
 

Learning chemical sensitivity reveals mechanisms of 

cellular response 
 

 

William Connell1,2,3, Kristle Garcia3,4,5,6, Hani Goodarzi3,4,5,6, Michael J. Keiser1,2,3 

 

 

1. Department of Pharmaceutical Chemistry, University of California, San Francisco, San 

Francisco, CA, USA 

2. Institute for Neurodegenerative Diseases, University of California, San Francisco, San 

Francisco, CA, USA 

3. Bakar Computational Health Sciences Institute, University of California, San Francisco, 

San Francisco, CA, USA 

4. Department of Biochemistry and Biophysics, University of California, San Francisco, 

San Francisco, CA, USA 

5. Department of Urology, University of California, San Francisco, San Francisco, CA, 

USA 

6. Helen Diller Family Comprehensive Cancer Center, University of California, San 

Francisco, San Francisco, CA, USA 

 

 

Correspondence: keiser@keiserlab.org  

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.26.554851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.26.554851
http://creativecommons.org/licenses/by/4.0/


 

Abstract 

Chemical probes interrogate disease mechanisms at the molecular level by linking 

genetic changes to observable traits. However, comprehensive chemical screens in diverse 

biological models are impractical. To address this challenge, we developed ChemProbe, a model 

that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to 

combine transcriptomes and chemical structures. Using ChemProbe, we inferred the chemical 

sensitivity of cancer cell lines and tumor samples and analyzed how the model makes 

predictions. We retrospectively evaluated drug response predictions for precision breast cancer 

treatment and prospectively validated chemical sensitivity predictions in new cellular models, 

including a genetically modified cell line. Our model interpretation analysis identified 

transcriptome features reflecting compound targets and protein network modules, identifying 

genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows 

researchers to measure cellular response to diverse compounds, facilitating research into 

molecular mechanisms of chemical sensitivity. 

Introduction 

Chemical probes are highly potent small molecules that selectively target known 

mechanism-of-action proteins1. These tools are crucial for understanding the role of specific 

proteins in biological processes and diseases, and have been instrumental in investigating a range 

of functions such as those related to the cell cytoskeleton, immunosuppression, mTOR signaling, 

protein kinase dynamics, and have often served as the starting point for drug development1–3. In 

addition to their primary use as therapeutic agents, drugs can serve as chemical probes in 

complex diseases like cancer. Addressing cancer heterogeneity necessitates precision clinical 

treatment strategies and research into the mechanisms that control disease resistance and 

sensitivity4,5. By improving our understanding of gene expression patterns contributing to 

variance in drug response, we can develop better solutions for cancer patients exploiting specific 

tumor vulnerabilities. 

Ideally, we could test large libraries of chemicals on disease models, engineered cell 

lines, and patient samples to probe disease mechanisms. However, screening biological samples 

against a large library of chemical probes is resource-prohibitive. To overcome this problem, a 
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variety of traditional machine learning methods have been applied to predict drug response, 

including support vector machines (SVMs), random forests (RFs), and multi-layer perceptrons 

(MLPs)6. Early approaches often relied on a single cellular feature set, such as mutation status or 

gene expression profile7. However, significant improvements have been achieved by 

incorporating multimodal information, such as chemical structure and pharmacological 

features8,9. These advancements have demonstrated the value of integrating diverse types of data 

to enhance drug response prediction.  

Deep learning has become a way to effectively represent and integrate diverse feature 

sets. These methods commonly employ separate feature encoders that learn rich representations 

prior to integration10,11. In one example, variational auto-encoders (VAEs) can also leverage 

pretraining for transfer learning12–15. More broadly, neural networks are adaptable to novel 

inputs, such as graph representations for chemical structures16–18 and their composability 

provides exciting opportunities for feature integration such as cross-attention18,19. 

Interpreting the computational structure of predictive models themselves can inform on 

the underlying biology of compound response. On one hand, ensemble models offer confidence 

scores, and direct interpretation of model coefficients (e.g., attention matrices) reveals feature 

relationships19–22. Gradient-based attribution methods can also help identify features driving a 

particular prediction15. On the other hand, integrating biological priors into neural networks 

effectively reduces the feature space and incorporates interpretable features, such as gene 

ontologies and pathway annotations23–25.  By imposing constraints through priors, learning 

operates in the context of existing biological knowledge. However, this approach can limit a 

model’s capacity to learn novel gene combinations and systems mechanisms that are not well 

understood. 

We developed a deep learning model that predicts the sensitivity of new cellular samples 

to a panel of chemicals along with a framework for understanding the gene features implicated in 

the response. ChemProbe learns to combine cellular transcriptomes and chemical structures to 

predict sensitivity. The model can be applied to new biological samples and leverages 

interpretable learned gene features relevant to known compound mechanisms. ChemProbe 

accurately models chemical response without biological priors, enabling in silico chemical 

screening of biological models and mechanistic interpretation of learned gene dependencies. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.26.554851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.26.554851
http://creativecommons.org/licenses/by/4.0/


 

Results 

Conditional modeling enhances cellular drug sensitivity prediction 

We hypothesized that a deep neural network model could learn to combine gene 

expression with chemical structure to predict cellular sensitivity (Fig 1a). We leveraged publicly 

available datasets to match cancer cell line basal transcriptomes with a large-scale chemical 

screen. The Cancer Therapeutics Response Portal (CTRP) reports the viability of 842 cancer cell 

lines in response to 545 compounds and compound pairs across a range of concentrations26. 

These compounds span cell circuitry targets, offering a nuanced view of cellular response to 

pathway perturbations across a broad range of cellular components. The Cancer Cell Line 

Encyclopedia (CCLE) provides basal transcriptomic characterizations of all 842 CTRP cell 

lines27. We combined compound structures and concentrations from the CTRP with protein-

coding gene transcriptomes from the CCLE to create a dataset of compound-cell line pairs 

consisting of approximately 5.8 million labeled examples (Methods). 

We formulated the cellular drug sensitivity prediction task as a conditional model 𝑦	 =

	𝑓(𝑥|𝑛), where 𝑦 is cellular viability, 𝑥 is a matrix of standardized RNA abundance values, 𝑛 is a 

matrix of chemical features, and 𝑓 is parameterized by a neural network (Methods). Thus the 

model’s prediction of cellular viability depends on a cell’s transcriptomic profile in the context 

of a chemical structure and concentration. ChemProbe predicts viability by learning to use 

chemical features to modulate gene expression through linear transformations of internal gene 

expression representations (Fig 1b). This enables a logic akin to chemical substructures 

modulating gene products (proteins). We tested several ways to combine cellular features and 

chemical information within a single model, as assessed by the average maximum coefficient of 

determination (R2). Accounting for comparable model sizes, we trained, validated, and 

hyperparameter-optimized different model architectures across five data folds stratified by cell 

line (five-fold cross-validation, Methods). We compared three methods of learned feature 

conditioning against a baseline feature concatenation approach28. All conditioning approaches 

outperformed feature concatenation by a notable margin (Table 1). Among the conditioning 

models, scaling, shifting, and linearly modulating gene expression by chemical features 

performed similarly. A t-distributed stochastic neighbor embedding (t-SNE) decomposition of 
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learned parameters demonstrated that scaling and shifting operations encoded distinct chemical 

features (Fig 1c). Hierarchical clustering of scaling (𝛾) parameters grouped compounds by 

identity (Extended Data Fig 1a), whereas compound concentration correlated with the first 

principal component of shifting (𝛽) parameters (p=1.72e-55, Extended Data Fig 1b). Thus the 

learned conditioning parameters interpretably reflected compound structure and concentration in 

the drug-response modeling task as an emergent property of model learning. 

Cellular response commonly follows a sigmoidal relationship to drug concentration. To 

quantify whether compound dosage alone was driving drug sensitivity predictions, we performed 

a feature ablation experiment, wherein we purposefully removed crucial data from the model’s 

training and compared it to the actual model. For the “straw model,”29,30 we replaced chemical 

fingerprints with unique but structurally uninformative and randomized numerical values. The 

“straw model” trained on ablated features failed catastrophically, underscoring the importance of 

compound structural features in the modeling task (Table 1)30. Explicitly modeling chemical 

information as conditioning provides a valuable inductive bias for chemical sensitivity prediction 

and gives insights into the predictive mechanisms of the model. We hyperparameter optimized 5 

FiLM models across cell-line stratified data folds and used this ensemble (0.7173 ± 0.0052 R2) 

of models in subsequent experiments (Methods). 

ChemProbe predicts breast cancer patient response 

We next asked whether learned transcriptional patterns would generalize to an in vivo 

cellular context. We measured how well ChemProbe, trained solely on cell line expression 

profiles, could predict drug response in clinical tumor samples. We used gene expression and 

patient drug response data from the I-SPY2 adaptive, randomized, phase II clinical trial of 

neoadjuvant therapies for early-stage breast cancer (NCT01042379)31,32. I-SPY2 assigned 

patients to treatment arms based on biomarkers such as hormone receptor status, human 

epidermal growth factor receptor-2 expression, and MammaPrint status. Absence of invasive 

cancer in the breast and regional lymph nodes at the time of surgery defined the endpoint of 

pathological complete response (pCR) (nonresponse, pCR=0; response, pCR=1).  

 The I-SPY2 dataset introduced a significant change in the input data modality and 

allowed us to assess the robustness of ChemProbe. Unlike the CCLE training data, which 

quantified gene expression through high-throughput RNA sequencing, I-SPY2 collected pre-
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treatment patient gene expression by microarray. Microarrays have lower overall specificity and 

sensitivity and capture a smaller dynamic range of gene abundance33. Neural networks often fail 

on “out of distribution” samples whose features (gene abundance values) come from different 

assays than their training data. To determine the extent to which the I-SPY2 data was outside 

ChemProbe’s training distribution, we compared dataset expression profiles across the top two 

principal components. A subset of the I-SPY2 data fell outside the training data distribution, 

consistent with the expectation that assay types introduce systematic measurement effects 

(Methods, Extended Data Fig 2a). 

We assessed whether ChemProbe could retrospectively stratify I-SPY2 responders and 

non-responders despite these differences in datasets. The molecular characteristics of their 

tumors determined the drugs administered to the participants of the I-SPY2 trial. Five drugs from 

the I-SPY2 trial were in ChemProbe’s panel. We first compared the magnitudes of ChemProbe’s 

sensitivity predictions between responders and non-responders. For four out of five drugs, 

ChemProbe predicted lower scaled-AUC values for the responder group (Fig 2a). Next, we 

generated receiver operating characteristic (ROC) curves to compare the drug response 

predictions of I-SPY2 and ChemProbe with the trial outcomes. We used the treatment 

designations from I-SPY2 as a proxy for drug response prediction. ChemProbe’s area under the 

ROC curve for each drug ranged from 0.60 (paclitaxel and neratinib) to 0.73 (veliparib), with a 

macro-average auROC of 0.65 (Fig 2b). 

To evaluate the clinical utility of ChemProbe, we used it to classify patients by treatment 

response: responders (+) and non-responders (-) (ChemProbe+/-). Since the model determines 

cellular viability by drug concentration, we established a decision threshold for detecting 

responders (Methods). ChemProbe+/- classification accuracy significantly outperformed I-SPY2 

(p<5e-2, Fig 2d). Although I-SPY2 predictions had a higher true positive rate (0.30, I-SPY2; 

0.21, ChemProbe), ChemProbe+/- classifications massively reduced the false positive rate (0.70, 

I-SPY2; 0.37, ChemProbe) with relatively few false negatives (0.00, I-SPY2; 0.095, ChemProbe) 

(Extended Data Fig 2b,c). By correctly predicting a portion of patients with a low likelihood of 

drug response, ChemProbe+/- significantly increased the true negative rate of drug-response 

classification relative to I-SPY2, providing crucial information for clinical decision-making. 

Despite being trained only on isogenic cell lines, these results support ChemProbe’s use with 

heterogeneous tumors from clinical patient samples. 
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ChemProbe predicts cellular drug sensitivity 

We conducted a prospective evaluation of ChemProbe’s ability to differentiate drug 

sensitivity between two primary breast cancer cell lines, HCC1806-Par and MDA-MB-231-

Par34–37. We compared the gene expression profiles of the two cell lines to their CCLE 

counterparts by analyzing the top two gene-expression principal components. Our analysis 

showed significant disparities in the gene expression patterns of the two cell lines compared to 

the training data, highlighting the challenges of maintaining consistency across cellular models 

(Extended Data Fig 3a). The observed differences, which make the prospective test more 

difficult but particularly informative, may be attributed to variations in cell culture protocols, 

reagents, and genetic drift commonly found between experimental settings38. 

We predicted sensitivity at 32 drug concentrations (1e-3 uM – 300 uM), fit log-logistic 

models, and determined 50% inhibitory concentration (IC50) values from each in silico dose-

response curve (Fig 3a). ChemProbe predicted that HCC1806-Par would be more sensitive than 

MDA-MB-231-Par to 88.16% (201/228) of the compounds with fitted curves (Fig 3b). We 

focused on compounds with the largest differences in IC50 between the cell lines, selecting four 

compounds predicted to have strong IC50s against HCC1806-Par (neratinib, ceranib-2, 

CAY10618, and AZD7762) and two compounds with IC50s favoring MDA-MB-231-Par 

(ML162 and 1S,3R-RSL-3) (Fig 3c,d). In vitro prospective testing confirmed ChemProbe's 

predictions for all six compounds. Predicted differences in IC50s between the two cell lines 

significantly correlated with observed differences (Fig 4a-f; p=0.035, Fig 4g). We compared the 

relative potency of each compound at the median effective dose (ED50) between cell lines, 

finding significant differences in compound cellular viability as predicted (Table 2). 

Additionally, predicted IC50s correlated highly with measured IC50s for individual cell lines 

after correcting for an experimental outlier (p=0.096, Extended Data Fig 4a). These results were 

consistent with initial concentration range-finding experiments, where five out of six compounds 

had shown predicted differences in IC50s and relevant IC50s specific to individual lines 

(Extended Data Fig 4b,c). ChemProbe accurately predicted the sensitivities of independently 

obtained and characterized cell line samples, despite their transcriptomic profiles differing from 

the training dataset.  
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Gene expression attribution vectors pass interpretability soundness checks 

To assess whether ChemProbe learned biologically relevant patterns, we investigated 

whether the model’s gene expression saliency reflected known compound pharmacology and 

network biology. Saliency mapping methods evaluate which gene features a model puts the most 

“weight” on when making its predictions and how these choices change for different cell lines or 

compounds. We experimentally characterized seven new cell line transcriptomes, including 

primary tissue models and metastatic derivatives39–41. Using integrated gradients saliency 

mapping,42 we determined IC50 values for each compound-cell line pair with ChemProbe and 

computed its gene attribution vectors. However, we acknowledge that integrated gradient 

attribution vectors may correlate with input feature magnitudes, potentially undermining their 

usefulness in quantifying feature importances.43 We used principal component analysis to 

determine the first two principal components of attribution vectors by cell line to check this. We 

found that attribution and transcriptome vectors correlated (Extended Data Fig 5a,c). To address 

this confounder, we normalized attribution vectors by line, which decreased cell-line-specific 

effects in the principal component analysis and decoupled the correlation between attribution and 

transcriptome vectors (Extended Data Fig 5b,c). 

To ensure model interpretation accurately reflected learned feature transformations, we 

performed two tests (Methods)43. The first test randomly initialized the model parameters and 

compared the outcomes with the true model’s attribution vectors. We trained the model using 

scrambled labels in the second test and compared its attribution vectors with the true model’s. 

We conducted these tests using both uncorrected (raw) and cell line-effect corrected (adjusted) 

attribution vectors. The raw attribution vectors were highly correlated with transcriptome 

profiles, random-model, and permuted-model attribution vectors, failing the tests of 

independence from learned parameters and the training data. However, the adjusted attribution 

vectors were not correlated with those derived from the control models, indicating that adjusted 

attribution vectors do not simply reflect data or parameter artifacts (Extended Data Fig 5c).  

Learned transcriptomic features reflect compound pharmacology and network biology 

Neural networks are notoriously difficult to interpret, but we hypothesized that 

ChemProbe’s highly attributed gene features may reflect causative mechanisms or correlative 

biomarkers of drug sensitivity. First, we investigated whether the model relied on similar gene 
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features for compounds with the same known protein targets. We created a control compound set 

(CCS) based on nominal target classes, each with at least two compounds successfully predicted 

in all seven cell lines. We applied K-means clustering to the CCS attribution vectors and 

computed the adjusted mutual information (AMI) between clusters and target class labels to 

determine whether transcriptomic attribution vector similarity corresponded to known compound 

mechanisms of action (MOA) (Fig 5a). We also examined the AMI between structural clusters 

and target classes, as chemical structure similarity alone may at times reflect target profile 

similarity, albeit imperfectly.44 

The attribution vector clusters AMI was significantly greater than that of structural 

clusters, a randomly initialized model, and a model trained on permuted labels (Fig 5b, 

Methods). Moreover, we found that compounds belonging to the same target class frequently had 

high nominal target attributions relative to other compounds, indicating that ChemProbe often 

made predictions based on the expression information of nominal targets (Fig 5c, Extended Data 

Fig 5d-k). 

We next examined the network topology of nominal target classes using the STRING 

database of high-confidence protein-protein interactions45 to interrogate biological relevance. We 

clustered attribution vectors, gathered target annotations within each cluster, and queried 

STRING for the respective target interactome (Methods). Target modules had significantly 

greater connectivity than modules generated from randomly sampled target protein sets or 

randomly sampled protein sets (Fig 5d). Finally, we tested whether attribution-defined target 

modules of action (ModOA) also showed protein interaction enrichment. On analysis, 50% of 

ModOA reflected significant network interaction enrichment and a variety of functional 

enrichments from gene ontologies, KEGG pathways, and Reactome pathways (Fig 5f). These 

findings suggest that highly attributed transcriptome features reflect systems biology and 

potential mechanisms of drug response. 

Screening genetic dependencies for mechanisms of ferroptosis 

We further hypothesized that ChemProbe’s highly attributed gene features would relate 

to compound MOA. To test this, we used linear regression for differences in gene attribution 

between groups. This “differential attribution analysis” (DAA; see Methods) generates ranked 

gene lists, which we use as marker genes to arrange attribution clusters hierarchically (Fig 6a). 
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We noticed clusters 26 and 28 showed different prediction sensitivity to ferroptosis-inducing 

compounds (Fig 6b). Ferroptosis is a type of cell death implicated in multiple biological 

contexts, with therapeutic applications in cancer, immunity, development, and aging46,47. These 

attribution clusters included compounds ML162 and 1S,3R-RSL-3, which had shown differential 

cellular sensitivity in the prospective in vitro experiments (Fig 4e-f). Additional compounds with 

ferroptosis-inducing mechanisms of action in these clusters included ML210, erastin, CIL56, and 

CIL70. 

Digging down, we investigated the attribution vectors of ferroptosis-inducing compounds 

to assess the alignment of model interpretations with established ferroptosis biology. We 

observed a clear distinction in predicted sensitivity between two groups of cell lines exposed to 

the same compounds (Fig 6b). To further analyze this, we merged clusters 26 and 28 into a 

combined cluster representing ferroptosis-inducing compounds and applied DAA. Since multiple 

mechanisms induce ferroptosis, we queried differential attributions of multiple ferroptosis-

associated genes, including GPX4, SCD, SLC7A11, FSP1, and LRP846. All ferroptosis-

associated genes were within the most highly attributed in the ferroptosis-inducing compound 

cluster (Fig 6c). To verify that these results were not artifacts of the transcriptomes or relative 

gene expression differences, we also performed differential expression analysis (DEA) between 

MDA-MB-231-Par and HCC1806-Par. Besides GPX4, a key ferroptosis regulator, no 

ferroptosis-associated genes rose to significance (p<5e-2, Extended Data Fig 6a). 

Changes in compound sensitivity following gene knockout (KO) or overexpression can 

inform on mechanisms of gene-dependent protection or resistance. Accordingly, we assessed 

ChemProbe’s utility for screening gene-dependent ferroptosis resistance in silico. Lipoprotein 

receptor LRP8 has recently been shown to act as a ferroptosis resistance factor by maintaining 

cellular selenium levels and appropriate translation of GPX4. Selenium uptake is reduced in 

LRP8 KO models, leading to ribosome stalling and early translation termination of GPX4, which 

sensitizes cells to ferroptosis48. We tested if ChemProbe correctly predicted that a LRP8 KO cell 

line would have reduced sensitivity to ferroptosis-inducing compounds than a wild-type. 

Consistent with previous research, ChemProbe predicted LRP8 KO cells were more sensitive 

than wild-type to known ferroptosis-inducing compounds ML210, 1S,3R-RSL-3, ML162, and 

CIL56 (Fig 6d). 
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We noticed several correlations between cellular response and the expression of highly 

attributed genes for compounds that induce ferroptosis (Extended Data Fig 6b,c). We wondered 

if highly attributed genes played functional roles related to ferroptosis. We extracted the ten 

highest differentially-attributed genes and applied a functional enrichment analysis (Extended 

Data Fig 6d). We observed enrichment of terms related to lipid transport and fatty acid metabolic 

processes, pathways adjacent to lipid peroxidation and ferroptosis (Fig 6e). These results indicate 

that transcriptomic attributions align with ferroptosis biology, underscoring the potential of 

ChemProbe in screening genetic dependencies and identifying novel biological mechanisms. 

Discussion 

Using a conditional deep learning approach, ChemProbe evaluates cellular transcriptomic 

signatures against bioactive molecular structures to predict cellular responses to chemical 

perturbations. In experiments on cellular models and clinical tumor samples, this tool accurately 

predicts cellular viabilities prospectively. ChemProbe complements more clinically-oriented 

approaches with its ability to directly screen engineered cell lines and interrogate potential 

molecular mechanisms. Engineered cell lines, which possess specific genetic modifications or 

alterations, physically model disease conditions or the results of targeting pathways of interest. 

By leveraging ChemProbe, researchers can evaluate the sensitivity of known and newly 

engineered lines to a panel of chemical probes to assess how specific genetic modifications or 

alterations influence compound response. 

Intriguingly, deep learning model interpretation reflects compound mechanisms of action 

(Fig 5). The differential attribution analysis (DAA) method we introduce surfaces potential gene 

patterns driving responses and new disease-gene relationships. In one example, we identified 

genes linked to ferroptosis resistance in an LRP8 knockout cell line. ChemProbe’s calculations 

were not specific to this biology; it may find similar use in screens for resistance mechanisms 

and target discovery across diverse cellular models (Fig 6).  In cancer research, the tool rapidly 

evaluates the influence of specific oncogenic mutations or alterations in tumor suppressor genes 

on chemical sensitivity. When applied to engineered cell lines representing different genetic 

backgrounds, ChemProbe can highlight vulnerabilities and potential mechanisms of drug 

resistance associated with particular genetic alterations. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.26.554851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.26.554851
http://creativecommons.org/licenses/by/4.0/


 

Extending to clinical samples, ChemProbe becomes a tool for targeted therapy and 

precision medicine. We found that it predicts drug sensitivity in breast cancer patients across 

heterogeneous clinical tumor samples (Fig 2). Likewise, ChemProbe suggests which drugs may 

be ineffective for a given patient; if borne out in clinical studies, it or similar methods could 

meaningfully reduce therapeutic trial and error49,50. The ability to expedite treatment at earlier 

disease stages and target cellular vulnerabilities would be particularly impactful for tumors 

whose resistance mechanisms rapidly evolve. 

Nonetheless, several caveats merit mention. The experiments were constrained to a 

limited set of cell lines and compounds, and model interpretation reflects a limited set of 

biological factors. Without further study, gene features achieving high model attribution may 

reflect useful but obtuse patterns in the datasets rather than biological causality. Similarly, 

without a more diverse training set of chemical structures, the model may not be leveraging 

generalizable structural features. As always, deep learning model attribution methods are a 

moving target, so the potential compound mechanisms of action they reveal ultimately 

necessitate prospective biological testing51,52.  

ChemProbe screens cell lines against half a thousand chemical probes and drug-like 

compounds. However, expanding its predictions to a larger subset of chemical space would 

require collecting biological screening training data at a commensurate scale, which is currently 

impractical. Deep learning models like AlphaFold and ESM have leveraged self-supervised 

learning to extract emergent properties from extensive unlabeled protein sequence data53,54. 

Similarly, integrating ChemProbe with pretrained cellular transcriptomic or small-molecule 

structure foundation models may be a means to expand into broader biological and chemical 

space. 

When used to screen disease models, engineered cell lines, and clinical samples, 

ChemProbe is a powerful tool to assess how cells respond to various compounds. It supports 

exploring new therapeutic targets, suggests disease mechanisms, and can help researchers 

develop more precise and effective treatments. In this study, ChemProbe predicted drug 

sensitivities in multiple contexts, from cancer cells and tumor samples to data on breast cancer 

patient responses. Looking forward, we hope that ChemProbe’s availability as an open-source 

tool will contribute to a range of research efforts in precision medicine and beyond. 
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Materials and Methods 

Pharmacogenomic dataset 

Drug sensitivity data was obtained from the Cancer Therapeutic Response Portal v1 and 

v2 (CTRP v1/2). These datasets comprise 864 cell line responses to 481 individual compounds 

and 64 compound pairs across a range of concentrations. Response phenotypes were quantified 

by cellular viability, a normalized measure characterizing complete cell killing to cell stasis (0-1) 

and cell growth (>1). We utilized predicted cellular viability derived from fitted dose-response 

curves of each experimental set, in which replicate cell line-compound experiments were fit with 

a log-logistic function and predicted cellular viability was derived at the original experimental 

concentrations (Seashore-Ludlow). Compound structure was represented as 512-bit Morgan 

fingerprints (radius = 2) converted by RDKit from SMILES provided by the CTRP. 

Experimental micromolar compound concentrations were concatenated with Morgan 

fingerprints, resulting in 513-length compound feature vectors. We matched CTRP cell lines 

with the Cancer Cell Line Encyclopedia (CCLE) molecular characterizations and extracted 

protein-coding gene expression measurements, resulting in 19144-length cell line feature vectors. 

In total, 545 total compounds or compound pairs and 860 cell lines comprised 366,710 unique 

pairs and 5,849,340 total individual examples of compound response at various concentrations. 

ChemProbe architecture, training, and evaluation 

The study focused on predicting drug sensitivity in the context of pharmacological 

intervention by integrating cell state features with compound features. To achieve this, we 

formulated a conditional model where cellular viability is predicted based on a vector of 

standardized protein-coding RNA abundance values and a vector of chemical features, including 

structure and concentration. We explored two methods of integrating gene expression and small 

molecule feature representations: simple concatenation and hierarchical integration using 

feature-wise linear modulation (FiLM). 

ChemProbe includes a conditional encoder that embeds compound features into a vector 

of length 𝑐 and an inputs encoder that embeds gene expression features into a vector of length 𝑔. 

We used a FiLM generator to predict 𝛾 and 𝛽 parameters of length 𝑔 based on compound 
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embeddings. The FiLM layer then applies an affine transformation of gene expression 

embeddings by 𝛾 and 𝛽 parameters. This process repeats across 𝑛 FiLM layers, and the 

modulated gene expression embeddings pass through a linear block consisting of a linear layer, 

ReLU activation, batch normalization, and dropout. The final linear block compresses feature 

maps to a vector of length 1, and the mean-squared error is calculated between predicted cellular 

viability and true cellular viability. 

To evaluate the performance of our model, we used cross-validation and split cell line-

compound pairs into five groups of approximately equal size by cell line to avoid data leakage 

and performance inflation. We trained five individual models in a leave-one-out cross-validation 

scenario and applied 20 rounds of hyperparameter optimization to all five individually trained 

models. We implemented the ChemProbe model in PyTorch and applied hyperparameter 

optimization with Optuna. 

Predictive modeling baselines 

We compared different models that modify gene expression features by compound 

structure and concentration using various transformations. Our baseline model, "concatenation" 

architecture, simply combined gene expression and compound features into a single vector, 

which was fed into a multi-layer perceptron. We independently evaluated the isolated effects of 

learning transformation types using the "scale" and "shift" variants of the ChemProbe model. 

The "scale" model held shift parameters constant (𝛽=0) and learned only the scale parameters 

(𝛾), whereas the "shift" model held scale parameters constant (𝛾=1) and learned only the shift 

parameters (𝛽). We assessed ChemProbe’s dependence on compound concentration by creating a 

"permuted" model that used random binary fingerprints for each compound, ablating structural 

information. We trained and evaluated all models using 5-fold cross-validation on the originally 

defined dataset splits for three rounds of hyperparameter optimization. 

Dose-response modeling 

To generate predicted dose-response curves, log-logistic functions were fit to each set of 

cell line-compound predictions obtained from the five individually trained ChemProbe models. 

A sequence of quality control conditions was defined to ensure the reliability of each dose-

response relationship. Firstly, cellular viability at any of the four largest compound 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.26.554851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.26.554851
http://creativecommons.org/licenses/by/4.0/


 

concentrations was checked for increases of 20% or more from the fifth largest compound 

concentration. If this condition was met, the viability prediction at the largest concentration was 

dropped. This process was repeated recursively, and a minimum of 16 data points was required 

for fitting a dose-response curve. If the minimum predicted cellular viability was greater than 

0.4, no dose-response curve was fit. For cell line-compound pairs that passed quality control, a 4-

parameter log-logistic function was fit. If the optimization failed, a 3-parameter log-logistic 

function was fit. If this optimization also failed, a 2-parameter log-logistic function was fit. 

Additional quality control was performed during the analysis of predicted dose-response curves 

by filtering out log-logistic functions with undetermined parameters and with predicted 

EC50<1e-3 or EC50>300. Scipy was used to fit parameters of log-logistic functions to dose-

response relationships. 

For relative potency comparisons, the drc package in R was employed to fit dose-

response models with a four-parameter log-logistic model. We focused on the median effective 

dose (ED50) as an indicator of relative potency, calculating it with the EDcomp function. 

Significant differences in compound effects between cell lines were assessed using t-values and 

p-values obtained from EDcomp.  

Retrospective I-SPY2 analysis 

We obtained I-SPY2 clinical trial metadata and microarray characterizations of 988 

patient transcriptomes from the Gene Expression Omnibus (GEO) (GSE194040). We matched 

90% of the recorded genes to our training dataset, mean-imputed the remaining 10% of genes, 

and standardized the data using Z-score transformation. We then evaluated the alignment of I-

SPY2 patient data with CCLE cell line training data across the first two principal components. 

Next, we predicted drug sensitivity for each patient across 32 concentrations (1E-3 uM – 300 

uM) in response to all 545 compounds and compound pairs in the CTRP. We generated patient-

drug response predictions using independent models and computed the area under the curve 

(AUC) of each predicted dose-response assay. We scaled the AUC of each patient-drug 

prediction between 0-1 based on the drug's minimum and maximum predicted AUC across all I-

SPY2 patients. 

Participants in the I-SPY2 trial were placed in treatment arms based on analyses of 

clinical and molecular information analyses, including clinical characteristics, gene expression 
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patterns measured via microarray, and protein abundance as measured by reverse phase protein 

array (RPPA). The trial assessed the efficacy of various combination therapies relative to 

paclitaxel treatment, the clinical standard of care. We identified drugs matched between I-SPY2 

treatment arms and the CTRP, including paclitaxel, neratinib, MK2206, veliparib, and 

carboplatin. In the I-SPY2 experimental arms, patients were treated with a combination of 

paclitaxel and an additional drug(s) to assess response relative to paclitaxel treatment only. As 

the predictive ability of ChemProbe was only evaluated with respect to the available compounds 

and compound pairs in the CTRP, the ChemProbe predictions for I-SPY2 patients reflected 

predicted patient response to a single compound rather than a combination therapy. 

Prospective differential potency predictions 

To identify differentially potent compounds between HCC1806-Par and MDA-MB-231-

Par cell lines, we computed the difference in predicted IC50 values for compounds that passed 

dose-response modeling. We visually examined dose-response curves of the top 50 differentially 

sensitive compounds and selected candidates for in vitro testing. We based selection criteria on 

the completeness of dose-response curves in each cell line, including adequate Emax and Emin 

boundaries within the predicted concentration range. 

We conducted a preliminary dose-response experiment to determine appropriate 

concentration points for the subsequent dose-response experiments across a broader range of 

concentrations than our predictions (300—1.7e-3 uM, 12 points) (Extended Data Fig 4b,c). We 

narrowed the concentration range for the following experiment to capture response granularity 

(100—2.1e-6 uM, 12 points) (Fig 4). 

Feature attribution for model interpretation 

Integrated gradients 

We employed integrated gradients, a path-based model attribution technique, to 

determine the extent to which feature gradients changed compared to a baseline feature vector. 

The method involves linearly interpolating 𝑛 feature vectors between a designated baseline and 

the query feature vector. We used zero-vector baselines for compound and gene expression 

features and set 𝑛 = 50 as the step size. At each interpolated feature vector step, gradients of the 

inputs are calculated with respect to the corresponding prediction. Finally, the integral of each 
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feature along the path of feature gradients between the baseline vector and the query vector is 

computed. The python package captum was used to compute integrated gradients. 

To account for potential differences in cellular responses, we used the predicted 

compound IC50 for each cell line-compound pair to calculate integrated gradients and obtain an 

attribution vector at the predicted IC50. We then extracted the cell line feature attribution vector 

for each pair to investigate the influence of conditional compound information on gradient 

changes in the input gene expression features. To address cell line-specific effects, we 

standardized the transcriptome attribution vectors of each cell line separately using a Z-score 

transformation, resulting in adjusted attribution vectors (Extended Data Fig 5b,c). 

Attribution method soundness checks 

To evaluate the sensitivity of the attribution method to learned parameters and data 

features, we conducted soundness checks. First, we assessed model-dependent attribution 

method invariance by comparing the attribution vectors of randomly initialized parameters of 

architecturally identical models with those of the trained models. We applied integrated gradients 

to the trained and randomly initialized models and compared the attribution vectors. Second, we 

evaluated data-dependent attribution method invariance by permuting the data labels, training 

architecturally identical models, and applying integrated gradients to compare the true-model and 

permuted-model attribution vectors (Extended Data Fig 5c). We used the correlation between the 

attribution vectors of the true and alternative models to assess the attribution method’s sensitivity 

to learned parameters and dependence between data features and labels. 

Attribution similarity analysis 

We investigated the relationship between compound MOAs and learned gene expression 

feature dependence by examining attribution vector similarity. First, we filtered attribution 

vectors by considering compound MOA classes with at least two compounds successfully 

attributed in all seven cell lines to obtain MOA classes with sufficient samples for analysis 

(control compound set). This resulted in 28 MOA classes, which served as a true label baseline. 

We then compared these true labels to unsupervised labels generated by K-means clustering of 

attribution vectors from a trained model, a randomly initialized model, compound fingerprints, 

and a label-permutation baseline (Fig 5b). We applied K-means clustering on five independent 

trials. 
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We analyzed gene target attributions to further investigate the model dependence on 

individual nominal targets within each MOA class. Specifically, we applied a two-sided 

Wilcoxon-rank sum test to group attributions for each nominal target in the MOA class of 

interest and adjusted for false discovery rate (FDR) using the Benjamini-Hochberg (BH)  

procedure. We visualized the nominal target with the largest average attribution difference 

between groups for each MOA class (Fig 5c). 

Attribution network analysis 

We extended our analysis to include all attribution vectors generated from the 7-cell line 

test set. We randomly selected a single nominal target from each compound MOA class to avoid 

bias towards closely associated targets. This is because the nominal targets of a single compound 

likely fall in close network proximity, and downstream network analysis of target sets would 

reflect artificial over-connectivity. For example, the MOA class of neratinib includes nominal 

targets EGFR and HER2, which are involved in the same pathway. Therefore, we randomly 

chose one target from this set. 

We applied Leiden clustering unsupervised discovery of attribution clusters. As described 

above, we defined attribution cluster MOA classes by random target selection from each 

compound MOA class. We filtered the STRING database to consider only high-confidence 

protein-protein associations (combined score > 0.7). We queried STRING for attribution cluster 

nominal targets and computed the connectivity of the resulting subgraph. To account for random 

subgraph connectivity due to target biases in STRING, we randomly sampled from available 

targets, queried the filtered STRING database, and computed connectivity. We repeated this 

procedure with randomly sampled protein-coding genes to account for random protein 

associations (Fig 5f). We used the networkx library for analysis. 

To test for protein interaction enrichment, we defined attribution cluster nominal targets 

by random target selection from each compound MOA class, as described above. Next, we 

queried the STRING API for protein-protein interaction enrichment in the network of high-

confidence protein-protein associations (combined score > 0.7). We computed statistical 

enrichment using the hypergeometric test, which tests if a query set of proteins has more 

interactions than expected relative to the background proteome-wide interaction distribution. We 

also applied the hypergeometric test for functional enrichment of GO terms, KEGG pathways, 

and Reactome pathways. We used the stringdb python package to access the STRING API. To 
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infer potential modules of action for compounds, we selected the unique set of all nominal 

targets associated with an attribution cluster. 

Cell line characterization and differential expression analysis 

RNA sequencing was conducted on seven test cell lines, namely HCC1806-Par, 

HCC1806-LMb/c, MDA-MB-231-Par, MDA-MB-231-LM2, SW480, and SW480-LvM255. 

Using RNA that was rRNA-depleted with Ribo-Zero Gold (Illumina), libraries were prepared 

with SciptSeq-v2 (Illumina) and sequenced on an Illumina HiSeq4000 at UCSF Center for 

Advanced Technologies. Transcript abundances were quantified using Salmon, and tximport was 

utilized to summarize transcript-level measurements. We employed DESeq2 to identify 

differentially expressed genes. 

Differential attribution analysis 

To assess model dependence on individual genes within attribution clusters, we 

conducted an unbiased analysis. We applied a two-sided Wilcoxon-rank sum test to each gene to 

analyze gene attributions within a cluster relative to all remaining samples. We adjusted for FDR 

using BH to account for multiple testing. We utilized scanpy to apply tests across genes in each 

cluster relative to all other samples. Attributions were standard scaled and each cluster's top 10 

most significant genes were plotted. Leiden groups were hierarchically clustered (complete 

linkage) by Pearson correlation. Scanpy was used for computation and visualization. We 

obtained gene expression—sensitivity Pearson correlation z-scores and corresponding 

visualizations from the Cancer Therapeutics Response Portal v2 feature correlation analysis 

(Extended Data Figure 6b,c). 

Dose-response assay and cell culture 

MDA-MB-231-Par and HCC1806-Par cells were seeded at 1,000 cells per well in 

quadruplicate per condition in a white opaque 96-well plate (catalog no. 3917, Corning). 

Twenty-four hours later, cells were treated with serial dilutions between 2.05pM and 100uM of 

the following compounds: neratinib (catalog no. 18404, Cayman Chemical), CAY10618, 1S,3R-

RSL-3 (catalog no. 19288, Cayman Chemical), AZD7762 (catalog no. 11491, Cayman 

Chemical), ceranib-2 (catalog no. 11092, Cayman Chemical), and ML162 (catalog no. 20455, 
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Cayman Chemical), and DMSO control. Cells were treated for 72 hours with media replaced 

every 24 hours. Cell viability was measured with the CellTiter-Glo 2.0 Assay (catalog no. 

G9243, Promega Corporation) with 1,000 ms integration time.  

All cells were cultured at 37 °C in a humidified incubator with 5% CO2. MDA-MB-231 

(ATCC HTB-26) cells were grown in DMEM supplemented with 10% FCS, penicillin 

(100 U ml−1), streptomycin (100 μg ml−1) and amphotericin (1 μg ml−1). HCC1806 (ATCC 

CRL-2335) cells were grown in Roswell Park Memorial Institute-1640 medium supplemented 

with 10% FCS, L-glutamine (2 mM), sodium pyruvate (1 mM), penicillin (100 U ml−1), 

streptomycin (100 μg ml−1) and amphotericin (1 μg ml−1). 
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Data Availability 

Training and validation data from CTRP v1/2 can be downloaded at 

ftp://caftpd.nci.nih.gov/pub/OCG-

DCC/CTD2/Broad/CTRPv2.0_2015_ctd2_ExpandedDataset/CTRPv2.0_2015_ctd2_ExpandedD

ataset.zip. CCLE expression data can be downloaded at 

https://ndownloader.figshare.com/files/24613325. CCLE sample metadata can be downloaded at 

https://ndownloader.figshare.com/files/24613394. I-SPY2 gene expression data is located at 

GSE194040 

(GSE194040_ISPY2ResID_AgilentGeneExp_990_FrshFrzn_meanCol_geneLevel_n988.txt.gz). 

I-SPY2 patient-level biomarker scores, subtype classes, and clinical/response data was gathered 

from supplementary information of Wolf, et. al: 

https://www.cell.com/cms/10.1016/j.ccell.2022.05.005/attachment/c220411b-c281-41e8-befa-

a45e48af9c64/mmc3.xlsx. HGNC was used to map gene names: 

https://www.genenames.org/tools/multi-symbol-checker/. Protein—protein interaction data was 

downloaded from the STRING database v11.5. The current file version is found here: 

https://stringdb-downloads.org/download/protein.links.v12.0/9606.protein.links.v12.0.txt.gz. 

CCLE gene expression—sensitivity Pearson correlation z-scores and corresponding 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.26.554851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.26.554851
http://creativecommons.org/licenses/by/4.0/


 

visualizations were obtained from the CTRP v1/2 web portal: 

https://portals.broadinstitute.org/ctrp.v2.1/. RNA sequencing gene expression profiles of triple 

negative breast cancer cell line HCC1143 WT and LRP8 KO were obtained from a data access 

request to Zhipeng Li as original data from related publication48. The enrichr web portal was 

used to perform Wikipathway, KEGG and GO enrichment analysis 

(https://maayanlab.cloud/Enrichr/). Source data for all tables and figures are provided with this 

paper. 

Code Availability 

Our code to download, preprocess data, reproduce model training, load pretrained weights, and 

run model inference is available as open source at https://github.com/keiserlab/chemprobe.  
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Tables 

Model R2 
concatenation 0.6066 ± 0.0165 
shift 0.7060 ± 0.0304 
scale 0.7113 ± 0.0081 
FiLM 0.7089 ± 0.0040 
structural ablation 0.3016 ± 0.0304 

Table 1 | Predictive performance. 

Average performance and standard error of 5 models trained across identical data folds. 

 

 

Compound ED50 Ratio 
(HCC1806-
Par/MDA-MB-231-
Par) 

t-value p-value 

neratinib 0.4946 ± 0.2426 -2.0830 4.0220e-2 

ceranib-2 0.5165  ± 0.1943 -2.4887 1.4700e-2 

CAY10618 0.2089  ± 1.869e-2 -42.3233 1.1593e-59 

AZD7762 0.5639 ± 0.1004 -4.3430 3.7500e-5 

1S,3R-RSL-3 2.1123 ± 0.4446 2.5244 1.3384e-2 

ML162 3.008 ± 0.7041 2.8521 5.4120e-3 

Table 2 | Relative potency at median effective dose. 

Relative potency of each compound at the median effective dose (ED50) between cell lines. 
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Figures 

 

Fig. 1 | ChemProbe design and model interpretation. 

(a) Workflow of model training, validation, prediction, dose-response modeling, and feature 

attribution. We trained a deep neural network model to predict drug sensitivity at specific 

compound concentrations and fit log-logistic models to predictions. We derived compound 

pharmacodynamics from dose-response curves and applied integrated gradients saliency 

mapping to predicted IC50 to derive input feature attributions. IC50, inhibitory concentration of 

compound at 50% cellular viability. (b) Architecture of the conditional neural network 

(ChemProbe) trained to predict cell line viability from molecular features and compound 

structure. ChemProbe learns an embedding of protein-coding gene expression features 

conditioned by parameters learned from an embedding of compound structure and concentration. 
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(c) Decomposition of learned conditioning parameters. Points represent compound-concentration 

samples; color indicates compound; size indicates concentration; and shape indicates parameter.  
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Fig. 2 | I-SPY2 clinical trial retrospective analysis. 

(a) Predicted dose-response AUC for I-SPY2 patients treated with each drug. AUCs scaled 

between the minimum and maximum predicted AUC of patients treated with each drug. Blue = 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.26.554851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.26.554851
http://creativecommons.org/licenses/by/4.0/


 

non-responder, orange = responder; center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range; points, outliers; two-sided Wilcoxon rank-sum test; ns: 

p<=1e1, *p<=5e-2, **p<=1e-2. (b) Receiver operating characteristic curve of patients treated 

with each drug and corresponding auROC. (c) Accuracy of I-SPY2 predictions versus 

ChemProbe predictions for non-responders/responders. Center line, median; box limits, upper 

and lower quartiles; whiskers, 1.5x interquartile range; points, outliers); two-sided Wilcoxon 

rank-sum test; *p<=5e-2.  
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Fig. 3 | Differential potency and in silico dose-response curve predictions. 

(a) Approach to model training and dose-response modeling. We trained individual models on 

held-out cell line dataset splits by 5-fold cross-validation. We then fit log-logistic models to 

cross-validated model predictions and derived pharmacodynamic features. (b) Expected 

cumulative distribution plot of predicted compound IC50 differences between HCC1806 and 

MDAMB231 cell lines. Compounds selected for in vitro dose-response testing highlighted. (c) 
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Predicted dose-response relationships of HCC1806 and MDAMB231 response to neratinib and 

(d) 1S,3R-RSL-3. 95% confidence intervals.  
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Fig. 4 | Validation of differential potency predictions. 

(a-d) In vitro dose-response relationships of HCC1806-Par differentially potent compounds and 

(e-f) MDA-MB-231-Par differentially potent compounds. 95% confidence intervals. (g) 

Relationship between the predicted and observed differences in IC50 values of tested compounds 

between HCC1806-Par and MDA-MB-231-Par cell lines. Two-sided t-test. 
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Fig. 5 | Feature attribution analysis of nominal compound targets. 

(a) Distinct protein target clusters emerge from UMAP decomposition of adjusted attribution 

vectors at compound IC50s for predicted and fitted dose-response relationships in MDAMB231, 

MDAMB231-LM2, HCC1806, HCC1806-LM2b/c, SW480, and SW480-LvM2 prospective cell 

lines. Control compound set (CCS) attribution vectors colored by nominal target class. (b) 
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Comparison of adjusted mutual information (AMI) derived from CCS nominal target labels and 

K-means clustering of trained model adjusted attribution vectors, compound fingerprints, random 

model adjusted attribution vectors and permuted model adjusted attribution vectors. Center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers; 

two-sided Wilcoxon rank-sum test; *p<=5e-2, **p<=1e-2. (c) Average attribution difference 

between the highest significance target of the nominal target class versus all other target classes. 

Two-sided Wilcoxon rank-sum test; *p<=5e-2, **p<=1e-2, ***p<=1e-3, ****p<=1e-4. (d) 

Leiden clustering of all attribution vectors. (e) Comparison of PPI subgraph connectivity derived 

from clustered target profiles, random target profiles, and random protein-coding genes. Center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 

outliers; two-sided Wilcoxon rank-sum test; ***p<=1e-3, ****p<=1e-4. (f) Network 

representation of select clustered target profile subgraphs.  
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Fig. 6 | Differential attribution analysis (DAA) of ferroptosis-inducing compounds. 

(a) Heatmap of top-10 differentially attributed genes within Leiden clusters from Fig 5d. Clusters 

ordered by hierarchical clustering of DAA profiles (columns). Rows: top-10 attributed genes, 

columns: cell line–compound attribution sample. (b) Comparison of predicted IC50s between 

cluster 26 (ferroptosis-sensitive) and cluster 28 (ferroptosis-resistant). Center line, median; box 

limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers; two-sided 

Wilcoxon rank-sum test; *p<=5e-2. (c) Volcano plot of DAA results derived by comparing 
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ferroptosis-inducing compound attributions to all other compound attributions. Known 

ferroptosis-mediating genes in orange. (d) Expected cumulative distribution plot of predicted 

compound IC50 differences between HCC1143 WT and LRP8 KO cell lines. Ferroptosis-

inducing compounds predicted differentially potent in LRP8 KO marked. (e) Enrichment 

analysis of top-10 differentially attributed genes of ferroptosis-inducing compound samples. 

Fisher's exact test. 
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Extended Data Figures 

 

Extended Data Fig. 1 | Conditional parameter analysis. 

(a) Hierarchical clustering of learned gamma parameters. Color bars indicated compound identity 

and squared compound concentration. (b) Relationship between principal component 1 (PC1) of 

learned beta parameters and input concentration; Pearson correlation coefficient. 
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Extended Data Fig. 2 | I-SPY2 analysis. 

(a) I-SPY2 participant tumor gene expression profiles projected on the CCLE training data 

distribution. VC, veliparib/carboplatin; N, neratinib; Ctr, control; gray = kernel density estimate 

(KDE) of training data distribution. (b) I-SPY2 confusion matrix of predicted response and 

observed response. (c) ChemProbe confusion matrix of predicted response and observed 

response. 
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Extended Data Fig. 3 | Prospective cell line expression similarity analysis. 

(a) PCA of gene expression similarity between prospectively tested cell lines and matched 

counterparts in the CTRP training data. gray = KDE of training data distribution.  
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Extended Data Fig. 4 | Prospective dose-response analysis. 

(a) Relationship between predicted and observed IC50s of prospectively tested compounds in 

HCC1806-Par and MDA-MB-231-Par cell lines. Two-sided t-test. (b) Calibration experiment; 

relationship between predicted difference in IC50 and observed difference in IC50 between 

HCC1806-Par and MDA-MB-213-Par across tested compounds. Two-sided t-test. (c) Calibration 
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experiment; relationship between predicted and observed IC50s of prospectively tested 

compounds in HCC1806-Par and MDA-MB-231-Par cell lines. Two-sided t-test. 
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Extended Data Fig. 5 | Attribution analysis. 

PCA decompositions of (a) raw attribution vectors versus (b) adjusted attribution vectors. (c) 

Pearson correlation between raw attributions and adjusted attributions versus transcriptome 

inputs, randomly initialized model attributions, and attributions of a model trained on permuted 

labels. (d-g) UMAP of cell line-compound attribution samples colored by compound targets with 

specific attributions. (h-k) UMAP of cell line-compound attribution samples colored by 

compound targets with diffuse attributions. 
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Extended Data Fig. 6 | Ferroptosis analysis. 

(a) DEA between MDA-MB-231-Par and HCC1806-Par with ferroptosis-associated genes in 

orange. (b) Pearson correlation z-score between highly-attributed LONRF3 expression and 

compound sensitivity. (c) Pearson correlation z-score between highly-attributed SLC27A5 

expression and compound sensitivity. (d) Differential attribution scores of top 10 genes from 

ferroptosis-sensitive cell line-compound pairs relative to all others.  
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