demonstrated strong performance across various tasks [5, 7, 9]. As45

VLMs are increasingly integrated into everyday applications, concerns regarding privacy and security46

have also gained significant attention [2, 10]. Several new benchmarks have been proposed to47

assess VLMs’ ability to recognize and protect privacy-sensitive information [2, 13]. However, these48

benchmarks often struggle to accurately reflect model performance in real-world applications.49

For example, the VizWiz dataset [2, 4] is designed to evaluate a model’s ability to detect privacy-50

sensitive objects in images; however, it employs mosaic obfuscation on those regions—which, while51

preserving privacy, also degrades image quality and obscures critical visual features. PRIVBENCH52

[10] evaluates VLMs’ ability to identify sensitive objects in images, such as passports, license plates,53

debit cards, and faces. Similarly, Caldarella et al. [3] developed a face dataset to test VLMs’ facial54

recognition performance under varying input conditions. In another study, Tömekçe et al. [13]55

introduced a dataset to assess how well VLMs can infer personal attributes from image inputs.56

While these benchmarks provide valuable insights, they often overlook the context-dependent nature57

of privacy [12]. Privacy is a highly situational attribute. For example, sharing an image with a visible58

license plate might be appropriate when communicating with the DMV or an auto insurance company,59

but sharing the same image on public social media could lead to privacy breaches. The existing60

benchmarks predominantly focus on static detection methods that measure VLMs’ ability to identify61

specific object categories without considering the contextual nuances of privacy. This limitation can62

result in scenarios where a model performs well on a static benchmark but fails to handle real-world63

tasks effectively, posing potential privacy risks.64

Our work aims to bridge this gap by introducing a novel approach that emphasizes the context of65

privacy. We selected 440 high-quality images from the DIPA2 dataset and generated both privacy-66

sensitive and privacy-insensitive contexts for each image. This design simulates the application of67

VLMs in real-world scenarios, offering a more robust evaluation of their privacy awareness.68

In addition to dataset innovations, there has been growing interest in leveraging Large Language69

Models due to their superior language understanding and reasoning capabilities compared to VLMs.70

Previous research has explored using LLMs as agents or guides to assist VLMs in tasks like visual71

question answering [1, 6, 8], enhancing overall task performance. However, the potential of LLMs to72

guide VLMs specifically for privacy detection and protection remains largely unexplored. Our work73

contributes to this emerging field by proposing a framework where LLMs act as privacy-aware guides,74

dynamically interpreting context and instructing VLMs to enhance privacy protection in practical75

applications.76

3 SituationalPriv77

In this section, we introduce the situationalPriv framework, which includes an automated data78

construction pipeline and a context-aware evaluation of privacy detection in VLMs.79

3.1 Privacy leakage in SituationalPriv80

Following Shao et al. [11], we focus on the risk of unintentional personal information leakage that81

arises when data senders are unaware that sharing certain data in a given context may inadvertently82

expose sensitive personal information. For example, consider an image Img containing m objects:83
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LLM-guidance framework

Model Type VLM Q-LLM D-LLM Recall Precision F1 Accuracy

Hybrid LLaVA-1.5 13B GPT-4o GPT4o 77.73 60.21 67.86 63.18
Hybrid LLaVA-1.5 13B GPT-4o GPT-4o mini 26.59 58.21 36.51 53.75
Hybrid LLaVA-1.5 13B GPT-4o mini GPT-4o 59.77 44.65 51.12 42.84
Hybrid LLaVA-1.5 13B GPT-4o mini GPT-4o mini 25.23 37.12 30.04 41.25
Hybrid LLaVA-1.6 7B GPT-4o GPT-4o 48.86 75.97 59.47 66.70
Hybrid LLaVA-1.6 7B GPT-4o mini GPT-4o mini 10.23 70.31 17.86 52.95
Hybrid GPT-4o GPT-4o GPT-4o 34.55 81.28 48.48 63.30

Baselines

Model Type VLM LLM – Recall Precision F1 Accuracy

LLM-only – GPT-4o – 62.87 68.49 65.56 67.01
VLM-only LLaVA-1.5 13B – – 13.18 93.55 23.11 56.14

Table 1: Results of different models on the SituationalPriv benchmark. The LLM-guidance framework
with LLaVA-1.5 13B achieves the best performance, with Recall substantially surpassing all other
models, highlighting its strong sensitivity to privacy-related information.

o1, o2, . . . , om, where each object oi may convey potential personal information Ii. In a particular84

context C, the data sender may intend to share Img to communicate the object oi and its associated85

information Ii with the recipient. However, sharing Img in such context C may also expose another86

object oj and its corresponding sensitive information Ij , which the sender did not intend to disclose.87

We define such unintended exposure of Ij as a privacy leakage, to which should be paid special88

attention in real-world application.89

3.2 SituationalPriv data Construction90

Context-Aware Privacy Seed We selected 440 images from the DIPA2 dataset that were manually91

annotated as highly informative and containing personal information. Inspired by Shao et al. [11], we92

define a context-aware privacy seed as a tuple (IMG i,PO i), where IMG i denotes the transmitted93

image and PO i represents a privacy-sensitive object within the image.94

Constructing Privacy Scenario Each context-aware privacy seed is further expanded into a 5-tuple95

scenario: (IMG i,PO i,DataSender i,DataRecipient i,96

Context i), where DataSenderi refers to the individual sharing the image, DataRecipienti refers to97

the data receiver, and Contexti describes the context or situational setting of the image transmission.98

For each seed, we construct two 5-tuple scenarios: one non-privacy-sensitive and one privacy-99

sensitive. In the non-privacy-sensitive case, the data sender intentionally shares the privacy-sensitive100

object PO i within IMG i under the given context, and thus no privacy leakage occurs. In contrast,101

in the privacy-sensitive case, the data sender want to share other information while unintentionally102

reveals PO i to the data recipient under the given context, despite not intending to do so. This103

unintended disclosure constitutes a privacy leakage.104

4 Context-Aware Privacy Detection105

4.1 Evaluation setup106

Our evaluation procedure involves providing the model with an input image to be transmitted, along107

with the scenario, which includes the data sender, data recipient, and the context. The model is then108

requested to determine whether sharing such an image in the given scenario would result in a privacy109

leakage.110

Baseline We assess a VLM on its ability to perform context-aware privacy detection. Specifically,111

for each image, we evaluate the model’s performance in both a privacy-sensitive and a non-privacy-112

sensitive scenario. This pairwise evaluation setup enables us to analyze the model’s ability to113

understand the context-dependent attribute of privacy information, and to examine whether it can114
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accurately distinguish privacy risks under different contextual conditions—or whether it tends to115

exhibit over-sensitivity or under-sensitivity toward privacy sensitive content.116

LLM-guidance framework We propose an LLM-guided framework to enhance the context-aware117

privacy detection capabilities of VLMs. An overview of the framework is shown in Figure 1. We118

begin by using the Recognize Anything Model[15] to identify all objects within the input image and119

generate a corresponding tag list. The tag list and the context are then jointly input into a LLM, which120

is prompted to select potentially privacy-sensitive objects from the tag list based on the given context121

and generates a set of questions Q = [q1, q2, . . . , qm] related to selected objects to be asked to the122

VLM.123

The VLM answers each question based on the input image, producing a response set A =124

[a1, a2, . . . , am]. This answer set, along with the context, is then passed to the LLM with the125

context, which is prompted to assess whether a privacy leakage occurs in the given scenario, based126

on the responses and the contextual information.127

Our framework leverages the LLM both to guide the VLM to focus on the context-relevant objects in128

the image and to reason about whether privacy leakage happens in the given context. By combining129

VLM’s visual grounding with LLM’s contextual reasoning, our approach enhances dynamic, context-130

aware privacy detection in multimodal settings.131
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Figure 1: LLM-guidance privacy detection and protection framework.

Metric We use132

Recall and F1 for133

evaluation. Re-134

call measures the135

proportion of privacy-136

sensitive images137

correctly identified,138

indicating whether139

a model is “under-140

sensitive” to privacy141

detection. Preci-142

sion, the counterpart143

of Recall, reflects144

whether a model is145

“over-sensitive,” i.e.,146

how many predicted147

privacy-sensitive cases148

are truly sensitive. In149

practice, missing privacy leaks (low Recall) is more harmful than raising occasional false alarms150

(lower Precision). Therefore, we report both metrics and use F1, the harmonic mean of Precision and151

Recall, to capture overall performance.152

4.2 Results153

In Table 1, we report the performance of proposed LLM-guidance framework and two baselines154

(LLM-only and VLM-only) on primary metrics. Within the LLM-guidance framework, Q-LLM is155

responsible for jointly identifying potentially privacy-sensitive objects from the provided tag list and156

context, generating questions for the VLM. D-LLM assesses whether privacy leakage occurs based157

on the VLM’s answer set and context. We employ widely adopted and size-varying VLMs (Llava-1.5158

13B and Llava-1.6 7B) and LLMs (GPT-4o and GPT-4o mini).159

Comprehensive Performance Evaluation Based on the harmonic mean of precision and recall160

(F1 score), our evaluation shows that the LLM-guidance framework significantly outperforms both161

the VLM-only baseline and the LLM-only baseline using identical models, clearly demonstrating its162

effectiveness in enhancing privacy leakage detection. Moreover, introducing advanced VLMs and163

Q-LLMs further improves the framework’s overall F1 score, indicating that better question quality and164

more accurate visual analyses of potentially privacy-sensitive objects positively contribute to detection165

performance. Notably, when GPT-4o is employed as the D-LLM, all combinations consistently yield166

F1 scores above 50, substantially surpassing combinations involving lower-performing D-LLMs. This167
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observation highlights the critical importance of effectively aggregating and analyzing contextual168

information and question-answer interactions concerning potential privacy-sensitive objects within169

the LLM-guidance framework.170

Analysis of Detection Sensitivity and Precision Trade-offs We analyze Recall to assess the171

models’ ability to detect actual privacy leakage cases. The VLM-only baseline shows very low Recall172

(13.18), missing most violations, while the LLM-guidance framework achieves much higher Recall,173

confirming its stronger sensitivity. Consistent with F1 trends, more advanced VLMs and Q-LLMs174

further improve detection, and the D-LLM plays a key role in boosting overall capability.175

For Precision, the VLM-only baseline performs well but mainly captures only the most explicit176

cases, explaining its high Precision but low Recall. The LLM-guidance framework, though slightly177

more prone to false positives, maintains Precision above 30 across all settings, effectively controlling178

false alarms. Stronger Q-LLM and D-LLM components further enhance reliability. Notably, the179

combination of LLaVA-1.5 13B and GPT-4o achieves the best balance, with a Recall of 77.73 and180

Precision of 60.21, demonstrating the framework’s ability to capture subtle privacy risks without181

sacrificing accuracy.182

5 Conclusion183

We presented SituationalPriv, a dataset with scenario-specific contexts to systematically evaluate184

VLMs’ ability in context-aware privacy detection. We further introduced a training-free LLM-185

guidance framework that leverages LLMs to enhance VLMs’ performance in detecting privacy-186

sensitive content. Experiments demonstrate clear improvements over baseline methods, showing that187

our approach provides a robust solution for real-world privacy protection tasks.188
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