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Abstract

Decomposition-based multi-hop retrieval meth-
ods rely on many autoregressive steps to break
down complex queries, which breaks end-
to-end differentiability and is computation-
ally expensive. Decomposition-free methods
tackle this, but current decomposition-free ap-
proaches struggle with longer multi-hop prob-
lems and generalization to out-of-distribution
data. To address these challenges, we in-
troduce GRITHopper-7B, a novel multi-hop
dense retrieval model that achieves state-of-
the-art performance on both in-distribution and
out-of-distribution benchmarks. GRITHopper-
7B combines generative and representational
instruction tuning by integrating causal lan-
guage modeling with dense retrieval training.
Through controlled studies, we find that in-
corporating additional context after the re-
trieval process, referred to as post-retrieval
language modeling, enhances dense retrieval
performance. By including elements such as
final answers during training, the model learns
to better contextualize and retrieve relevant in-
formation. GRITHopper-7B offers a robust,
scalable, and generalizable solution for multi-
hop dense retrieval, and we release it to the
community for future research and applications
requiring complex reasoning and retrieval ca-
pabilities.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in reasoning
(Huang and Chang, 2023), reflection, and decom-
position, making them indispensable tools for a
wide range of natural language processing tasks.
Their generative abilities have been successfully
leveraged to solve open-domain multi-hop prob-
lems, where complex questions are broken into
smaller sub-questions to retrieve supporting evi-
dence and reflect on them (Asai et al., 2024; Shao
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Figure 1: Out-of-distribution Multi-Hop Retrieval Per-
formance on the MultiHop-RAG Benchmark (Tang and
Yang, 2024). GRITHopper substantially outperforms
previous state-of-the-art multi-hop retrieval models on
out-of-distribution Benchmarks on deep hops.

et al., 2023; Guan et al., 2024) in a step-by-step
manner. However, such decomposition-based ap-
proaches require multiple autoregressive steps and
discrete intermediate outputs, which breaks the
end-to-end differentiability of the retrieval pipeline
and increases computational overhead.

Decomposition-free approaches, such as Multi-
Hop Dense Retrieval (MDR) (Xiong et al., 2021),
and cross-encoder-based methods like Beam Re-
triever (Zhang et al., 2024a), enable end-to-end
differentiability by not requiring discrete decom-
positions, but both suffer from significant lim-
itations. MDR offers an efficient and scalable
dense retrieval framework by concatenating the
query with passages and encoding them into a sin-
gle vector representation in one model call per
iteration. However, it struggles with more com-
plex datasets like MuSiQue (Trivedi et al., 2022),
more hops than 2, and performs poorly on out-of-
distribution benchmarks. On the other hand, Beam
Retriever achieves state-of-the-art in-distribution
performance by leveraging cross-encoder architec-
tures. Unlike bi-encoders, which independently
encode questions and passages to compute simi-
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Figure 2: Comparison of decomposition-based approaches like (Guan et al., 2024; Shao et al., 2023) to our
encoder-only approach with GRITHopper. While decomposition-based approaches require many auto-regressive
steps to decompose questions, extract answers, and a different model for retrieval, our encoder-only approach only
requires a single forward pass per hop to compute the next dense vector. Example is from (Trivedi et al., 2022).

larity, cross-encoders process both as a single se-
quence, resulting in linear scaling with respect to
the number of passages. This makes them only
suited as a retriever for a few hundred passages
but not open book retrieval. Despite its strengths,
it shares MDR’s generalization issues while intro-
ducing scalability challenges due to its computa-
tional overhead, making it impractical for large-
scale open retrieval tasks. These limitations un-
derscore the need for a scalable and generalizable
multi-hop retrieval framework that can perform
well on both in-distribution and out-of-distribution
benchmarks in open-domain retrieval scenarios.
To address these challenges, we introduce
GRITHopper-7B, a novel multi-hop dense re-
trieval model trained on an unprecedented scale
of multi-hop datasets spanning both question-
answering and fact-checking tasks. GRITHopper-
7B achieves state-of-the-art performance across
out-of-distribution benchmarks (see Figure 1)
while preserving the simplicity and scalability of
encoder-only paradigms like MDR (see Figure 2).
The foundation of GRITHopper lies in GRITLM
(Muennighoff et al., 2024), a Mistral-7B-based
model that integrates causal language modeling
with dense retrieval training. GRITLM’s design
sparked a critical debate in the field: Does joint
optimization of generative and retrieval tasks en-
hance dense embedding quality? While GRITLM
initially demonstrated state-of-the-art results in re-
trieval while achieving strong performance in gen-
eration, subsequent studies (Anonymous, 2024)
show that contrastive-only approaches, using the
same Mistral-7B backbone, outperform GRITLM

on key benchmarks such as BEIR (Thakur et al.,
2021) and MTEB (Muennighoff et al., 2023).

This raises fundamental questions about the util-
ity of generative objectives in retrieval and sets the
stage for a deeper exploration of their role. Build-
ing upon a shared data foundation for both the
retrieval and generation objective, we incremen-
tally add information to the generative component
without altering the embedding component. This
strategy allows us to assess whether incorporating
external information (beyond the retrieval chain)
into the generative training can improve dense re-
trieval performance. We refer to this approach as
post-retrieval language modeling, where we in-
clude elements such as final answers and judge
the retrieved paragraphs after the retrieval chain.
Through this controlled experimental setup, we
systematically explore how post-retrieval language
modeling influences dense embedding quality, of-
fering new insights into their roles in enhancing
multi-hop retrieval performance. Our experiments
create a novel ReAct style (Yao et al., 2023) end-
to-end multi-hop dense retrieval that can conduct
neural search via bi-directional attention and con-
trol itself (stop the search, answer, or rerank) via
causal language modeling.

The following research questions guide our
study: RQ1: How do decomposition-free ap-
proaches compare to decomposition-based ap-
proaches?

RQ2: How does GRITHopper generalize on the
out-of-distribution benchmarks compared to exist-
ing methods?

RQ3: What is the effect of combining genera-



tive and embedding training in multi-hop dense
retrieval compared to embedding-only training?
RQ4: If generative training improves dense re-
trieval performance, does post-retrieval language
modeling during training further enhance it?

2 Related Work
2.1 Multi-Hop Retrieval and Reasoning

Multi-hop question answering requires models to
retrieve and integrate information from multiple
documents to answer complex queries (Trivedi
et al., 2022; Ho et al., 2020). Decomposition-
based methods address this by breaking down com-
plex questions into simpler sub-questions. Wolf-
son et al. (2020) introduced the Break It Down
(Break) method, which decomposes questions into
a sequence of simpler queries. Other methods ex-
tended decompositions with extensive reasoning
(Shao et al., 2023; Khot et al., 2023; Yao et al.,
2023). However, these methods require multi-
ple autoregressive steps and generate intermedi-
ate outputs, leading to increased computational
overhead and disrupting end-to-end differentiabil-
ity. Decomposition-free approaches have been pro-
posed to overcome these limitations.

2.2 Decomposition-Free Multi-Hop Retrieval

Multi-Hop Dense Retrieval (MDR) (Xiong et al.,
2021) introduced an approach where the query is
concatenated with previously retrieved passages,
and the combined text is encoded into a single
vector representation using a bi-encoder architec-
ture. Other works have extended MDR, such as
BeamDR by adding beam search and Ma et al.
(2024) by extending MDR multi-hop problems
longer than 2 hops. While MDR allows for efficient
and scalable retrieval but has limitations in han-
dling complex multi-hop queries that require more
hops than 2 and generalizing to unseen datasets.

Multi-Hop cross-encoder models (Asai et al.,
2020), like the BeamRetriever (Zhang et al.,
2024a), achieve state-of-the-art performance on
in-distribution datasets by modeling the retrieval
process by encoding the question with each para-
graph together. Despite their effectiveness, these
models face scalability issues due to high compu-
tational costs, making them less practical for large-
scale open-domain retrieval tasks. Furthermore,
we will show that these methods suffer from over-
fitting and fail to generalize on out-of-distribution
benchmarks.

2.3 Causal Language Modeling and Reward
Modeling

While Causal language modeling (CLM) is pri-
marily used for generation tasks (Radford et al.,
2019), recent research has combined it with dense
retrieval, specifically GRITLM Muennighoff et al.
(2024), integrating causal language modeling with
contrastive learning by simply adding the next to-
ken and contrastive loss. While the method trained
on two distinct datasets for retrieval and generation,
it leaves much room for exploration on how these
two losses work together.

In language models, reward modeling can guide
the generation process towards more accurate or
contextually appropriate responses. Zelikman et al.
(2022) and Huang and Chang (2023) explored how
self-taught reasoning and reflection can improve
reasoning capabilities in language models, which
could be beneficial for retrieval tasks that require
complex reasoning. To distinguish positive from
negative passages, we adopt the approach from
(Zhang et al., 2024b) that has shown that language
models can employ reward learning through sim-
ple next-token prediction. This comes especially
handy for GRITLM’s joint generative and embed-
ding objective.

3 Problem Statement & Evaluation

3.1 Problem Definition

In the context of multi-hop retrieval, given a fixed
corpus of paragraphs P and a multi-hop-question
g, the task is to identify a sequence of paragraphs
[p1,D2-.., Pn] Where p; € P, that collectively an-
swer q (Trivedi et al., 2022; Ho et al., 2020).
Decomposition-free methods (Xiong et al., 2021;
Zhang et al., 2024a) concatenate the multi-hop
question together with previously retrieved para-
graphs [q, p1, p2, .., pn] on the word level and feed
them as a single string into an Encoder model E to
retrieve the next paragraph as:

apn) - E(pn+1) (1)

where all candidate passages p,4+1 € P are
pre-computed offline. Apart from question an-
swering, we also adapt fact-checking retrieval as
[claim, p1, pa, .., pn] Where paragraphs can either
be supporting or refuting paragraphs.

E(qvpl)p27’ <

3.2 Datasets

We use a range of datasets to evaluate our approach.
We train all models on MuSiQue (Trivedi et al.,
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Figure 3: Highlighting the joint training objective (gen-
erative and contrastive) of GRITHopper. Both objec-
tives consume the exact same tokens, except for the
post-retrieval added information to the generative loss
in purple. Note that if the model is used like MDR
without stopping condition (shown as MDR Inference),
we keep one forward pass per hop as all action tokens
are only prompt tokens (not output tokens). Only if
we want to use the framework end-to-end by control-
ling when to stop/conduct reranking do we have to do
one/two additional causal forward passes.

2022), HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), Explainable Fever (Ma
et al., 2024), and HoVer (Jiang et al., 2020). These
datasets encompass question-answering and fact-
checking tasks with varying levels of complexity
and hop depths. For out-of-distribution evaluation,
we use the MultiHopRAG Benchmark (Tang and
Yang, 2024) and MoreHopQA (Schnitzler et al.,
2024). These benchmarks test the generalization
capabilities of the models in open-retrieval settings
across unseen datasets.

3.3 Evaluation

To demonstrate the performance of all approaches
at different hop depths, we calculate Hits@k at
each hop. This metric considers a hop successful
if the relevant passage is retrieved within the top-k
results. Importantly, the evaluation only continues
to the next hop if the previous hop was success-
ful. This allows us to analyze the performance
across varying hop depths, highlighting the ability
of models to retrieve relevant passages in a sequen-
tial multi-hop setup.

4 Methods

Our central objective is to understand how inte-
grating causal language modeling (CLM) with

dense embedding training impacts multi-hop re-
trieval (RQ3), and whether adding post-retrieval
signals (e.g., final answers, judging hard negatives)
can further improve performance (RQ4). Unlike
prior work, (Muennighoff et al., 2024), which com-
bined generative and embedding training on differ-
ent datasets, we investigate their interplay under
a unified, controlled setup. This allows us to iso-
late the influence of the generative objective on
embedding quality.

Previous research in language model pretraining
has shown that combining masked language mod-
eling (MLM) with embedding training on the same
dataset often improves downstream representations
(Devlin et al., 2019; Wu et al., 2020).

4.1 A Shared Dataset for a Controlled Setup

To critically evaluate how CLM and embedding
objectives affect each other, we start from a shared
dataset, where both objectives consume identical
tokens. Concretely, consider a multi-hop question
q and the sequence of previously retrieved para-
graphs [p1,p2,...,pn]. The embedding model
learns to represent [g,pi,...,Dp,] so that it can
retrieve the next relevant paragraph p,,+1, while
the generative model predicts the next tokens on
the same sequence in a causal manner. This con-
trolled baseline ensures that any retrieval improve-
ment upon adding the generative loss cannot be at-
tributed to extraneous factors like domain shifts or
additional training data. Instead, it must arise from
the generative objective itself, addressing RQ3:
does integrating CLM with embedding training,
under controlled conditions, enhance retrieval?
Starting from this shared dataset, we then in-
crementally enrich the generative model’s input
with post-retrieval information while keeping the
embedding input fixed. This step-by-step strategy
ensures that each addition’s impact on retrieval
is transparent and attributable solely to the newly
introduced elements, addressing RQ4.
1. Adding Final Answers: We append the final
answer ans to the retrieval chain:

[q,p1,p2, -, Pn,ans].

The embedding objective gets the exact same to-
kens [g,p1,...,pn] as the generative objective,
while the generative objective now additionally
predicts the ans.

2. Adding Hard Negatives: We further augment
the generative training by introducing an irrelevant



passage p;, marked as such:

[Q7p17p27 « ooy Pn—1,DPir, Irrelevant].

The model learns to label the irrelevant para-
graph causally via next-token prediction (Zhang
et al., 2024b). If retrieval benefits from this, it
indicates that contrasting positive and negative evi-
dence in a generative framework helps refine the
embedding space.

This incremental approach, starting from a pure
shared dataset and progressively adding final an-
swers and negatives, provides a precise experimen-
tal lens. We directly measure how each augmen-
tation in the generative domain influences the em-
bedding model’s retrieval capabilities.

4.2 ReAct-Style Instruction Tuning for
End-to-End Multi-Hop Retrieval

To incorporate these different actions to represent
the entire multi-hop retrieval as a coherent textual
sequence, we adapt the ReAct framework (Yao
et al., 2023). Each retrieval hop, document evalua-
tion, and final answer production is expressed as a
short instruction or “action” phrase (see Figure 3).
All these actions are represented as textual
strings and integrated into the same sequences
used by both the embedding and generative ob-
jectives. Their exact formatting for all multi-hop
datasets (see §3.2) is described in Algorithm 1.
Because these augmented sequences include both
the retrieval chain (i.e., [q, p1, . . . ]) and the action
strings, we maintain the shared data dataset princi-
ple for both embedding and generative training.
This ReAct adaptation allows us to combine
everything, final answers, negative passages, and
retrieval steps, into a single, end-to-end system.
Crucially, this framework allows the model to:
* Decide if a retrieved document is relevant or
not. (Eval in Figure 3)

 Stop the search early if it encounters an irrel-
evant paragraph. (after (Eval: Irrelev.) in
Figure 3)

» Continue retrieving until all necessary infor-
mation is gathered (retrieve next in Figure
3)

* Finally, produce the answer. (Final Answer:
in Figure 3)

In other words, the ReAct-style instruction tun-
ing not only aligns with our controlled experimen-
tal design but also yields a system capable of au-
tonomously handling the retrieval pipeline end-to-
end. The model can determine how many steps

to take and when to stop while providing a real-
istic and comprehensive testbed for studying the
interplay of CLM and embedding objectives in
multi-hop retrieval.

4.3 Hard Negative Mining

de Souza P. Moreira et al. (2024) have shown
that mining difficult hard negatives is essential for
achieving good dense retrieval performance. We
employ the strongest GRITHopper model from
our preliminary experiments, which has only been
trained with distractors as hard negatives, to search
via dense search the most difficult examples across
the entire dataset for our final training run. For
datasets like MuSiQue that provide entire decom-
positions (sub-questions with sub-answers for each
hop), we filter distractors that contain the sub-
answer. For other datasets where we are not able
to filter this way, we filter negatives that have a
cosine similarity higher than 0.95 to the positive
paragraph. We select 10 hard negatives for the con-
trastive loss for each positive sample and add the
most difficult one to our generative loss. We find
that this is essential for making the causal reward
learning work.

S Experimental Setup

We train GRITHopper in two different setups. First,
we explore our ablations by fine-tuning one dataset,
MuSiQue (Trivedi et al., 2022). As we explain in
section 4.3, MuSiQue offers decomposition steps
with which we can ensure highly qualitative hard
negatives and is the most difficult multi-hop ques-
tion answering dataset in our dataset collection
according to Trivedi et al. (2022). The most com-
petitive models from these experiments are then
trained on a large collection of multi-hop datasets
(described in §3.2). We explore in appendix B how
we adapt each dataset in detail.

5.1 Training

GRITHopper-7B is trained on 8 x A100-80GB
GPUs with a contrastive batch size of 2048 us-
ing GradCache (Luyu Gao, 2021) and a 256 batch
size for the generative loss, like GRITLM. We
train all models for 10 epochs and select the best
checkpoint via dense retrieval performance in the
distractor setting.



Model | Hits@1 | Hits@5 | Hits@10 |
| 1 2 3 4 A | 1 2 3 4 A | 1 2 3 4 Avg |
MuSiQue
GRITHopper (ours) 93.09 7493 55.19 32.10 7548| 99.75 95.86 86.44 58.02 93.22| 99.88 97.77 93.05 7136 96.03
GRITLM 91.15 57.51 2232 543 60.51| 99.50 9131 6549 3556 86.18| 99.96 96.61 8326 51.85 92.61
MDR 81.75 45.18 - - 63.47 | 9437 71.04 - - 82.71 | 96.73 78.82 - - 87.77
Beam Retriever 88.75 60.70 30.73 12.84 62.80 | 9545 8540 6584 4148 82.85| 97.02 9044 7725 51.60 88.07
Qwen 32B + GRITLM decomposition | 82.62 45.72 1391 148 51.06 | 9545 7625 36.05 13.09 72.19| 96.69 8291 46.61 17.78 77.39
Explainable Fever
GRITHopper (ours) 95.58 89.46 80.82 - 90.59| 99.75 99.30 98.13 - 99.29 | 99.93 99.68 99.19 - 99.70
GRITLM 91.13 54.88 17.28 - 63.83 | 99.47 82.89 41.89 - 82.99 | 99.79 88.47 5198 - 87.12
MDR 9293 7716 - - 8513 99.08 94.11 - - 96.62 | 99.44 9597 - - 97.72
Qwen 32B + GRITLM decomposition | 63.24 29.88 11.93 - 40.90 | 83.74 55.14 31.87 - 63.27 | 8896 63.61 40.14 - 70.34
HoVer
GRITHopper (ours) 96.66 92.35 92.84 9231 94.70 | 99.95 99.45 100.00 100.00 99.77 | 99.95 99.68 100.00 100.00 99.86
GRITLM 95.81 88.09 8395 8846 91.81| 99.89 99.53 98.28 96.15 99.57 | 99.89 99.76 98.85 100.00 99.74
MDR 8477 65.69 - - 7710 96.60 89.51 - - 93.75 | 97.98 92.51 - - 95.78
Beam Retriever 98.04 88.96 8596 76.92 9342| 9947 97.56 97.71 100.00 98.61 | 99.73 97.79 97.71 100.00 98.84
Qwen 32B + GRITLM decomposition | 75.38 61.44 50.43 46.15 67.69 | 8223 7484 68.19 69.23 78.09| 8424 7815 7221 73.08 80.78
Zero-Shot Multi-Hop RAG Benchmark
GRITHopper (ours) 76.32 5095 22.02 11.56 52.19 | 97.74 86.34 5638 39.95 81.74| 99.29 9290 71.51 5729 8881
GRITLM 78.23 2723 4.85 251 40.19| 9849 7521 3376 1633 71.98| 99.87 91.04 59.86 3693 84.75
MDR 19.56  2.22 - - 1089 | 41.60 9.36 - - 25.48 | 50.55 15.12 - - 32.84
Beam Retriever 4324 13.13 595 276 2222| 60.09 2847 19.56 14.07 37.52| 68.56 37.03 27.89 19.85 45.83
Qwen 32B + GRITLM decomposition | 53.30 29.53 11.31 6.78 33.33| 79.56 60.27 36.05 28.89 60.68| 86.74 71.00 50.09 4296 70.96
Zero-Shot MoreHopQA
GRITHopper (ours) 98.30 94.01 - - 96.15 | 100.00 99.46 - - 99.73 | 100.00 99.55 - - 99.78
GRITLM 98.75 95.53 - 97.14|100.00 98.84 - - 99.42 | 100.00 99.73 - - 99.87
MDR 88.73 75.58 - - 82.16 | 98.30 90.79 - - 94.54 | 99.46 93.47 - - 96.47
Beam Retriever 97.85 93.02 - - 9544 99.82 9821 - - 99.02 | 100.00 98.39 - - 99.19
Qwen 32B + GRITLM decomposition | 96.24 55.19 - - 75.72 1 99.55 65.38 - - 82.47 | 100.00 68.78 - - 84.39

Table 1: Open Retrieval comparison on In-Distribution as well as Out-of-distribution on different hop depths. We
compare our best GRITHopper (with Answers but no reward modeling) to BeamRetriever, GRITLM, MDR, and a

decomposition-based approach.

5.2 Baselines

Our baselines can be split into decomposition-free
approaches and decomposition-based approaches.
Starting with decomposition-free approaches, we
chose GRITLM as our first baseline with the
prompting formats we utilize for GRITHopper.
GRITLM has also been trained on multi-hop ques-
tion answering on HotpotQA and several Fever
datasets (Thorne et al., 2018) for single-step re-
trieval. Secondly, we train BeamRetriever (beam
size 1), the current state-of-the-art method for
multi-hop retrieval and MDR, on MuSiQue as well
as our entire dataset collection (see §3.2). How-
ever, MDR has only been trained on a fixed number
of 2 hops. Therefore, we remove any additional
hops after the second hop in our experiments. For
MDR, we choose RoBerta-Large (Liu et al., 2019),
and for BeamRetriever and Deberta-v3-Base (He
et al., 2021), we find that these models perform
best with the corresponding architectures. For
more details on how we explored different base
models for these architectures, see appendix A. Be-
sides decomposition-free methods like GRITHop-
per, BeamRetriever, and MDR, we add an addi-
tional baseline using decompositions. For this, we

employ a simple one-step-at-a-time decomposition
(like (Guan et al., 2024) but with only one try for a
fair comparison) method using Qwen 2.5 32B for
decomposing the multi-hop problem into a single
sub-question with 4 few-shot samples. In the sec-
ond step, we use GRITLM to embed the sub-query
and retrieve candidates. If a supporting paragraph
is retrieved within the top-k range, we continue
by asking Qwen to extract the answer and use the
previously solved sub-questions to decompose the
next sub-query. We provide the prompt templates
in the appendix A.3.

6 Experiments and Discussion

In this section, we first compare GRITHopper to
existing methods (including GRITLM, BeamRe-
triever, and a decomposition-based approach) in
an open retrieval setting. We then focus specifi-
cally on decomposition-based methods (RQ1). Af-
terward, we analyze the out-of-distribution gen-
eralization capabilities of GRITHopper (RQ2),
illustrating its robustness compared to previous
state-of-the-art approaches. Following this, we
delve into the application of GRITHopper on open
retrieval scenarios and distractor setting evalua-



tion on MuSiQue, examining how contrastive-only
training and GRIT training, including final answers
and reward modeling in the generative objective,
affect retrieval performance.

6.1 Comparison to Existing Methods on Open
Retrieval

Table 1 summarizes the performance of var-
ious models on both in-distribution and out-
of-distribution benchmarks across different hop
depths. We compare GRITHopper to GRITLM,
BeamRetriever, MDR, and a decomposition-based
approach (Qwen 32B + GRITLM decomposition).

Across all evaluated tasks, GRITHopper consis-
tently outperforms all other techniques, including
the state-of-the-art model Beam-Retriever while
being significantly more efficient as we explore
in appendix D. For example, on the most diffi-
cult dataset, the out-of-distribution MultiHopRAG
benchmark, GRITHopper, achieves a significant
improvement in Hits@1 at deeper hops. GRITLM,
a previous generative-retrieval hybrid model, per-
forms well for the first hop but struggles with
deeper hops. BeamRetriever, despite demonstrat-
ing strong performance in in-distribution tasks,
exhibits a substantial performance drop when
tested on the out-of-distribution MultiHopRAG
benchmark, highlighting its tendency to overfit
on datasets it was trained on. Similarly, while
GRITLM is strong in certain scenarios, it cannot
match GRITHopper’s robustness across multiple
datasets and more complex multi-hop problems. In
contrast, GRITHopper maintains strong retrieval
quality even when encountering unseen data (RQ?2).
MDR degrades in the scenario the most.

6.2 Decomposition-Based Approaches (RQ1)

We now turn our focus to decomposition-based
methods. The Qwen 32B + GRITLM decom-
position approach breaks a complex multi-hop
query into sub-questions. While this can simplify
the reasoning steps, it introduces a notable trade-
off in retrieval specificity. As shown in Table 1,
the decomposition-based approach demonstrates a
larger gap between Hits@1 and Hits@5 compared
to other methods. Specifically, the average gap
from Hits@1 to Hits@5 for the decomposition ap-
proach is 13.95, which is significantly higher than
GRITHopper’s 7.44, BeamRetriever’s 6.57, and
GRITLM’s 8.45.

This substantial gap suggests that generated sub-

queries often underspecify the necessary context,
causing initial retrieval inaccuracies. While rel-
evant passages appear among the top-k retrieved
documents, the first-ranked results are more likely
to be off-target. By contrast, GRITHopper’s end-to-
end differentiability preserves the full complexity
of the query, yielding more specific embeddings
that ensure relevant passages appear at the top, re-
ducing the need for multiple autoregressive steps.

6.3 Evaluating Generative Objectives and
Post-Retrieval Information (RQ3, RQ4)

Having established GRITHopper’s superiority over
previous models in both in-distribution and out-of-
distribution, we now turn to our final two research
questions, RQ3 & RQ4, and how we derive the
GRITHopper from our ablations.

To address these questions, we first conduct a
series of controlled experiments on the MuSiQue
dataset under the distractor setting (see Table 2).
This scenario allows us to isolate and compare the
effects of different generative strategies (with and
without final answers) and reward modeling before
deploying the chosen configurations in the more
challenging open retrieval environment.

In the distractor setting, our best-performing
GRITHopper variant uses both final answers and
reward modeling, achieving a Hits@1 score of
82.32. Even without reward modeling, adding the
final answer results in a still-impressive Hits@1
score of 82.08. Compared to a purely contrastive
approach without generative signals (78.02), these
findings demonstrate that causal language mod-
eling on the same dataset (80.78) improves per-
formance (RQ3). Building on that, the inclusion
of final answers (part of RQ4) substantially im-
proves retrieval accuracy (82.08) and is essential
for outperforming BeamRetriever in distribution
on MuSiQue (81.78). The availability of the final
answer during training provides a clearer retrieval
target, guiding the model to select more relevant
passages at each hop. However, the inclusion of
reward modeling, while helpful in the distractor
setting, leads to overfitting on open retrieval. This
is very similar to the BeamRetriever, which ex-
cels under conditions closely matching its train-
ing distribution (distractor setting in Table 2) but
struggles to generalize on the same dataset in open
retrieval (Table 1); our GRITHopper with reward
modeling shows a similar behavior when compar-
ing to Table 3. Like BeamRetriever, only trained



on the beam search over distractors, the GRITHop-
per, causally trained on negatives, is really good at
keeping difficult distractors away but at the cost of
generalization.

Given this trade-off, we choose the GRITHop-
per configuration that includes the final answer but
omits reward modeling for our open retrieval ex-
periments. As shown in Table 3, this variant not
only maintains strong performance in-distribution
but also preserves robust out-of-distribution gener-
alization capabilities. Thus, while both generative
training and final answers prove beneficial (answer-
ing RQ3 and partially RQ4 affirmatively), reward
modeling offers only limited gains and at a con-
siderable cost to generalization. Furthermore, we
compare the end-to-end performance of the models
to stop after the correct amount of hops; BeamRe-
triever can do so by comparing the scores from
the current and the previous hop; if it decreases,
it stops (see (Zhang et al., 2024a) Appendix C.
However, we find that these scores are biased to
decrease after the first hop, leading often to prema-
turely stopping. GRITHopper seems to be more
robust in this scenario (see Table 2). However, we
also find that when training on all datasets, the
peek performance on causal performance is only
reached after 3 times longer training than for op-
timal embedding performance, leading to overfit-
ting. To not sacrifice embedding generalization,
GritHopper on all datasets has, therefore, a slightly
weaker end-to-end performance at 66.12 than its
MuSiQue Only version. We observe this also in
the re-ranking performance which is significantly
lower at 59.04, and although extended training im-
proves re-ranking to up to 76.78, it still does not
surpass the embedding performance while leading
to overfitting on the dense retrieval task.

7 Conclusion

We introduced GRITHopper-7B, a novel multi-
hop dense retrieval model that achieves state-of-
the-art performance across both in-domain and out-
of-distribution datasets. By training on extensive
multi-hop datasets in question-answering and fact-
checking, GRITHopper-7B outperforms previous
decomposition-based methods while maintaining
the efficiency of dense encoders.

Our study demonstrated that decomposition-
free approaches like GRITHopper surpass
decomposition-based methods in multi-hop
retrieval tasks due to better query specificity and

Model Average Hits@1
Dense Retrieval

GRITHopper (Answers & Reward) 82.32
GRITHopper (Answers) 82.08
GRITHopper (no post Im) 80.78
GRITHopper (Contrastive Only) 78.02
Cross Encoder

BeamRetriever (all datasets) 81.78
BeamRetriever (MuSiQue Only) 80.98
GRITHopper ReRank™ 59.04
End-to-End Retrieval

GRITHopper end-to-end” 75.00
BeamRetriever end-to-end 38.21

Table 2: MuSiQue distractor-setting dense retrieval per-
formance. All GRITHopper models are trained only on
the MuSiQue dataset. * Uses GRITHopper (Answers &
Reward). No post 1m stands for causal modeling only
on the retrieval chain

Dataset Avg. Hits@1 for GRITHopper with:

Ans + Rew Ans No Post

In Distribution

ExFever 81.51 90.59 88.89
MuSiQue 75.30 75.48 75.10
Hover 94.42 94.70 94.42
Zero-Shot Benchmarks

MoreHopQA 95.13 96.15 94.68
MultiHopBench 52.76 52.19 51.13

Table 3: GRITHopper trained on all datasets in open
retrieval performance. Ans includes the final answer in
the generative samples. Rew includes reward modeling
to distinguish negatives from positives, while No Post
does not include post-retrieval language modeling.

reduced computational overhead. GRITHopper
generalizes exceptionally well on out-of-
distribution benchmarks, confirming its robustness
across diverse datasets. We found that integrating
causal language modeling with embedding
training substantially enhances dense retrieval
performance compared to embedding-only
training. Additionally, incorporating post-retrieval
language modeling by including final answers
further improves the model’s ability to retrieve
relevant passages. We have demonstrated how
its generative training enables GRITHopper for
end-to-end retrieval, outperforming previous state-
of-the-art methods. We release GRITHopper-7B
to the community as a resource for future research
in natural language processing tasks requiring
complex reasoning and retrieval capabilities.



8 Limitations

Despite  its  state-of-the-art  performance,
GRITHopper-7B has several limitations:

* Scalability Challenges for Large Corpora:
While GRITHopper efficiently handles open-
domain multi-hop retrieval, the reliance on
pre-computed dense embeddings limits its
scalability for extremely large corpora. The
computational cost of creating and maintain-
ing dense representations for frequent updates
remains for a 7B model significant.

* Dependency on High-Quality Hard Nega-
tives: GRITHopper relies heavily on effective
hard negative mining to train contrastive ob-
jectives. This dependency may limit its appli-
cability in domains or datasets lacking high-
quality distractor annotations or the ability to
mine suitable negatives. This is something we
especially observe in reward learning, where
there are substantial performance drops on
datasets where we lack information on an-
swers and sub-questions to determine which
makes a passage irrelevant or relevant.

e Computational Overhead for Training:
The integration of both embedding and gen-
erative objectives requires substantial GPU
resources (e.g. 8 x A100-80GB GPUs). This
makes GRITHopper less accessible for re-
search groups with limited computational re-
sources.

* Sensitivity to Dataset Characteristics:
GRITHopper performs exceptionally well on
multi-hop tasks with well-defined retrieval
chains (e.g., MuSiQue, HoVer). However,
its performance on tasks with noisier or less
structured retrieval chains (e.g., conversa-
tional QA) remains untested, highlighting po-
tential brittleness to dataset variability.

¢ Limited Exploration of End-to-End Re-
trieval Dynamics: While GRITHopper en-
ables end-to-end retrieval with generative out-
puts, its ability to reliably determine stopping
conditions (e.g., when to terminate retrieval)
is limited, especially because generative train-
ing requires longer training for optimal perfor-
mance than contrastive learning. This impacts
its usability for fully autonomous retrieval
pipelines. Future work has to show whether

scaling the datasets even further can mitigate
this gap between causal language modeling
and dense retrieval.

9 Ethics

The development and deployment of
GRITHopper-7B raise two key ethical con-
siderations. First, the model’s reliance on
large-scale datasets introduces the risk of propa-
gating biases present in the training data (Prakash
and Lee, 2023; Schramowski et al.,, 2022),
potentially leading to skewed retrieval outcomes
or amplification of misinformation. Additionally,
the open-domain nature of the retrieval task
heightens the risk of retrieving sensitive or
harmful content, which could pose challenges
in privacy and content moderation. Second,
GRITHopper’s decomposition-free approach
reduces interpretability compared to methods that
produce intermediate outputs, making it harder
to explain and trust its decisions in high-stakes
scenarios.
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A Baselines

A.1 Beam Retriever

The Beam Retriever (Zhang et al., 2024a) em-
ploys a cross-encoder architecture and relies on
beam search to determine the number of steps
required for retrieving multi-hop evidence. Un-
like methods that have a predetermined number
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of computations, the Beam Retriever dynamically
expands or shrinks the retrieval process, which is
why the authors train with a Batch Size of 1. Be-
cause large-scale parallelization on GPUs requires
a uniform number of computations, this variabil-
ity makes batching and distributed training for the
model infeasible. Attempting to scale the Beam Re-
triever beyond DeBERTa-Base results in both per-
formance degradation and dramatically increased
training times. We tested DeBerta Large, which
only achieved 68 compared to its base counterpart
at 82 in the distractor setting of MuSiQue (Table
2). Training an XL variant would require over 60
days of compute, which is significantly longer than
the training time for GRITHopper. This limitation
prevents us from exploring larger model sizes for
the Beam Retriever, restricting it to smaller archi-
tectures.

A2 MDR

Multi-Hop Dense Retrieval (MDR) (Xiong et al.,
2021) is natively designed for exactly two-hop re-
trieval. Efforts to extend MDR to more than two
hops by adapting the loss function, as suggested
by Ma et al. (2024), led to instabilities in our ex-
periments, including scenarios where the model’s
embeddings collapse. Since MDR’s loss is com-
puted at the sample level, adapting it for varying
hop lengths becomes non-trivial. These complex-
ities, combined with the need to maintain large
batch sizes for good generalization, hindered scal-
ing to larger models or additional hops.

We train MDR on 8 x A100-80GB GPUs and
find that batch size must decrease as model size
grows. For instance, we can use a batch size of
16 x 8 for base models, 8 x 8 for roberta/deberta
large ones, and only 2 x 8 for the largest vari-
ant (DeBerta XL). This reduction in batch size
likely impacts the model’s generalization capabil-
ities. Table 4 in the main paper shows that even
scaling MDR to RoBERTa-Large yields only mi-
nor improvements, and attempts to go beyond this
configuration or handle more than two hops fail
due to the aforementioned instabilities. To remain
fair to the original authors, we report MDR re-
sults that remain as close as possible to their origi-
nal setup. Bringing MDR up to today’s standards
would likely involve adopting modern embedding
objectives with techniques like gradient caching
and instruction-tuned LLM backbones approaches
we have integrated in our ablations with GRITHop-
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per, where combining generative and embedding
training yields superior performance compared to
contrastive-only baselines (like MDR).

A.3 Decompostion based approach

As discussed in Section 5.2, our decomposition-
based baseline uses a step-by-step query decompo-
sition approach. Each complex multi-hop question
is decomposed into simpler sub-questions, and at
each step we retrieve supporting paragraphs and
extract the relevant answer.

We employ four prompt templates for decompo-
sition:

1. First-Hop Sub-Question Generation: Gen-
erates the initial sub-question from the origi-
nal multi-hop question.

Second-Hop (Next) Sub-Question Genera-
tion: Generates the next sub-question given
the original question and the previously an-
swered sub-questions.

. Third-Hop (Next) Sub-Question Genera-
tion: Similar to second-hop but for the third
hop.

Fourth-Hop (Next) Sub-Question Genera-
tion: Similar to above, for the fourth hop.

Finally, we have an Answer Extraction
Prompt, used after retrieving paragraphs, to ex-
tract the answer snippet.

Note on Evaluation Fairness: We evaluate re-
trieval performance at each hop by checking if the
correct evidence appears within the top-k retrieved
paragraphs. This evaluation is independent of the
sub-questions order. Thus, regardless of how a
model decomposes the problem, the evaluation re-
mains fair and consistent across all methods.

Evaluation. For evaluation, we follow a stan-
dard hits@k metric at each hop. We compare all
models on their ability to retrieve the correct ev-
idence at hop 1, then at hop 2, and so forth. To
ensure a fair comparison, we do not rely on the
self-correctness of decomposition-based methods
as they inherently involve autoregressive genera-
tion, which allows multiple retries. In contrast, our
decomposition-free approach computes a single
dense embedding per step, making it significantly
more efficient. While self-correction could im-
prove performance, it introduces additional ineffi-
ciencies, contradicting the goal of comparing meth-
ods under the most efficient setting. Importantly,
decomposition-based methods already require sep-
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arate models for generation and embedding, further
increasing computational cost.

B Detailed Dataset adaptations

We first discuss the evaluation dataset specifics for
evaluation and then our Training Dataset construc-
tion.

B.1 Detailed dataset statistics for Evaluation

We show the evaluation dataset statistics in Table 6.
We use all paragraphs used for solving the multi-
hop problems as negatives for our open retrieval
setting. We do not add even more examples as
this would make a comparison to the current state-
of-the-art model BeamRetriever impossible. This
gives us a candidate pool between 2000 samples for
MoreHopQA and up to 20000 samples in Explain-
able Fever in our experiments. This already can
lead to BeamRetriever requiring up to 400 hours
to solve one dataset as we discuss in Appendix D.

B.1.1 Training Dataset

We use the entire dataset of MuSiQue, HotpotQA
as well as Hover. In Hover and ExFever, however,
we find that not all hops are multi-hop if we remove
duplicated evidence in the same sample, resulting
in some 1-hop problems. The 2WikiMultiHopQA
consist of only 2 hop and 4 hop problems, as we
have a large amount from 2 hop problems already
from HotpotQA, we only take 4 hop problems from
there to not further unbalance the length of hops.
While the post-retrieval information for MultiHop
Question answering is clear, for fact-checking, we
adapt whether the claim is supportive or unsupport-
ive as the final answer. From Hover, we only use
supporting paragraphs as it has no refuted label,
making incomplete/irrelevant as positives unsuit-
able for contrastive learning.

B.1.2 Open Evaluation statistics



Modsl \ Hits@1 \ Hits @5 \ Hits@10 \
| 1 2 3 4 A | 1 2 3 4 A | 1 2 3 4 Ay |
Comparison to other models on MuSiQue
GRITHopper (ours) 93.09 7493 5519 32.10 75.48|99.75 95.86 86.44 58.02 93.22|99.88 97.77 93.05 71.36 96.03
GRITLM 91.15 57.51 2232 543 60.51]99.50 91.31 6549 3556 86.18|99.96 96.61 83.26 51.85 92.61
Beam Retriever 88.75 60.70 30.73 12.84 62.80 | 95.45 8540 65.84 4148 82.85|97.02 90.44 7725 51.60 88.07
Qwen 32B + GRITLM decomposition | 82.62 45.72 1391 148 51.06 | 9545 7625 36.05 13.09 72.19|96.69 8291 46.61 17.78 77.39
MDR on MuSiQue
DeBerta Base 62.43 20.60 - - 41.52 | 79.98 40.67 - - 60.32 | 85.52 49.28 - - 67.40
Deberta Large 74.35 32.06 - - 5321|8597 5225 - - 69.11 | 89.78 59.95 - - 74.87
XL DeBerta 87.05 48.37 - - 67.71 | 96.07 75.42 - - 85.75197.60 82.75 - - 90.17
Roberta Large 86.06 50.19 - - 68.12 | 95.32 76.71 - - 86.02 | 96.40 82.42 - - 89.41
MDR on all Datasets
Roberta Large ‘ 81.75 45.18 - - 63.47 ‘ 94.37 71.04 - - 82.71 ‘ 96.73 78.82 - - 87.77

Table 4: MDR ablations on different backbone architecturs

You are given a multi-hop question and the answers
to previous sub-questions. Given this information,
break down the multi-hop question into the next
smaller sub-question that can be answered by re-
trieving information via a search engine.

(Few-shot Examples: Multi-hop question +
previous answers)

Input:

Multi-hop Question: {multi_hop_question}
Previous Sub-Questions and Answers: {history}

Output:

Next Sub-Question: {generated_sub_question}

You are given a question and a paragraph that con-
tains the answer. Extract the relevant part of the
paragraph that answers the sub-question. Ensure that
the answer is as concise and accurate as possible.
(Few-shot Examples: Question + Retrieved
Paragraph)

Input:

Question: {sub_question}
Retrieved Paragraph: {retrieved_paragraph}

Output:

Answer: {extracted_answer}

Figure 4: Decomposition and Answer Extraction Prompt Templates. Few-shot examples include similar multi-hop
problems with previously answered sub-questions and answers, demonstrating a consistent step-by-step structure.
We provide a custom decomposition instruction for the first hop and provide custom 4 few-shot samples for each

additional hop.

Dataset Total Samples Samples Per Hop Dataset total S T Tes Per %OP .

Hop 1 Hop 2 Hop 3 Hop 4 MoreHopQA T,T18 T,T18 0 0
MuSiQue 19,938 0 14376 4387 1175 Errsre §O38 | 15 61 A 8%

MultiHopBench 21556 0 1079 778 398

HoVer 10,280 3,762 5,579 883 56 Multilop 2,238 S 0 7 o
HotpotQA 90,447 0 90,447 0 0
ExFever 28,774 1,272 17,444 10,058 0 .. .
2WikiMultiHopQA 34,942 0 0 0 34,631 Table 6: Dataset statistics for the open retrieval evalua-
Total 184,070 5034 127846 15328 35862 tion setup. The table includes the number of multi-hop

Table 5: Training dataset statistics, including the to-
tal number of samples and the distribution of samples
across different hop depths for each dataset. The final
row shows the aggregate totals, providing an overview
of the dataset scale when training across all datasets.

In this section, we compare the computational
complexity of a cross-encoder-based multi-hop
retriever (e.g., Beam Retriever) and a dense bi-
encoder-based multi-hop retriever (e.g., GRITHop-
per and MDR) under the scenario where both must
consider the entire corpus of P passages at each
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problems and the distribution of samples across differ-
ent hop depths for each dataset.

retrieval hop. This corresponds directly to the set-
ting in our experiments, where the Beam Retriever
processes all P passages at every hop without a
first-stage filter, resulting in prohibitively long run-
times.



C Algorithm Dataset formatting

Algorithm 1 Dataset Construction for Multi-Hop
Retrieval
Input: Multi-hop dataset D = {(q, P, a)}, where
g is the question, P is the set of paragraphs,
Ps C P are supporting paragraphs, and a is the
final answer.
Output: Generative samples S,, Contrastive sam-
ples S,.

1: Initialize Sy < 0, S, < 0

2: Set instructions Instg, Instp, and actions

3: for (¢,P,a) € Ddo

4: P« Instg +q
5: > Initialize retrieval prompt
6: Sneg — @
7: fori =1to |Qg| do
8: > Iterate through decomposition steps Qg
o: P+ Q4]
10: Doy — mine_negative(P,P)
11: Dpos < Psli
12: Sy 8, U (P, Dpos, Dpeg)
13: Py < P +Document: Dijeq
14: Preg < Ppeg + Eval(neg)
15: Sneg  Sneg U Preg
16: > next continue with positive chain
17: P < P+ Document: D,
18: P < P + Eval(pos)
19: if i # | Q4| then > Final step
20: P < P +Retr
21: end if
22: end for
23: Prinal < P+ Answer: a
24: Sg — Sg U meal
25: Sy« SgUrandom_select(Syeq)
26: > to balance positive and negatives
27: end for

28: return S;, S,

D Complexity Analysis

Notation:

¢ : Number of queries.

* H: Average number of hops per query.
P: Total number of passages in the corpus.
Lg: Length (in tokens) of the query plus pre-
viously retrieved context.
L,: Length (in tokens) of a passage.
Cinodet(L): Compute cost of a single forward
pass on an input of length L.
* Csearch(P): Compute cost of searching P pre-

14

encoded embeddings (sub-linear in P using
ANN indexes).

D.1 Cross-Encoder (Beam Retriever)

The cross-encoder must re-encode each passage
together with the query at every hop. Without any
pre-retrieval pruning, it compares against all P
passages each time:

O(Q -H-P- Cmodel(Lq + Lp))

Since every passage is processed through the cross-
encoder at every hop, runtime grows linearly with
P and H. For large P, this becomes extremely
time-consuming (e.g., hundreds of hours).

D.2 Dense Bi-Encoder (GRITHopper)

Dense retrieval encodes all P passages once of-
fline:
O(P 'Cmodel(Lp))'

At inference time, each hop only requires encoding
the query and performing a vector search over P:

O(Q -H- [Cmodel(Lq) + Csearch(P)])'

Because the passages are already encoded, the cost
per hop is dominated by a single query encoding
and efficient similarity search. This typically takes
orders of magnitude less time than re-encoding P
passages at every hop.

D.3 Discussion

Under identical conditions, considering all P pas-
sages at each hop, the Beam Retriever’s complexity
grows as O(Q - H - P) with a high per-pass token
cost, resulting in very long runtimes (e.g., over 400
hours in our ExFever open-retrieval experiments).
In contrast, GRITHopper amortizes passage encod-
ing and relies on fast search structures, completing
the same task in 8 minutes and 20 seconds. This
substantial practical difference in runtime reflects
the asymptotic advantage of dense retrieval for
large-scale, multi-hop scenarios.



