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ABSTRACT

Multi-domain translation (MDT) aims to learn translations between multiple do-
mains, yet existing approaches either require fully aligned tuples or can only han-
dle domain pairs seen in training, limiting their practicality and excluding many
cross-domain mappings. We introduce universal MDT (UMDT), a generaliza-
tion of MDT that seeks to translate between any pair of K domains using only
K — 1 paired datasets with a central domain. To tackle this problem, we pro-
pose Diffusion Router (DR), a unified diffusion-based framework that models all
central«+non-central translations with a single noise predictor conditioned on the
source and target domain labels. DR enables indirect non-central translations by
routing through the central domain. We further introduce a novel scalable learning
strategy with a variational-bound objective and an efficient Tweedie refinement
procedure to support direct non-central mappings. Through evaluation on three
large-scale UMDT benchmarks, DR achieves state-of-the-art results for both in-
direct and direct translations, while lowering sampling cost and unlocking novel
tasks such as sketch<»segmentation. These results establish DR as a scalable and
versatile framework for universal translation across multiple domains.

1 INTRODUCTION

Paired domain translation, which aims to learn a mapping between two domains given aligned sam-
ples, underpins a wide range of applications, including image-to-image translation (Isola et al.,
2017; Park et al., 2019), image captioning (Xu et al.| [2015} [Fang et al., 2015), and text-to-speech
synthesis (van den Oord et al.,|2016; |Shen et al.| 2018)). Despite remarkable progress in two-domain
settings, many real-world problems inherently involve multiple domains, motivating the study of
Multi-Domain Translation (MDT).

Existing MDT approaches usually fall into two paradigms: (i) training on fully aligned tuples across
domains (Wu & Goodmanl 2018; [Shi et al., 2019; Bao et al.,[2023}; [Le et al., |2025)), or (ii) training
on multiple paired datasets with a shared central domain (Huang et al.| |2022; [Zhang et al., 2023
Huang et al} [2023; [Koley et al., [2024). The former quickly becomes impractical as the number of
domains grows due to the difficulty of collecting large-scale aligned tuples. The latter scales better
but mainly supports translations between the central domain and each non-central domain, leaving
cross non-central translations unaddressed.

In this paper, we introduce Universal Multi-Domain Translation (UMDT), which combines the am-
bition of enabling translations between any pairs of K domains with the practicality of only requiring
K — 1 paired datasets involving a central domain. UMDT captures many real-world scenarios, such
as image<>text«raudio translation or multilingual machine translation, where fully aligned tuples
are scarce but pairwise datasets with a pivot domain (e.g., text or English) are abundant.

To address UMDT, we propose Diffusion Router (DR), a novel diffusion-based framework that sup-
ports arbitrary cross-domain translations with only a single noise prediction network ey. Inspired
by network routers that determine paths using source and destination IP addresses, DR conditions
€p on both source and target domain labels, guiding the denoising process along the correct trans-
lation path. This design avoids training a separate model for each mapping, enabling scalability
to large numbers of domains. DR can perform indirect translation between non-central domains
via the central domain. To further enable direct non-central translations, we introduce a scalable
learning strategy that minimizes a variational upper bound on the KL divergence between indirect
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and parameterized direct mappings. This reduces to aligning two conditional noise predictions—one
conditioned on the source non-central-domain sample and the other on its paired central-domain
sample—resembling the training objectives of diffusion models. To improve efficiency, we develop
Tweedie refinement, a lightweight sampling procedure that approximates conditional samples in
only a few steps, greatly reducing computational cost and facilitating scalable training.

Extensive experiments and ablation studies on three newly constructed large-scale UMDT datasets
demonstrate that DR consistently outperforms state-of-the-art GAN-, flow-, and diffusion-based
baselines for multi-domain translations, either indirect or direct. Moreover, DR naturally generalize
to more complex UMDT topologies such as spanning trees with multiple central domains.

In summary, our main contributions are:

* We formalize Universal Multi-Domain Translation (UMDT), a general setting that aims to
learn translations between any pairs of & domains using only K — 1 paired datasets.

* We propose the Diffusion Router (DR), a unified diffusion-based framework that models
all central<»non-central mappings with a single noise predictor.

* We develop a scalable learning strategy with a variational-bound objective and Tweedie
refinement to enable direct non-central translations.

¢ We construct three new UMDT benchmarks and show that DR achieves state-of-the-art
results for both indirect and direct translations.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015 [Song & Ermon, 2019; Ho et al.l [2020; |Song et al.,
2021a)) are a generative framework that generates data from noise by reversing a forward diffusion
process. The forward process is typically a Markov process with the transition kernel p (z¢|z;—1)
chosen such that the marginal distribution p (z;|z) (with 2o = z) is a Gaussian distribution of the
form N (atx, afI). This enables direct sampling of x; from z as:

Ty = QT + O€ (1)
Here, e ~ N (0,1); a; and o, are predefined time-dependent coefficients satisfying 1 ~ ag > - - >
ar ~0and 0 ~ 0} < --- < 0% ~ 1. At the final time step, p (x7 | ) = p (z1) = N (0,1).
It has been shown that (Song et al., 2021a)) the reverse transition kernel py (z;_1|x+) can be param-

eterized as a Gaussian distribution A/ (ug’t,t,l (x¢) ’wt2—1| tl) where the mean is defined as:

Q1 OtQ¢_—1
po i1 (w) = —a + < o7y —w? - = > co (1,1, 2)
a Q¢
O‘? 1 a2
and the variance is W} |, = n’0;_ (1 - St ) with n € [0, 1] (Song et al., 2021a).
Op Qi

The noise prediction network ¢y is trained to predict the noise € used to construct z; in the forward
process (see Eq. , using the following loss (Ho et al., 2020):

£(6) =B [lleo (e t) = elly] )

where - ~ p (z),t ~ U (1, T and € ~ A (0,T). This objective can be interpreted as a variational
upper bound on — log p () (Sohl-Dickstein et al.;, 2015}, [Ho et al., 2020; Song et al., 2021b).

While diffusion models were initially proposed to model unconditional data distributions p (),
they can be extended to conditional distributions p (z|y) (Dhariwal & Nichol, 2021; [Ho & Sali-
mans}, [2021; [Rombach et al.l [2022), by incorporating the condition y into the noise predictor, i.e.,
€y (x4, t,y). This conditioning can be implemented either by concatenating y with x; (Saharia et al.,
2022), or through cross attention between z; and y (Rombach et al., [2022).

U (1, T) denotes a uniform distribution of time steps between 1 and 7.
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Figure 1: Illustration of conventional and universal multi-domain translation

3 UNIVERSAL MULTI-DOMAIN TRANSLATION

We study a more general and challenging extension of conventional multi-domain translation (MDT)
problem (Fig. [Th), which we term universal multi-domain translation (UMDT) (Fig. [Ip). In this
setting, we consider K distinct domains, X', X2, ..., X¥ with training data consisting of K — 1
paired datasets between each domain X* and a shared central domain X¢ (where 1 < ¢ < K):

Dy = {(I’k, xc) }jjil, for all k& # c¢. The goal is to learn a model that can translate between
any pair of domains (X X j) for all i # j. Since paired data between non-central domains are
unavailable, we assume that samples from the central domain X ¢ share overlapping information

across the paired datasets. This is a mild assumption and is typically satisfied in practice.

UMDT is highly practical. For example, in multi-modal translation across images, text, and audio,
it is often difficult to obtain large-scale datasets with fully aligned triplets (image, text, audio). How-
ever, paired datasets such as image-text (e.g., image captions) and text-audio (e.g., audiobooks) are
more common. In this case, text naturally serve as the central domain, with image and audio as non-
central domains. Image<>audio translation can then be achieved indirectly via text, even without
direct image-audio training pairs. Importantly, text samples across datasets need not match exactly;
loose overlaps—such as shared vocabulary or semantics—are sufficient for image<+audio translation.

More generally, UMDT can be extended to cases where the K — 1 paired datasets form a spanning
tree over the K domains. Since spanning trees can take arbitrary structures, in this work we restrict
our attention to the star-shaped configuration. Nonetheless, the method proposed in the following
section naturally generalizes to the broader spanning-tree setting.

4 DIFFUSION ROUTERS

4.1 INDIRECT TRANSLATION BETWEEN NON-CENTRAL DOMAINS VIA THE CENTRAL ONE

From a probabilistic perspective, bidirectional translation between two non-central domains X ¢ and
X7 can be viewed as sampling from the conditional distributions p (z|z7) and p (27|2?). These
can be expressed via the central domain X ¢ as:

P (x]|xl) = /p ($j|ZCC) P (mc|a:’) dz¢, p (acl|xj) = /p (a:’|xc) P (xc\xj) dx° )

Here, we assume X° 1 X7|X¢ for all i,j # c which leads to p (2'|z¢) = p(2%|2¢,27) and
p(27]2°) = p (27]2°, 2%). In other words, once the central domain X is known, the non-central
domains become conditionally independent of each other.

This formulation extends the transitivity property of equivalence relations into a probabilistic frame-
work. It implies that if we can learn bidirectional mappings between the central domain X ¢ and each
non-central domain X* (k # c) that capture the couplings p (z*|z°) and p (2°|2*) from the training
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data (i.e., solying the conventional MDT problem), then we can perform indirect translation between
any pair (X, X7) through X*, even without direct supervision between X and X/

Notably, p (z¥|2¢) and p (z°|z*) can be effectively modeled using conditional diffusion models
as discussed in Section E] or diffusion bridges (Liu et al., 2023a; L1 et al., |2023; [Zhou et al., 2024
Kieu et al.,[2025) (with details in Appdx.[B.T). However, naively constructing a separate model for
each distribution would require up to 2( K — 1) models to cover all translations between X ¢ and the
non-central domains {X |k # c}, which becomes impractical as the number of domains grows.

To address this scalability challenge, we propose a unified framework called Diffusion Router (DR)
that learns all bidirectional mappings between the central and non-central domains using a single
network, thereby avoiding redundancy and enabling efficient multi-domain translation.

Inspired by network routers, which rely on source and destination IP addresses to determine the
routing path, our framework incorporates the labels (or indices) of the source and target domains
into the network €y. This design allows €y to infer the correct translation path for a given noisy input
x;. Specifically, €y takes the form €y (:v[tgt, t, 2%, tgt, src) where src and tgt denote the source and
target domain labels. We train DR with the following objective function:

. 2 . 2
Lpaired (0) = Bz peyun, it | € Heg (:Uf,t,ac 7kyc) — 6H2 +(1-9¢ Heg (:U“t,xk,c, k) — 6”2 ,
(5
where ¢ ~ U (1,T), e ~ N (0,1), and ¢ ~ B (0.5) Next, =¥ = a;z* + o€ for the standard (or
diffusion-based) DR variant and xf = qux” + Bix® 4 oye for the bridge-based DR variant.

Once trained, DR can translate between two non-central domains X* and X7 indirectly via X¢,
using a two-stage process: 1) generate central-domain samples £ conditioned on a source sample
z' (or 27), then 2) generate target samples 7 (or x*) conditioned on the intermediate samples z°.

4.2 DIRECT TRANSLATION BETWEEN NON-CENTRAL DOMAINS

Indirect translation requires generating intermediate samples ¢ of the central domain, which is com-
putationally expensive and sensitive to sample quality. To overcome these drawbacks, we propose a
novel approach that enables direct translation between non-central domains X ¢ and X7 by explicitly
modeling py (:vj |xz) and pg (xi |7 ) Our method can either finetune a DR pretrained with Eq. [5|or
train a new DR from scratch for direct cross-domain translation.

To learn pg (27 |2") (or similarly py (z?|27)), we minimize the following KL divergence:

Ep) [Drce [p (27]27) lIpo (27]2")]]
= Eat a0)np,, Epaifee) (108 (Bparepary [p (27127)]) = logpo (7]2")] (©)

where 2’ denotes samples of X¢ that are distinct from x¢. The detailed derivation of Eq. E] is
provided in Appdx. The main bottleneck here is the term log (Ep(xlcw) [p (mﬂ |’ C)]) First,

sampling from p (z'“|z") typically requires hundreds to thousands of denoising steps if using a
pretrained DR. Second, even if we obtain samples ' from p (z'|2?), evaluating p (27|2’“) remains
intractable due to the lack of a closed-form expression.

To overcome this, we approximate E, e ;i) [p (#7]2'°)] by p (27]2¢) where ¢ comes from the
pair (:ci, :cc) ~ D; .. This leads to the following tractable training objective:

E(wt ae)nDy  Ep(asla) [108 (Bpgarepar) [p (27]27)]) —logpy (7]2")]
~ Egi zeyo,; Ep(ai|ze) [logp (acj |xc) — log pe (17|x1)] 7
=E(i ze)nps. [Drr (p (27|2°) [Ipo (27]2"))] (®)

Although this approximation introduces bias due to the logarithm operating on a (single-sample)
Monte Carlo estimate, we empirically observe that its impact on learning is manageable, particularly
when the conditional distribution p (a:’c|:c1) is sharply peaked at its mode.

’B (0.5) denotes a Bernoulli distribution with the probability of getting 1 equal 0.5.
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The objective in Eq.|8|suggests that we can learn a direct mapping from X i to X7 by ensuring that
if 2* and x¢ are semantically aligned (i.e., appear as a pair in D; ), then the conditional distribution

over the target domain X7 given z should closely match that given z¢. Note that p (z7]z¢) can

be viewed as the path distribution of the stochastic process X< — X J, modeled using a pretrained
DR introduced in Section Likewise, pg (a:J |xl) represents the path distribution for the process

X% — X7, which we also model using the same DR. This is implemented by providing ¢, j as
inputs to the noise prediction network ey of the DR. As a result, learning pg (:cj |xz) corresponds to

finetuning this pretrained DR to support direct mapping from X° to X7.
Let prer (z7]2°) denote the parameterization of p (27|2¢) given by the pretrained DR. Instead of
minimizing the KL divergence between prer (27|2¢) and py (27|2") directly, we minimize the sum

of KL divergences between their respective transition kernels. This sum acts as a variational upper
bound on the original KL objective, as shown in Appdx.[A.2}

E(ut,ze)np,,. [Dicr (Prer (27]2%) [Ipo (a7 [27) )]
T

= E(mi’xc)NDi’“ [Z Epref(w{I:v“) {DKL (pref (${71|LL‘{,$C) Hpe <$€,1|1’g,.’£7‘)>:|

+ const  (9)

Ideally, the sampling distribution in Eq. H should be pres (a:g W) so that after training,
Do (z{_l |x{, zl) can accurately model the transition dynamics from X* to X7. However, the actual

sampling distribution is pyet (xi |a:c) For bridge-based DR, the stochastic processes X* — X7 and
X¢ — X starts from different initial states =’ and x°, respectively, making their path distribu-
tions, Pref (a:i W) and pper (a:i \x“) inherently different. Therefore, bridge-based DR are ill-suited

for finetuning with the objective in Eq.[9] By contrast, standard DR provide a more viable solution.
Since both X* — X7 and X¢ — X7 originate from the same Gaussian prior, they share a com-

mon stochastic path, allowing pre¢ (;1:{ |xc> to serve as a proxy for pres (xi |xl) For this reason, we
restrict our focus to finetuning standard DR.

By applying the standard reparameterization trick for diffusion models (Ho et al.l [2020), we refor-
mulate Eq.[9]as a noise prediction loss:

. . . 2
o (0= B, ooty o (000500 e (ot [ 0

where € is the frozen noise prediction network of the pretrained DR.

To prevent catastrophic forgetting of previously learned mappings between X ¢ and X*, we combine
Eq. ['115] with Lpaired (see Eq. EI) resulting in the final loss:

‘Cﬁnal (9) = )\l'cunpaired (9) + /\Q[fpaired (9) (1 1)

Here, the coefficients A1, Ao > 0 balance the trade-off between learning new translations X* — X7
and preserving existing mappings X* < X°¢.

Notably, Lena (6) is highly flexible. It can train DR from scratch by treating €. as an online network
with frozen parameters rather than a pretrained model (Appdx.[D.3.3). Moreover, it supports in the
case where paired domains form a spanning tree with multiple central domains (see Section [5).

4.2.1 SAMPLING FROM CONDITIONAL DISTRIBUTIONS WITH TWEEDIE REFINEMENT

The main challenge in Eq. |10|is sampling xi from prer (xi |xc) A straightforward approach is to

perform backward denoising from time 7" to ¢ using the pretrained DR, but this is computationally
expensive and does not scale well. To address this, we propose a novel sampling method:

x{,(nﬂ) = x{’(n) + oy (e — € (xz’(n),t, x°, J, c)) (12)
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Figure 2: Tweedie refinement with n € {0,1,3,5, 7} on Faces-UMDT-Latent. Left: A conditional
sample z¢ and a random target-domain sample x7. Middle: A ground-truth noisy target-domain

sample x{ aligned with ¢ (not available during training). Right: Tweedie refinement progressively

transforms 7 ~ p (x{) intoz7 ~p (mg |z¢ ) as n increases.

FID|
Shoes-UMDT Faces-UMDT-Latent
Edge<»Shoe Gray.<»Shoe Edge<«»>Gray. Ske.<»>Face Seg.<+Face  Ske.<»>Seg.

StarGAN 9.92/20.18  19.73/42.61  18.64/274] - - -
Rectified Flow  2.88/30.92  3.75/4338  20.14/18.83  20.22/97.76 10.85/81.44 50.82/17.31
UniDiffuser ~ 2.98/11.94  272/440  481/1226  13.13/55.46 11.02/46.04 36.13/12.52
iDR 1.66/5.15 0.53/1.60 1.85/548  9.07/23.88  6.12/19.12  15.37/6.15
dDR 201/576  057/1.69  274/651  9.62/27.09 3.43/21.26  19.42/5.52

Method

Table 1: FID scores on Shoes-UMDT and Faces-UMDT-Latent. Translations without paired data
are marked in brown. The best results are shown in bold, and the second-best are underlined.

where ¢ ~ A (0,1) and 2

t(n) denotes the refined sample after n steps, initialized with x{,(o) ~

Pref (mi ) A sample &7 ~ prs (mi ) can be obtained by first drawing (27, -) from D;. and then

applying the forward diffusion process =7 = a;z? + oye.
We refer to this procedure as Tweedie refinement due to its connection with Tweedie’s formula
(Efron, 2011). Empirically, we find that Tweedie refinement can approximate samples from

Dref (xﬂ |xc) with only a few refinement steps (see Fig. . Compared with existing refinement tech-

niques (Song et al., 2021b; |Yu et al., 2023), our approach (1) introduces a distinct formulation, (2)
converts unconditional samples into conditional ones rather than projecting off-distribution samples
back onto a marginal distribution, and (3) is applied during training rather than inference.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP
5.1.1 DATASETS

Since the proposed UMDT problem is novel, no datasets currently exist for it. To address this, we
create three benchmark datasets for evaluating our method, namely Shoes-UMDT, Faces-UMDT,
and COCO-UMDT. Detailed descriptions of these datasets are provided below.

Shoes-UMDT This dataset is adapted from the Edges2Shoes dataset (Isola et al.,[2017) used for
paired image-to-image translation. From the original 50K (shoe, edge) pairs, we randomly sample
two disjoint subsets of 20K pairs each. One subset remains unchanged, while in the other, the
“edge” image in each pair is replaced with a “grayscale” version of the corresponding “shoe” image,
rotated by 20 degrees and scaled by 20% smaller . This yields two disjoint sets: 20K (shoe, edge)
pairs and 20K (shoe, grayscale) pairs. In this setup, “shoe” is the central domain, while “edge” and
“grayscale” are non-central domains. The remaining 10K (shoe, edge) pairs are used to generate
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Figure 3: Qualitative results on Shoes-UMDT and Faces-UMDT-Latent.

grayscale images following the same procedure as in the training data, producing a test set of 10K
(shoe, edge, grayscale) triplets. All images are resized to 64 x 64 x3.

Faces-UMDT We build Faces-UMDT by combining CelebA-Mask-HQ (30K
(face, segment) pairs) and FFHQ (Karras et al.| 2019) (70K face images). From FFHQ, we randomly
select 30K face images and use Sobel filter followed by sketch simplifier (Simo-Serra et al., 2018))
to generate corresponding sketches, producing 30K (face, sketch) pairs. These are merged with 25K
randomly selected (face, segment) pairs from CelebA-Mask-HQ to form the training set in which
“face” is the central domain and “segment”, “sketch” are non-central domains. For testing, we
generate a sketch for each face image in the remaining 5K CelebA-Mask-HQ pairs, resulting in 5K
(face, segment, sketch) triplets.

This setup reflects real-world scenarios where the two disjoint subsets of face images associated with
CelebA-Mask-HQ and FFHQ follow distinct distributions, making sketch<+segment translation via
the face domain more challenging. For this dataset, we consider two settings: 1) resizing input
images to 128 x 128 x 3 and translating in the pixel space, and 2) encoding 256 X256 x 3 images using
a VAE encoder (Rombach et al}[2022) and translating in the latent space of shape 32x32x4. These
settings result in two versions which are Faces-UMDT-Pixel and Face-UMDT-Latent, respectively.

COCO-UMDT-Star and COCO-UMDT-Chain COCO-Stuff (Caesar et al.}, 2018)) is a large and
diverse image segmentation dataset with 118K (color, segment) pairs for training and 5K pairs for
evaluation, covering 80 “thing” classes, 91 “stuff” classes, and one “unlabeled” class. Following

(Mou et al.| [2024), we generate additional domains by applying the Pixel Difference Network
to extract sketches and MiDa$ (Ranftl et al.| [2020) to produce depth maps from all

color images. For COCO-UMDT-Star, we construct three training subsets of 70K color images each,
paired with segmentation maps, sketches, and depth maps, respectively, yielding (color, segment),
(color, sketch), and (color, depth) training pairs. For COCO-UMDT-Chain, we form three paired
subsets: (segment, color), (color, sketch), and (sketch, depth), each with 70K pairs. Both COCO-
UMDT-Star and COCO-UMDT-Chain share a common test set of SK (color, segment, sketch, depth)
quadruplets derived from the original evaluation split. All images are resized to 256 x256x3 and
mapped into latent space of size 32x32x4 using VAE encoder from (Rombach et al,[2022).

5.1.2 BASELINES AND METRICS

We consider two versions of DR. The first is trained with the loss Lpaired (9) in Eq. [5} which can
only perform indirect translations between non-central domains. The second is finetuned from the
first using the loss L, (6) in Eq. allowing direct cross-domain translation. We refer to these
two versions as iDR and dDR, respectively. We also train version from scratch using L, (6) and
compare with the finetuned version in Appdx.
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FID,)
Ske.<»Color  Seg.<»Color Depth<»Color  Ske.<»Seg.  Ske.<»Depth  Seg.<»Depth

Method

Rectified Flow  23.18/80.80 54.00/142.15  17.32/112.64  64.47/75.58  78.41/28.69  79.20/35.53
UniDiffuser 15.39/40.93  35.81/89.58 12.64/59.72  39.62/38.44  28.12/15.72  38.39/23.41
iDR 10.72/21.73  21.64/29.28 7.25/24.19 22.77/22.96 17.88/8.63 23.19/12.00
dDR 10.12/20.94  21.23/28.32 7.00/23.20 26.73/23.64  20.75/9.42 24.91/14.87

Table 2: FID scores on COCO-UMDT-Star. Translations without paired data are marked in brown.
The best results are shown in bold, and the second-best are underlined.

FID,
Ske.<»Color  Seg.<»Color  Depth«»Color ~ Ske.<»Seg.  Ske.<»Depth  Seg.<»Depth

Method

Rectified Flow  22.33/85.03  57.53/148.57  27.49/146.27 ~ 65.18/79.91  68.27/21.02  94.55/42.40
UniDiffuser 15.43/45.51  36.89/92.38 14.40/68.64  39.97/38.70  26.49/12.40  39.85/24.51
iDR 10.47/26.73  23.14/38.60 8.55/39.66 26.52/25.02  14.73/7.54 26.08/14.15
dDR 11.11/28.39  24.68/38.47 10.69/44.23 28.13/26.94 14.92/7.82 30.98/18.61

Table 3: FID scores on COCO-UMDT-Chain. Translations without paired data are marked in brown.
The best results are shown in bold, and the second-best are underlined.

As with datasets, methods for addressing the UMDT problem remain largely unexplored. To estab-
lish baselines, we adapt several approaches originally designed for the conventional MDT setting.
These include StarGAN (Choit et al., |[2018)), UniDiffuser (Bao et al.,[2023)), and Rectified Flow (Liu
et al., [2022) as representatives for GAN-based, diffusion-based, and flow-based methods. Further
implementation details for both our method and the baselines are provided in Appdx. [D.T]

Following previous works on MDT, we use FID (Heusel et al.,[2017) and LPIPS (Zhang et al.| [2018])
to measure distributional fidelity and perceptual similarity, respectively. In all tables, each entry for
translations A<+B is reported as X/Y, where X is the metric for A«<—B and Y is the metric for A—B.

5.2 RESULTS

We report the quantitative results for Shoes-UMDT and Faces-UMDT-Latent in Table([T] for COCO-
UMDT-Star in Table 2] and for Faces-UMDT-Pixel in Table [5] of Appdx [D.2.2] iDR consistently
outperforms all baselines by a significant margin across all benchmarks, highlighting the effective-
ness of conditioning €y on both source and target domain labels to guide translation. The weak
performance of StarGAN in central<>non-central translations (X ¢ < X¥) can be attributed to two
main factors: (i) its relatively outdated generator architecture, and (ii) its original design for unpaired
rather than paired translation. Despite being trained on aligned (xc, :vk) pairs, Rectified Flow (RF)
and UniDiffuser struggle to learn robust X ¢ <+ X* mappings. For RF, performance degrades most
noticeably when the target domain is diverse and high-variance (e.g., Edge—Shoe or Seg.—Face),
as its deterministic formulation cannot capture the stochasticity of p (zc|xk ) and p (xk|zc) For
UniDiffuser, the repeated substitution of missing domains with Gaussian noise during training and
inference likely undermines its ability to accurately modeling the joint distribution over all domains.

dDR shows slight decreases in performance for translation tasks without paired data compared to
iDR, yet still outperforms all baselines significantly. The performance drop can be attributed to
imperfections in our refinement procedure and to bias introduced by the Monte Carlo approximation
inside the logarithm in Eq. Importantly, dDR reduces the number of sampling steps for non-
central translations by half relative to iDR—a substantial efficiency gain, given that iDR typically
requires hundreds to thousands of steps for cross-domain translation. As shown in Fig. [3| iDR and
dDR produce higher-quality samples compared to the baselines.

We further observe consistent behavior on COCO-UMDT-Chain in Table [3] compared to COCO-
UMDT-Star: dDR improves efficiency by 2-3 times for translations without paired data while incur-
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ring only marginal performance degradation compared to iDR. This empirically validate the gener-
alizability of our learning strategy for UMDT beyond star-shaped structures.

5.3 ABLATION STUDIES

Owing to space limitations, we conduct comprehensive ablations to quantify the effect of key hy-
perparameter choices and report at Appdx. Specifically, we (i) evaluate Tweedie refinement by
varying the number of refinement steps n € {0, 1,3,5} (Appdx. ; (i1) study the effect of the
rehearsal coefficient Ay € {0,0.3, 1,3} in the loss Ly during finetuning (Appdx. [D.3.2); compare
dDR trained from scratch versus finetuned from a pretrained iDR (Appdx. [D.3.3); (iv) compare the
performances of iDR and dDR across different numbers of sampling steps (Appdx. [D.3.4); and (v)
benchmark standard DR against several bridge-based DR variants on UMDT (Appdx. |D.3.5).

6 RELATED WORK

Due to space constraints, we primarily review diffusion-based approaches for multi-domain transla-
tion (MDT), with other methods discussed in Appdx.[C] Building on the success of Stable Diffusion
(SD) (Rombach et al.||2022)) in text-to-image generation, many works adapt SD to MDT by finetun-
ing it to condition on additional modalities such as edges, segmentation maps, depth, or poses (Zhang
et al.| 2023} Huang et al., |2023; Mou et al.,|2024). Versatile Diffusion (Xu et al.,|2023) extends this
idea with a modular cross-modal architecture, but its model size scales linearly with the number of
domains and experiments are limited to text and image. CoDi (Tang et al.||2023) adopts a two-stage
framework: first, modality-specific encoders are trained to align samples into a shared latent space;
second, separate latent diffusion models are trained for each modality conditioned on encoder out-
puts and noisy paired samples. While this supports any-to-any generation, it requires contrastive
pretraining and multiple diffusion models that scale linearly with domain count. UniDiffuser (Bao
et al., 2023) instead models the joint distribution of all domains using a single transformer-based
noise prediction network that treats domain samples as tokens, with independent noise schedules
per domain. This design supports arbitrary modalities but requires fully aligned tuples across do-
mains and long training times. Moreover, UniDiffuser must process all domains jointly, making
generation costly when only a subset of domains is desired. One Diffusion (Le et al., [2025) follows
a similar design but replaces the noise prediction network with a velocity network trained via flow
matching (Liu et al.| [2022)) and introduces a different transformer architecture (Zhuo et al., [2024)).
Like UniDiffuser, it depends on fully aligned tuples where samples of missing modalities are syn-
thesized. OmniFlow (Li et al| [2025) is another flow-based model for multi-modal generation like
One-Diffusion. However, instead of training from scratch, it extends from SD3 (Esser et al.| 2024).

In summary, most diffusion-based MDT methods either rely on contrastive learning or synthetic
fully aligned data, suffer from linear growth in model size, or require processing all domains si-
multaneously. By contrast, our method trains directly from domain pairs, avoids model-size scaling
with domain count, and flexibly adjusts sampling cost to the desired number of output domains.
Although not the primary focus of this work, Diffusion Routers also enable generation of a single
target domain from multiple source domains by combining the scores of models conditioned on
these sources. This capability makes our method adaptable for any-to-any generation.

7 CONCLUSION

We introduced the universal multi-domain translation (UMDT) problem, which seeks to learn map-
pings between any pair of K domains using only K — 1 paired datasets with a central domain. The
main challenge lies in learning non-central<+non-central translations (NNTs), where training pairs
are unavailable. To tackle this, we proposed Diffusion Router (DR), which supports both indirect
NNTs through the central domain and direct NNTs. The direct variant can be obtained either by fine-
tuning from the indirect version or by training from scratch. We introduced novel variational-bound
objective and conditional sampling method for learning the direct variant. Empirical evaluations
on three newly constructed UMDT datasets demonstrated that our method consistently outperforms
existing baselines. In future work, we aim to extend DR to large-scale multimodal generation across
image, text, and audio, particularly addressing scenarios where paired datasets (e.g., image<+audio)
are scarce in practice.
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LLM USAGE

Large Language Models were not involved in the design of our approach. We used them solely to
improve the manuscript’s readability (grammar and style); none of these uses influenced the method,
training, or reported results.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang
Su, and Jun Zhu. One transformer fits all distributions in multi-modal diffusion at scale. In ICML,
pp. 1692-1717, 2023.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context.
In CVPR, pp. 1209-1218, 2018.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan:
Unified generative adversarial networks for multi-domain image-to-image translation. In CVPR,
pp. 8789-8797, 2018.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In CVPR, pp. 8188-8197, 2020.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
NeurlIPS, pp. 8780-8794, 2021.

Bradley Efron. Tweedie’s formula and selection bias. J. Am. Stat. Assoc., 106(496):1602-1614,
2011.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
ICML, 2024.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD, pp. 226-231, 1996.

Hao Fang, Saurabh Gupta, Forrest landola, Rupesh K Srivastava, Li Deng, Piotr Dolldr, Jianfeng
Gao, Xiaodong He, Margaret Mitchell, John C Platt, et al. From captions to visual concepts and
back. In CVPR, pp. 1473-1482, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pp. 2672-2680,
2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, pp.
6626-6637, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
pp. 6840-6851, 2020.

Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao, and Jingren Zhou. Composer: creative
and controllable image synthesis with composable conditions. In ICML, pp. 13753-13773, 2023.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In ICCV, pp. 1501-1510, 2017.

10



Under review as a conference paper at ICLR 2026

Xun Huang, Arun Mallya, Ting-Chun Wang, and Ming-Yu Liu. Multimodal conditional image
synthesis with product-of-experts gans. In ECCV, pp. 91-109, 2022.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In CVPR, pp. 1125-1134, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, pp. 4401-4410, 2019.

Duc Kieu, Kien Do, Toan Nguyen, Dang Nguyen, and Thin Nguyen. Bidirectional diffusion bridge
models. In KDD, pp. 1139-1148, 2025.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. In ICML, pp. 1857-1865, 2017.

Subhadeep Koley, Ayan Kumar Bhunia, Deeptanshu Sekhri, Aneeshan Sain, Pinaki Nath Chowd-
hury, Tao Xiang, and Yi-Zhe Song. It’s all about your sketch: Democratising sketch control in
diffusion models. In CVPR, pp. 7204-7214, 2024.

Duong H Le, Tuan Pham, Sangho Lee, Christopher Clark, Aniruddha Kembhavi, Stephan Mandt,
Ranjay Krishna, and Jiasen Lu. One diffusion to generate them all. In CVPR, pp. 2671-2682,
2025.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
facial image manipulation. In CVPR, pp. 5549-5558, 2020.

Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. BBDM: image-to-image translation with brownian
bridge diffusion models. In CVPR, pp. 1952-1961, 2023.

Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Zichun Liao, Yusuke Kato, Kazuki Kozuka,
and Aditya Grover. Omniflow: Any-to-any generation with multi-modal rectified flows. In CVPR,
pp. 13178-13188, 2025.

Alexander H Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-Chiang Frank Wang. A unified feature
disentangler for multi-domain image translation and manipulation. In NeurIPS, pp. 2595-2604,
2018.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A. Theodorou, Weili Nie, and Anima
Anandkumar. 12sb: Image-to-image schrodinger bridge. In ICML, pp. 22042-22062, 2023a.

Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In NIPS, pp. 469-477,
2016.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks.
In NIPS, pp. 700-708, 2017.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In ICLR, 2022.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Learning diffusion bridges on constrained
domains. In ICLR, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. /CLR, 2019.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In AAAIL pp. 42964304, 2024.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In CVPR, pp. 2337-2346, 2019.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Trans.
Pattern Anal. Mach. Intell., 44:1623-1637, 2020.

11



Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684—10695, 2022.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell.,
45:4713-4726, 2022.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural tts synthesis by con-
ditioning wavenet on mel spectrogram predictions. In ICASSP, pp. 4779-4783, 2018.

Yuge Shi, N Siddharth, Brooks Paige, and Philip HS Torr. Variational mixture-of-experts autoen-
coders for multi-modal deep generative models. In NeurIPS, pp. 15718-15729, 2019.

Edgar Simo-Serra, Satoshi lizuka, and Hiroshi Ishikawa. Mastering sketching: adversarial augmen-
tation for structured prediction. ACM Trans. Graph., 37(1):1-13, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, pp. 2256-2265, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
NeurIPS, pp. 11895-11907, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021b.

Zhuo Su, Wenzhe Liu, Zitong Yu, Dewen Hu, Qing Liao, Qi Tian, Matti Pietikdinen, and Li Liu.
Pixel difference networks for efficient edge detection. In CVPR, pp. 5117-5127, 2021.

Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Joint multimodal learning with deep
generative models. arXiv preprint arXiv:1611.01891, 2016.

Zineng Tang, Ziyi Yang, Chenguang Zhu, Michael Zeng, and Mohit Bansal. Any-to-any generation
via composable diffusion. In NeurIPS, pp. 16083-16099, 2023.

Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Zadeh, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Learning factorized multimodal representations. In ICLR, 2019.

Adron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative models of
visually grounded imagination. In /CLR, 2018.

Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised learn-
ing. In NeurIPS, pp. 5580-5590, 2018.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In ICML, pp. 2048-2057, 2015.

Xingqgian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion:
Text, images and variations all in one diffusion model. In ICCV, pp. 7754-7765, 2023.

Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual learning for image-
to-image translation. In ICCV, pp. 2849-2857, 2017.

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
energy-guided conditional diffusion model. In ICCV, pp. 23174-23184, 2023.

12



Under review as a conference paper at ICLR 2026

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, pp. 3836-3847, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, pp. 586-595, 2018.

Lingi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models. In
ICLR, 2024.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, pp. 2242-2251.

Zhen Zhu, Yijun Li, Weijie Lyu, Krishna Kumar Singh, Zhixin Shu, Séren Pirk, and Derek Hoiem.
Consistent multimodal generation via a unified gan framework. In WACYV, pp. 5048-5057, 2024.

Le Zhuo, Ruoyi Du, Han Xiao, Yangguang Li, Dongyang Liu, Rongjie Huang, Wenze Liu, Xi-
angyang Zhu, Fu-Yun Wang, Zhanyu Ma, et al. Lumina-next: making lumina-t2x stronger and
faster with next-dit. In NeurIPS, pp. 131278-131315, 2024.

13



Under review as a conference paper at ICLR 2026

A THEORETICAL RESULTS

A.1 DERIVATION OF EQ.[6]

The detailed derivation of Eq. [f]is given below:
Ep@) [Drcr (p(712°) [Ips (2 | 27))]

- [r) [ [ p@1a") (tomp (a71a%) ~ o (712)) |

= /p (z") / (/p (27|2¢) p (z¢|z") dajc) (logp (7]a") — log pp (27[2")) da?da’
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Note that in our derivation, p (xj |331) is substituted with its expression in described in Eq.

A.2 DERIVATION OF THE VARIATIONAL UPPER BOUND IN EQ. E

The detailed derivation of the variational upper bound in Eq.[J]is as follows:
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Here, the inequality in Eq.[T9)is a variant of the data processing inequality.

B ADDITIONAL PRELIMINARIES

B.1 DIFFUSION BRIDGES

13)

(14)

15)

(16)

a7
(18)

(19)

(20)

2y

(22)

(23)

(24)

Diffusion bridges (Liu et al.| [2023a; |Albergo et al.| 2023} [Liu et al., 2023b; |Li et al.l 2023} Zhou
et al., 2024; [Kieu et al.| |2025) offer an alternative approach to modeling conditional distributions
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p (x|y) where the generation process starts from the observation y rather than from standard Gaus-
sian noise, as in traditional diffusion models. Specifically, the corruption process is characterized by
the marginal distribution p (x¢|x, y), representing a stochastic trajectory between endpoints x and y.
This distribution is assumed to be Gaussian: p (z¢|z,y) = N (atx + By, O’?I), which allows x; to
be directly sampled from a training pair (z,y) using:

Ty = oaqxo + Pry + oe, (25)
where ¢ ~ N (0,1); o, B¢, oy are time-dependent coefficients satisfying boundary conditions:
OéOZﬁTzlandOéT:ﬁOZO'OZO'T:O.

The transition distribution pg (x¢—1|z;,y) for generating = from y (with xr = y) is modeled as

2
N (ug,t,t_l (zt,y), 6?_1“%1) where the mean is given by (Kieu et al., [2025):

Q1 Brog—1 o1-1,/0% — 6?*1“ o1
Ho,te—1 (T, y) = oLt (&1 - ) Y+ - €o (z¢,1,9)

t Qi ot Qi
(26)
Here, 6,1y € [0,0) controls the sampling variance and is typically defined as 0,1, :=
\/77 (of —o? ai?) with 17 € [0, 1] in the case of Brownian bridges (Li et al., 2023).
The noise prediction network €y in Eq.[26]is trained by minimizing the noise matching loss:
£(0) = ey ac [Ba [lleo (o0, t,) — ell3]] @7)

where (z,y) ~p(z,y), t ~U (1, T), e ~ N (0,1).

Bidirectional diffusion bridges (Kieu et al., [2025) extend this framework to jointly model both
p (x]y) and p (y|z) using a single shared noise prediction network.

C ADDITIONAL RELATED WORK

Multi-domain translation (MDT) methods can be classified according to the underlying generative
models. This section focuses on reviewing traditional VAE-based and GAN-based approaches.

C.1 VAE-BASED METHODS

VAE-based methods generally aim to learn latent representations that facilitate translation across
domains or modalities. JMVAE (Suzuki et al.| [2016) captures shared representations with a joint
encoder gy (z | 21, x2) and handles missing modalities at test time by aligning unimodal encoders

qo (z | #) and gy (2 | %) with the joint encoder through KL divergence minimization. TELBO
(Vedantam et al.,|2018) adopts a similar encoder design but differs in its training strategy. Instead of
jointly optimizing all encoders, it first trains the joint encoder and then fits the unimodal encoders
while keeping the joint encoder’s parameters fixed. MFM (Tsai et al., |2019) factorizes the mul-
timodal latent space into shared discriminative and modality-specific generative factors, enabling
inference of missing modalities at test time from observed modalities. While these methods are
sufficient for two modalities, they do not generalize to the truly multi-modal case.

More recently, MVAE (Wu & Goodman, [2018) innovatively factorize the joint encoder into a
product of experts (PoE), i.e., o (2 [ 2',2%) = g4 (2] 2') g4 (2 | #?) p(2), a notable advance
that scales to multiple domains by training with randomly masked modalities and seamless in-
ference when any modality is missing at test time. Alternately, MMVAE (Shi et al., |2019) con-
structs the joint encoder as a mixture of experts (MoE) of unimodal encoders, alleviating the preci-
sion-miscalibration issues inherent to PoE. Despite strong results in conventional MDT, both MVAE
and MMVAE assume fully aligned tuples across domains, a requirement rarely satisfied in practice.
In contrast, our method trains directly on domain pairs, removing the need for fully aligned triplets
and improving practicality in real-world settings.
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LPIPS |
Method Shoes-UMDT Faces-UMDT-Latent
Edge«>Shoe Gray.<»Shoe Edge<«>Gray. Ske.<»Face Seg.<+Face  Ske.<»>Seg.
StarGAN 0.128/0.223  0.095/0.214  0.191/0.144 - - -
Rectified Flow  0.063/0.175  0.012/0.146  0.138/0.083  0.278/0.560  0.165/0.548 0.419/0.274
Unidiffuser 0.066/0.170  0.019/0.091  0.090/0.091  0.263/0.483  0.165/0.511 0.393/0.223
iDR 0.050/0.129  0.003/0.069  0.069/0.058  0.221/0.427 0.129/0.471 0.377/0.177
dDR 0.050/0.128  0.004/0.063  0.077/0.090  0.222/0.428 0.126/0.466 (.392/0.192

Table 4: LPIPS scores of our method and baselines on Shoes-UMDT and Faces-UMDT-Latent.
Translations without paired data are marked in brown. The best results are shown in bold, and the
second-best are underlined.

C.2 GAN-BASED METHODS

Another line of research uses GAN (Goodfellow et al.| 2014) for MDT. Pix2pix (Isola et al., [2017)
uses paired datasets to train a conditional GAN with a reconstruction loss, aligning outputs with
ground-truth targets while encouraging realism. CoGAN (Liu & Tuzel, [2016) instead learns a joint
distribution across domains by sharing weights in high-level layers, enabling related samples across
domains without aligned pairs. However, weight sharing constrains model design and limits scal-
ability to high-resolution images. A popular approach for MDT is to leverage cycle-consistency
constraint when training cross-domain translators (Zhu et al.; [Kim et al., 2017} |Yi et al.| 2017} |[Liu
et al., |2017), enforcing a meaningful relation between the input and the translated image. Never-
theless, these GAN-based methods do not scale gracefully with more domains, leading to higher
computational cost.

Notably, StarGAN (Choi et al., [2018)) introduces a unified GAN framework for MDT that uses a
single generator and discriminator with an auxiliary domain classifier during training. Its successor,
StarGAN-2 (Choi et al., 2020), injects continuous style codes via AdaIN (Huang & Belongie, 2017)
to deliver diverse outputs. Like StarGAN, UFDN (Liu et al., 2018) also offers a unified MDT
model and and extends the framework to disentangle domain-invariant features. More recently,
MultimodalGAN (Zhu et al [2024) proposes an MDT framework trained on fully aligned tuples
across domains.

Our work is related to StarGAN in that both introduce frameworks for MDT, but differs in su-
pervision and translation. We exploit paired datasets for training and perform indirect translations
between domains lacking training pairs. In contrast, StarGAN treats such translations as an un-
paired translations. We empirically show that leveraging paired supervision leads to more faithful
input—output mappings and superior performance.

D ADDITIONAL EXPERIMENT

D.1 ADDITIONAL IMPLEMENTATION DETAILS
D.1.1 DIFFUSION ROUTER

We adopt the standard Diffusion Router variant with DDPM (Ho et al.| |2020) as the underlying
diffusion process. A comparison with the bridge-based variant is provided in Appdx. The
noise prediction network €y has a U-Net architecture following (Dhariwal & Nichol, [2021). For
Shoes-UMDT (64 x 64) and Faces-UMDT-Pixel (128 x 128), €g operates directly on raw images with
128 and 256 base channels, respectively. For Faces-UMDT-Latent, COCO-UMDT-Star, and COCO-
UMDT-Chain, the 256 x256 images are first encoded into 32x32x4 latents using a pretrained VAE
(Rombach et al.,[2022), which are then processed by €y with 128 base channels. To ensure efficient
training within a single H100-80GB GPU, we use a batch size of 128 for the 128-channel U-Net
variant and 32 for the 256-channel variant. iDR is trained using AdamW (Loshchilov & Hutter,
2019) with a learning rate of le-4, 81 = B2 = 0.9 and 3000 warm-up steps across all datasets. The
number of training steps is 250k for Shoes-UMDT and Faces-UMDT, and 500k for COCO-UMDT.
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Figure 4: Qualitative results of our method and baselines on Faces-UMDT-Pixel.

Training takes roughly three to four days. dDR is finetuned from a pretrained iDR with a reduced
learning rate of Se-5, loss coefficients Ay = 1 and A\ = 1, and 5 refinement steps. The number of
finetuning steps is 100k for Shoes-UMDT and Faces-UMDT, and 150k for COCO-UMDT. We run
DDIM (Song et al.},[2021a) with 1000 steps to translate from one domain to another.

D.1.2 BASELINES

We implement StarGAN using its official repository. While more recent GAN-based approaches for
MDT exist, such as Multimodal GAN (Zhu et al.,|2024), we exclude them from our baselines due to
the lack of publicly available code and instead discuss them in Related Work.

UniDiffuser 2023) is designed to model noisy samples across all domains at random
noise levels. Since our training data provide only domain pairs rather than full tuples, we substi-
tute missing domains with Gaussian noise and set the corresponding domain-specific time step to
999 during training. Rectified Flow 2022), which natively supports only two-domain
translation with each domain as a boundary distribution, is adapted to the multi-domain setting by
conditioning the velocity network on both source and target domain labels, similar to our approach.
For fairness, we implement UniDiffuser and Recified Flow using the same architecture and settings
as our method.

D.2 ADDITIONAL RESULTS

D.2.1 SHOES-UMDT AND FACES-UMDT-LATENT

Table[d]shows the LPIPS scores for our method and the baselines. Overall, iDR and dDR consistenly
outperform the baselines across all translation tasks. On tasks with paired supervision, both methods
achieve comparable results. For translations without paired data, dDR exhibits a slight performance
drop relative to iDR, but supports direct non-central translations. These observations align with the
FID results presented in the main text.

D.2.2 FACES-UMDT-PIXEL

For completeness, we compare iDR and dDR against baselines on Faces-UMDT-Pixel (see Table[3)).
The results from Table [5] mirror the trends in our main experiments at Section[5.2] with iDR consis-
tently surpassing all baselines and showing the largest gains on high uncertainty translations (e.g.,
Ske.—Face and Seg.—Face). For Rectified Flow (RF), we observe poor generalization on the test
set, particularly on Ske.—Face, yielding underperforming results. This underperformance likely
arises because training uses FFHQ for Ske.—Face while testing use CelebA-HQ for Ske.—Face,
causing a mismatch between the training and test distributions and encourging model’s generaliza-
tion, where RF fails.
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FID, LPIPS|
Ske.<+Face  Seg.<+Face Ske.«<>Seg. Ske.<+Face Seg.<»Face  Ske.<>Seg.

Method

StarGAN 38.16/91.67  32.98/75.41 50.17/76.40  0.280/0.479  0.282/0.471  0.408/0.364
Rectified Flow  9.88/261.96  19.54/122.87 45.01/109.37  0.160/0.635 0.137/0.464 0.362/0.398
Unidiffuser 18.49/36.99  14.03/25.36  36.89/15.79  0.181/0.548 0.125/0.442 0.367/0.191

iDR 9.25/13.32 4.12/10.54 13.51/3.88  0.159/0.329 0.101/0.412 0.361/0.146
dDR 9.02/12.81 3.57/12.88 28.46/3.91  0.139/0.347 0.106/0.421  0.422/0.167

Table 5: Results on Faces-UMDT-Pixel of our method and baselines. Translations without paired
data are marked in brown. The best results are shown in bold, and the second-best are underlined.

In comparison, dDR performs comparably to iDR on most translations while maintaining a clear
margin over the baselines. We attribute dDR’s lower results on Seg.—Ske. to FID’s sensitivity for
sketches: background differences and minor detail changes can depress the score even when outputs
are visually similar to the targets (see Fig. ). These results empirically indicate that iDR and dDR
can generalize to high-resolution data.

D.3 ABLATION STUDIES

Unless otherwise specified, ablation studies are conducted on Faces-UMDT-Latent to evaluate the
impact of different design choices. To reduce both training and sampling costs, we substitute the
large U-Net used in the main experiments (304.8M parameters) with a smaller variant (32.3M pa-
rameters).

n FID| A\ FID|
Ske.<»Face  Seg.<»Face  Ske.<-Seg. 2 Ske.<>Face Seg.<>Face Ske.<Seg.
iDR - 14.21/39.06 10.18/24.95 20.82/10.85 iDR - 14.21/39.06 10.18/24.95 20.82/10.85
0 16.11/39.82 13.75/25.77 55.30/13.35 0  405.12/306.61 355.78/307.15 403.19/328.75
dDR 1 14.14/40.61 11.77/23.65 37.45/13.13 dDR 03 19.44/45.94 17.01/30.90 52.31/13.18
3 13.73/41.14 11.58/25.26  26.77/10.96 1 16.11/39.82 13.75/25.77 55.30/13.35
5 13.52/37.26 11.52/22.73 26.27/11.37 3 14.47/39.38 10.19/25.50 82.77/13.23

Table 6: FID scores of dDR finetuned on Table 7: FID scores of dDR finetuned on Faces-
Faces-UMDT-Latent w.r.t. different number UMDT-Latent w.r.t. different values of \5. Tweedie
of refinement steps n. refinement is not applied in this case (i.e, n = 0).

D.3.1 IMPACT OF THE NUMBER OF REFINEMENT STEPS n

We analyze the effect of the number of refinement steps n n in the proposed Tweedie refinement
(Eq. by varying n € {0,1,3,5}, with results summarized in Table [} When n = 0 (..,
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Figure 5: Learning curves of finetuned dDR on Face-UMDT-Latent w.r.t. different number of
Tweedie refinement steps n € {0, 1, 3,5}. The task is Segment— Sketch translation.
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Figure 7: Learning curves of dDR finetuned with different values of \o.

no refinement), dDR performs poorly on direct translations between non-central domains (e.g.,
Sketch<+Segment), though it remains comparable to iDR on translations involving central domains
(e.g., Sketch«+Face, Segment<+Face). The failure is most pronounced for the Segment— Sketch
translation task, where the target domain has limited detail and the FID scores are highly sensitive
to minor variations. This indicates that without refinement, dDR struggles to capture the correct
mapping from Segment to Sketch. Increasing n consistently improves translation quality across
all settings, particularly in unpaired translations, as reflected in the performance curves in Fig. 3]
and the qualitative results in Fig. [f] The improvement arises because the refined noisy sample

xi (n) provides a closer approximation to samples from pyef (mi \xc), thereby yielding more accu-

rate predictions from €t (xi ,t, 2% g, c) (Eq. . Consequently, the unpaired loss Lynpaired better
approximates the variational bound in Eq. [0}

D.3.2 IMPACT OF THE COEFFICIENT Ay IN THE LOSS LrnaL

We investigate the effect of the coefficient Ao by experimenting with different values in {0, 0.3, 1, 3}.
As shown in Table[7] setting Ao = 0 causes the FID scores for all translation tasks to diverge. This
happens because the unforgetting term Lpireq is discarded from Lgp,1, causing the finetuned dDR to
forget previously learned central<»non-central mappings (e.g., Sketch<>Face and Segment<Face).
Consequently, non-central<»non-central translations such as Sketch«»Segment are also learned in-
correctly, since training them depends on noisy samples from the central<+non-central mappings.
When XAy > 0, the fine-tuned model must balance preserving old translations with learning new
ones. Increasing Ao improves the FID scores of the finetuned dDR on non-central<snon-central
translations, enabling them to match those of the pretrained iDR, but at the cost of degrading per-
formance on the central<+non-central translations. This trade-off is more clearly reflected in the
learning curves in Fig. Empirically, we found that Ay = 1 provides the best balance across
translation tasks.

D.3.3 IMPACT OF TRAINING FROM SCRATCH WITH LgnaL

We study the effect of training dDR from scratch versus fine-tuning it from a pretrained iDR, both
strategies using roughly the same loss Ly in Eq.[TT] In this experiment, we set n = 3. Training
from scratch is computationally demanding-requiring over three days to run 200K iterations of
a small U-Net on a single HI00 GPU-so we limit the from-scratch run to 200K iterations and
compare it with 100K fine-tuning iterations under identical settings. Fig.[8|presents the loss and FID
curves for both strategies on central<+non-central and non-central<+non-central translation tasks.
Overall, dDR trained from scratch performs poorly in the early stages (as indicated by high FID
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Figure 8: Loss and FID curves of trained-from-scratch and finetuned dDRs.

Faces-UMDT-Latent COCO-UMDT-Star

| |
NFE ‘ Ske.+>Seg. ‘ Ske.<»Seg. ‘ Ske.<+»Depth ‘ Seg.<»Depth
‘ iDR dDR ‘ iDR dDR ‘ iDR dDR ‘ iDR dDR
10 74.33/7.95 39.29/6.65 | 98.14/79.17 31.29/34.19 | 78.65/13.96 27.10/12.09 | 79.95/24.97 35.31/16.48
20 | 42.25/6.98 23.79/5.82 | 50.09/32.07 28.26/25.67 | 42.95/11.30 22.69/11.26 | 32.93/15.35 26.03/15.63
30 31.77/6.67 22.31/5.72 | 36.01/25.99 27.93/24.81 | 31.37/9.83  22.09/10.35 | 26.12/14.71  25.57/15.02
50 23.37/6.39  21.85/5.61 | 27.84/23.45 27.19/24.06 | 19.39/9.03 21.65/9.59 | 24.87/13.93 25.21/14.74
100 | 18.05/6.25 20.82/5.58 | 24.70/23.16 26.87/23.78 | 18.81/8.79  21.18/9.29 | 24.08/12.49 25.18/14.62
1000 | 16.17/6.19 19.42/5.52 | 23.06/23.01 26.73/23.64 | 18.15/8.86  20.75/9.42 | 23.37/12.11 24.91/14.87

Table 8: FID across NFE for non-central<»non-central translations with iDR and dDR on Faces-
UMDT-Latent and COCO-UMDT-Star.

scores), but gradually improves and eventually approaches the performance of the fine-tuned variant
as training converges. Interestingly, the Lynpairea curve for from-scratch training behaves difterently
from Lpgireq: it increases from near zero rather than decreasing from a large value. This occurs

because, at the start of training, €y is untrained, making the expectations of €y (:ﬂ{ ,t, mi, 7, z) and of

€0 (mi, t,x%, J, c) approximately equal.

D.3.4 COMPARISON OF IDR AND DDR ACROSS SAMPLING STEPS

We evaluate iDR and dDR on Faces-UMDT-Latent and COCO-UMDT-Star while varying the total
number of sampling steps (NFE) from 10 to 1000. We focus on non-central<+non-central transla-
tions because the central<+non-central results for iDR and dDR are already comparable at matched
NFE in the main experiments. Both methods use 304.8M-parameter U-Net models and are evaluated
with the same total NFE for each non-central<+non-central translation.

From Table [8] we observe that iDR’s performance deteriorates sharply as NFE decreases, whereas
dDR remains much more stable, with only a moderate drop in FID. At NFE < 30, dDR achieves 50—
100% lower FID scores than iDR on several translation tasks, such as Seg.—Ske. on Faces-UMDT-
Latent, and Ske.<»Seg., Ske.<—Depth, and Seg.<—Depth on COCO-UMDT-Star. This discrepancy
arises because iDR relies on an intermediate central-domain sample whose quality degrades signifi-
cantly when NFE is small, thereby impairing the final non-central-domain output. By contrast, dDR
directly generates the non-central domain and thus avoids this issue. These results strongly indicate
that dDR is not sensitive to the central domain sample quality and is the clearly preferable choice
when sampling with a limited number of steps.
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FID| LPIPS)
Ske.<»Face  Seg.<»Face  Ske.<»Seg.  Ske.<»Face Seg.<»Face Ske.<»Seg.

BBDM  25.69/41.79 19.02/27.76  27.92/20.76  0.244/0.457  0.144/0.492  0.399/0.196

I°SB 16.56/31.81 10.58/24.56 21.37/13.16  0.241/0.456  0.153/0.492  0.396/0.208
DDBM 15.51/42.55 10.32/27.77 19.51/11.41  0.246/0.477  0.156/0.506  0.408/0.213
BDBM 13.67/33.98  6.12/26.73  24.88/6.63  0.244/0.479 0.151/0.500 0.382/0.204

Diffusion =~ DDPM  9.07/23.88  6.12/19.12  15.37/6.15  0.221/0.427  0.129/0.471 0.377/0.177

Model type  Model

Bridge

Table 9: Results on Faces-UMDT-Latent comparing diffusion-based and bridge-based DRs.

Ske. - Face Seg. - Face Seg. - Ske.
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Figure 9: Qualitative comparison of diffusion-based and bridge-based DRs on Faces-UMDT-Latent.

D.3.5 COMPARISON OF STANDARD AND BRIDGE-BASED DRS

We compare diffusion-based against bridge-based DRs on Faces-UMDT-Latent. For diffusion-based
DR, we adopt DDPM schedules with the noise parameterization. For bridge-based DR, we follow
schedules and parameterizations of state-of-the-art bridges, including BBDM 2023), I’SB
2023a), DDBM 2024), and BDBM [2025). In all cases, a single
304.8M-parameter U-Net models all conditionals between the central and each non-central domain;
translations between two non-central domains are executed indirectly via the central domain.

Table [9] shows that the diffusion-based DR outperforms bridge variants on most translation direc-
tions, with especially large margins on high-variance mappings (e.g., Ske.—Face, Seg.—Face). We
attribute this advantage to diffusion’s Gaussian prior and iterative denoising, which recover missing
detail under sparse conditioning (e.g., sketches), whereas bridge-based sampling tightly anchors to
the input and can suppresses plausible completions. Consistent with this, Fig. 0] shows that bridge-
based DRs on Ske.—Face often over-condition on noisy sketch details, producing unrealistic ar-
tifacts. Moreover, diffusion models partially share generative processes across domains (from a
common Gaussian), while bridge models learn separate source-to-target couplings for each paired
dataset. A single U-Net thus faces a harder multi-coupling approximation under bridge designs,
particularly when paired datasets differ substantially. Overall, these results indicate that diffusion-
based DRs are better suited to MDT and can be fine-tuned to support direct non-central translations
without paired supervision.

D.3.6 IMPACT OF THE LEARNING RATE FOR FINETUNING

Table [T0] examines the learning-rate trade-off when finetuning iDR into dDR for direct translation.
Higher rates accelerate learning of the new Ske.<»Seg. mappings but significantly degrade the pre-
trained mappings, e.g., Ske.<+Face and Seg.<+Face, relative to iDR. At le-4, dDR achieves the best
FID on Ske.<+Seg. yet yields the worst FIDs on Ske.<+Face and Seg.<+Face compared with iDR
and dDR finetuned at lower rates. Reducing the rate reduces catastrophic forgetting and restores
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FID|
Ske.<+Face  Seg.<»Face  Ske.<»Seg.

IDR - 14.21/39.06  10.18/24.95 20.82/10.85
le-4 17.05/43.18 15.16/28.90 52.41/12.87
Se-5 16.11/39.82  13.75/25.77 55.30/13.35
le-5 15.55/39.56 13.60/25.13  71.09/15.09
S5e-6  14.58/40.01 13.51/24.58 76.96/16.50
le-6  14.90/39.94 13.01/25.12  82.04/18.84

dDR

Table 10: FID on Faces-UMDT-Latent for dDR across finetuning learning rates. All dDR models
were fine-tuned without Tweedie refinement (n = 0).

the pretrained directions, reaching 14.90/39.94 with Ske.<+Face and 13.01/25.12 on Seg.<>Face at
le-6. This improvement comes at the cost of the direct translation mappings, with Ske.—Seg. FID
increasing from 52.41 to 82.04 and Seg.—Ske. FID increasing from 12.87 to 18.84. Overall, the
results show a clear trade-off between retaining pretrained tasks and learning the new one. Among
the tested settings, Se-5 offers the best balance.

D.4 QUALITATIVE RESULTS ON COCO-UMDT-STAR AND COCO-UMDT-CHAIN

We visualize dDR’s results on COCO-UMDT-Star and COCO-UMDT-Chain to illustrate its ability
to handle UMDT. Specifically, Figs.[I0] [TT} [T2] and [I3|show cross-domain samples conditioned on
color images, sketches, depth maps, and segmentation maps, respectively. Because segmentation
maps are not ideally suited to a continuous diffusion process in latent space and predicted class
labels are hard to decode perfectly, we apply DBSCAN (Ester et al.,|1996)) as a post-processing step
that merges noisy pixels into the nearest region with the smallest label difference.
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(a) Results on COCO-UMDT-Star. The classes for each segmentation map (from top to bottom) are: (snow,
person), (wall, person, floor), (cow, grass).
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(b) Results on COCO-UMDT-Chain. The classes for each segmentation map (from top to bottom) are:
(snow, person, sky), (wall, person, floor), (cow, grass).

Figure 10: Results of finetuned dDR on COCO-UMDT-Star (a) and COCO-UMDT-Chain (b) for
translation tasks from Color domain to Sketch, Segment, and Depth domains.
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(a) Results on COCO-UMDT-Star. The classes for each segmentation map (from top to bottom) are: (build-
ing, bus, road, bush), (tree, train), (clephant, sky, gravel).
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(b) Results on COCO-UMDT-Chain. The classes for each segmentation map (from top to bottom) are: (bus,
road, wall), (tree, train, sky), (elephant, sky, tree).

Figure 11: Results of finetuned dDR on COCO-UMDT-Star (a) and COCO-UMDT-Chain (b) for
translation tasks from Sketch domain to Color, Segment, and Depth domains.
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(a) Results on COCO-UMDT-Star. The classes for each segmentation map (from top to bottom) are: (sky,
, bridge), ( ), ( , table).
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(b) Results on COCO-UMDT-Chain. The classes for each segmentation map (from top to bottom) are:
(bridge, , sky, undefined), ( R , road), ( , floor).

Figure 12: Results of finetuned dDR on COCO-UMDT-Star (a) and COCO-UMDT-Chain (b) for
translation tasks from Depth domain to Color, Segment, and Sketch domains.
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(a) Results on COCO-UMDT-Star. The classes for each segmentation map (from top to bottom) are: (bed,
floor, window, light, wall), (pizza, undefined, table, fork), (grass, giraffe, bush, sky).

Input Seg. Seg. - Color Seg. - Ske. Seg. -» Depth

(b) Results on COCO-UMDT-Chain. The classes for each segmentation map (from top to bottom) are: (bed,
floor, window, light, wall), (pizza, undefined, table, fork), (grass, giraffe, bush, sky).

Figure 13: Results of finetuned dDR on COCO-UMDT-Star (a) and COCO-UMDT-Chain (b) for
translation tasks from Segment domain to Color, Sketch, and Depth domains.
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