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ABSTRACT

In-context learning allows models like transformers to adapt to new tasks from a few
examples without updating their weights, a desirable trait for reinforcement learning
(RL). However, existing in-context RL methods, such as Algorithm Distillation
(AD), demand large, carefully curated datasets and can be unstable and costly
to train due to the transient nature of in-context learning abilities. In this work,
we integrated the n-gram induction heads into transformers for in-context RL.
By incorporating these n-gram attention patterns, we considerably reduced the
amount of data required for generalization and eased the training process by making
models less sensitive to hyperparameters. Our approach matches, and in some cases
surpasses, the performance of AD in both grid-world and pixel-based environments,
suggesting that n-gram induction heads could improve the efficiency of in-context
RL.

1 INTRODUCTION

64 128 256 512 1024 2048
# Training Goals

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Return

baseline
ngram

Figure 1: Performance comparison for dif-
ferent number of training goals between our
method and Algorithm Distillation (AD), an
in-context reinforcement learning method
(Laskin et al., 2022). Our method demon-
strates similar performance with less training
goals (128 vs. 512) and in general outper-
forms the baseline. See Section 4 for results.

In-context learning is a powerful ability of pretrained
autoregressive models, such as transformers (Vaswani
et al., 2023) or state-space models (Gu et al., 2022).
In contrast to fine-tuning, in-context learning is able
to effectively solve downstream tasks on inference
without explicitly updating the weight of a model,
making it a versatile tool for solving wide range of
tasks (Agarwal et al., 2024). Originated in the lan-
guage domain (Brown et al., 2020), the in-context
ability has quickly found its applications in Rein-
forcement Learning (RL) for building agents that
can adaptively react to the changes in the dynamics
of the environment. This trait allows researchers to
use In-Context Reinforcement Learning (ICRL) as
a backbone for the embodied agents (Elawady et al.,
2024) or to benefit from its adaptation abilities for
domain recognition in order to build generalist agents
(Grigsby et al., 2024).

In-context reinforcement learning methods that learn
from offline datasets were first introduced by Laskin
et al. (2022) and Lee et al. (2023). In the former
work, Algorithm Distillation (AD), authors propose
to distill the policy improvement operator from a collection of learning histories of RL algorithms.
After pretraining a transformer on these learning histories, an agent is able to generalize to unseen
tasks entirely in-context. In the latter approach, the authors show it is possible to train adaptive
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models on datasets that contain interactions collected with expert policies, provided that the optimal
actions for each state are also available.

Both methods require specifically curated data, which can be demanding to obtain (Nikulin et al.,
2024b). In addition, the in-context ability itself is transient (Singh et al., 2024) and it is difficult to
predict its emergence from cross-entropy loss alone (Agarwal et al., 2024), making the training of
such models unstable and expensive in terms of training budget. Our work takes initial steps toward
addressing these challenges by introducing modifications to the transformer’s attention heads, which
can accelerate training and reduce the amount of data required for in-context learning to emerge.

Induction heads have been shown to be a central mechanism that allows in-context learning in
transformers (Olsson et al., 2022). Edelman et al. (2024) studied the emergence of these statistical
induction heads on synthetic data and concluded that transformers obtain a simplicity bias towards
plain uni-grams. Akyürek et al. (2024) take a step forward in this direction, demonstrating that in the
in-context learning setting, the attention mechanism develops higher-order induction heads. These
heads are responsible for recognizing and capturing n-grams within a sequence. Authors propose
to hardcode this mechanism into a transformer, creating an n-gram layer which is used as a drop-in
replacement for the multi-head attention mechanism. Intuitively, a transformer benefits from it by not
learning this complicated behavior by itself; rather, it straightforwardly receives an inductive bias
that n-gram heads provide. This approach significantly decreases perplexity even when applied to
recurrent sequential models, indicating that n-grams play a major role in building effective in-context
learning models.

To summarize our main contributions, in this paper we show that N-Gram attention heads:

• Decrease the amount of data needed for generalization on novel tasks. By utilizing
n-gram heads, it is possible to reduce the total number of transitions in training data by a
maximum of 27x compared to the original method of Laskin et al. (2022). The results are
presented in Section 4.1.

• Help mitigate hyperparameter sensitivity in ICRL models, contributing to more stable
training. By employing n-gram heads, one may need less time searching for a good set of
hyperparameters. The results are presented in Section 4.2.

• Can be used in the environments with visual observations. However n-grams are
originally found in discrete structures (e.g. natural language texts), we show it is possible to
detect repeating patterns in the sequences of images. The details of the implementation are
presented in Appendix F and the results of the experiment are shown in Section 4.3.

2 METHOD

2.1 ALGORITHM DISTILLATION

We build our method on Algorithm Distillation (Laskin et al., 2022) and use it as our baseline. It
is an in-context reinforcement learning algorithm that distills the policy improvement operator by
training a transformer model on specifically acquired data. As training data, the authors propose
to use the learning histories of many RL algorithms that are trained to solve different tasks in the
multi-task environment. After pretraining on such data, the model is able to solve unseen tasks
entirely in-context by interacting with an environment without explicitly updating weights of the
model.

More formally, if we assume that a dataset D consists of learning histories, then

D :=
{
(τg1 , ..., τ

g
n) ∼

[
Asource

g |g ∈ G
] }

,

where τgi = (o1, a1, r1, ..., oT , aT , rT ) is a trajectory generated by a source algorithm from Asource
g

for a goal g from a set of all possible goals G, and oi, ai, ri are observations, actions and rewards,
respectively.

Such data might be difficult to obtain, since the aforementioned process requires training thousands
of RL algorithms solving different tasks to obtain enough learning histories. In addition, AD suffers
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the same problems as any in-context algorithm. Learning the optimal solution can be delayed by
a tendency of transformers to learn simple structures at first (Edelman et al., 2024). Moreover, the
nature of in-context ability is unstable and can fade into in-weights regime as the training progresses,
considerably complicating the emergence of adaptation ability (Singh et al., 2024).

2.2 N-GRAM ATTENTION

To address simplicity bias and improve data efficiency, we include an n-gram attention layer (Akyürek
et al., 2024) as one of the transformer layers. This type of layer has been shown to effectively
reduce simplicity bias and enhance in-context performance. Essentially, it directly incorporates the
computation of n-gram statistics into the transformer, instead of relying on them to develop naturally
over time. The attention pattern that is calculated from the input sequence and used in N-Gram Head
(NGH) is defined as:

A(n)ij ∝ 1[(∧n
k=1xi−k = xj−k−1)] .

After that, we apply a projection and add a residual to the output:

NGHn
(
hl
)
= W1h

l +W2A(n)⊤hl ,

where n is the length of n-grams, W1 and W2 are learnable projection matrices and hl is an embedding
from a previous transformer layer. In simple terms, we look for n-gram occurrences and with the help
of A(n) attention pattern force gradients to flow only through tokens that co-occur in the sequence.

Following Akyürek et al. (2024), we also implement an N-Gram layer, which closely resembles a
traditional transformer layer. The layer consists of a head NGHi that is processed through a MLP
and then added to the residual stream:

NGLn
(
hl
)
= hl + MLP[NGHn(hl)].

In the original paper, the authors used text tokens from the input sequence for n-gram matching. We
lack such an opportunity when dealing with image observations, so we ought to use quantization in
order to enable n-gram matching. The implementation details of the quantization process and how
matching is performed are described in the Section 2.3.

2.3 N-GRAM MATCHING

To find n-grams in environments with a discrete observation space, we use raw input sequence. How-
ever, since we are working in RL setting, the input sequence has a form of (s0, a0, r0, . . . , sn, an, r0),
so in our experiments we tested two approaches. We either compare the equivalence of full transitions
(ai−1, ri−1, si) = (aj−1, rj−1, sj) or just states (si = sj).

In case of pixel-based observations, We cannot directly match raw images, as even slight variations
can result in a mismatch. To address this, we use Vector Quantization (VQ) (van den Oord et al.,
2017; Gersho & Gray, 1991) to quantize observations into the vectors from a codebook. We pretrain a
ResNet (He et al., 2016) encoder-decoder model with a VQ bottleneck, which is trained to reconstruct
the input image. After pretraining, each image is mapped into a 4× 4 matrix of indices, and we use
these for the n-gram matching. We count a match only if all the indices in the matrix are equal.

Before training starts, we use the VQ model to label images from a dataset with their indices and then
train both causal and n-gram attention layers simultaneously. During the evaluation, we only make a
forward pass of the VQ model in order to get the latent vectors and indices for n-gram matching.

3 EXPERIMENT SETUP

3.1 EVALUATION PROTOCOL

We evaluate our method on Dark Room, Key-to-Door and their variations in image-based environment
Miniworld. We describe each environment in detail in Appendix A
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We set up and follow a specific evaluation protocol to showcase the benefits of using N-Gram layers
in the ICRL setting. We use a random search over the hyperparameter space. Reporting aggregated
hyperparameter search results instead of cherry-picking the best runs allows us to demonstrate the
hyperparameter sensitivity of each method. To ensure that in each experiment a model has processed
an equal amount of data, we fixed the batch size and limited the number of gradient steps during a
run to 10K.

To show the difference between our method and the baseline, we choose to report the Expected
Maximum Performance metric (EMP) (Dodge et al., 2019; Kurenkov & Kolesnikov, 2022). By
doing so, we do not report the best performance of a single checkpoint, rather we show the expected
maximum performance for a certain computational budget. Using this approach, we simultaneously
compare our method with a baseline in terms of ease of training and maximum achieved performance.
The exact hyperparameter assignment setups are shown in Appendix H.

4 RESULTS

In this section, we examine how ICRL models can benefit from N-Gram layers and explore potential
challenges associated with their use. We analyze their role in hyperparameter search efficiency
(Section 4.1), data efficiency (Section 4.2), and applicability to image-based observations (Sec-
tion 4.3). Additionally, we examine whether they significantly expand the hyperparameter search
space (Appendix B) or negatively affect baseline performance (Appendix C).

In-context learning is known for its instabilities: it is difficult to predict an emergence of in-context
ability from the loss function value (Agarwal et al., 2024); it is transient, meaning that during training
it can switch between in-weight and in-context regimes (Singh et al., 2024). We hypothesize that by
including n-gram heads from the start, rather than waiting for their emergence during training, we
can adequately decrease the computational budget and make the hyperparameter search faster.

4.1 N-GRAM LAYERS CAN MAKE THE SEARCH FOR OPTIMAL HYPERPARAMETERS QUICKER
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Figure 2: Results on Dark Room.

To demonstrate the effect of N-Gram layers on the
hyperparameter sensitivity of the model, we perfrorm
a random search over the core transformer hyperpa-
rameters that do not change the parameter count of
the model. The effect of N-Gram heads is illustrated
in Figure 2. In the top row, we fix the number of
training tasks at 60 and vary the number of learning
histories. It can be seen that the model with n-gram
layers can find the optimal parameters faster than the
baseline model. For 1K learning histories, finding the
optimal model requires just over 20 hyperparameter
assignments, while the baseline model needs more
than 400.

When the number of tasks varies, the baseline model
quickly saturates at suboptimal performance and asymptotically improves thereafter, whereas the
n-gram model reaches optimal performance in about 15 assignments. Full-length plots are available
in Figure 9.

4.2 N-GRAM LAYERS IMPROVE DATA-EFFICIENCY OF ICRL ALGORITHM
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Figure 3: Results on Key-to-Door.

In real-world data, there are often many trajectories
per task, but the number of distinct tasks is limited.
(Yu et al., 2019; Gallouédec et al., 2024). In such
cases, a desirable quality of the model is its ability
to avoid overfitting on the training data while gen-
eralizing to unseen tasks. Our hypothesis here is
that incorporating N-Gram layers into the model can
help build a more data-efficient model and enhance
generalization by capturing sequential patterns within trajectories.
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To show the effect of N-Gram layers when task diversity in data is low, we set up an experiment in
the Key-to-Door environment, since it possesses 6.5K tasks in total. To simulate low task diversity,
we fix the number of training goals by 100 and sample another 100 unseen goals for evaluation. It can
be observed from Figure 3 that the baseline method is struggling to produce a model that is able to
generalize to unseen goals in such a low data setting. In turn, our method demonstrates performance
on par with what Laskin et al. (2022) report in their work. We note that compared to AD, our method
needs 27x less data, detailed computations are provided in Appendix G.

4.3 N-GRAM LAYERS CAN BE USED WITH IMAGES AS OBSERVATIONS
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Figure 4: Results on Miniword environments.

It is relatively straightforward to match n-grams in
discrete settings, like text or grid-world environments.
The problem arises when the observation space is
image-based. We cannot directly compare the images,
as even a slight camera rotation would invalidate a
match; however, they may still correspond to the
same state.

To address this, we need a model that disregards
minor differences in its encoding and instead focuses
on state-representative details, such as the color of
the wall the agent sees and its distance from the wall.
We utilize the Vector Quantization (van den Oord et al., 2017) technique for this reason, the details of
n-gram matching are described in Section 2.3.

We transfer the Dark Room and Key-to-Door setting into a 3D environment Minigrid, where an agent
receives a 3×64×64 RGB image as an observation. We observed similar differences in performance
of the N-Gram and baseline models. N-Gram layer is able to reduce the number of hyperparameter
assignments needed to find a model with near-optimal performance in both Miniworld-Dark (Room,
omitted for brevity) and Miniworld-Key-to-Door environments, see Figure 6. In a low-data regime,
N-Gram layers also improve performance compared to the baseline. As shown in Figure 4, N-Gram
layers enhance performance in both environments.

5 CONCLUSION AND FUTURE WORK

In our work we show that incorporating n-gram induction heads can sufficiently ease training of
in-context reinforcement learning algorithms. Our findings are threefold: (i) we show that n-gram
heads can fairly decrease sensitivity to hyperparameters of ICRL models; (ii) we demonstrate that
our method is able to generalize from much fewer data than the baseline Algorithm Distillation
(Laskin et al., 2022) approach. (iii) however the original n-gram heads were designed for discrete
spaces, we showed it is possible to adapt the approach to environments with visual observations by
utilizing vector quantization techniques. We speculate that n-gram heads are useful in ICRL due to
the imperfect nature of in-context learning itself: a tendency of transformers to converge to simple
solutions first (Edelman et al., 2024), and the transitivity of the in-context ability itself (Singh et al.,
2024).

Although we believe our findings are promising, there are some limitations of the current work.
Further research is needed to investigate the behavior of N-Gram heads in more comprehensive envi-
ronments, e.g. XLand-Minigrid (Nikulin et al., 2024a) or Meta-World (Yu et al., 2019). Additionally,
while image observations account for a significant portion of RL applications, exploring methods to
apply N-Gram heads to proprioceptive continuous states could provide further insights.
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A ENVIRONMENTS

Figure 5: (Left) The Key-to-Door
environment. The key and the door
are shown for illustrative purposes
only; the agent does not see their
location during training. (Right)
An observation from the Miniworld
environment.

Dark Room is an MDP grid-world environment with discrete
state and action spaces The grid size is 9× 9, where an agent
has 5 possible actions: up, down, left, right and do nothing. The
goal is to find a target cell, the location of which is not known
to the agent in advance. The episode length is fixed at 50 time
steps, after which the agent is reset to the middle of the grid.
The reward r = 1 is given for every time step the agent is on
the goal grid, otherwise r = 0. The agent does not know the
position of the goal, hence it is driven to explore the grid. The
environment consists of 80 goals in total, excluding the starting
square.

Dark Key-to-Door is a POMDP environment, similar to Dark
Room, but with a more complicated task. The agent first needs
to find a square with a key, and then only to find a door. The
reward is given when the key is found (r = 1) and once the

door is opened (also r = 1), after which the episode ends. The agent then resets to a random grid.
The maximum episode length is 50, and since we can control the location of the key and door, there
are around 6.5k possible tasks. The key difference of Key-to-Door compared to Dark Room is that an
agent needs to use the memory to recall whether or not the key was collected to adapt its exploration
strategy and successfully solve the task. We do not provide any hints after the key was collected,
which makes the environment only partially observed.

Both Key-to-Door and Dark Room serve as a good starting point for testing the in-context ability in
an RL setting. Despite its simple grid-structure, AD still needs a substantial amount of data to start
showing decent performance, and these environments serve as a testbed to show N-Gram Layers help
with data efficiency.

Miniworld is a 3D environment with an RGB 64× 64 images as observations and a discrete action
space. We test our method in two settings of Miniworld, the first resembling Dark Room and the
latter Key-to-Door. The agent can perform three actions: move a step ahead and turn the camera left
or right, no lateral movement is allowed. The episode length is 50 for Miniworld-Dark Room and
100 for Miniworld-Key-to-Door.

The Miniworld-based environments are of special interest, because while it was trivial to search for
n-grams with discrete states, pixel-based observations are not so easily comparable. The details of
n-grams matching for Miniworld are described in

B N-GRAM LAYERS DO NOT SIGNIFICANTLY EXPAND HYPERPARAMETER
SEARCH SPACE
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Figure 6: Hyperparameter sensitivity.
(Left) Results on Miniworld-Dark. The
N-Gram layer model is trained on 50
goals, the baseline model is on 60.
For evaluation, 20 goals were used.
(Right) Results on Miniworld-Key-to-
Door. Both N-Gram and baseline models
were trained on 2K goals and evaluated
on 100 unseen goals.

N-Gram layer introduce new hyperparameters to optimize,
such as n-gram length and position of the layer to which
N-Gram layer is inserted. A natural question arises: do
these hyperparameters also require extensive search, and
how sensitive is the model to them?

To address this question, we conducted six random hy-
perparameter searches in Miniworld-Dark, ablating either
the layer position or the n-gram length while keeping one
variable fixed. For the n-gram length search, we fixed the
position at [1] (after the first layer), whereas for the layer
position HP search, we set the n-gram length to 1. Follow-
ing (Akyürek et al., 2024), we do not insert N-Gram layer
as the first or last layer. While searching for the optimal
n-gram length, we consider ”up to” a given n-gram. For
example, a 2-gram includes both a 1-gram and a 2-gram
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together. We continue to report the EMP metric, but here we present only the final value achieved
after all hyperparameter assignments (full plots are available in Appendix I).

Table 1(a) and Table 1(b) show that there is no significant difference between neither the n-gram
length, nor the position of the N-Gram layer inside a transformer. This may indicate that there is little
to no overhead in hyperparameter search caused by introduction of N-Gram layers.

C INSERTING N-GRAM LAYERS DOES NOT HURT THE PERFORMANCE OF A
BASELINE ALGORITHM

Table 1:
(a) Ablation on n-gram length

N-Gram max EMP
1-gram 0.74 ± 0.02
2-gram 0.71 ± 0.01
3-gram 0.76 ± 0.05

(b) Ablation on N-Gram layer
position

Position EMP
[1] 0.69 ± 0.03
[2] 0.69 ± 0.02
[1, 2] 0.67 ± 0.005

(c) Comparison of baseline
and a random n-gram mask

Model EMP
Permuted 0.51 ± 0.03
Baseline 0.52 ± 0.02

Another concern when working with N-Gram layers is whether they
can affect the performance of a baseline model. Hypothetically,
this can occur if the quantization model fails to correctly identify
which image observations correspond to the same underlying state,
rendering the n-gram matching mechanism ineffective.

We designed the following experiment to test this hypothesis. Using
VQ as an n-gram extraction tool, we follow the standard procedure
described in Section 2.3, with one key modification. After matching,
we shuffle the n-gram attention matrix A(n)ij , effectively simulating
a completely ineffective N-Gram attention layer that selects incorrect
observations as n-gram matches. Like in the previous experiment,
we run a random HP search in Miniworld-Dark environment and
report the EMP calculated for the last hyperparameter assigned.

We compare the model with the permuted n-gram mask with the
baseline model without the N-Gram layer, the results are shown in
Table 1(c). No significant difference is observed between the two
models, suggesting that when the n-gram matching mechanism is
flawed, the model’s performance remains comparable to that of a
model without an N-Gram layer.

D RELATED WORK

In-context RL. The key feature behind ICRL is the adaptation ability of a pretrained agent. In
general, it relies on the transformer’s ability to infer a task from the history of interactions with an
environment. Müller et al. (2021) show that transformers are capable of Bayesian inference, which
is known for its applicability to reasoning under uncertainty (Ghavamzadeh et al., 2015). Laskin
et al. (2022) proposed to pretrain a transformer on the learning histories of RL algorithms which
allows it to implicitly learn the policy improvement operator. During inference on unseen tasks, a
transformer is able to improve its policy by observing a context and inferring a task from it. However,
such an approach requires specific datasets, which may be expensive to collect (Nikulin et al., 2024b).
To address this, it has been proposed to generate datasets following the noise curriculum instead
of training thousands of RL agents (Zisman et al., 2024), perform augmentations of existing data
(Kirsch et al., 2023) or filter out irrelevant data (Schmied et al., 2024). Our work follows the direction
of democratizing data restrictions, but instead of working with data, we introduce a model-centric
approach, making a transformer to perform in-context reinforcement learning with less data.

N-Gram and Transformers. N-Gram statistical models have been known for decades and used
in the statistical approach to language modeling (Brown et al., 1992; Kneser & Ney, 1995). More
recent approaches (Roy et al., 2022; Liu et al., 2024) study the application of n-grams to transformer
models, finding that they can increase overall performance. Akyürek et al. (2024) discover that a
transformer implicitly implements the 2-gram attention pattern when solving the in-context learning
task, which authors denote as a higher order of induction head (Olsson et al., 2022). They explicitly
implement 1-, 2-, and 3-gram attention layers and observe a significant reduction in perplexity of
the pretrained models. Another work (Edelman et al., 2024) directly investigates the behavior of
n-gram induction heads during the training process. The authors find that transformers are biased
towards simple solutions, thus making it problematic for higher-order induction heads to appear. To
our knowledge, we are the first to apply these findings in a decision-making setting.
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E DATA COLLECTION

Algorithm Distillation introduce several requirements on the structure of the data. It should be
comprised of learning histories, i.e. there should be an implicit ordering in data from the least to the
most effective policy. To produce such histories, we used a combination of approaches.

For grid-world environments, we use a table Q-Learning algorithm (Watkins & Dayan, 1992) and
save (si, ai, ri) transitions. In image-based environments, we use the approach described in Zisman
et al. (2024). For this, we implement an oracle agent and design a decaying noise schedule. It allows
us to collect the learning histories faster than training any model-free RL algorithm from scratch for
each task. The rest of the data collection process remains unchanged.

Throughout the text we use the terms learning histories and tasks. The task is a predefined grid or
a pair of grids an agent must come to upon it receives a reward. The learning history is an ordered
collection of states, actions and rewards an RL algorithm observed (or produced) while learning to
solve a single task. When we say we generated a dataset of n tasks with m learning histories, it
means for each of the task there are at least ⌊m

n ⌋ learning histories per task. Unlike Laskin et al.
(2022), we distinguish between tasks and learning histories, as it is often the case with real data when
many trajectories correspond to only a few tasks (Yu et al., 2019; Gallouédec et al., 2024).

F IMPLEMENTATION DETAILS

We take a GPT-2 as a backbone, borrowing the implementation of a Decision Transformer (Chen
et al., 2021) from the CORL library (Tarasov et al., 2024). As input, the transformer receives a tuple
(ai−1, ri−1, si) of actions, rewards, and observations that are combined into a single token through a
linear map to reduce the length of the sequence. The implementation of the N-Gram layer is taken
from (Akyürek et al., 2024) with a few minor modifications to match our implementation of a causal
transformer layer. The parameter count of our model is 20M.

For Dark Room and Key-to-Door we use a simple embedding layer to map states, actions, and rewards
into the model space. For Miniworld-based environments, we pretrain a VQ model on images (as
described in the previous subsection) and use its encoder to embed pixel-based observations into
latent vectors. Actions and rewards are processed using an embedding layer. We set the context length
of the transformer so that there are at least two episodes in it, to maintain cross-episodic context.

To ensure that our implementation of a baseline (AD) can solve the environments, we present the
performance of a baseline that is trained on optimal hyperparameters in Appendix J.

G CALCULATION OF TRANSITIONS IN DATA

In appendix I of Laskin et al. (2022) they mention that AD is more data-effective than source algorithm
and report the size of a dataset. The total number of data needed to achieve an approximate of 1.81
return on Key-to-Door 1 is reported as

(...) on 2048 Dark Key-to-Door tasks for 2000 episodes each.

The estimate of total number of transitions to generate for AD, considering the maximum length of
an episode in Key-to-Door is 50 steps, equals: 2048× 2000× 50 = 204.8M transitions.

We generate 100 unique training tasks and then sample 750 train task with repetition from the original
100. Then we make 200 training episodes for each task. In total, we get 750 × 200 × 50 = 7.5M
transitions, which is more than 27x less data.

1since no accurate data of plots was published, we used free-to-use WebPlotDigitizer for Fig. 6 in AD paper
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H HP SEARCH SETUPS

We use weights and biases sweep for running sweeps. All of the sweep setups are available by this
clickable link [will be available for camera-ready version].

We also report the setup of hyperparameter sweep in the table below.

Table 2: Hyperparameter Configurations
(a) Grid Environments

Parameter Distribution Values

batch size - 1024
embedding dropout Uniform [0.0, 0.9]
seq len - [60, 100, 160, 200]
subsample - [4, 8, 10, 20, 50]
residual dropout Uniform [0.0, 0.5]
ngram head pos - [1], [2], [1, 2]
ngram max - [1, 2]
label smoothing Uniform [0.0, 0.8]
learning rate Log Uniform [1e-4, 1e-2]
weight decay Log Uniform [1e-7, 2e-2]
pre norm - [true, false]
normalize qk - [true, false]
hidden dim - 512
update steps - 10000

(b) MiniWorld environments

Parameter Distribution Values

batch size - 1024
embedding dropout Uniform [0.0, 0.8]
seq len - [100, 150, 200]
subsample - [8, 16, 32]
residual dropout Uniform [0.0, 0.8]
ngram head pos - [1], [2], [1, 2]
ngram max - [1, 2]
label smoothing Uniform [0.0, 0.8]
learning rate Log Uniform [5e-4, 1e-2]
weight decay Log Uniform [1e-7, 2e-2]
pre norm - [true, false]
normalize qk - [true, false]
hidden dim - 512
update steps - 10000
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Figure 7: Full length plots for Key-to-Door. For 200 learning histories we halted the random search
early, since it was obvious the performance has stalled.
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Figure 8: Full length plots for Dark Room. Some of the computations halted earlier for the same
reason as in Figure 7
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Figure 9: Full length plots for ablation experiments in Miniworld-Dark environment.

J PERFORMANCE OF AD ON KEY-TO-DOOR AND DARK ROOM
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Figure 10: AD performance on Dark Room and Key-to-Door. This plot shows that our implementation
of AD demonstrates optimal performance given the right hyperparameters.
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