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ABSTRACT

Estimating the uncertainty of responses of Large Language Models (LLMs) re-
mains a critical challenge. While recent Bayesian methods have demonstrated
effectiveness in quantifying uncertainty through low-rank weight updates, they
typically require complex fine-tuning or post-training procedures. In this paper,
we propose Training-Free Bayesianization (TFB), a novel framework that effi-
ciently transforms existing off-the-shelf trained low-rank adapters into Bayesian
ones without additional training. TFB systematically searches for the maximally
acceptable level of variance in the weight posterior, constrained within a family of
low-rank isotropic Gaussian distributions. We theoretically demonstrate that under
mild conditions, this search process is equivalent to KL-regularized variational
optimization, a generalized form of variational inference. Through comprehensive
experiments, we show that TFB achieves superior uncertainty estimation and gen-
eralization compared to existing methods while eliminating the need for complex
training procedures.

1 INTRODUCTION

Despite recent advances in Large Language Models (LLMs) showing great capacity for generating
responsive answers to human instructions (Biderman et al., 2023; Wei et al., 2022; 2021; Min et al.,
2022; Chowdhery et al., 2023; Anil et al., 2023; Touvron et al., 2023a;b; Radford et al., 2019; Brown
et al., 2020; Achiam et al., 2023; OpenAI, 2022), the reliability of such large models remains a critical
concern (Wang et al., 2024b;a), as untruthful yet confident answers could cause significant damage to
individuals and society (Gupta et al., 2024; Nikitin et al., 2024; Yadkori et al., 2024; Kapoor et al.,
2024). The accurate estimation of uncertainty in LLMs has thus emerged as an urgent challenge.
Current approaches mainly follow two paths: one focuses on directly asking the model to elicit its
internal internal (verbalized) uncertainty (Xiong et al., 2023; Tian et al., 2023; Kapoor et al., 2024),
while the other employs complex fine-tuning techniques (Yang et al., 2023; Wang et al., 2024c).

Both approaches suffer from inherent limitations. Verbalized uncertainty, while simple to implement,
remains controversial in terms of its empirical reliability and theoretical soundness (Kadavath et al.,
2022; Kuhn et al., 2023). On the other hand, low-rank adapters (LoRA (Hu et al., 2022)), which
offer a parameter-efficient way to adapt LLMs by adding a small set of low-rank weight matrices,
have emerged as a promising direction for fine-tuning models. However, while LoRA efficiently
adapts large models to new tasks, it does not itself provide a mechanism for principled uncertainty
estimation. In response, recent Bayesianization attempts, such as BLoB (Wang et al., 2024c), integrate
Bayesian methods with LoRA, but they still require complex training procedures and sophisticated
hyperparameter tuning, limiting their practicality. These constraints motivate the research question:

Can we “Bayesianize” an LLM’s low-rank adapter in a way that is
both theoretically sound and empirically simple?

In this paper, we diverge from conventional fine-tuning and post-training approaches. Instead, we
develop a Training-Free Bayesianization (TFB) technique applicable to any given low-rank LLM
adapter. TFB constrains the family of full-weight approximate posteriors produced by LoRA adapters
to low-rank isotropic Gaussian distributions. Given a trained LoRA adapter, it systematically searches
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for the maximally acceptable variance of the variational distribution of the weight posterior, without
the need for complex fine-tuning procedures. TFB’s search range and stopping criteria can be
determined using any in-distribution “anchor dataset,” e.g., a small subset of the training dataset. Note
that (i) this eliminates the need for an additional calibration or validation dataset; (ii) this flexibility
extends to both supervised and unsupervised data, even regardless of whether it was used in the
original LoRA training. Despite its simplicity, we theoretically demonstrate that, TFB’s process of
finding the maximal variance of the low-rank isotropic Gaussian posterior is equivalent to generalized
variational inference, under mild conditions.

We verify TFB’s effectiveness through extensive empirical evaluation across various settings, datasets,
LLM backbones, LoRA weights, and LoRA variants. Our comprehensive experiments demonstrate
that this novel training-free Bayesianization framework consistently achieves superior generalization
and more accurate uncertainty estimation. To summarize, the main contributions of this paper are:

• We propose Training-Free Bayesianization (TFB), the first framework to transform trained
LoRA adapters into Bayesian ones without fine-tuning or gradient estimation.

• We establish theoretical connections between TFB and generalized variational inference,
proving their equivalence under mild conditions.

• We develop an efficient implementation of TFB requiring only an anchor dataset for search,
making it widely applicable across different application scenarios.

• Through comprehensive experiments, we demonstrate that TFB consistently improves
uncertainty estimation for off-the-shelf LoRA adapters, and overall surpasses the state-of-
the-art counterparts of Bayesian LoRA.

2 RELATED WORK

LLM Uncertainty Estimation. To estimate the uncertainty of LLMs, the models themselves are
often employed to generate and evaluate their own uncertainty (Lin et al., 2022; Kadavath et al.,
2022). However, such approaches typically rely on task-specific labels and require additional training.
Semantic entropy (Kuhn et al., 2023) leverages the invariance of language stemming from shared
meanings to estimate uncertainty, while mutual information is used to compute a lower bound on
model uncertainty by sampling from the model’s output distribution (Yadkori et al., 2024). Despite
their contributions, these methods fail to accurately capture true model uncertainty, as they do not
model the probability distribution over the LLM parameters (Hüllermeier & Waegeman, 2021; Abdar
et al., 2021; Gawlikowski et al., 2023).

Bayesian Low-Rank Adaptation. The Bayesian framework provides a powerful approach for cap-
turing and estimating uncertainty during fine-tuning by defining prior distributions and approximating
posterior distributions over the model parameters (Neal, 2012; Hernández-Lobato & Adams, 2015;
Gal & Ghahramani, 2016; Wang & Yeung, 2016). Recent research has explored combining Bayesian
methods with LoRA to mitigate the additional computational overhead associated with modeling
parameter distributions across the entire parameter space. Yang et al. (2023) applies a Kronecker-
factorized Laplace approximation to fine-tuned LoRA parameters. More recently, BLoB (Wang
et al., 2024c) advances the field by simultaneously estimating both the mean and covariance of LLM
parameters within a single fine-tuning stage. Our proposed training-free Bayesianization represents a
significant departure from these existing methods. Unlike approaches that require re-training (Gal
& Ghahramani, 2016; Wang et al., 2023; Balabanov & Linander, 2024; Wang et al., 2024c) or rely
on continued training and gradient estimation (Yang et al., 2023), our method achieves uncertainty
estimation without any additional training steps, substantially improving the simplicity and efficiency
for Bayesian learning of LLMs.

3 METHODOLOGY

This section presents our Training-Free Bayesianization (TFB), covering problem setup (Sec. 3.1), our
low-rank Gaussian posterior formulation (Sec. 3.2), and a novel approach for converting deterministic
weights to probabilistic distributions without training (Sec. 3.3). The complete algorithmic imple-
mentation is provided (Sec. 3.4), with theoretical foundations addressed in a separate section (Sec. 4).

Notation. Scalars, vectors, and matrices are denoted by lowercase letters, lowercase boldface
letters, and uppercase boldface letters, respectively. For a matrix X = [x1, · · · ,xn] ∈ Rm×n,
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we use vec(X) = [x⊤
1 ,x

⊤
2 , · · · ,x⊤

n ]
⊤ ∈ R(mn)×1 to denote vectorization. ⊗ and ◦ denote the

Kronecker and element-wise product, respectively. We use 0n ∈ Rn×n to denote a zero matrix.

3.1 PRELIMINARIES

Low-Rank Adaptation (LoRA). Given a pre-trained neural network layer with weight matrix W0,
Low-Rank Adaptation (LoRA) (Hu et al., 2022) confines weight updates to a low-rank subspace
during fine-tuning, expressing the update as ∆W = BA, where ∆W ∈ Rm×n, B ∈ Rm×r, and
A ∈ Rr×n. For input h and output z of the LoRA layer, the forward pass computation is given by:

z = W0h+∆Wh = W0h+BAh. (1)

LoRA Bayesianization with Low-Rank Gaussian Distribution. BLoB (Wang et al., 2024c), a
pioneering work in low-rank Bayesianization for LLMs, empirically demonstrates that modeling A’s
elements with independent Gaussian variables suffices for effective uncertainty estimation in LoRA.
Specifically, the probability density of each element of A follows q(Aij) = N (Aij |Mij ,Ω

2
ij),∀i ∈

[r],∀j ∈ [n], where matrices M and Ω, sharing the dimensions of A, represent the mean and standard
deviation of the random variable A, respectively. This formulation is equivalent to approximating the
Bayesianized low-rank adapter’s posterior in the full-weight space of W with a low-rank degenerate
distribution, i.e.,

q(vec(W )|B,θ) = N (vec(W )|µq,Σq), (2)

where θ = {M ,Ω} denotes the set of parameters modeling A’s variational distribution, µq =
vec(W0+BM) is its mean, and Σq = [In⊗B][diag(vec(Ω)2)][In⊗B⊤] is its covariance. In this
paper, we adopt a similar approach for modeling the variational distribution of the weight posterior,
focusing exclusively on Bayesianizing the weight update matrix A.

3.2 TFB’S VARIATIONAL LOW-RANK ISOTROPIC GAUSSIANS

Variational Distribution Family. In TFB, we constrain the variational distributions of the weight
posterior to a more compact family of Gaussians than BLoB: specifically, we employ full-space
isotropic Gaussian distributions projected onto the low-rank space:

q(vec(W )|B,θ) = N (vec(W )|µq,proj(σ
2
qI)), (3)

where µq is defined as in Eqn. 2. Here, σ2
qI ∈ Rmn×mn represents a full-rank isotropic covariance

matrix with standard deviation σq, and proj(·) denotes a linear projection operator that maps the
full-space covariance matrix onto the low-rank space (see Proposition D.1.1 for details). 1

TFB as Generalized Variational Inference. The choice of low-rank isotropic Gaussian approxi-
mate posteriors serves both theoretical and empirical purposes: it provides a single-parameter family
that enables converting the generalized variational inference into a variance maximization prob-
lem (more details in Sec. 3.3 and Theorem 4.2), and empirically outperforms alternative distribution
families (Sec. 5.3). Below, we present a practically efficient implementation for Bayesianizing LoRA
under the constraint specified in Eqn. 3, with detailed theoretical analysis provided in Theorem 4.1.

TFB in Practice. Consider a LoRA layer with weight updates B ∈ Rm×r,A ∈ Rr×n and a
standard deviation scale σq > 0. We begin by computing the compact Singular Value Decomposi-
tion (SVD) (Klema & Laub, 1980) of B:

B = U diag(d)V ⊤, (4)

where U ∈ Rm×r and V ∈ Rr×r are orthonormal matrices, and d = [d1, d2, · · · , dr]⊤ is the vector
consisting of singular values with all positive entries2. We then transform the original weight matrices
{B,A} into an equivalent pair

{B′ = U ,A′ = V ⊤A}, (5)

maintaining the equality ∆W = BA = B′A′. Following BLoB’s Asymmetric Bayesianization
scheme, we define the variational distribution for A′ using the mean matrix M = A′ and the standard
deviation matrix Ω ∈ Rr×n, such that

q(A′
ij) = N (A′

ij |Mij ,Ω
2
ij),∀i ∈ [r],∀j ∈ [n]. (6)

1proj(·) only depends on the rank r of the trained LoRA.
2By stating d ≻ 0, we assume B has the full column rank r, which usually holds for LLM adaptation.
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Unlike BLoB, our Ω is not freely parameterized but instead derived from projecting the full-space
matrix σqI onto the low-rank weight space:

Ωij = σq/di, ∀i ∈ [r],∀j ∈ [n], (7)

where d is defined in Eqn. 4. This solution can be expressed compactly as Ω = [σq/d, · · · , σq/d],
comprising n repeated vectors. To summarize, our TFB

• takes as input a trained LoRA matrix pair {B = U diag(d)V ⊤,A} and a predetermined
standard deviation σq , and

• outputs a “Bayesianized” LoRA adapter {B′,A′}, where B′ = U diag(d), and A′ be-
comes a distribution q(A′) =

∏
i∈[r],j∈[n]N (A′

ij |Mij ,Ω
2
ij), with M = V ⊤A, and Ω =

[σq/d, · · · , σq/d].

Note that the formulation in Eqn. 7 significantly improves memory efficiency during inference,
reducing the storage for standard deviation parameters from O(rn) to O(r). While alternative
parameterization approaches are possible, they must be capable of generating the low-rank isotropic
Gaussian noises as demonstrated in Theorem 4.1. We have selected the current method to ensure
maximum compatibility with existing implementations (Wang et al., 2024c). In TFB, we use a single
σq shared across all LoRA layers.

3.3 TRAINING-FREE BAYESIANIZATION (TFB)

The previous section presents a straightforward Bayesianization scheme for a predetermined value
of σq . In this section, we describe a practical method for determining σq .

A General Bayesianization Framework. Consider an in-distribution “anchor” dataset D, an
associated evaluation metric l, and a performance change tolerance ϵ. TFB determines σq by solving
a constrained optimization problem:

max σq

s.t. |l(D|B′,M ,Ω(σq))− l(D|B,A)| ≤ ϵ,
(8)

where l(D|B,A) and l(D|B′,M ,Ω(σq)) = EE∼N (0,Ω2)[l(D|B′,M +E)] denote the pre- and
post-Bayesianization performance, respectively. This optimization maximizes the noise scale σq

applied to model weights M while ensuring that the resulting performance change remains within an
acceptable threshold ϵ.

Anchor Dataset D and Evaluation Metric l. Our general TFB framework accommodates various
choices of anchor dataset D and evaluation metric l based on practical requirements. Below, we
consider two key scenarios (with N being slightly overloaded in its notation).

For supervised dataset D = {xn, yn}Nn=1: The Negative-Log Likelihood (NLL) serves as a natural
evaluation metric: lnll(D) = − 1

N

∑N
n=1 logPθ(yn|xn), as it theoretically corresponds to minimizing

the KL-regularized variational objective (more details in Sec. 4). The anchor dataset D can be either
the original training set used for the LoRA model or an independent calibration dataset, as commonly
employed in calibration-based methods (Guo et al., 2017; Zhao et al., 2021). Alternative evaluation
metrics such as accuracy or F1 score are also readily applicable. In our experimental setup, to ensure
fair comparisons across uncertainty estimation baselines, we use the original training data as D
(maintaining the same information access as baselines) and employ NLL as the evaluation metric.
Additional results with accuracy as l can be found in Appendix F.2.

For unsupervised dataset D = {xn}Nn=1: One can generate pseudo-labels ŷ using the model before
Bayesianization, effectively converting the problem to the supervised case with D = {xn, ŷn}Nn=1.
Hence our TFB offers substantially more flexibility compared to pure calibration methods, which
typically rely on a labeled unseen calibration dataset. As a general framework, TFB also supports
alternative evaluation metrics and statistical measures specifically designed for unsupervised data.

Performance Change Tolerance ϵ. The selection of performance change tolerance ϵ is critical in
TFB. While our experiments demonstrate that a fixed ϵ = 0.3% for NLL or ϵ = 1% for accuracy can
achieve effective uncertainty estimation across various datasets and LoRA checkpoints, an adaptive ϵ
can further improve the performance of TFB.

Many factors can affect the setting of ϵ, among which the most important is the property of the given
LoRA checkpoint. For instance, an overfitted LoRA can typically accommodate a larger tolerance ϵ
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when using the training dataset (or its subset) as the anchor dataset. Additional characteristics of the
data, model, and adaptation tasks can inform the choice of ϵ as well.

3.4 TFB: FINAL ALGORITHM

Final TFB Algorithm: Automatically Determining σq. Our final algorithm, presented in Al-
gorithm 1, employs a binary search strategy to determine the optimal σ∗

q within an initial range
[σqmin, σqmax]. After identifying the optimal σ∗

q , we Bayesianize all LoRA layers using this value.

Prediction. After Bayesianizing the LLM, for prediction, we sample multiple times from the weight
posterior and average the output:

Pθ(y|x) = Eq(W |θ)[P (y|x,W )]

≈ 1
N

N∑
n=1

P (y|x,Wn), Wn ∼ q(W |θ),
(9)

where q(W |θ) denotes the variational distribution defined in Eqn. 3, and we set the number of
test-time samples to N = 10, following BLoB’s protocol (Wang et al., 2024c).

Remark on TFB’s Efficiency. While TFB with binary search is efficient in terms of both time and
memory (Appendix F.1), and yields near-optimal solution of σq

3, more efficient parallel searching
technique can be applied in practice. For instance, in Appendix F.7, we conduct a grid search across
8 different σq values in parallel, construct an approximate function σ̂q(p) through piecewise linear
interpolation of the observed performance, and estimate σ∗

q ≈ σ̂q(p0 − ϵ), where p0 denotes the
model’s performance before TFB.

4 THEORETICAL ANALYSIS

In this section, we discuss our theoretical analysis, with complete proofs provided in Appendix D.
First, we demonstrate that our TFB’s Bayesianization scheme, defined in Equations 4, 5, and 7,
projects a full-rank isotropic Gaussian distribution onto the low-rank space. We then prove that
Eqn. 8 is equivalent to generalized variational inference for LLMs’ weights under specific, achievable
conditions, offering solid theoretical grounding for TFB.

Assumption 4.1. The evaluation metric lD : R+ → R+ is the Negative Log Likelihood (NLL)
evaluated on the data distribution D for the variational standard deviation σq:

lD(σq) = −E(x,y)∼D,W∼q(·|σq)[logP (y|x,W )]. (10)

Furthermore, we assume lD is locally convex, i.e., there exists ϵ0 > 0 such that l′′D(σq) > 0, for all
σq ∈ [0, ϵ0).

Remark. The local convexity of the loss function is not an unrealistic assumption (Milne, 2019). For
instance, a local minimum W0 of a twice-differentiable loss function l will imply the local convexity
around W0, which has been widely assumed in Laplace Approximation (Tierney & Kadane, 1986;
Bishop, 2006).

Theorem 4.1 (Equivalent Variational Distribution of the Full Weight W in TFB). With the pre-
trained weight matrix W0 ∈ Rm×n, the low-rank weight update matrix {B′ ∈ Rm×r,A′ ∈ Rr×n}
transformed from the given matrices {B,A} following Eqn. 4 and 5, suppose that the variational
distribution of A′ is Gaussian q(A′|θ) =

∏
ij N (Aij |Mij ,Ω

2
ij), where M = [Mij = A′

ij ] ∈ Rr×n

is its mean and Ω = [Ωij ] ∈ Rr×n is the standard deviation calculated as in Eqn. 7. The equivalent
variational distribution q(vec(W )|σq) defined on the full weight W is

q(vec(W )|σq) = N (vec(W )|µq,Σq),

where µq = vec(W0 +B′M),

Σq = σ2
qIn ⊗

[
Ir

0m−r

]
.

(11)

3While traditional search algorithms require monotonicity within the search range to guarantee optimal
solutions, empirically a near-optimal σq is sufficient for effective uncertainty estimation.
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Theorem 4.1 establishes that for any given σq, our algorithm for regrouping B,A and computing
the standard deviation matrix Ω successfully constrains the corresponding full-weight variational
distributions to the family of low-rank isotropic Gaussian distributions. This lays the foundation for
the equivalence between our TFB and generalized variational inference to approximate the posterior
distribution of LLM parameters (details in Theorem 4.2).

While alternative families of Gaussians parameterized by a single scale σq are possible, our empirical
results demonstrate that our proposed approach achieves superior performance (Sec. 5.3).
Theorem 4.2 (TFB as Generalized Variational Inference). Suppose the evaluation metric lD(σq)
defined following Assumption 4.1 is locally convex within the range of σq ∈ [0, ϵ0). Suppose the
approximate distribution of W given σq is defined following Theorem 4.1. Suppose we have the
prior distribution P (vec(W )) = N (vec(W )|µp,Σp), where µp = µq = vec(W0 +B′M), and
Σp = σ2

pI with σp > ϵ0. Then ∃ϵ̃ > 0, s.t. the following two optimizations

(i) Generalized Variational Inference (Blundell et al., 2015; Higgins et al., 2017; Khan et al., 2018)

min
σq

lD(σq) + λKL[q(W |σq) ∥ P (W )], (12)

and (ii) Training-Free Bayesianization (TFB)

max σq

s.t. lD(σq) ≤ ϵ̃,
(13)

are equivalent, where λ is the regularization coefficient of the KL-divergence.

This theorem provides the theoretical foundation for TFB. It demonstrates that under specific condi-
tions – namely, local convexity within [0, ϵ0) and prior standard deviation σp > ϵ0 – maximizing the
scale σq of the standard deviation matrix is equivalent to performing generalized variational inference,
which approximates the posterior distribution of LLM parameters. Notably, when λ = 1/|D| is set to
the reciprocal of the dataset size, it reduces to Variational Inference (VI).

5 EXPERIMENTS

We evaluate TFB through comprehensive experiments. Refer to Appendix F for more results.

5.1 SETTINGS

Models, Datasets, and Evaluation. We use the latest open-source Meta-Llama-3.1-8B as our
primary LLM backbone while also providing additional results on other recent LLM architectures
in Appendix F.4, including llama-2-7b-hf, Meta-Llama-3-8B, and Mistral-7B-v0.3
from the Llama (Dubey et al., 2024) and Mistral (Jiang et al., 2023) families.

For in-distribution experiments, we evaluate model performance on six commonsense reasoning
tasks: Winogrande-Small (WG-S) and Winogrande-Medium (WG-M) (Sakaguchi et al., 2021), ARC-
Challenge (ARC-C) and ARC-Easy (ARC-E) (Clark et al., 2018), Open Book Question Answer-
ing (OBQA) (Mihaylov et al., 2018), and BoolQ (Clark et al., 2019). Furthermore, we use models fine-
tuned on OBQA (Mihaylov et al., 2018) to evaluate their generalization ability on out-of-distribution
datasets: college-level chemistry (Chem) and physics (Phy) subsets of MMLU (Hendrycks et al.,
2021). Label spaces and prompt templates are detailed in Appendix E.1.

To assess uncertainty estimation, we measure Expected Calibration Error (ECE (Naeini et al., 2015))
and Negative Log-Likelihood (NLL) on the test dataset. We also report Accuracy (ACC) to ensure
models maintain strong performance while improving calibration. Additional evaluation details are
provided in Appendix E.2.

Baselines. We compare TFBwith state-of-the-art uncertainty estimation methods for LoRA-adapted
LLMs, including ensemble-based method: Deep Ensemble (ENS) (Lakshminarayanan et al., 2017;
Balabanov & Linander, 2024; Wang et al., 2023), variational inference methods: Monte-Carlo
Dropout (MCD) (Gal & Ghahramani, 2016), Bayesian LoRA by Backprop (BLoB) (Wang et al.,
2024c), and post-training method: Laplace-LoRA (LAP) (Yang et al., 2023). For reference, we also
include two standard PEFT baselines: Maximum Likelihood Estimation (MLE) (Hu et al., 2022) and
Maximum A Posteriori (MAP). All baselines are implemented following the protocols established in
BLoB, detailed in Appendix E.4.
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Table 1: Performance of different methods applied to LoRA on Llama3.1-8B pre-trained
weights, where Accuracy (ACC) and Expected Calibration Error (ECE) are reported in percentages.
“TF?” denotes whether a method is Training-Free. The evaluation is done across six common-sense
reasoning tasks with a shared hyper-parameter setting after fine-tuning of 5 epochs. We use N = 10
samples during inference in all sampling-based methods including BLoB Wang et al. (2024c) and
TFB. Rows with shading indicate training-free Bayesianization methods that use a pre-trained LoRA
as their mean. TFB adopts a shared configuration for all the experiments: the anchor dataset D is set
to a randomly sampled subset of the original training set without labels; the performance evaluation
metric l is set to the NLL loss; and the performance drop tolerance ϵ is set to the relative performance
change of 0.3%. “↑” and “↓” indicate that higher and lower values are preferred, respectively.
Boldface and underlining denote the best and the second-best performance, respectively.

Metric Method TF? In-Distribution Datasets
Out-of-Distribution Datasets (OBQA→X)

Small Shift Large Shift

WG-S ARC-C ARC-E WG-M OBQA BoolQ ARC-C ARC-E Chem Phy

ACC (↑)

MCD ✗ 78.03±0.61 81.64±1.79 91.37±0.38 83.18±0.84 87.20±1.02 89.93±0.16 81.42±1.38 87.27±0.84 47.92±2.25 46.53±0.49
ENS ✗ 78.82±0.52 82.55±0.42 91.84±0.36 83.99±0.74 87.37±0.67 90.50±0.14 79.62±0.57 86.56±0.60 49.65±3.22 44.44±1.96

LAP BP 76.05±0.92 79.95±0.42 90.73±0.08 82.83±0.85 87.90±0.20 89.36±0.52 81.08±1.20 87.21±1.20 48.26±3.93 46.18±1.30

MLE - 77.87±0.54 81.08±0.48 91.67±0.36 82.30±0.53 87.90±0.87 89.58±0.26 81.48±2.41 86.83±0.87 45.83±0.85 42.36±1.77

+ TFB (Ours) ✓ 77.44±0.30 82.53±1.00 91.33±0.37 82.53±0.56 88.53±0.57 89.75±0.25 79.76±1.24 85.52±0.56 44.33±4.03 37.00±2.16

MAP - 76.90±0.97 81.08±2.48 91.61±0.44 82.59±0.28 85.73±0.19 90.09±0.28 79.98±0.87 86.58±0.79 43.40±4.98 38.54±3.40

+ TFB (Ours) ✓ 76.43±0.72 82.80±1.42 91.39±0.37 82.64±0.58 86.00±0.16 89.96±0.18 80.61±1.24 86.30±0.89 45.33±2.87 35.67±4.11

BLoB ✗ 76.45±0.37 82.32±1.15 91.14±0.54 82.01±0.56 87.57±0.21 89.65±0.15 79.75±0.43 87.13±0.00 42.71±3.71 44.79±6.64

BLoB-Mean ✗ 77.72±0.12 82.60±0.60 91.64±0.55 83.92±0.48 88.00±0.80 89.86±0.05 82.06±1.15 88.54±0.31 39.93±5.20 39.93±4.02

+ TFB (Ours) ✓ 77.81±0.36 83.33±0.19 91.76±0.48 83.81±0.39 87.80±0.16 90.11±0.28 82.93±1.54 87.64±0.51 39.67±7.32 37.33±6.65

ECE (↓)

MCD ✗ 16.13±0.54 13.69±1.11 6.73±0.71 13.05±0.99 9.76±0.71 7.95±0.17 13.63±1.18 9.27±0.60 30.91±3.57 33.08±1.40

ENS ✗ 14.72±0.17 13.45±1.19 6.59±0.45 11.17±0.92 8.17±0.86 7.35±0.55 11.37±1.82 7.21±1.13 18.92±6.03 26.80±3.23

LAP BP 4.18±0.11 9.26±3.08 5.27±0.51 3.50±0.78 8.93±0.34 1.93±0.22 7.83±1.49 7.80±1.99 14.49±0.57 13.17±2.14

MLE - 17.02±0.46 16.35±0.68 7.00±0.53 13.83±0.65 9.77±0.81 8.69±0.21 14.45±2.19 10.78±0.50 32.46±2.60 38.41±4.44

+ TFB (Ours) ✓ 12.98±0.37 11.63±0.68 5.14±0.14 10.01±0.70 7.20±0.47 7.39±0.26 6.54±0.53 5.69±1.64 14.63±1.46 19.68±3.27

MAP - 18.71±0.74 15.77±1.60 6.62±0.64 14.26±0.92 12.19±0.55 8.40±0.25 16.46±0.44 11.36±0.58 34.79±3.76 38.50±2.18

+ TFB (Ours) ✓ 14.95±0.65 11.27±2.53 5.76±0.63 10.97±1.19 9.70±0.69 6.86±0.31 13.25±0.95 9.22±0.91 27.21±2.62 35.91±4.12

BLoB ✗ 9.93±0.22 5.41±1.17 2.70±0.87 4.28±0.64 2.91±0.92 2.58±0.25 5.61±0.40 2.48±0.43 16.67±0.87 12.78±4.18
BLoB-Mean ✗ 15.43±0.15 12.41±1.52 4.91±0.28 9.37±1.33 6.44±0.15 6.26±0.29 11.22±0.38 6.34±0.71 26.65±3.06 25.40±5.40

+ TFB (Ours) ✓ 8.16±0.48 6.48±0.36 2.44±0.50 3.83±0.43 2.67±0.18 3.10±0.59 6.69±1.63 3.61±0.87 18.45±6.75 20.53±6.27

NLL (↓)

MCD ✗ 0.83±0.01 0.99±0.10 0.45±0.06 0.64±0.03 0.62±0.08 0.49±0.01 1.03±0.02 0.61±0.03 1.91±0.18 2.02±0.15

ENS ✗ 0.75±0.02 0.80±0.11 0.38±0.03 0.55±0.02 0.45±0.05 0.42±0.05 0.72±0.07 0.44±0.03 1.40±0.18 1.50±0.13

LAP BP 0.56±0.00 1.18±0.02 1.04±0.01 0.51±0.00 0.94±0.00 0.43±0.00 1.17±0.01 1.11±0.00 1.27±0.01 1.28±0.00

MLE - 0.88±0.04 1.20±0.11 0.46±0.04 0.68±0.01 0.61±0.06 0.52±0.01 1.07±0.06 0.72±0.06 1.91±0.16 2.25±0.21

+ TFB (Ours) ✓ 0.68±0.03 0.85±0.02 0.33±0.03 0.53±0.01 0.46±0.04 0.42±0.00 0.66±0.02 0.44±0.01 1.39±0.11 1.49±0.05

MAP - 0.99±0.07 1.12±0.23 0.46±0.03 0.74±0.07 0.79±0.02 0.52±0.01 1.19±0.04 0.83±0.06 1.97±0.13 2.32±0.10

+ TFB (Ours) ✓ 0.77±0.05 0.80±0.15 0.38±0.03 0.57±0.05 0.61±0.03 0.40±0.01 0.96±0.08 0.66±0.06 1.69±0.16 2.12±0.08

BLoB ✗ 0.58±0.00 0.51±0.03 0.23±0.01 0.43±0.01 0.34±0.01 0.26±0.01 0.56±0.02 0.35±0.02 1.34±0.04 1.35±0.10

BLoB-Mean ✗ 0.74±0.02 0.73±0.04 0.29±0.03 0.47±0.03 0.37±0.02 0.32±0.02 0.67±0.07 0.39±0.03 1.53±0.13 1.54±0.15

+ TFB (Ours) ✓ 0.55±0.01 0.53±0.04 0.23±0.02 0.40±0.01 0.33±0.02 0.27±0.01 0.52±0.05 0.35±0.02 1.36±0.13 1.46±0.11

TFB Implementation. TFB can be directly applied to trained LoRA adapters without additional
training. As indicated by the “TF?” column in Table 1, TFB is Training-Free and requires only
LLM inference (✓), while the other methods need full retraining (✗) or gradient estimation with
Backpropagation (BP). We evaluate TFB on three off-the-shelf LoRA checkpoints: MLE, MAP, and
the mean component of BLoB (obtained by discarding BLoB’s standard deviation matrix Ω). More
details are included in Appendix E.4.

5.2 TFB IMPROVES ACCURACY AND UNCERTAINTY ESTIMATION

Table 1 shows results on comprehensive metrics (ACC, ECE, and NLL) for various methods applied
to LoRA on Llama3.1-8B pre-trained weights. More empirical results on Llama2-7B can be found in
Appendix F.7.

In-Distribution Results. The addition of TFB maintains competitive accuracy while substan-
tially improving model calibration across in-distribution datasets. For ECE, TFB yields notable
improvements when applied to different base methods: MLE+TFB reduces ECE to 5.14% on ARC-E
(from 7.00%); similarly MAP+TFB and BLoB-Mean+TFB reduce ECE to 9.70% on OBQA (from
12.19%) and 3.83% on WG-M (from 9.37%), respectively. For NLL, TFB consistently produces
better-calibrated predictions, with BLoB-Mean+TFB achieving strong performance across datasets:
0.23 on ARC-E (from 0.29), 0.33 on OBQA (from 0.37), and 0.27 on BoolQ (from 0.32). These
improvements in both ECE and NLL demonstrate TFB’s effectiveness in enhancing model calibration
while preserving accuracy on in-distribution tasks.

Out-of-Distribution Results. For out-of-distribution datasets, which represent a more challenging
evaluation scenario, TFB continues to show benefits, though the performance gaps are generally
smaller. In both Small Shift and Large Shift scenarios, TFB-enhanced methods maintain relatively
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Table 2: Performance of TFB with different variational distribution families applied to the
mean of BLoB on Llama3.1-8B pre-trained weights. FR: Full-rank isotropic Gaussian noises are
applied to ∆W ; C-STD: Standard deviation matrix Ω = [Ωij = σq] is constant. The evaluation
protocol strictly follows Table 1. “Rk.”: Average ranking of each method when compared to all other
approaches on in-distribution datasets.

Metric Method In-Distribution Datasets
Out-of-Distribution Datasets (OBQA→X)

Small Shift Large Shift

WG-S ARC-C ARC-E WG-M OBQA BoolQ Rk. (↓) ARC-C ARC-E Chem Phy

ACC (↑)
BLoB-Mean 77.72±0.12 82.60±0.60 91.64±0.55 83.92±0.48 88.00±0.80 89.86±0.05 2.50 82.06±1.15 88.54±0.31 39.93±5.20 39.93±4.02

+ TFB (FR) 75.57±0.25 83.20±0.65 91.58±0.67 82.19±1.09 88.73±0.41 89.46±0.17 2.83 81.33±0.82 88.06±0.75 42.00±2.16 41.33±5.44
+ TFB (C-STD) 76.35±0.08 83.20±0.33 91.33±0.70 81.79±0.51 88.20±0.57 89.65±0.08 3.00 81.73±0.68 88.18±0.65 43.00±1.41 39.33±3.86

+ TFB (Final) 77.81±0.36 83.33±0.19 91.76±0.48 83.81±0.39 87.80±0.16 90.11±0.28 1.67 82.93±1.54 87.64±0.51 39.67±7.32 37.33±6.65

ECE (↓)
BLoB-Mean 15.43±0.15 12.41±1.52 4.91±0.28 9.37±1.33 6.44±0.15 6.26±0.29 4.00 11.22±0.38 6.34±0.71 26.65±3.06 25.40±5.40

+ TFB (FR) 10.42±0.29 7.45±0.88 2.01±1.03 4.36±0.68 3.70±1.04 3.62±0.10 2.67 7.19±1.40 3.29±1.03 17.78±1.01 19.14±4.01
+ TFB (C-STD) 9.23±0.20 5.98±0.32 2.94±0.67 3.86±0.45 3.17±0.21 2.82±0.62 1.83 6.89±0.89 2.76±0.88 18.27±2.52 19.45±3.46

+ TFB (Final) 8.16±0.48 6.48±0.36 2.44±0.50 3.83±0.43 2.67±0.18 3.10±0.59 1.50 6.69±1.63 3.61±0.87 18.45±6.75 20.53±6.27

NLL (↓)
BLoB-Mean 0.74±0.02 0.73±0.04 0.29±0.03 0.47±0.03 0.37±0.02 0.32±0.02 3.67 0.67±0.07 0.39±0.03 1.53±0.13 1.54±0.15

+ TFB (FR) 0.60±0.01 0.53±0.03 0.23±0.02 0.43±0.01 0.33±0.02 0.27±0.01 2.00 0.57±0.04 0.34±0.02 1.34±0.07 1.42±0.09

+ TFB (C-STD) 0.57±0.01 0.51±0.02 0.22±0.01 0.43±0.01 0.33±0.01 0.26±0.01 1.33 0.56±0.04 0.33±0.02 1.34±0.08 1.41±0.09
+ TFB (Final) 0.55±0.01 0.53±0.04 0.23±0.02 0.40±0.01 0.33±0.02 0.27±0.01 1.50 0.52±0.05 0.35±0.02 1.36±0.13 1.46±0.11

strong performance, particularly in the Small Shift cases (ARC-C and ARC-E). However, there’s a
noticeable performance drop in the Large Shift scenarios (Chem and Phy), which is expected given
the significant domain difference. Even in these challenging cases, TFB-enhanced methods tend
to maintain better calibration (lower ECE scores) compared to their base counterparts, suggesting
improved reliability in out-of-distribution settings.

5.3 TFB BEYOND THE LOW-RANK ISOTROPIC GAUSSIANS

In this section, we consider two simple TFB variants with other families of Gaussians for modeling the
variational distributions of W : (i) Full-Rank Isotropic Gaussian (FR, Σq = σ2

qI), and (ii) Constant
Low-Rank Standard Deviation (C-STD, Ω = [Ωij = σq]). Similar to our final TFB, both distributions
are controlled by a single σq parameter and fit the maximal variance search in Eqn. 8. For fair
comparison, we adopt the same optimal σ∗

q search protocol of TFB as described in Sec. 5.1. Table 2
shows the performances of TFB and its variants applied to the mean of BLoB (more in Table 7 of
Appendix F.3).

These results show that our final TFB outperforms both variants FR and C-STD across multiple
metrics on in-distribution datasets, with notable improvements in accuracy (e.g., 83.13% on OBQA)
and calibration (ECE reduced by up to 16.74%). While these two simple variants show better NLL
scores, these improvements come at the cost of significantly degraded overall performance, making
them impractical for real-world applications. Although our final TFB maintains strong performance
on datasets with smaller distributional shifts, its advantages diminish on datasets with larger shifts in
the domains of Physics and Chemistry.

Advantages of Final TFB’s Variational Low-Rank Isotropic Gaussians. Compared to TFB (FR)
and TFB (C-STD), TFB (Final) offers additional advantages. It is computationally more efficient than
FR with noise complexity of O(rn) versus O(mn). Furthermore, unlike C-STD whose variational
distributions vary with different but equivalent LoRA matrix pairs (see Appendix F.3 for details),
TFB (Final) produces consistent Bayesianization for all equivalent LoRAs satisfying BA = ∆W .

6 CONCLUSION

In this paper, we introduce Training-Free Bayesianization (TFB), a novel framework that transforms
trained LoRA adapters into Bayesian ones without additional training. By systematically searching
for the maximally acceptable variance in the weight posterior within a family of low-rank isotropic
Gaussian distributions, TFB provides a practical solution to uncertainty estimation in LLMs. Our
theoretical analysis shows that TFB’s variance maximization process is equivalent to generalized
variational inference under mild conditions. Our empirical results verify its superior performance
across various settings and model configurations. Our framework’s simplicity and effectiveness,
requiring only an anchor dataset for search, makes it widely applicable across different domains. As
LLMs continue to evolve, TFB represents a significant step toward more reliable and uncertainty-
aware AI systems, paving the way for future research in adaptive and trustworthy machine learning.
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APPENDIX

In Appendix A, we presents the full algorithmic description of our proposed TFB. In Appendix B,
we discuss the limitations of TFB. Next, in Appendix C, we present a more detailed introduction
to recent advances of Bayesian Low-Rank Adaptation. In Appendix D, we provide detailed proofs
for all theorems presented in the main paper. In Appendix E, we describe our experimental method-
ology. Finally, in Appendix F, we present additional empirical results, including the full results of
experiments with different searching strategies for optimal σ∗

q , variational distribution family, LLM
backbones, and LoRA-like PEFTs.

A ALGORITHM

Algorithm 1 Training-Free Bayesianization (TFB)

input D: Anchor Dataset;
{B,A}: Low-Rank Component;
l: Model Evaluation Metric;
ϵ: Performance Change Tolerance;
[σqmin, σqmax]: search range of σq .

1: Evaluate the original performance: p0 ← l(D|B,A).
2: Singular Value Decomposition on B:

U ,diag(d),V ← SVD(B). ▷ Eqn. 4.
3: Get an equivalent pair of the low-rank component:

B′ ← U diag(d); A′ ← V ⊤A. ▷ Eqn. 5.
4: while σq not converged do
5: σq ← (σqmax+σqmin)/2.
6: Calculate the standard deviation matrix Ω for A′:

Ωij = σq/di. ▷ Eqn. 7.
7: Evaluate the performance:

p← l(D|B′,A′,Ω).
8: if |p− p0| < ϵ then
9: σqmin ← σq .

10: else
11: σqmax ← σq .
12: end if
13: end while
output {B′,A′,Ω}: Bayesianized Low-Rank Adapter.

B LIMITATIONS

TFB is subject to several limitations. First, our approach relies on the availability of an anchor dataset
for determining search range and stopping criteria. Although this dataset doesn’t require supervision
or prior use in LoRA training, its quality and representativeness could impact the effectiveness of
uncertainty estimation. Second, by constraining the family of full-weight posteriors to low-rank
isotropic Gaussian distributions, TFB may not capture more complex uncertainty patterns that could
be present in the data. While this constraint enables our training-free approach, it represents a trade-
off between computational efficiency and model expressiveness. Finally, while we have demonstrated
the effectiveness of TFB in various settings, its performance in more complex generation tasks
requires further investigation. Future work could explore extending the framework to handle more
sophisticated language generation scenarios and broader applications.

C RELATED WORK

Bayesian Low-Rank Adaptation. The Bayesian framework provides a powerful approach for
capturing and estimating uncertainty by defining prior distributions and approximating posterior
distributions over the parameter space (Neal, 2012; Hernández-Lobato & Adams, 2015; Gal &
Ghahramani, 2016; Wang & Yeung, 2016; Gustafsson et al., 2020). However, modeling parameter
distributions across the entire parameter space during fine-tuning introduces significant computational
overhead (Fan et al., 2020; Zhang et al., 2021). To address this challenge, recent research has
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explored combining Bayesian methods with Parameter-Efficient Fine-Tuning (PEFT) techniques
to improve the efficiency of uncertainty estimation. Several notable approaches have emerged
in this direction. Wang et al. (2023) and Balabanov & Linander (2024) demonstrate improved
performance by training multiple LoRA modules and ensemble their predictions during inference.
Taking a different approach, Yang et al. (2023) applies a Kronecker-factorized Laplace approximation
to fine-tuned LoRA parameters. More recently, BLoB (Wang et al., 2024c) advances the field
by simultaneously estimating both the mean and covariance of LLM parameters within a single
fine-tuning stage, leading to substantial performance improvements. Our proposed training-free
Bayesianization represents a significant departure from these existing methods. Unlike approaches
that require re-training (Gal & Ghahramani, 2016; Wang et al., 2023; Balabanov & Linander, 2024;
Wang et al., 2024c) or rely on continued training and gradient estimation (Yang et al., 2023), our
method achieves uncertainty estimation without any additional training steps, substantially improving
the simplicity and efficiency for Bayesian learning of LLMs.

D PROOF OF THEOREMS

Lemma D.1. With the pre-trained weight matrix W0 ∈ Rm×n and the low-rank weight update matrix
B ∈ Rm×r, suppose that the variational distribution of the other low-rank update matrix A ∈ Rr×n

is Gaussian with q(A|θ = {M ,Ω}) =
∏

ij N (Aij |Mij ,Ω
2
ij), where M = [Mij ] ∈ Rr×n and

Ω = [Ωij ] ∈ Rr×n are its mean and standard deviation, respectively. The equivalent variational
distribution defined on the full weight matrix W is given by

q(vec(W )|B,θ) = N (vec(W )|µq,Σq),

where µq = vec(W0 +BM),

Σq = [In ⊗B][diag(vec(Ω)2)][In ⊗B⊤].

(14)

Theorem 4.1 (Equivalent Variational Distribution of the Full Weight W in TFB). With the pre-
trained weight matrix W0 ∈ Rm×n, the low-rank weight update matrix {B′ ∈ Rm×r,A′ ∈ Rr×n}
transformed from the given matrices {B,A} following Eqn. 4 and 5, suppose that the variational
distribution of A′ is Gaussian q(A′|θ) =

∏
ij N (Aij |Mij ,Ω

2
ij), where M = [Mij = A′

ij ] ∈ Rr×n

is its mean and Ω = [Ωij ] ∈ Rr×n is the standard deviation calculated as in Eqn. 7. The equivalent
variational distribution q(vec(W )|σq) defined on the full weight matrix W is

q(vec(W )|σq) = N (vec(W )|µq,Σq),

where µq = vec(W0 +B′M),

Σq = σ2
qIn ⊗

[
Ir

0m−r

]
.

(15)

Proof. We have the following lemma from BLoB that calculates the covariance matrix of a given
low-rank Bayesianization scheme {B,A,Ω} (Wang et al., 2024c).

Based on the assumption outlined in Eqn. 4, 5, and 7, we have the following properties about B′, M ,
and Ω of TFB:

B′ =U diag(d), (16)
Ω =[1/d, · · · , 1/d], (17)

where U⊤U = Ir,UU⊤ =

[
Ir

0m−r

]
. (18)

It now can be easily shown that the covariance matrix of TFB is:

Σq = [In ⊗B′][diag(vec(Ω)2)][In ⊗B′⊤] (19)

= [In ⊗B′][In ⊗ diag(1/d)2][In ⊗B′⊤] (20)

= In ⊗ [B′ diag(σq/d)
2B′⊤] (21)

= In ⊗ [U diag(d) diag(σq/d)
2 diag(d)⊤U⊤] (22)

= σ2
qIn ⊗

[
Ir

0m−r

]
, (23)

which proves that q(vec(W )) is a low-rank isotropic Gaussian distribution.
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Proposition D.1.1. The function proj(·) defined in Eqn. 3 projects the full-dimensional isotropic
Gaussian to the low-rank subspace of LoRA. It can be formulated as

proj(σ2
qImn) = P (σ2

qImn), (24)

where P = In ⊗
[
Ir

0m−r

]
. (25)

Proof. By Theorem 4.1, we have

PImn = In ⊗
[
Ir

0m−r

]
. (26)

Hence it is trivial to have P = In ⊗
[
Ir

0m−r

]
.

Theorem 4.2 (TFB as Generalized Variational Inference). Suppose the evaluation metric lD(σq)
defined following Assumption 4.1 is locally convex within the range of 0 < σq < ϵ0. Suppose the
approximate distribution of W given σq is defined following Theorem 4.2. Suppose we have the
prior distribution P (vec(W )) = N (vec(W )|µp,Σp), where µp = µq = vec(W0 +B′M), and
Σp = σ2

pI with σp > ϵ0. Then ∃ϵ̃ > 0, s.t. the two following optimization problems

(i) Generalized Variational Inference (Blundell et al., 2015; Higgins et al., 2017; Khan et al., 2018)

min
σq

lD(σq) + λKL[q(W |σq) ∥ P (W )], (27)

and (ii) Training-Free Bayesianization (TFB)

max σq

s.t. lD(σq) ≤ ϵ̃,
(28)

are equivalent, where λ is the coefficient of the KL-divergence regularization.

Proof. First we prove the KL divergence term is convex w.r.t. σq. For two Gaussian distributions q
and p whose covariance matrices Σq ∈ Rd×d and Σp ∈ Rd×d are both full-rank, with their means as
µq ∈ Rd and µp ∈ Rd, we have their KL-divergence as

KL[q∥p] = 1
2

[
log

|Σp|
|Σq| − d+ tr(Σ−1

p Σq) + (µq − µp)
⊤Σ−1

p (µq − µp)
]
. (29)

For TFB, to avoid unbounded KL divergence, we project the original assumed Gaussian prior P into
the same low-rank sub-space of the posterior q. We summarize the prior and variational distribution
of the posterior as follows:

q(vec(W )|σq) = N
(
vec(W )|µq = vec(W0 +B′M),Σq = σ2

qIn ⊗
[
Ir

0m−r

])
,

P (vec(W )|σp) = N
(
vec(W )|µp = vec(W0 +B′M),Σp = σ2

pIn ⊗
[
Ir

0m−r

])
.

(30)

Substituting Eqn. 30 back into Eqn. 29, we have

KL[q(vec(W )|σq)∥P (vec(W |σp))] =
nr
2

[
log(σ2

p)− 1 +
{
− log(σ2

q ) +
σ2
q

σ2
p

}]
, (31)

which is convex w.r.t. σq and the global minimum of KL is achieved when σq = σp.

With σq ≤ ϵ0, the convexity of two terms (KL and lD) holds. Hence we show by the
Karush–Kuhn–Tucker theorem (Kjeldsen, 2000; Karush, 1939; Kuhn & Tucker, 1951) that, for
any given λ there exists ϵ̃ such that the following two optimization problems are equivalent:

1. Minimization of generalized variational inference in the Lagrange-form optimization

min
σq

KL[q(vec(W )|σq) ∥ P (vec(W )|σp)] +
1
λ lD(σq); (32)
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2. The constrained-form optimization corresponding to Eqn. 32

min KL[q(vec(W )|σq) ∥ P (vec(W )|σp)]

s.t. lD(σq) ≤ ϵ̃.
(33)

Since the KL term is monotonically decreasing when σq ∈ [0, σp), and due to the fact that σp > ϵ0,
the optimization in Eqn. 33 is equivalent to our final Training-Free Bayesianization (TFB):

max σq

s.t. lD(σq) ≤ ϵ̃.
(34)

E IMPLEMENTATION DETAILS

E.1 DATASETS

We provide details of the datasets used in this work, as shown in Table 3. The combined dataset
consisting of the six commonsense reasoning tasks contains the label set of “[A, B, C, D, E, True,
False]”.

Table 3: Dataset Statistics. The size of the Anchor Set D is used in Table 1, 2 and 10.

WG-S ARC-C ARC-E WG-M OBQA BoolQ Combined

Size of Label Space 2 5 5 2 4 2 7

Size of Training Set 640 1,119 2,251 2,258 4,957 9,427 20,652

Size of Anchor Set D 500 (78%) 500 (45%) 500 (22%) 500 (22%) 500 (10%) 500 (5%) 500 (2%)

Size of Test Set 1,267 299 570 1,267 500 3,270 7,173

E.2 EVALUATION METRICS

Negative Log-Likelihood (NLL) and Expected Calibration Error (ECE (Naeini et al., 2015)) are key
metrics for uncertainty estimation. For a model Pθ and test dataset {xn, yn}Nn=1, NLL penalizes
models that assign low probabilities to correct labels, and is defined as:

NLL = 1
N

N∑
n=1

− logPθ(yn). (35)

ECE measures the alignment between model confidence and accuracy by binning predictions:

ECE =

M∑
m=1

|Bm|
n |acc(Bm)− conf(Bm)| , (36)

where acc(Bm) = 1/|Bm|
∑

i∈Bm
1(ŷi = yi) is the average accuracy and conf(Bm) =

1/|Bm|
∑

i∈Bm
P (ŷi) is the average confidence in bin Bm. We use bin size |Bm| = 15 throughout

this paper.

E.3 SEARCHED σq OF TFB

We report the searched σ∗
q using Algorithm 1 in Table 4, where the reported values are the mean

values of three random seeds.
Table 4: Searched σ∗

q of TFB using Algorithm 1.

Base Model WG-S ARC-C ARC-E WG-M OBQA BoolQ

MLE 0.004500 0.003917 0.004500 0.004354 0.003771 0.004063

MAP 0.004500 0.003479 0.003188 0.004208 0.003917 0.005083

BLoB-Mean 0.005813 0.005229 0.005229 0.006250 0.006250 0.005958
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E.4 BAYESIANIZATION (TRAINING)

Shared Configuration. We report the mean and standard deviation of all experimental results
calculated over three random seeds. For all training processes in our experiments, we employ the
AdamW optimizer. The learning rate follows a linear decay schedule with a warmup ratio of 0.06 and
a maximum value of 2e− 4. The batch size is set to 4, and the maximum sentence length is limited
to 300 tokens. The LoRA configuration includes LoRA α = 16 and LoRA r = 8. PiSSA (Meng
et al., 2024) follows the exact same configuration as the LoRA’s. For VeRA (Kopiczko et al., 2023),
due to its characteristic of shared weights across different layers which enables higher-rank setting
with the same memory efficiency, we set its rank to r = 256 and learning rate to 5e− 3 for the MLE
training on the combined dataset.

Baseline Configuration. The baseline configuration mainly follows BLoB (Wang et al., 2024c).
MLE follows the standard LoRA implementation. For MAP, we implement it with a weight decay
rate of 1e− 5. MCD consists of an ensemble of 10 LoRAs with a dropout rate of p = 0.1. For ENS,
we fine-tune 3 LoRAs independently and combine them by averaging their logits during evaluation.
We implement LAP and apply it to the MAP checkpoints. For BBB and BLoB, we use the default
settings from Bayesian-Torch library (Krishnan et al., 2022), applying Bayesianization only to the
A matrix. During training, the number of samples is set to K = 1 for both BBB and BLoB. At test
time, we use N = 10 samples, matching the configuration of TFB.

TFB Configuration. We randomly sample unlabeled training data points to construct the anchor
dataset D = {xi, ŷi}i∈[M ] where ŷi is the pseudo-label generated by the given LoRA adapter before
Bayesianization; the anchor dataset size M = 500 is fixed for all the datasets. We use NLL as the
metric l and set the performance change tolerance ϵ to 0.3% of relative performance change for all
the datasets. To determine the optimal σ∗

q , we perform a 5-step binary search with the initial range of
[0.001, 0.015] using Algorithm 1. Similar to the other baseline methods, the final results of TFB are
reported as averages across three random seeds using σ∗

q .

F ADDITIONAL EXPERIMENTAL RESULTS

We present additional experimental results in this section. Due to space constraints (and large table
size), we defer several detailed tables to the end of this section rather than presenting them alongside
the corresponding analyses.

F.1 COMPUTATIONAL COMPLEXITY ANALYSIS

We compare the computational efficiency of TFB and BLoB during the process of Bayesianiza-
tion in Table 5. We also report the computational cost of the standard LoRA fine-tuning as reference.
All three methods are evaluated on the configurations detailed in Appendix E.4. For LoRA and BLoB,
the evaluation of running time and maximum GPU memory is based on fine-tuning for 5 epochs.
TFB uses a fixed number of 500 training examples to search for σ∗

q across all datasets, and performs
binary search for at most 5 rounds (sequentially).
Table 5: A comparison of running time and maximum GPU memory cost between TFB and
BLoB during the process of Bayesianizatioin. The subscripts in the table calculate the relative
cost of a method compared to that of LoRA, a non-Bayesian baseline method. RED and GREEN
represent worse and better efficiency, respectivley.

Method Batch
Size

Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB)

LoRA 4 338 (0.00x) 12,894 (0.00x) 632 (0.00x) 19,762 (0.00x) 1,238 (0.00x) 18,640 (0.00x) 1,339 (0.00x) 13,164 (0.00x) 2,692 (0.00x) 17,208 (0.00x) 6,489 (0.00x) 29,450 (0.00x)

BLoB 4 371 (1.10x) 13,194 (1.02x) 685 (1.08x) 21,736 (1.10x) 1,360 (1.10x) 20,700 (1.11x) 1,476 (1.10x) 13,194 (1.00x) 3,257 (1.21x) 18,046 (1.05x) 7,251 (1.12x) 30,578 (1.04x)

TFB (Ours) 4 1,203 (3.56x) 10,372 (0.80x) 1,257 (1.99x) 11,966 (0.61x) 1,246 (1.01x) 11,202 (0.60x) 1,237 (0.92x) 10,344 (0.79x) 1,238 (0.46x) 10,376 (0.60x) 1,452 (0.22x) 16,340 (0.55x)

TFB (Ours) 8 628 (1.86x) 10,666 (0.83x) 731 (1.16x) 15,286 (0.77x) 702 (0.57x) 12,598 (0.68x) 634 (0.47x) 10,662 (0.81x) 642 (0.24x) 12,116 (0.70x) 1,015 (0.16x) 22,146 (0.75x)

TFB (Ours) 12 446 (1.31x) 12,064 (0.93x) 599 (0.94x) 18,204 (0.92x) 540 (0.43x) 14,310 (0.76x) 441 (0.32x) 11,370 (0.86x) 487 (0.18x) 13,410 (0.77x) 908 (0.13x) 25,220 (0.85x)

As shown in the table, for a small dataset, e.g., WG-S with ∼600 training examples, TFB can have
a higher cost of time, especially when TFB is performed under the same batch size as the two
baselines: almost 3x slower than BLoB. However, for a large dataset, e.g., BoolQ with ∼10,000
training examples, TFB Bayesianization process is almost 5x faster than BLoB using only half of
the GPU memory. As TFB does not require gradient estimation, which significantly reduces the
GPU memory, TFB can be further accelerated by increasing the batch size. When the batch size
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is increased from 4 to 12, TFB has a lower time and lower peak GPU memory usage compared to
BLoB for almost all the datasets. TFB even has significantly better efficiency than standard LoRA
fine-tuning, thanks to its training-free property.

Note that our efficiency analysis for TFB encompasses the complete parameter search process, while
the reported metrics for other methods only include their final successful runs. This means the
baseline measurements exclude significant hidden costs, particularly the computational resources
required for hyperparameter tuning to determine optimal fine-tuning configurations. Therefore
this comparison inherently favors the baseline method BLoB. Nevertheless, the fact that TFB still
demonstrates superior efficiency in both time and memory consumption, even under these conditions
that advantage the baselines, further underscores the benefits of its “training-free” approach. The
results above also implies TFB’s flexibility, as it can adapt to limited-resource environments by
trading time for reduced memory usage or vice versa, depending on operational requirements.

F.2 TFB BEYOND THE NLL METRIC

We report the additional results of TFB when using Accuracy (ACC) as the evaluation metrics
l in Table 6. Comparing the two evaluation metrics (l=ACC vs l=NLL) in Table 6, we observe
comparable performance across all datasets. In some cases, accuracy-based evaluation (l=ACC) even
yields slightly better results. For instance, BLoB-Mean+TFB achieves lower ECE on several datasets
when using l=ACC. However, we adopt NLL as the primary evaluation metric in Table 1 since it
better aligns with our theoretical framework in Theorem 4.2.

F.3 TFB BEYOND THE LOW-RANK ISOTROPIC GAUSSIANS

In Sec. 5.3, we compare TFB with two alternative Gaussian distribution families that are controlled
by a single parameter σq:

• Full-Rank Isotropic Gaussian (FR): given σq , the FR’s variational distribution of the weight
matrix q(vec(W )) = N (vec(W )|µq,Σq) where µq = W0 + BA (same as TFB) and
Σq = σ2

qImn is full-rank.
• Constant Standard Deviation Matrix (C-STD): given σq , the C-STD’s variational distribution

of the weight matrix q(vec(W )) = N (vec(W )|µq,Σq) where µq = W0 +BA (same as
TFB) and Σq = σ2

qIn ⊗ [BB⊤].

C-STD’s covariance matrix Σq is derived through Lemma D.1:

Σq = [In ⊗B][diag(vec(Ω)2)][In ⊗B⊤] (37)

= [In ⊗B][σ2
qIrn][In ⊗B⊤] (38)

= σ2
q [In ⊗B][In ⊗B⊤] (39)

= σ2
qIn ⊗ [BB⊤]. (40)

This depends on B and thus varies for equivalent LoRA parameterizations B,A of the same ∆W .

We report the additional results comparing TFB with other approximate families Gaussians (FR
and C-STD as discussed in Sec. 5.3) when using Accuracy as the evaluation metrics l in Table 7.
When the evaluation metric is set to Accuracy, the advantage of TFB becomes more significant
compared to the results shown in Table 2. TFB with low-rank isotropic Gaussian as the variational
distribution demonstrates superior calibration performance compared to both FR and C-STD variants
while maintaining competitive accuracy. For ECE, TFB achieves better results across most datasets,
with notable improvements on in-distribution tasks: 8.78% on WG-S (vs. 12.06% for FR and 11.61%
for C-STD) and 1.28% on BoolQ (vs. 3.26% for FR and 2.65% for C-STD). Similarly for NLL,
TFB consistently outperforms or matches the baseline variants, particularly on WG-S (0.55 vs. 0.63
for FR and 0.61 for C-STD) while preserving comparable accuracy scores. These results suggest
that TFB’s approach to variance modeling is more effective than both full-rank isotropic and constant
standard deviation alternatives.

F.4 TFB BEYOND THE LLAMA3.1-8B BACKBONE

We report the detailed performance of TFB applied to various LLM backbones in Table 8.
While the baseline MLE is typically trained for 2 epochs (shown with each backbone name), we

18



1st workshop of "Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier in Reliable AI" at ICLR’25

Table 6: Performance of different methods applied to LoRA on Llama3.1-8B pre-trained
weights, where Accuracy (ACC) and Expected Calibration Error (ECE) are reported in percentages.
“TF?” denotes whether a method is Training-Free. The evaluation is done across six common-sense
reasoning tasks with a shared hyper-parameter setting after fine-tuning of 5 epochs . We sample
N = 10 during inference in all sampling-based methods including BLoB Wang et al. (2024c) and
TFB. Rows with shading indicate training-free Bayesianization methods that use a pre-trained LoRA
as their mean. For TFB, we randomly sample a subset of the training data without labels as the
anchor dataset D. For accuracy-based evaluation (l=ACC), we set the performance drop tolerance to
ϵ = 1%. For NLL loss (l=NLL), we use the same settings as in Table 1. “↑” and “↓” indicate that
higher and lower values are preferred, respectively. Boldface and underlining denote the best and the
second-best performance, respectively.

Metric Method TF? In-Distribution Datasets
Out-of-Distribution Datasets (OBQA→X)

Small Shift Large Shift

WG-S ARC-C ARC-E WG-M OBQA BoolQ ARC-C ARC-E Chem Phy

ACC (↑)

MCD ✗ 78.03±0.61 81.64±1.79 91.37±0.38 83.18±0.84 87.20±1.02 89.93±0.16 81.42±1.38 87.27±0.84 47.92±2.25 46.53±0.49
ENS ✗ 78.82±0.52 82.55±0.42 91.84±0.36 83.99±0.74 87.37±0.67 90.50±0.14 79.62±0.57 86.56±0.60 49.65±3.22 44.44±1.96

LAP BP 76.05±0.92 79.95±0.42 90.73±0.08 82.83±0.85 87.90±0.20 89.36±0.52 81.08±1.20 87.21±1.20 48.26±3.93 46.18±1.30

MLE - 77.87±0.54 81.08±0.48 91.67±0.36 82.30±0.53 87.90±0.87 89.58±0.26 81.48±2.41 86.83±0.87 45.83±0.85 42.36±1.77

+ TFB (l=ACC) ✓ 76.48±0.20 81.47±0.50 90.85±0.23* 81.55±0.33 86.00±0.43 89.05±0.20 78.13±2.95 85.52±0.56 44.33±4.03 37.00±2.16

+ TFB (l=NLL) ✓ 77.44±0.30 82.53±1.00 91.33±0.37 82.53±0.56 88.53±0.57 89.75±0.25 79.76±1.24 85.52±0.56 44.33±4.03 37.00±2.16

MAP - 76.90±0.97 81.08±2.48 91.61±0.44 82.59±0.28 85.73±0.19 90.09±0.28 79.98±0.87 86.58±0.79 43.40±4.98 38.54±3.40

+ TFB (l=ACC) ✓ 74.80±0.66 82.27±1.00 91.15±0.75* 81.25±0.72 84.87±0.34 89.58±0.06 78.42±2.31 84.00±0.65 40.33±1.89 37.67±4.64

+ TFB (l=NLL) ✓ 76.43±0.72 82.80±1.42 91.39±0.37 82.64±0.58 86.00±0.16 89.96±0.18 80.61±1.24 86.30±0.89 45.33±2.87 35.67±4.11

BLoB ✗ 76.45±0.37 82.32±1.15 91.14±0.54 82.01±0.56 87.57±0.21 89.65±0.15 79.75±0.43 87.13±0.00 42.71±3.71 44.79±6.64

BLoB-Mean ✗ 77.72±0.12 82.60±0.60 91.64±0.55 83.92±0.48 88.00±0.80 89.86±0.05 82.06±1.15 88.54±0.31 39.93±5.20 39.93±4.02

+ TFB (l=ACC) ✓ 77.76±0.07 82.93±0.19 91.58±0.48* 83.84±0.75 88.13±0.34 89.99±0.18 82.40±1.96 87.45±0.26 39.67±7.32 37.67±6.85

+ TFB (l=NLL) ✓ 77.81±0.36 83.33±0.19 91.76±0.48 83.81±0.39 87.80±0.16 90.11±0.28 82.93±1.54 87.64±0.51 39.67±7.32 37.33±6.65

ECE (↓)

MCD ✗ 16.13±0.54 13.69±1.11 6.73±0.71 13.05±0.99 9.76±0.71 7.95±0.17 13.63±1.18 9.27±0.60 30.91±3.57 33.08±1.40

ENS ✗ 14.72±0.17 13.45±1.19 6.59±0.45 11.17±0.92 8.17±0.86 7.35±0.55 11.37±1.82 7.21±1.13 18.92±6.03 26.80±3.23

LAP BP 4.18±0.11 9.26±3.08 5.27±0.51 3.50±0.78 8.93±0.34 1.93±0.22 7.83±1.49 7.80±1.99 14.49±0.57 13.17±2.14

MLE - 17.02±0.46 16.35±0.68 7.00±0.53 13.83±0.65 9.77±0.81 8.69±0.21 14.45±2.19 10.78±0.50 32.46±2.60 38.41±4.44

+ TFB (l=ACC) ✓ 6.71±0.67 6.14±1.18 3.42±1.44* 3.45±0.17 6.02±1.30 3.84±0.47 6.81±1.48 5.69±1.64 14.63±1.46 19.68±3.27

+ TFB (l=NLL) ✓ 12.98±0.37 11.63±0.68 5.14±0.14 10.01±0.70 7.20±0.47 7.39±0.26 6.54±0.53 5.69±1.64 14.63±1.46 19.68±3.27

MAP - 18.71±0.74 15.77±1.60 6.62±0.64 14.26±0.92 12.19±0.55 8.40±0.25 16.46±0.44 11.36±0.58 34.79±3.76 38.50±2.18

+ TFB (l=ACC) ✓ 8.22±0.89 7.54±0.93 4.44±1.83* 3.82±0.45 5.22±0.09 3.89±0.15 6.11±0.60 6.07±0.69 15.74±1.99 19.64±2.92

+ TFB (l=NLL) ✓ 14.95±0.65 11.27±2.53 5.76±0.63 10.97±1.19 9.70±0.69 6.86±0.31 13.25±0.95 9.22±0.91 27.21±2.62 35.91±4.12

BLoB ✗ 9.93±0.22 5.41±1.17 2.70±0.87 4.28±0.64 2.91±0.92 2.58±0.25 5.61±0.40 2.48±0.43 16.67±0.87 12.78±4.18
BLoB-Mean ✗ 15.43±0.15 12.41±1.52 4.91±0.28 9.37±1.33 6.44±0.15 6.26±0.29 11.22±0.38 6.34±0.71 26.65±3.06 25.40±5.40

+ TFB (l=ACC) ✓ 8.78±1.38 4.97±0.20 2.90±0.71* 5.11±0.80 3.09±0.03 1.28±0.43 5.66±1.02 3.53±0.32 18.59±7.26 18.07±5.49

+ TFB (l=NLL) ✓ 8.16±0.48 6.48±0.36 2.44±0.50 3.83±0.43 2.67±0.18 3.10±0.59 6.69±1.63 3.61±0.87 18.45±6.75 20.53±6.27

NLL (↓)

MCD ✗ 0.83±0.01 0.99±0.10 0.45±0.06 0.64±0.03 0.62±0.08 0.49±0.01 1.03±0.02 0.61±0.03 1.91±0.18 2.02±0.15

ENS ✗ 0.75±0.02 0.80±0.11 0.38±0.03 0.55±0.02 0.45±0.05 0.42±0.05 0.72±0.07 0.44±0.03 1.40±0.18 1.50±0.13

LAP BP 0.56±0.00 1.18±0.02 1.04±0.01 0.51±0.00 0.94±0.00 0.43±0.00 1.17±0.01 1.11±0.00 1.27±0.01 1.28±0.00

MLE - 0.88±0.04 1.20±0.11 0.46±0.04 0.68±0.01 0.61±0.06 0.52±0.01 1.07±0.06 0.72±0.06 1.91±0.16 2.25±0.21

+ TFB (l=ACC) ✓ 0.56±0.03 0.62±0.04 0.29±0.03* 0.45±0.01 0.43±0.01 0.31±0.01 0.67±0.05 0.44±0.01 1.39±0.11 1.49±0.05

+ TFB (l=NLL) ✓ 0.68±0.03 0.85±0.02 0.33±0.03 0.53±0.01 0.46±0.04 0.42±0.00 0.66±0.02 0.44±0.01 1.39±0.11 1.49±0.05

MAP - 0.99±0.07 1.12±0.23 0.46±0.03 0.74±0.07 0.79±0.02 0.52±0.01 1.19±0.04 0.83±0.06 1.97±0.13 2.32±0.10

+ TFB (l=ACC) ✓ 0.59±0.01 0.57±0.03 0.30±0.01* 0.45±0.01 0.47±0.03 0.30±0.00 0.70±0.07 0.51±0.02 1.37±0.09 1.54±0.06

+ TFB (l=NLL) ✓ 0.77±0.05 0.80±0.15 0.38±0.03 0.57±0.05 0.61±0.03 0.40±0.01 0.96±0.08 0.66±0.06 1.69±0.16 2.12±0.08

BLoB ✗ 0.58±0.00 0.51±0.03 0.23±0.01 0.43±0.01 0.34±0.01 0.26±0.01 0.56±0.02 0.35±0.02 1.34±0.04 1.35±0.10

BLoB-Mean ✗ 0.74±0.02 0.73±0.04 0.29±0.03 0.47±0.03 0.37±0.02 0.32±0.02 0.67±0.07 0.39±0.03 1.53±0.13 1.54±0.15

+ TFB (l=ACC) ✓ 0.55±0.02 0.53±0.02 0.24±0.01* 0.41±0.01 0.34±0.01 0.27±0.01 0.51±0.04 0.35±0.02 1.36±0.13 1.44±0.10

+ TFB (l=NLL) ✓ 0.55±0.01 0.53±0.04 0.23±0.02 0.40±0.01 0.33±0.02 0.27±0.01 0.52±0.05 0.35±0.02 1.36±0.13 1.46±0.11

also report results with reduced training (1 epoch) for comparison. Although training with fewer
steps (early stopping) can effectively reduce model overconfidence, it typically leads to performance
degradation.

The results demonstrate that TFB consistently improves model calibration across different backbones
while maintaining competitive accuracy. Specifically, for Llama2-7B, TFB reduces the ECE from
4.50% to 1.24% on the combined dataset while preserving the accuracy (81.32% vs 81.41%). Sim-
ilar improvements are observed with Llama3-8B, Llama3.1-8B, and Mistral-7B-v0.3, where TFB
achieves better calibration than both the full training and early stopping baselines without sacrificing
performance, suggesting its effectiveness as a general approach for enhancing LLM calibration.

F.5 TFB BEYOND THE NAIVE LORA

We report the detailed performance of TFB applied to various LoRA variants in Table 9. The
baseline models are trained for 2 epochs using pre-trained Llama3.1-8B on the concatenated dataset
of six commonsense reasoning tasks. Specifically, we consider the two LoRA variants:

• VeRA (Kopiczko et al., 2023): Uses shared low-rank matrices B and A across layers, with
layer-specific trainable scalar vector d and bias vector b. Concretely, the parameterization
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Table 7: Performance of TFB with different posterior families applied to the mean of BLoB
on Llama3.1-8B pre-trained weights. FR: Full-rank isotropic Gaussian noises are applied to
∆W ; C-STD: Standard deviation matrix Ω = [Ωij = σq] is constant. The evaluation protocol
strictly follows Table 1. “↑” and “↓” indicate that higher and lower values are preferred, respectively.
Boldface and underlining denote the best and the second-best performance, respectively (only for
TFB variants).

Metric Method In-Distribution Datasets
Out-of-Distribution Datasets (OBQA→X)

Small Shift Large Shift

WG-S ARC-C ARC-E WG-M OBQA BoolQ ARC-C ARC-E Chem Phy

ACC (↑)
BLoB-Mean 77.72±0.12 82.60±0.60 91.64±0.55 83.92±0.48 88.00±0.80 89.86±0.05 82.06±1.15 88.54±0.31 39.93±5.20 39.93±4.02

+ TFB (FR) 77.68±0.35 82.53±1.36 91.88±0.09* 83.36±0.82 87.67±1.06 89.53±0.33 79.87±2.07 87.39±0.23 44.00±2.83 41.33±3.86
+ TFB (C-STD) 77.71±0.40 82.80±0.98 91.64±0.54* 83.31±0.75 88.33±0.50 89.71±0.16 80.53±0.50 87.15±1.09 43.33±0.94 39.33±3.68

+ TFB (Final) 77.76±0.07 82.93±0.19 91.58±0.48* 83.84±0.75 88.13±0.34 89.99±0.18 82.40±1.96 87.45±0.26 39.67±7.32 37.67±6.85

ECE (↓)
BLoB-Mean 15.43±0.15 12.41±1.52 4.91±0.28 9.37±1.33 6.44±0.15 6.26±0.29 11.22±0.38 6.34±0.71 26.65±3.06 25.40±5.40

+ TFB (FR) 12.06±0.59 6.48±0.89 3.25±0.60* 7.83±1.27 2.87±0.29 3.26±0.58 6.14±0.83 3.24±0.95 13.45±3.69 17.44±3.51

+ TFB (C-STD) 11.61±0.44 5.43±0.74 3.78±0.39* 7.39±0.77 4.19±0.60 2.65±0.56 5.23±1.04 2.79±0.22 15.23±0.93 15.56±3.46
+ TFB (Final) 8.78±1.38 4.97±0.20 2.90±0.71* 5.11±0.80 3.09±0.03 1.28±0.43 5.66±1.02 3.53±0.32 18.59±7.26 18.07±5.49

NLL (↓)
BLoB-Mean 0.74±0.02 0.73±0.04 0.29±0.03 0.47±0.03 0.37±0.02 0.32±0.02 0.67±0.07 0.39±0.03 1.53±0.13 1.54±0.15

+ TFB (FR) 0.63±0.02 0.53±0.01 0.24±0.01* 0.44±0.02 0.35±0.03 0.27±0.01 0.59±0.03 0.36±0.02 1.31±0.04 1.41±0.07

+ TFB (C-STD) 0.61±0.00 0.53±0.02 0.25±0.02* 0.44±0.02 0.34±0.02 0.26±0.01 0.57±0.03 0.36±0.02 1.31±0.05 1.40±0.06

+ TFB (Final) 0.55±0.02 0.53±0.02 0.24±0.01* 0.41±0.01 0.34±0.01 0.27±0.01 0.51±0.04 0.35±0.02 1.36±0.13 1.44±0.10

of VeRA’s updated weight matrix W is modeled as:

W = W0 +∆W = W0 + [diag(b)]B[diag(d)]A. (41)

Hence after the fine-tuning of VeRA, we can easily regroup the weight matrices into {B′ =
[diag(b)]B[diag(d)],A′ = A}, and apply the TFB Bayesianization scheme illustrated in
Algorithm 1.

• PiSSA (Meng et al., 2024): Employs an alternative initialization scheme while maintaining
LoRA’s parameterization and training procedure. Hence the TFB process for PiSSA is
trivial.

The results in Table 9 show that TFB consistently improves calibration across different LoRA variants
while preserving model performance. Notably, when applied to the standard LoRA, TFB significantly
reduces the ECE from 4.74% to 1.05% on the combined dataset with minimal impact on accuracy
(86.45% vs 86.70%). Similar improvements are observed with VeRA and PiSSA variants, where
TFB achieves better calibration (reducing ECE to 1.44% and 1.17% respectively) while maintaining
comparable accuracy levels. These results demonstrate that TFB can effectively enhance model
calibration across different LoRA architectures without compromising their performance.

F.6 IMPROVING THE INFERENCE-TIME EFFICIENCY OF TFB

We report the detailed performance of last-layer TFB (LL TFB) in Table 10. As indicated in the
table, with only N = 10 samples, last-layer Bayesianization provides a less effective uncertainty
estimation compared to full-model Bayesianization. However, increasing the number of samples
to N = 100 significantly enhances the posterior estimation, allowing last-layer Bayesianization to
achieve better accuracy. This improvement further allows it to outperform the full-model Bayesian-
ization in terms of NLL across most datasets.

F.7 ADDITIONAL RESULTS ON LLAMA2-7B

We report the detailed performance of TFB applied to the Llama2-7B pre-trained weights in
Table 11. The performance change tolerance ϵ is set adaptively to either 1% or 0.5%, depending
on the checkpoint’s overfitting characteristics. To determine the optimal σ∗

q , we conduct parallel
experiments with eight values of σq ∈ [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.05] using a single
random seed. We construct an approximate function σ̂q(p) through piecewise linear interpolation of
the observed performance and estimate σ∗

q ≈ σ̂q(p0 − ϵ). Similar to other baseline methods, the final
results of TFB are reported as averages across three random seeds using σ∗

q .

In-Distribution (IND) Results. We observed several key patterns from the IND Datasets results.
For example, the MLE baseline shows relatively strong accuracy but suffers from high ECE values
(e.g., 29.83% on WG-S), indicating significant overconfidence. This aligns with the common
challenge of LLM overconfidence during conventional fine-tuning.
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Table 8: TFB Performances with various LLM backbones (Touvron et al., 2023a;b; Dubey et al.,
2024; Jiang et al., 2023), where Accuracy (ACC) and Expected Calibration Error (ECE) are reported
in percentages. The MLE training for each different backbone is conducted for 2 epochs on the
concatenated dataset of six commonsense reasoning tasks, with a shared hyperparameter setting;
“Fewer Epochs” represents training for 1 epoch. We use N = 10 samples for TFB during inference
and rows with shading indicate training-free Bayesianization methods that use a pre-trained LoRA as
their mean. “↑” and “↓” indicate that higher and lower values are preferred, respectively. Boldface
and underlining denote the best and the second-best performance, respectively.

Metric Method
Datasets

WG-S ARC-C ARC-E WG-M OBQA BoolQ Combined

ACC (↑)

Llama2-7B 72.30±0.90 73.24±1.34 87.66±0.81 72.30±0.90 83.27±1.53 87.84±0.57 81.41±0.64
+ Fewer Epochs 63.85±3.68 69.23±0.33 86.73±0.97 63.85±3.68 79.67±1.55 86.08±0.23 76.88±1.11

+ TFB (Ours) 72.03±0.88 74.36±1.58 87.31±1.14 72.85±0.96 83.73±0.70 87.44±0.34 81.32±0.51

Llama3-8B 81.45±0.00 84.95±1.53 92.63±0.93 81.45±0.00 88.20±0.53 90.19±0.13 86.93±0.09
+ Fewer Epochs 79.08±1.18 82.72±0.39 92.22±0.83 79.08±1.18 86.07±0.90 79.94±14.97 82.01±5.76

+ TFB (Ours) 81.19±0.51 84.73±1.68 92.98±0.80 81.11±0.55 87.73±0.64 89.75±0.10 86.61±0.20

Llama3.1-8B 81.24±0.05 82.72±0.19 92.11±1.05 81.24±0.05 87.80±2.03 90.20±0.11 86.70±0.08
+ Fewer Epochs 78.11±0.12 83.95±1.00 91.17±1.17 78.11±0.12 85.33±0.90 89.38±0.35 84.96±0.22

+ TFB (Ours) 80.66±0.70 82.50±0.84 91.93±1.05 81.22±0.83 87.73±1.29 89.96±0.23 86.45±0.33

Mistral-7B-v0.3 82.45±0.82 84.28±1.53 90.94±0.27 82.45±0.82 87.73±0.31 89.71±0.48 86.88±0.51
+ Fewer Epochs 79.72±0.00 83.95±0.33 91.58±0.63 79.72±0.00 87.53±0.31 89.20±0.20 85.71±0.11

+ TFB (Ours) 81.74±0.43 84.06±1.68 90.99±0.73 81.74±0.75 87.93±0.42 89.71±0.32 86.64±0.28

ECE (↓)

Llama2-7B 9.17±0.74 9.37±1.27 2.65±0.16 9.17±0.74 5.54±0.66 1.59±0.49 4.50±0.37

+ Fewer Epochs 4.83±1.17 5.67±0.92 4.46±0.23 4.83±1.17 4.41±0.83 6.90±1.73 2.00±0.34

+ TFB (Ours) 5.44±0.80 6.06±1.54 3.83±0.74 5.50±1.55 3.87±1.15 2.51±0.35 1.24±0.22

Llama3-8B 8.49±0.14 6.76±1.77 2.57±0.84 8.49±0.14 3.84±0.37 1.88±1.18 4.28±0.54

+ Fewer Epochs 4.45±0.32 4.99±2.00 2.83±0.58 4.45±0.32 3.14±0.13 2.71±0.25 1.79±1.16

+ TFB (Ours) 3.47±0.74 5.58±0.58 4.34±1.59 4.07±0.28 3.79±0.90 3.49±1.42 1.64±0.64

Llama3.1-8B 8.58±0.56 8.58±0.29 2.92±0.92 8.58±0.56 3.85±1.18 2.32±0.27 4.74±0.28

+ Fewer Epochs 4.76±0.91 4.23±0.95 3.11±0.76 4.76±0.91 3.99±0.93 3.02±0.59 1.45±0.38

+ TFB (Ours) 4.45±0.36 4.34±1.29 2.97±0.26 4.56±0.68 3.55±0.55 3.16±0.45 1.05±0.06

Mistral-7B-v0.3 8.02±1.68 6.98±1.18 4.12±0.13 8.02±1.68 5.99±0.48 3.17±0.55 5.05±0.88

+ Fewer Epochs 5.72±2.01 4.74±1.31 2.52±0.79 5.72±2.01 3.50±0.75 1.70±0.47 2.47±1.09

+ TFB (Ours) 4.47±2.00 4.72±0.83 2.62±0.20 4.01±1.08 4.10±0.26 0.97±0.18 1.68±0.53

NLL (↓)

Llama2-7B 0.58±0.01 0.69±0.03 0.35±0.00 0.58±0.01 0.48±0.03 0.30±0.00 0.43±0.00
+ Fewer Epochs 0.64±0.03 0.78±0.01 0.39±0.01 0.64±0.03 0.56±0.02 0.36±0.01 0.50±0.01

+ TFB (Ours) 0.56±0.01 0.68±0.02 0.35±0.02 0.57±0.01 0.46±0.03 0.31±0.00 0.43±0.00

Llama3-8B 0.48±0.01 0.47±0.03 0.22±0.01 0.48±0.01 0.35±0.01 0.25±0.00 0.34±0.00
+ Fewer Epochs 0.46±0.01 0.48±0.01 0.22±0.02 0.46±0.01 0.37±0.02 0.41±0.20 0.40±0.08

+ TFB (Ours) 0.44±0.01 0.45±0.02 0.23±0.00 0.44±0.01 0.35±0.01 0.27±0.01 0.34±0.00

Llama3.1-8B 0.48±0.01 0.53±0.01 0.24±0.03 0.48±0.01 0.33±0.03 0.25±0.00 0.35±0.00

+ Fewer Epochs 0.48±0.00 0.45±0.00 0.23±0.01 0.48±0.00 0.37±0.01 0.27±0.00 0.36±0.00

+ TFB (Ours) 0.44±0.01 0.46±0.00 0.23±0.02 0.44±0.01 0.33±0.02 0.27±0.00 0.34±0.00

Mistral-7B-v0.3 0.46±0.04 0.47±0.02 0.28±0.01 0.46±0.04 0.36±0.03 0.26±0.01 0.35±0.02

+ Fewer Epochs 0.47±0.02 0.46±0.01 0.25±0.01 0.47±0.02 0.35±0.01 0.26±0.00 0.35±0.01

+ TFB (Ours) 0.42±0.02 0.43±0.02 0.26±0.01 0.42±0.02 0.33±0.01 0.26±0.01 0.33±0.01

TFB applied to BLoB-Mean demonstrates strong overall performance across the IND datasets,
achieving the highest accuracy on several datasets (69.94% on WG-S, 70.72% on ARC-C, and 86.74%
on ARC-E). More importantly, it achieves this while maintaining lower ECE values compared to
methods like MCD and ENS, suggesting better calibrated predictions. The method also shows strong
NLL performance, with values consistently among the lowest across datasets (0.62 for WG-S, 0.86
for ARC-C).

In summary, TFB consistently enhances the performance of baseline methods (MLE, MAP, and
BLoB-Mean) across different evaluation scenarios, with notable improvements in both accuracy and
calibration metrics. The improvements are particularly evident in the significant ECE reductions
(e.g., from 29.83% to 16.26% for MLE on WG-S) while maintaining or improving accuracy, with the
most substantial gains observed when TFB is combined with BLoB-Mean, achieving both the highest
accuracy and lowest ECE values across most datasets.

Out-of-Distribution (OOD) Results. The OOD evaluation reveals interesting patterns across both
smaller and larger distribution shifts. For smaller shifts (ARC-C and ARC-E), BLoB-Mean with TFB
maintains strong performance, achieving 70.38% and 80.16% accuracy respectively, while keeping
ECE values low (12.28% and 8.07%). This suggests robust generalization under moderate distribution
shifts.

For larger shifts (Chem and Phy datasets), we see a more significant performance degradation
across all methods, as expected. However, BLoB-Mean with TFB still maintains competitive
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Table 9: Performance of TFB when applied to variants of LoRAs (Hu et al., 2022; Zhang et al.,
2023; Kopiczko et al., 2023; Meng et al., 2024), where Accuracy (ACC) and Expected Calibration
Error (ECE) are reported in percentages. The MLE training for each LoRA variant is conducted
with pre-trained Llama3.1-8B model for 2 epochs on the concatenated dataset of six commonsense
reasoning tasks, with a shared hyperparameter setting. We set the number of samples to N = 10 for
TFB during inference and rows with shading indicate training-free Bayesianization methods that use
a pre-trained LoRA as their mean. “↑” and “↓” indicate that higher and lower values are preferred,
respectively. Boldface denotes the best performance.

Metric Method
Datasets

WG-S ARC-C ARC-E WG-M OBQA BoolQ Combined

ACC (↑)

LoRA 81.24±0.05 82.72±0.19 92.11±1.05 81.24±0.05 87.80±2.03 90.20±0.11 86.70±0.08
+ TFB (Ours) 80.66±0.70 82.50±0.84 91.93±1.05 81.22±0.83 87.73±1.29 89.96±0.23 86.45±0.33

VeRA 78.24±1.03 82.39±2.55 90.47±1.17 78.24±1.03 86.13±0.23 89.27±0.27 84.93±0.50
+ TFB (Ours) 76.82±0.97 81.27±2.34 90.35±0.91 77.03±1.04 86.07±0.64 88.99±0.32 84.28±0.48

PiSSA 81.45±1.45 83.95±1.77 92.22±0.54 81.45±1.45 88.40±0.69 90.09±0.11 86.83±0.51
+ TFB (Ours) 80.77±1.42 82.94±1.21 92.40±0.66 81.32±0.78 88.13±0.42 90.01±0.23 86.61±0.43

ECE (↓)

LoRA 8.58±0.56 8.58±0.29 2.92±0.92 8.58±0.56 3.85±1.18 2.32±0.27 4.74±0.28

+ TFB (Ours) 4.45±0.36 4.34±1.29 2.97±0.26 4.56±0.68 3.55±0.55 3.16±0.45 1.05±0.06

VeRA 9.54±0.47 7.26±2.62 3.72±0.86 9.54±0.47 5.41±0.78 2.28±0.40 5.11±0.55

+ TFB (Ours) 5.03±0.92 5.92±1.53 2.80±0.57 5.09±0.87 3.31±0.84 1.78±0.40 1.44±0.44

PiSSA 7.36±0.40 8.12±1.28 2.83±1.09 7.36±0.40 3.73±1.07 2.59±0.30 4.26±0.14

+ TFB (Ours) 4.59±0.63 4.97±0.63 2.71±0.65 4.37±0.32 2.96±0.16 1.41±0.64 1.17±0.22

NLL (↓)

LoRA 0.48±0.01 0.53±0.01 0.24±0.03 0.48±0.01 0.33±0.03 0.25±0.00 0.35±0.00

+ TFB (Ours) 0.44±0.01 0.46±0.00 0.23±0.02 0.44±0.01 0.33±0.02 0.27±0.00 0.34±0.00

VeRA 0.54±0.01 0.53±0.05 0.29±0.03 0.54±0.01 0.41±0.03 0.27±0.01 0.39±0.01

+ TFB (Ours) 0.51±0.01 0.51±0.02 0.27±0.02 0.50±0.01 0.39±0.02 0.28±0.01 0.38±0.01

PiSSA 0.47±0.01 0.49±0.02 0.23±0.02 0.47±0.01 0.32±0.03 0.26±0.00 0.35±0.00

+ TFB (Ours) 0.44±0.01 0.46±0.02 0.23±0.01 0.44±0.01 0.32±0.02 0.26±0.00 0.33±0.00

performance, achieving 42.67% accuracy on Chem and 30.67% on Phy, while maintaining reasonable
calibration metrics. The method’s NLL values (1.35 and 1.46 respectively) remain competitive with
other approaches, indicating relatively well-calibrated uncertainty estimates even under substantial
distribution shifts.

Notable is the consistently strong performance of the BLoB variants (both w/ and w/o TFB) across
different metrics and datasets, suggesting that this approach offers a robust framework for both
in-distribution and out-of-distribution scenarios. The results demonstrate that the method successfully
balances the trade-off between accuracy and calibration, particularly evident in the out-of-distribution
scenarios where maintaining both aspects becomes more challenging.
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Table 10: Performance of Last-Layer TFB (LL TFB) applied to LoRA on Llama3.1-8B pre-
trained weights, where Accuracy (ACC) and Expected Calibration Error (ECE) are reported in
percentages. The evaluation is done across six common-sense reasoning tasks with a shared hyper-
parameter setting after 5 epochs. We sample N times during inference in the sampling-based methods.
Rows with shading indicate training-free Bayesianization methods that use a pre-trained LoRA as
their mean. “↑” and “↓” indicate that higher and lower values are preferred, respectively. Boldface
and underlining denote the best and the second-best performance, respectively.

Metric Method #Sample (N)
Datasets

WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (↑)

MLE - 77.87±0.54 81.08±0.48 91.67±0.36 82.30±0.53 87.90±0.87 89.58±0.26

+ TFB 10 77.44±0.30 82.53±1.00 91.33±0.37 82.53±0.56 88.53±0.57 89.75±0.25

+ LL TFB 10 76.96±0.46 82.00±0.40 90.97±0.34 82.67±0.49 87.80±1.07 89.62±0.12

+ LL TFB 100 77.39±0.32 82.13±0.82 91.33±0.37 82.61±0.55 87.80±0.91 89.66±0.28

MAP - 76.90±0.97 81.08±2.48 91.61±0.44 82.59±0.28 85.73±0.19 90.09±0.28

+ TFB (Ours) 10 76.43±0.72 82.80±1.42 91.39±0.37 82.64±0.58 86.00±0.16 89.96±0.18

+ LL TFB 10 76.35±0.89 83.07±1.97 91.15±0.52 82.27±0.53 85.27±0.19 90.09±0.20

+ LL TFB 100 76.72±0.77 83.07±2.12 91.15±0.60 82.53±0.33 85.60±0.16 90.02±0.14

BLoB 10 76.45±0.37 82.32±1.15 91.14±0.54 82.01±0.56 87.57±0.21 89.65±0.15

BLoB-Mean - 77.72±0.12 82.60±0.60 91.64±0.55 83.92±0.48 88.00±0.80 89.86±0.05

+ TFB (Ours) 10 77.81±0.36 83.33±0.19 91.76±0.48 83.81±0.39 87.80±0.16 90.11±0.28
+ LL TFB 10 77.57±1.02 82.80±0.33 91.45±0.54 83.23±0.57 88.33±0.09 89.85±0.13

+ LL TFB 100 77.60±0.62 83.33±0.82 91.39±0.60 83.63±0.62 87.60±0.43 90.03±0.03

ECE (↓)

MLE - 17.02±0.46 16.35±0.68 7.00±0.53 13.83±0.65 9.77±0.81 8.69±0.21

+ TFB (Ours) 10 12.98±0.37 11.63±0.68 5.14±0.14 10.01±0.70 7.20±0.47 7.39±0.26

+ LL TFB 10 14.42±0.41 13.86±0.45 6.92±0.62 10.32±0.90 8.56±0.96 7.52±0.12

+ LL TFB 100 13.45±0.30 13.17±0.62 6.84±0.67 10.76±0.88 8.68±0.60 7.46±0.10

MAP - 18.71±0.74 15.77±1.60 6.62±0.64 14.26±0.92 12.19±0.55 8.40±0.25

+ TFB (Ours) 10 14.95±0.65 11.27±2.53 5.76±0.63 10.97±1.19 9.70±0.69 6.86±0.31

+ LL TFB 10 16.03±0.64 12.72±1.33 6.54±0.68 12.06±1.09 11.36±0.34 7.51±0.23

+ LL TFB 100 15.56±0.97 12.84±2.17 6.38±0.66 11.80±1.14 11.22±0.38 7.30±0.41

BLoB 10 9.93±0.22 5.41±1.17 2.70±0.87 4.28±0.64 2.91±0.92 2.58±0.25

BLoB-Mean - 15.43±0.15 12.41±1.52 4.91±0.28 9.37±1.33 6.44±0.15 6.26±0.29

+ TFB (Ours) 10 8.16±0.48 6.48±0.36 2.44±0.50 3.83±0.43 2.67±0.18 3.10±0.59

+ LL TFB 10 9.68±0.70 7.20±0.91 3.01±0.66 3.94±0.78 3.33±0.93 2.96±0.30

+ LL TFB 100 8.88±0.32 6.47±1.55 2.84±0.50 3.40±0.82 3.70±0.27 2.51±0.46

NLL (↓)

MLE - 0.88±0.04 1.20±0.11 0.46±0.04 0.68±0.01 0.61±0.06 0.52±0.01

+ TFB (Ours) 10 0.68±0.03 0.85±0.02 0.33±0.03 0.53±0.01 0.46±0.04 0.42±0.00

+ LL TFB 10 0.70±0.02 0.96±0.12 0.41±0.06 0.53±0.02 0.50±0.06 0.42±0.01

+ LL TFB 100 0.66±0.02 0.84±0.08 0.39±0.07 0.53±0.02 0.49±0.05 0.40±0.00

MAP - 0.99±0.07 1.12±0.23 0.46±0.03 0.74±0.07 0.79±0.02 0.52±0.01

+ TFB (Ours) 10 0.77±0.05 0.80±0.15 0.38±0.03 0.57±0.05 0.61±0.03 0.40±0.01

+ LL TFB 10 0.80±0.07 0.88±0.19 0.43±0.02 0.60±0.05 0.65±0.01 0.43±0.02

+ LL TFB 100 0.77±0.06 0.86±0.18 0.41±0.02 0.57±0.04 0.63±0.02 0.40±0.03

BLoB 10 0.58±0.00 0.51±0.03 0.23±0.01 0.43±0.01 0.34±0.01 0.26±0.01
BLoB-Mean - 0.74±0.02 0.73±0.04 0.29±0.03 0.47±0.03 0.37±0.02 0.32±0.02

+ TFB 10 0.55±0.01 0.53±0.04 0.23±0.02 0.40±0.01 0.33±0.02 0.27±0.01

+ LL TFB 10 0.56±0.02 0.60±0.05 0.26±0.02 0.41±0.01 0.33±0.01 0.27±0.01

+ LL TFB 100 0.53±0.01 0.54±0.04 0.24±0.01 0.39±0.01 0.31±0.01 0.26±0.01
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Table 11: Performance of different methods applied to LoRA on Llama2-7B pre-trained weights,
where Accuracy (ACC) and Expected Calibration Error (ECE) are reported in percentages. “TF?”
denotes whether a method is Training-Free. The evaluation is done across six common-sense
reasoning tasks with a shared hyper-parameter setting after 5,000 gradient steps. We sample N = 10
during inference in all sampling-based methods including BLoB Wang et al. (2024c) and TFB. Rows
with shading indicate training-free Bayesianization methods that use a pre-trained LoRA as their
mean. For TFB, the anchor dataset D is set to a randomly sampled subset of the original training
set, the performance evaluation metric l is set to accuracy, and the performance drop tolerance is
set adaptively to 1% or 0.5% based on whether the given mean overfits. “↑” and “↓” indicate that
higher and lower values are preferred, respectively. Boldface and underlining denote the best and the
second-best performance, respectively.

Metric Method TF? In-Distribution Datasets
Out-of-Distribution Datasets (OBQA→X)

Small Shift Large Shift

WG-S ARC-C ARC-E WG-M OBQA BoolQ ARC-C ARC-E Chem Phy

ACC (↑)

MCD ✗ 69.46±0.62 68.69±1.30 86.21±0.46 76.45±0.04 81.72±0.10 87.29±0.13 69.03±0.70 76.00±1.58 42.71±0.01 29.17±4.54

ENS ✗ 69.57±0.66 66.20±2.01 84.40±0.81 75.32±0.21 81.38±0.91 87.09±0.11 67.34±0.70 75.18±2.03 43.75±1.04 30.56±2.62

BBB ✗ 56.54±7.87 68.13±1.27 85.86±0.74 73.63±2.44 82.06±0.59 87.21±0.22 67.25±1.18 75.83±0.75 42.36±0.49 30.21±2.25

LAP BP 69.20±1.50 66.78±0.69 80.05±0.22 75.55±0.36 82.12±0.67 86.95±0.09 69.14±1.15 74.94±0.96 44.10±1.30 31.60±0.49

MLE - 68.99±0.58 69.10±2.84 85.65±0.92 74.53±0.66 81.52±0.25 86.53±0.28 66.20±0.87 75.12±0.85 40.62±2.25 28.82±1.30

+ TFB (Ours) ✓ 69.83±1.02 68.13±1.03 86.21±0.90 75.95±0.34 82.80±0.35 87.66±0.35 69.93±2.11 78.87±1.06 34.67±3.51 31.00±2.00

MAP - 68.62±0.71 67.59±0.40 86.55±0.55 75.61±0.71 81.38±0.65 86.50±0.41 69.59±0.33 75.47±0.73 44.79±0.00 28.47±1.20

+ TFB (Ours) ✓ 69.17±1.08 67.68±1.73 85.86±0.37 75.87±0.40 83.07±0.61 87.74±0.23 69.37±2.54 78.76±0.87 34.33±5.51 31.00±1.00

BLoB ✗ 68.80±0.53 67.59±0.43 86.37±0.34 73.26±1.36 81.99±1.48 86.58±0.18 67.71±1.13 76.37±0.80 44.79±1.47 31.60±2.73

BLoB-Mean ✗ 72.15±0.17 69.56±0.91 86.31±0.37 75.47±1.36 82.53±0.74 86.69±0.08 69.93±1.20 76.88±0.41 41.67±2.25 31.94±1.77
+ TFB (Ours) ✓ 69.94±1.68 70.72±2.25 86.74±0.97 73.13±2.38 83.13±0.76 86.36±0.26 70.38±1.03 80.16±0.71 42.67±1.15 30.67±1.53

ECE (↓)

MCD ✗ 27.98±0.44 27.53±0.80 12.20±0.56 19.55±0.47 13.10±0.11 3.46±0.16 19.54±0.33 15.32±1.16 17.9±0.63 29.53±4.20

ENS ✗ 28.52±0.55 29.16±2.37 12.57±0.58 20.86±0.43 15.34±0.27 9.61±0.24 7.59±1.43 6.44±0.83 12.04±4.57 17.52±1.28

BBB ✗ 21.81±12.95 26.23±1.47 12.28±0.58 15.76±4.71 11.38±1.07 3.74±0.10 19.90±0.66 13.41±0.85 15.67±1.23 26.10±4.76

LAP BP 4.15±1.12 16.25±2.61 33.29±0.57 7.40±0.27 8.70±1.77 1.30±0.33 5.84±0.64 8.51±1.06 10.76±3.41 13.91±0.90

MLE - 29.83±0.58 29.00±1.97 13.12±1.39 20.62±0.74 12.55±0.46 3.18±0.09 22.20±0.39 16.47±0.86 21.72±0.30 29.60±1.29

+ TFB (Ours) ✓ 16.26±0.36 6.93±1.43 5.82±0.87 8.78±0.84 4.60±0.62 2.30±0.50 8.47±2.04 4.64±0.75 15.87±5.17 16.77±4.10

MAP - 29.76±0.87 29.42±0.68 12.07±0.55 23.07±0.14 13.26±0.82 3.16±0.23 19.31±1.46 15.68±0.51 17.55±1.95 30.25±2.18

+ TFB (Ours) ✓ 11.72±0.56 6.07±1.89 6.99±0.96 5.21±0.86 3.82±0.60 2.65±0.30 8.39±0.75 4.86±1.03 16.11±3.22 16.35±2.94

BLoB ✗ 8.98±0.58 10.81±1.29 4.54±0.90 3.98±1.04 3.64±0.54 1.24±0.33 9.55±0.40 5.48±1.27 9.77±1.35 18.29±1.35

BLoB-Mean ✗ 18.63±0.31 22.51±0.93 9.64±0.60 11.58±1.24 8.65±0.98 2.88±0.07 14.00±1.02 10.70±0.39 15.05±0.77 22.90±2.27

+ TFB (Ours) ✓ 6.33±1.04 5.77±0.32 3.03±0.43 4.07±1.65 5.94±0.46 5.37±0.44 12.28±1.24 8.07±1.01 12.36±1.73 22.02±0.30

NLL (↓)

MCD ✗ 2.79±0.53 2.67±0.15 1.00±0.14 1.02±0.03 0.77±0.03 0.31±0.00 1.08±0.01 0.88±0.03 1.59±0.07 1.67±0.05

ENS ✗ 2.71±0.08 2.46±0.22 0.82±0.03 1.25±0.03 1.06±0.04 0.57±0.02 0.86±0.01 0.69±0.03 1.28±0.00 1.39±0.03

BBB ✗ 1.40±0.55 2.23±0.04 0.91±0.06 0.84±0.15 0.66±0.05 0.31±0.00 1.06±0.01 0.79±0.02 1.49±0.05 1.62±0.06

LAP BP 0.60±0.00 1.03±0.04 0.88±0.00 0.57±0.01 0.52±0.01 0.31±0.00 0.81±0.00 0.70±0.02 1.35±0.03 1.36±0.01

MLE - 3.17±0.37 2.85±0.27 1.17±0.13 0.95±0.07 0.73±0.03 0.32±0.00 1.16±0.00 0.92±0.03 1.56±0.06 1.66±0.05

+ TFB (Ours) ✓ 0.86±0.06 0.98±0.02 0.48±0.04 0.59±0.01 0.54±0.02 0.30±0.00 0.87±0.03 0.70±0.05 1.46±0.03 1.43±0.05

MAP - 2.46±0.34 2.66±0.11 0.90±0.05 1.62±0.29 0.75±0.01 0.33±0.00 1.10±0.07 0.93±0.04 1.55±0.06 1.65±0.03

+ TFB (Ours) ✓ 0.72±0.03 0.96±0.03 0.50±0.04 0.55±0.01 0.53±0.02 0.30±0.00 0.87±0.02 0.71±0.05 1.46±0.02 1.42±0.05

BLoB ✗ 0.63±0.01 0.84±0.00 0.41±0.02 0.54±0.01 0.49±0.01 0.31±0.00 0.83±0.01 0.60±0.01 1.38±0.01 1.46±0.02

BLoB-Mean ✗ 0.79±0.01 1.27±0.02 0.57±0.03 0.60±0.03 0.56±0.00 0.32±0.01 0.89±0.02 0.67±0.02 1.44±0.00 1.53±0.02

+ TFB (Ours) ✓ 0.62±0.03 0.86±0.01 0.42±0.03 0.56±0.03 0.50±0.01 0.34±0.00 0.84±0.03 0.61±0.01 1.35±0.01 1.46±0.06
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