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Abstract

We consider a non-stationary Bandits with Knap-
sack problem. The outcome distribution at each
time is scaled by a non-stationary quantity that
signifies changing demand volumes. Instead of
studying settings with limited non-stationarity, we
investigate how online predictions on the total
demand volume Q allows us to improve our per-
formance guarantees. We show that, without any
prediction, any online algorithm incurs a linear-
in-T regret. In contrast, with online predictions
on Q, we propose an online algorithm that judi-
ciously incorporates the predictions, and achieve
regret bounds that depends on the accuracy of the
predictions. These bounds are shown to be tight
in settings when prediction accuracy improves
across time. Our theoretical results are corrobo-
rated by our numerical findings.

1. Introduction
The multi-armed bandit problem (MAB) is a classical model
on sequential decision making. The MAB problem fea-
tures the trade-off between exploration and exploitation, i.e.,
between exploring for new information about the underly-
ing system and exploiting the potentially optimal solution
based on current information. MAB problems have been
studied extensively over many decades, with diverse ap-
plications such as recommendation systems, ad allocation,
resource allocation, revenue management and network rout-
ing/scheduling.

Many of these mentioned applications involve resource con-
straints. For example, a seller experimenting with product
prices may have limited product inventory. This motivates
the formulation of the bandits with knapsack (BwK) prob-
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lem, an online knapsack problem involving model uncer-
tainty introduced by (Badanidiyuru et al., 2013). The agent
has d ≥ 1 types of resources. At each time step t, the agent
pulls an arm, which generates an array of outcomes consist-
ing of the random reward the amounts of the d resources
consumed. If some resource(s) are exhausted, then the agent
stops pulling any arm. The objective is to maximize the ex-
pected total reward over a known horizon T , subject to the
budget constraints on the d resources.

The BwK problem was first studied in a stationary stochas-
tic setting, dubbed stochastic BwK, where the outcome of
an arm follows a stationary but latent probability distribu-
tion. (Badanidiyuru et al., 2013; Agrawal & Devanur, 2014)
provide online algorithms for stochastic BwK with regret
sub-linear in T . The regret is the difference between the
optimum and the expected cumulative reward earned by
the algorithm, and a sub-linear-in-T regret implies the con-
vergence to opimality as T grows. An alternative setting,
adversarial BwK, is introduced by (Immorlica et al., 2019).
Each arm’s outcome distribution can change arbitrarily over
time. Contrary to stochastic BwK, it is impossible to achieve
a regret sub-linear in T , even when the outcome distribu-
tion is changed only once during the horizon (Liu et al.,
2022). It begs a question: could a non-stationary BwK prob-
lem be more tractable under a less adversarial model than
(Immorlica et al., 2019; Liu et al., 2022)?

Practically, while stationary models could be a strong as-
sumption, it could be too pessimistic to assume the underly-
ing model to be adversarily changing and completely latent.
Consider the example of ad allocation. On one hand, the
internet traffic is constantly changing, leading to a non-
stationary model. On the other hand, forecast information
is often available. Some advertisements are intrinsically
more attractive than others, regardless of the internet traffic,
meaning that the click probability of an ad can be regarded
as stationary. How could the platform harness the probem
structure? Can the allocator utilize forecast information on
the internet traffic to improve his/her decisions?

Motivated by the discussions above, we consider the Non-
Stationary BwK with Online Advice problem (NS-BwK-
OA). An outcome involve an adversarial and a stochastic
component. The mean reward and mean type-i resource
consumption of pulling arm a at time t are equal to qt · r(a)
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and qt · c(a, i) respectively. The quantity qt ∈ R>0 is a
seasonal term that represents the demand volume at time t,
while the stationary quantities r(a), c(a, i) are the mean re-
ward earned and resource consumed per demand unit under
arm a. In a dynamic pricing setting, qt counts the customers
arrivals at time t. The quantities r(a), c(a, i) respectively
represent the revenue earned and type-i resource consumed
per customer under arm a, which could represent a pricing
scheme. Our proposed outcome model generalizes the un-
constrained settings in (Tracà et al., 2021; Lykouris et al.,
2020). We make the following novel contributions:

Model. We incoporate a prediction oracle in NS-BwK-
OA, a non-stationary BwK problem. Such an incorporation
is novel compared to existing BwK works, which always
assume full model uncertainty. In NS-BwK-OA, we identify
the total demand volume Q =

∑T
t=1 qt as a crucial (but

latent) parameter. The oracle provides a prediction Q̂t to
Q at every time step t. The oracle corresponds to how a
firm constantly acquires updated information about Q, and
a variety of existing time series prediciton tools can be used
to construct such an oracle.

Regret Lower Bounds. We derive two regret lower bounds
on NS-BwK-OA. First, without the access to a prediction
oracle, we show that any online algorithm suffers a linear-in-
T regret, even when r, c are known and qt is known before
the arm at time t is to be chosen. Second, with the access
of a prediction oracle, we establish regret lower bounds
that depend on the accuracy of the estimations. When the
estimates are equal to the groundtruth, the regret lower
bounds reduce to that of the stochastic BwK problem.

Algorithms and Regret Upper Bounds. We design an on-
line algorithm OA-UCB to utilize the predictions judiciously.
OA-UCB is novel in its incorporation of the prediction Q̂t

and demand volume qt into the estimated opportunity costs
of the resources, in relation to the predicted demand vol-
umes. We derive a regret upper bound on OA-UCB that
depends on the accuracy of the predictions, even though the
accuracy of each prediction is not known to the algorithm.
OA-UCB is shown to achieve near optimal regret bounds
when the accuracy of the predictions improves across time.

Numerical Validations. We perform numerical experi-
ments when {qt}Tt=1 is governed by a time series model.
The experiment highlights the benefit of predicitons. We
show that an online algorithm, such as OA-UCB, that har-
nesses predictions judiciously can perform empirically bet-
ter than existing baselines, which only has access to the
bandit feedback from the latent environment.

1.1. Literature Review

The Bandits with Knapsacks (BwK) problem has been exten-
sively studied. (Badanidiyuru et al., 2013) first introduced

the stochastic BwK problem, which bears applications in
dynamic pricing (Besbes & Zeevi, 2009; 2012) and ad allo-
cation (Mehta et al., 2007). The BwK problem is general-
ized by (Agrawal & Devanur, 2014) to incorporate convex
constraints and concave reweards. Several variants are stud-
ied, such as the settings of contextual bandits (Agrawal
et al., 2016; Badanidiyuru et al., 2014), combinatorial semi-
bandits (Sankararaman & Slivkins, 2018).

Non-stationary BwK problems, where the outcome distribu-
tion of each arm is changing over time, are studied recently.
(Immorlica et al., 2019) achieves a O(log T ) competitive ra-
tio against the best fixed distribution benchmark in an adver-
sarial setting. (Rangi et al., 2018) consider both stochastic
and adversarial BwK problems in the single resource case.
(Liu et al., 2022) design a sliding window learning algorithm
with sub-linear-in-T regret, assuming the amount of non-
stationarity is upper bounded and known. A sub-linear-in-T
regret non-stationary BwK is only possible in restrictive
settings. For example, as shown in (Immorlica et al., 2019;
Liu et al., 2022) and our forthcoming Lemma 3.1, for any
online algorithm, there exists a non-stationary BwK instance
where the outcome distribution only changes oncee during
the horizon, for which the algorihtm incurs a linear-in-T
regret. Non-stationary stochastic bandits with no resource
constraints are studied in (Besbes et al., 2014; Cheung et al.,
2019; Zhu & Zheng, 2020), who provide sub-linear-in-T
regret bounds in less restrictive non-stationary settings than
(Liu et al., 2022), while the amount of non-stationariety,
quantified as the variational budget or the number of change
points, has to be sub-linear in T . Our work goes in an or-
thogonal direction. Instead of studying settings with limited
non-stationariety, we seek an improved regret bound when
the decision maker is endowed with information additional
(in the form of prediction oracle) to the online observations.

Our work is also related to a recent stream of work on re-
source allocation with horizon uncertainty. (Bai et al., 2022;
Aouad & Ma, 2022) consider a stochastic resource allcation
setting under full model certainty. In their model, the total
demand volume is a random variable, whose probability dis-
tribution is known to the decision maker, but the realization
of the total demand volume is not known. (Balseiro et al.,
2022) consider an online resource allocation setting with
model uncertainty on the horizon, which is closely related
to our model uncertainty setting on the total demand volume
Q. A cruciall difference between the uncertainty settings in
(Balseiro et al., 2022) and ours is that, the former focuses on
the case when the DM is provided with static advices, while
our work complementarily consider the case of dynamic
advices. More precisely, (Balseiro et al., 2022) consider a
model where qt ∈ {0, 1}. They first consider a model when
the DM knows Q ∈ [Qlower, Qupper] but not the actual
value of Q at the beginning, and then consider a case when
the DM is additionally endowed with a static prediction Q̂
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at the beginning. In both cases, the performance guaran-
tees are quantified as competitive ratios that depends on the
static advices. By contrast, our study quantifies the benefit
of receiving dyanmically updated advices Q̂t, and pinpoint
conditions on {Q̂t}Tt=1 that leads to a sublinear-in-T regret.

In terms of the prediction model, our work is related to an
active stream of research works on online algorithm design
with machine learned advice (Piotr et al., 2019; Mitzen-
macher & Vassilvitskii, 2022). While traditional online
algorithm research focuses on worst case performance guar-
antee in full model uncertainty setting, this stream of works
focuses on enhancing the performance guarantee when the
decision maker (DM) is provided with a machine learned
advice at the start of the online dynamics. A variety of re-
sults are derived in different settings, such as online caching
(Lykouris & Vassilvitskii, 2021), rent-or-buy (Purohit et al.,
2018), scheduling (Mitzenmacher, 2019; Lattanzi et al.,
2020), online set cover problems (Bamas et al., 2020; Al-
manza et al., 2021), online matching (Antoniadis et al.,
2020). Our research seeks to take a further step, by investi-
gating the case when the DM receives pregressively updated
predictions across the horizon, instead of being given a fixed
prediction at the beginning.

Lastly, our prediction model is also related to a line of
works online optimization with predictions, which concerns
improving the performance guarantee with the help of pre-
dictions. These predictions are provided to the DM at the
beginning of each round sequentially. A variety of full feed-
back settings are studied in (Rakhlin & Sridharan, 2013a;b;
Steinhardt & Liang, 2014; Jadbabaie et al., 2015), and the
contextual bandit setting is studied in (Wei et al., 2020). We
remark that the abovementioned works do not involve re-
source constraints, and they are fundamental different from
ours, as shown in the forthcoming Lemma 3.1.

Notation. For a positive integer d, we denote [d] =
{1, . . . , d}. We adopt the O(·), o(·),Ω(·) notation in (Cor-
men et al., 2009).

2. Problem Setup
We consider the Non-Stationary Bandit with Knapsack prob-
lem with Online Advice (NS-BwK-OA). The nature speci-
fies an NS-BwK-OA problem instance, represented by the
tuple (A, B, T, {qt}Tt=1, {Pa}a∈A). We denote A as the set
of K arms. There are d types of resources, and the decision
maker (DM) is endowed with Bi ≥ 0 units of resource i for
each i ∈ [d]. The planning horizon consists of T discrete
time steps. Following the convention in (Badanidiyuru et al.,
2013), we assume for all i ∈ [d] that Bi = B = bT , where
b is the normalized budget. At time t, there are qt units of
demands arriving at the DM’s platform. For example, qt
can be the number of customers visiting an online shop at

time step t, and a time step can be a fifteen minute interval.
We assume qt ∈ [q, q], where 0 < q < q. The sequence
{qt}Tt=1 is an arbitrary element of [q, q]T fixed by the nature
before the online dynamics. The arbitrariness represents the
exogenous nature of the demands.

When the DM pulls arm a ∈ A, the nature samples
a vector (R(a), C(a, 1), . . . , C(a, d)) ∼ Pa of random
outcomes. The quantity R(a) is the reward earned per
demand unit, and C(a, i) is the amount of type i re-
source consumed per demand unit. The random vari-
ables R(a), C(a, 1), . . . , C(a, d) are supported in [0, 1], and
they can be arbitrarily correlated. We denote r(a) =
E[R(a)], c(a, i) = E[C(a, i)], and r = (r(a))a∈A, c =
(c(a, i))a∈A,i∈[d]. To ensure feasiblity, we assume there is
a null arm a0 ∈ A such that R(a0) = C(a0, i) = 0 with
certainty for all i ∈ [d].

At each time t, the DM is provided with a prediction oracle
Ft. The oracle is a function Ft : [q, q]t−1 → [qT, qT ]

that provides an estimation Q̂t = Ft(q1, . . . , qt−1) on
Q =

∑T
t=1 qt with the past observations {qs}t−1

s=1. The DM
knows A, B, T , and has the access to Ft in a sequential man-
ner. In contrast, the DM does not know {Pa}a∈A, {qt}Tt=1,
while the upper bound q is known to the DM.

Dynamics. At each time t, three events happen. Firstly,
the DM receives a prediction Q̂t = Ft(q1, . . . , qt−1) on
Q. Secondly, based on Q̂t and the history observation, the
DM selects arm At ∈ A. Thirdly, the DM observes the
feedback consisting of (i) demand volume qt, (ii) reward
earned qtRt, (iii) resources consumed {qtCt,i}i∈[d]. Recall
that (Rt, Ct,1, . . . , Ct,d) ∼ PAt

. Then, the DM proceeds
to time t + 1. If some resource is depleted, i.e. ∃j ∈ [d]
such that

∑t
s=1 qsCs,j > Bj , then the null arm a0 is to be

pulled in the remaining horizon t+1, . . . , T . We denote the
stopping time here as τ . The DM aims to maximize the total
reward E[

∑τ−1
t=1 qtRt], subject to the resource constraints

and model uncertainty.

On qt. Our feedback model on qt is more informative than
(Lykouris et al., 2020), where none of q1, . . . , qT is observed
during the horizon. In contrast, ours is less informative than
(Tracà et al., 2021), where q1, . . . , qT are all observed at
time 1. Our assumption of observing qt at the end of time t
is mild in online retail settings. For example, the number of
visitors to a website within a time interval can be extracted
from the electronic records when the interval ends.

While the nature sets {qt}Tt=1 to be fixed but arbitrary, the
sequence is set without knowing the DM’s online algorithm
and prediciton oracle F = {Ft}Tt=1. Our model is milder
than the oblivious adversary model, where the nature sets a
latent quantity (in this case {qt}Tt=1) with the knowledge of
the DM’s algorithm before the online dynamics. Our milder
model allows the possibility of Q̂t = Ft(q1, . . . , qt−1) be-
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ing a sufficiently accurate (to be quantified in our main
results) estimate to Q for each t, for example when {qt}Tt=1

is govenred by a latent time series model. In contrary, an
oblivious adversary can set Q to be far away from the pre-
dictions Q̂1, . . . , Q̂T in response to the information on F .

On F . Our prediction oracle is a general Black-Box model.
We do not impose any structural or parameteric assumption
on F or {qt}Tt=1. It is instructive to understand F as a side
information provided to the DM by an external source. In
the dynamic pricing example, Q̂t could be an estimate on the
customer base population provided by an external marketing
research firm. A prime candidate of F is the cornucopia
of time series prediction models proposed in decades of
research works on time series (Shumway & Stoffer, 2017;
Hyndman & Athanasopoulos, 2021; Lim & Zohren, 2021).
These prediction models allow one step prediction, where
for any t, the predictor P inputs {qs}t−1

s=1 and outputs an
estimate q̂t on qt. The prediction Q̂t can be constructed
by (1) iteratively applying P on {qs}t−1

s=1 ∪ {q̂}t+ρ−1
t to

output q̂t+ρ, for ρ ∈ {0, . . . , T − t}, (2) summing over
q1, . . . , qt−1, q̂t, . . . , q̂T and return Q̂t. We provide an ex-
ample in the forthcoming Section 5.

Regret. To measure the performance of an algorithm, we
define the regret of an algorithm as

RegretT = OPT −
τ−1∑
t=1

qtRt, (1)

where OPT denotes the expected cumulative reward of an
offline optimal dynamic policy given all latent information
and all adversarial terms. For analytical tractabililty in our
regret upper bound, we consider an alternative benchmark

OPTLP = max
u∈∆K

(
T∑

t=1

qt

)
r⊤u

s.t.

(
T∑

t=1

qt

)
c⊤u ≤ B1d,

(2)

where ∆K = {w ∈ [0, 1]d :
∑

a∈A wa = 1}. The bench-
mark (2) is justified by the following Lemma:

Lemma 2.1. OPTLP ≥ OPT.

The proof of Lemma 2.1 is in Appendix.

3. Regret Lower Bounds
In this section, we provide impossibility results on the NS-
BwK-OA in the form of regret lower bounds. Firstly, we
show that a linear-in-T regret is inevitable in the absence of
the prediction oracle F .

Lemma 3.1. Consider a fixed but arbitrary online algorithm
that knows {Pa}a∈A, {(qs, qsRs, qsCs,1, . . . qsCs,d)}t−1

s=1

and qt, but does not have any access to a prediction oracle
when the action At is to be chosen at each time t. There
exists an instance such that the online algorithm suffers
RegretT = Ω(T ).

Lemma 3.1 is proved in Appednix B.1. Lemma 3.1 shows
that even when all model information on time steps 1, . . . , t
are revealed when At is to be chosen, the DM still suffers
RegretT = Ω(T ). Thus, NS-BwK-OA is fundamentally
different from non-stationary bandits without resource con-
straints such as (Besbes et al., 2015), and online optimiza-
tion with predictions problems such as (Rakhlin & Sridha-
ran, 2013a). In these settings, we can achieve RegretT = 0
if all model information on time steps 1, . . . , t are avail-
able at the time point of choosing At or the action at time
t. Indeed, given all model information at time t, the DM
achieve the optimum by choosing an arm or an action that
maximizes the reward function of time t for every t ∈ [T ].

In view of Lemma 3.1, we seek to understand if the DM
can avoid RegretT = Ω(T ) when s/he is endowed with an
accurate prediction on Q. Certainly, if the DM only recieves
an uninformative prediction, such as a worst case predic-
tion qT , at each time step, RegretT = Ω(T ) still cannot
be avoided. In contrast, if the DM received an accurate
prediction at a time step, we demonstrate our first step for
deriving a better regret bound, in the form of a more benign
regret lower bound compared to Lemma 3.1. We formalize
the notion of being accurate by the following two concepts.

For T0 ∈ [T − 1] and ϵT0+1 ≥ 0, an instance {qt}Tt=1 is
said to be (T0+1, ϵT0+1)-well estimated by oracle F , if the
prediction Q̂T0+1 = FT0+1(q1, . . . , qT0

) returned by the or-
acle at time T0+1 satisfies |Q− Q̂T0+1| ∈ [ϵT0+1, 2ϵT0+1].
This notion measures the power of prediction oracle F . We
say that ϵT0+1 is (T0 + 1, {qt}T0

t=1)-well response by ora-
cle F if ϵT0+1 satisfies ϵT0+1 ≤ min{Q̂T0+1 −

∑T0

s=1 qs −
q(T − T0), q(T − T0) − (Q̂T0+1 −

∑T0

t=1 qt), Q̂T0+1/2},
where Q̂T0+1 = FT0+1(q1, . . . , qT0). This concept imposes
requirements on the power of prediction by introducing a
non-trivial upper bound on ϵT0+1 for the ”well-estimate”
notion. This can help us eliminate trivial and uninformative
predictions such as Q̂t = 0 or q̄T .

Theorem 3.2. Consider the NS-BwK-OA setting, and con-
sider a fixed but arbitrary online algorithm and predici-
ton oracle F = {Ft}Tt=1. For any T0 ∈ [T − 1] and
any ϵT0+1 > 0 that is (T0 + 1, {qt}T0

t=1)-well response,
there exists a (T0 + 1, ϵT0+1)-well estimated instance I =
{qt}T0

t=1 ∪ {qt}Tt=T0+1 such that

RegretT = Ω

(
max

{
1

Q

T0∑
t=1

qtϵT0+1 , Λ

})
, (3)
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where Q =
∑T

t=1 qt, and

Λ = min

{
OPT,OPT

√
qK

B
+
√
qKOPT

}
.

Theorem 3.2 is proved in Appendix B.2. In (3), the regret
lower bound Λ is due to the uncertainty on {Pa}a∈A, and
Λ is derived directly from (Badanidiyuru et al., 2013). The
regret lower bound 1

Q

∑T0

t=1 qtϵT0+1 is due to the oracle’s

estimation error on Q̂T0+1. Theorem 3.2 demonstrates a
more benign regret lower bound than Ω(T ), under the con-
dition that the prediction on Q is sufficiently accurate (as
formalized as (T0 + 1, ϵT0+1)-well estimated).

More specifically, let us consider the following accurate
prediction condition at time T0 by oracle F : ϵT0+1 is (T0 +
1, {qt}T0

t=1)-well response by oracle F and

ϵT0+1

Q
= O(T−α

0 ) for some α > 0. (4)

The condition implies that, for the prediction Q̂T0+1

made using T0 data points q1, . . . , qT0 , it holds that |1 −
(Q̂T0+1/Q)| = O(T−α

0 ). For example, when {qt}Tt=1 are
i.i.d. generated, the accurate prediction condition holds with
α = 1/2.

Corollary 3.3. Consider the setting of Theorem 3.2.
Suppose the accurate prediction condition (4) holds at
T0, then the refined regret lower bound RegretT =
Ω(max{qT 1−α

0 ,Λ}) holds.

Altogether, under the accurate prediction condition, the
corollary presents a strictly smaller regret lower bound than
that in Lemma 3.1, which has no prediction oracle available.
In complement, we design and analyze an online algorithm
in the next section that reaps the benefits of predictions,
and in particular nearly matches the regret lower bound in
Corollary 3.3 under the accurate prediction condition. Thus,
a o(T )-regret is possible in a non-stationary environment
given accurate predictions as prescribed above, even though
the amount of non-stationarity in the underlying model is
not bounded in general.

4. Algorithm and Analysis
We propose the Online-Advice-UCB (OA-UCB) algorithm,
displayed in Algorithm 1, for solving NS-BwK-OA. The
algorithm design involve constructing confidence bounds to
address the model uncertainty on r, c, as discussed in Sec-
tion 4.1. In Section 4.2, we elaborate on OA-UCB, which
uses Online Convex Optimization (OCO) tools to balance
the trade-off among rewards and resources. Crucially, at
each time t, we incorporate the prediction Q̂t to scale the op-
portunity costs of the resources. In addition, both qt and Q̂t

are judiciously integrated into the OCO tools to factor the
demand volumes into the consideration of the abovemention
trade-off. In Section 4.3, we provide a regret upper bound
to OA-UCB, and demonstrate its near-optimality when the
accurate prediction condition (4) holds and when capacity is
large. In Section 4.4 we provide a sketch proof of the regret
upper bound, where the complete proof is in Appendix C.

4.1. Confidence Bounds

We consider the following confidence radius function:

rad(v,N, δ) =

√
2v log

(
1
δ

)
N

+
4 log

(
1
δ

)
N

. (5)

The function (5) satisfies the following property:

Lemma 4.1 ((Babaioff et al., 2015; Agrawal & Devanur,
2014)). Let random variables {Vi}Ni=1 be independently
distributed with support in [0, 1]. Denote V̂ = 1

N

∑N
i=1 Vi,

then with probability ≥ 1− 3δ, we have∣∣∣V̂ − E[V̂ ]
∣∣∣ ≤ rad(V̂ , N, δ) ≤ 3rad(E[V̂ ], N, δ).

We prove Lemma 4.1 in Appendix D.1 by following the
line of argument in (Babaioff et al., 2015) for the purpose
of extracting the values of the coefficients in (5), which
are implicit in (Babaioff et al., 2015; Agrawal & Devanur,
2014). Based on the observation {Rs, {Cs,i}i∈[d]}s∈[t−1],
we compute the sample means

R̂t(a) =
1

N+
t−1(a)

t−1∑
s=1

Rs1{As=a}, ∀a ∈ A,

Ĉt(a, i) =
1

N+
t−1(a)

t−1∑
s=1

Cs,i1{As=a}, ∀a ∈ A, i ∈ [d],

where N+
t−1(a) = max{

∑t−1
s=1 1{As=a}, 1}. In line with

the principle of Optimism in Face of Uncertatinty, we con-
struct upper confidence bounds (UCBs) for the rewards and
lower confidence bounds (LCBs) for resource consumption
ammounts. For each a ∈ A, we set UCBr,t(a) =

min
{
R̂t(a) + rad(R̂t(a), N

+
t−1(a), δ), 1

}
. (6)

For each a ∈ A, i ∈ [d], we set LCBc,t(a, i) =

max
{
Ĉt(a, i)− rad(Ĉt(a, i), N

+
t−1(a), δ), 0

}
. (7)

The design of the UCBs and LCBs are justified by Lemma
4.1 and the model assumption that r(a), c(a, i) ∈ [0, 1] for
all a ∈ A, i ∈ [d]:
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Lemma 4.2. With probability ≥ 1− 3KTdδ, we have

UCBr,t(a) ≥ r(a), LCBc,t(a, i) ≤ c(a, i)

for all a ∈ A, i ∈ [d].

Lemma 4.2 is proved in Appendix D.2.

4.2. Details on OA-UCB

OA-UCB is presented in Algorithm 1. At each time step t,
the algorithm first computes a composite reward term

UCBr,t(a)−
Q̂t

B
· µ⊤

t LCBc,t(a), (8)

where UCBr,t(a), Q̂t and LCBc,t(a) are the surrogates
for the latent r(a), Q, c(a) respectively. The term Q̂t

B ·
µ⊤

t LCBc,t(a) can be interpreted as the opportunity cost
of the resources. The scalarization

µt ∈ S = {µ : ∥µ∥1 ≤ 1,µ ≥ 0d} (9)

weighs the relative importance of the resources. The factor
Q̂t/B reflects that the opportunity cost increases with Q̂t,
since with a higher total demand volume, the DM is more
likely to exhaust some of the resources during the horizon,
and similar reasoning holds for B. Altogether, (8) balances
the trade-off between the reward of an arm and the opportu-
nity cost of that arm’s resource consumption. We select an
arm that maximizes (8) at time t.

After receiving the feedback, We update the scalarization µt

via the Online Gradient Descent (OGD) (Agrawal & Deva-
nur, 2014; Hazan et al., 2016) on the sequence of functions
{ft}Tt=1, where

ft(x) =
qtQ̂t

B

(
B

Q̂t

1d − LCBc,t(At)

)⊤

x. (10)

While ft incorporates the prediction Q̂t for the purpose of
accounting for the estimated opportunity cost similar to (8),
ft also incoporates the actual demand qt for accounting the
actual amounts of resources consumed. In the OGD update
in (11), for a resource type i, the coefficient µt+1(i) in-
creases with qtLCBc,t(At, i), meaning that a higher amount
of resource i consumption at time t leads to a higher weigh-
tage of resource i’s opportunity cost at time t+ 1.

4.3. Performance Guarantees of OA-UCB

The following theorem provides a high-probability regret
upper bound for Algorithm 1:

Theorem 4.3. Consider the OA-UCB algorithm, that is
provided with predictions that satisfy |Q̂t −Q| ≤ ϵt for all

Algorithm 1 Online-advice-UCB (OA-UCB)

1: Initialize µ1 = 1
d1d, M =

(
q + q2

b

)√
d, ηt =

√
2

M
√
t
.

2: for t = 1, 2, ..., T do
3: Receive Q̂t = Ft(q1, . . . , qt−1).
4: Compute UCBr,t(a), LCBc,t(a) for all a ∈ A by

(6), (7), where LCBc,t(a) = (LCBc,t(a, i))i∈[d].
5: Select

At ∈ argmax
a∈A

{
UCB(r)

t (a)− Q̂t

B · µ⊤
t LCBc,t(a)

}
.

6: if ∃j ∈ [d] such that
∑t

s=1 qsCt,j > B then
7: Break, and pull the null arm a0 all the way.
8: end if
9: Observe qt, receive reward qtRt, and consume qtCt,i

for each resource i ∈ [d].
10: Update µt+1 with OGD. µt+1 is set to be

ΠS

(
µt − ηt

qtQ̂t

B

(
B

Q̂t

1d − LCBc,t(At)

))
,

(11)
where S is defined in (9).

11: end for

t ∈ [T ]. With probability ≥ 1− 3KTdδ,

OPTLP −
τ−1∑
t=1

qtRt

≤O

((
OPTLP

√
qK

B
+
√

qKOPTLP

)
log

(
1

δ

)
(12)

+

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt +M
√
T

)
. (13)

Theorem 4.3 is proved in the Appendix, and we provide
a sketch proof in Section 4.4. The Theorem holds in the
special case when we set ϵt = |Q̂t −Q|, and ϵt represents
an upper bound on the estimation error of Q̂t on Q, for
example by certain theoretical guarantees. The term (12)
represents the regret due to the learning on r(a), c(a, i). The
first term in (13) represents the regret due to the prediction
error of the prediction oracle, and the second term in (13)
represents the regret due to the application of OGD.

Comparison between regret lower and upper bounds.
The regret term (12) matches the lower bound term Λ in
Theorem 3.2 within a logarithmic factor. Next, we compare
the regret upper bound term ( 1

Q + 1
B )
∑τ−1

t=1 qtϵt and the

lower bound term 1
Q

∑T0

t=1 qtϵT0+1 in Theorem 3.2. We
first assure that the lower and upper bound results are con-
sistent, in the sense that our regret upper bound is indeed in
Ω( 1

Q

∑T0

t=1 qtϵT0+1) on the lower bounding instances con-

6
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structed for the proof of Theorem 3.2. In those instances, T0

is set in a way that the resource is not fully exhausted at time
T0 under any policy, thus the stopping time τ of OA-UCB
satisfies τ > T0 with certainty. More details are provided in
Appendix B.3.

Next, we highlight that the regret upper and lower bounds
are nearly matching (modulo multiplicative factors of
log(1/δ) and q/q, as well as the additive O(M

√
T ) term),

under the high capacity condition B = Θ(Q) and the ac-
curate prediction condition (4) for all T0 ≥ 1. The first
condition is similar to the large capacity assumption in the
literature (Besbes & Zeevi, 2009; 2012; Liu et al., 2022),
while the second condition is a natural condition that sign-
fies a non-trivial estimation by the prediciton oracle, as
discussed in Section 3. On one hand, By setting T0 = Θ(T )
for the highest possible lower bound in Corollary 3.3,
we yield the regret lower bound Ω(max{qT 1−α

0 ,Λ}) =

Ω(max{qT 1−α,Λ}). On the other hand, the second term
in (13) is upper bounded as

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt = O

(
τ−1∑
t=1

qt
ϵt
Q

)

=O

(
τ−1∑
t=1

qtt
−α

)
= O(qT 1−α).

Altogether, our claim on the nearly matching bounds is
established.

4.4. Proof Sketch of Theorem 4.3

We provide an overview on the proof of Theorem 4.3, which
is fully proved in Appendix C. We first provide bounds on
the regret induced by the estimation errors of the UCBs and
LCBs. Now, with probability ≥ 1−3KTdδ, the inequalities

∣∣∣∣∣
τ−1∑
t=1

qtUCBr,t(At)−
τ−1∑
t=1

qtRt

∣∣∣∣∣
≤ O

log

(
1

δ

)
√√√√qK

τ−1∑
t=1

qtRt + qK log

(
T

K

) ,

(14)∣∣∣∣∣
τ−1∑
t=1

qtLCBc,t(At, i)−
τ−1∑
t=1

qtCt,i

∣∣∣∣∣
≤ O

(
log

(
1

δ

)(√
qKB + qK log

(
T

K

)))
∀i ∈ [d]

(15)

hold. Inequalities (14, 15) are proved in Appendix D.3.

Next, by the optimality of At in Line 1 in Algorithm 1,

UCBr,t(At)−
Q̂t

B
· µ⊤

t LCBc,t(At)

≥UCB⊤
r,tu

∗ − Q̂t

B
· µ⊤

t LCBc,tu
∗,

which is equivalent to

UCB⊤
r,tu

∗ − UCBr,t(At) +
Q̂t

B
µ⊤

t

(
B

Q̂t

1d − LCB⊤
c,tu

∗
)

≤ Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − LCBc,t(At)

)
.

Multiply qt on both side, and sum over t from 1 to τ −1. By
applying the OGD performance guarantee in (Hazan et al.,
2016) with {ft}Tt=1, S defined in (10, 9) respectively, we
argue that, for all µ ∈ S,

τ−1∑
t=1

qtUCB⊤
r,tu

∗ −
τ−1∑
t=1

qtUCBr,t(At)

+

τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − LCB⊤
c,tu

∗
)

≤
τ−1∑
t=1

qt
Q̂t

B
·
(

B

Q̂t

1d − LCBc,t(At)

)⊤

µ+O
(
M

√
T
)
.

If τ ≤ T , then there exists j0 ∈ [d] such that∑τ
t=1 qtCt,j0 > B. Take µ = OPTLP

Q ej0 ∈ S (This is
because OPTLP = Qr⊤u∗ ≤ Q). Analysis yields

OPTLP −
τ−1∑
t=1

qtUCBr,t(At) ≤ O

(
log

(
1

δ

)
OPTLP

√
qK

B

+

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt +M
√
T

)
. (16)

If τ > T , it is the case that τ − 1 = T , and no
resource is exhausted at the end of the horizon. Take
µ = 0. Similar analaysis to the previous case shows that
OPTLP −

∑τ−1
t=1 qtUCBr,t(At) ≤

O

(
1

Q

τ∑
t=1

qtϵt +M
√
T

)
. (17)

Combine (14), (16), (17) and the fact that OPTLP ≥∑τ−1
t=1 qtRt, the theorem holds.

5. Numerical Experiments
We present numerical results, and compare our algorithm
with several existing algorithms on BwK.

7



Bandits with Knapsacks: Advice on Time-Varying Demands

Demand sequence {qt}Tt=1: We apply an AR(1) model to
generate {qt}:

qt = α+ βqt−1 + εt,

where ε1, . . . εT ∼ N(0, σ2) are independent.

Estimations {Q̂t}Tt=1: At round t, given history observa-
tion {qs}t−1

s=1, there are many time series prediction tools
in Python, MatLab or R that perform predictions to yield
{q̂s}Ts=t, where q̂s is a estimate on qs. We define the estima-
tion Q̂t as

∑t−1
s=1 qs +

∑T
s=t q̂s. To achieve time-efficiency,

we consider a ”power-of-two” policy for updating the Q̂t

on Q, as shown in Algorithm 2. That is, we only recompute
Q̂t when t = 2k for some k ∈ N+. The estimation error of
Algorithm 2 in terms of additive gap is plotted in Figure 1.

Algorithm 2 Estimation Generation Policy

Input: Time step t, history observation {qs}t−1
s=1, previous

estimation Q̂t−1.
1: if t = 2k for some k ∈ N+ then
2: Compute predictions {q̂s}Ts=t , and update Q̂t =∑t−1

s=1 qs +
∑T

s=t q̂s.
3: else
4: Set Q̂t = Q̂t−1.
5: end if
6: return Q̂t.

Figure 1. Estimation error

Benchmarks: We compare OA-UCB with three existing
online algorithms for BwK. The first algorithm is the Primal-
DualBwK algorithm in (Badanidiyuru et al., 2013), which
we call “PDB” in the following. The second algorithm
is the UCB algorithm presented in (Agrawal & Devanur,
2014), which we call “AD-UCB”. The third algorithm is
the Sliding-Window UCB in (Liu et al., 2022), which we
call “SW-UCB”. In implementing SW-UCB, we set the slid-
ing window size according to the suggestion in (Liu et al.,

2022), and we input the required non-stationarity measures
by computing them from the ground truth {qt}15000t=1 .

In the experiment, we simulate our algorithm and the bench-
marks on a family of instances, with K = 10, d = 3,
b = 3, α = 2, β = 0.5, σ = 0.5, and T varies from
5000 to 15000. Each arms’s per-unit-demand outcome
(R(a), {Ci(a)}di=1) follows the standard Gaussian distri-
bution truncated in [0, 1]d+1, which has mean denoted as
(r(a), c(a)). We perform two groups of the experiment. In
each group, we first generate a sample of (r, c, {qt}15000t=1 ).
Then, for each fixed T , we simulate each algorithm ten
times with demand volume sequence {qt}Tt=1, and compute
the regret based on the sample average.

Figures 2 and 3 plots the regret of each algorithm on dif-
ferent horizon lengths, in each of the two groups. The
superiority in numerical performance for OA-UCB does not
mean that our algorithm is strictly superior to the baselines.
Indeed, our algorithm OA-UCB receives online advice by
Algorithm 2, while the benchmarks do not. The numerical
results instead indicate the benefit of prediciting the under-
lying non-stationary demand sequence, and showcase how
a suitably designed algoirhtm such as OA-UCB could reap
the benefit of predictions.

Figure 2. Regret on Experiment Group 1

Figure 3. Regret on Experiment Group 2

8
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Figure 4 depict the trend of the accumulated rewards as
time progresses, with horizon T = 10000. The black dot-
ted lines indicate the stopping times of each algorithm re-
spectively. Compared with our algorithm OA-UCB, PDB
and SW-UCB could appear conservative, meaning that they
focus too much on not exhausting resources. In contrast,
AD-UCB seems a little aggressive, meaning that it prefers to
choose the arm with high reward and resource consumption.

Figure 4. Cumulative Reward growing.

6. Conclusion
We study a non-stationary bandit with knapsack problem, in
the presense of a prediction oracle on the latent total demand
volume Q. Our oracle is novel compared to existing models
in online optimization with machine-learned advice (such
as (Lykouris & Vassilvitskii, 2021)), in that ours returns a
(possibly refined) prediction on Q every time step. There are
many interesting future directions, such as investigating the
models (Bamas et al., 2020; Lykouris & Vassilvitskii, 2021;
Purohit et al., 2018; Mitzenmacher, 2019) in the presense
of sequential prediction oracles similar to ours. It is also
interesting to invenstigate other forms of predictions, such as
predictions with distributional information (Bertsimas et al.,
2019; Diakonikolas et al., 2021). Customizing prediction
oracles for NS-BwK-OA is also an interesting direction
(Anand et al., 2020).
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A. Proof for Section 2
A.1. Proof for Lemma 2.1

Let’s first consider

OPT′
LP = max

xt∈∆|A|, ∀t∈[T ]

T∑
t=1

qtr
⊤xt s.t.

T∑
t=1

qtc
⊤xt ≤ B1d, (18)

where ∆|A| = {w :
∑

a∈A wa = 1} is the probability simplex across all arms. It is evident that OPT′
LP ≥ OPT, since for a

fixed policy π that achieves OPT, the solution x̄ = {x̄t,a}t∈[T ],a∈A defined as

x̄t,a = E[1(action a is chosen at t under π)]

is feasible to OPT′, and the objective value of x̄ in OPT′
LP is equal to the expected revenue earned in the online process.

Next, we claim that OPTLP = OPT′
LP. Indeed, for each feasible solution (xt)t∈[T ] to OPT′

LP, the solution

u =

∑T
t=1 qtxt∑T
t=1 qt

,

is feasible to LPOPT and has the same objective value as (xt)t∈[T ]. Altogether, the Lemma is proved.

B. Proofs for Section 3, and Consistency Remarks
In this section, we provide proofs to the lower bound results. In both proofs, we consider an arbitrary but fixed deterministic
online algorithm, that is, conditioned on the realization of the history in 1, . . . , t − 1 and qt, Q̂t, the chosen arm At is
deterministic. This is without loss of generality, since the case of random online algorithm can be similarly handled by
replace the chosen arm At with a probability distribution over the arms, but we focus on deterministic case to ease the
exposition. Lastly, in Section B.3 we demonstrate that our regret upper and lower bounds are consistent on the lower
bounding instances we constructed in Section B.2.

B.1. Proof for Lemma 3.1

Our lower bound example involve two instances I(1), I(2) with determinstic rewards and deterministic consumption amounts.
Both instances involve two non-dummy arms 1, 2 in addition to the null arm a0, and there is d = 1 resource type. Instances
I(1), I(2) differ in their respective seqeunces of demand volumes {q(1)t }Tt=1, {q

(2)
t }Tt=1, but for other parameters are the same

in the two instances.

In both I(1), I(2), arm 1 is associated with (deterministc) reward r(1) = 1 and (deterministic) consumption amount
c(1, 1) = 1, while arm 2 is associated with (deterministc) reward r(2) = 3/4 and (deterministic) consumption amount
c(2, 1) = 1/2. Both instances share the same horizon T , a positive even integer, and the same capacity B = T/2. The
sequences of demand volumes {q(1)t }Tt=1, {q

(2)
t }Tt=1 of instances I(1), I(2) are respectively defined as

q
(1)
t =

{
1 if t ∈ {1, . . . , T/2},
1/16 if t ∈ {T/2 + 1, . . . , T},

q
(2)
t = 1, for all t ∈ {1, . . . , T}.

Then the optimal reward for I(1) is at least T
2 (always select the arm 1 until the resource is fully consumed), and the optimal

reward for I(2) is 3T
4 (always select arm 2 until the resource is fully consumed).

Consider the first T/2 rounds, and consider an arbitrary online algorithm that knows {Pa}a∈A,
{(qs, qsRs, qsCs,1, . . . qsCs,d)}t−1

s=1 and qt when the action At is to be chosen at each time t. Under this setting,
the DM recieves the same set of observations in the first T/2 time steps in each of instances I(1), I(2). Consequently, the
sequence of arm pulls in the first T/2 time steps are the same. Now, we denote Na =

∑T/2
t=1 1(At = a) for a ∈ {1, 2}. By

the previous remark, Na is the number of times arm a is pulled during time steps 1, . . . , T/2 in each of the two instances.

12
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Observe that N1 +N2 ≤ T
2 , which implies N1 ≤ T

4 or N2 ≤ T
4 . We denote RewardT (I

(i)),RegretT (I
(i)) as the expected

reward and the expected regret of the policy in instance I(i). In what follows, we demonstrate that

max
i∈{1,2}

RegretT (I
(i)) ≥ T

32
, (19)

which proves the Lemma.

Case 1: N1 ≤ T
4 . We consider the algorithm on I(1), which earns

RewardT (I
(1)) ≤ T

4
· 1 + T

4
· 3
4
+

T

2

1

16
=

15

32
T.

Hence,

RegretT (I
(1)) ≥ T

2
− RewardT (I

(1)) ≥ 1

32
T.

Case 2: N2 ≤ T
4 . We consider the algorithm on I(2), which earns

RewardT (I
(2)) =

(
T

2
−N2

)
· 1 +N2 ·

3

4
+

(
T

2
−
(
T

2
−N2

)
· 1−N2 ·

1

2

)
·

3
4
1
2

=
T

2
+

N2

4
≤ 9

16
T.

Hence,

RegretT (I
(2)) ≥ 3

4
T − RewardT (I

(2)) ≥ 3

16
T.

Altogether, the inequality (19) is shown.

B.2. Proof for Theorem 3.2

By the Theorem’s assumption that ϵT0+1 > 0 is (T0 + 1, {qt}T0
t=1)-well response by F = {Ft}, we know that

0 < ϵT0+1 ≤ min

{
Q̂T0+1 −

T0∑
t=1

qt − q(T − T0), q(T − T0)− Q̂T0+1 −
T0∑
t=1

qt,
Q̂T0+1

2

}
, (20)

where Q̂T0+1 = FT0+1(q1, . . . , qT0). To proceed, we take a demand volume seqeunce {qt}T0
t=1 ∈ [q, q]T0 that satisfies the

assumption. In what follows, we first construct two deterministic instances I(1), I(2) which only differ in their respective
seqeunces of demand volumes {q(1)t }Tt=T0+1, {q

(2)
t }Tt=T0+1, but the two instances are the same on other parameters, and

that q(1)t = q
(2)
t = qt for t ∈ {1, . . . , T0}. Both I(1), I(2) only involve one resource constraint. We estbalish the Theorem

by showing three claims:

1. Both I(1), I(2) are (T0 + 1, ϵT0+1)-well-estimated by F , and the underlying online algorithm and prediction oracle
(which are assumed to be fixed but arbitrary in the Theorem statement) suffer

RegretT (I
(i)) ≥

∑T0

t=1 qtϵT0+1

6Q(i)
for some i ∈ {1, 2}. (21)

In (21), we define RegretT (I
(i)) as the regret of the algorithm on instance I(i), and Q(i) =

∑T
t=1 q

(i)
t .

2. Among the set of instances {J (i)
c }i∈[K] (see Instances {J (i)

c }i∈[K]), the online algorithm suffers

RegretT (J
(i)
c ) ≥ 1

128
min

{
1,

√
Kq̄

B

}
opt(J (i)

c ) for some i ∈ [K], (22)

where opt(I) denote the optimum of instance I , even when the DM has complete knowledge on q1, . . . , qT , and Q̂t is
equal to the ground truth Q in each of the instances in {J (i)

c }i∈[K].

13
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3. Among the set of instances {J (i)
r }i∈[K] (see Instances {J (i)

r }i∈[K]), the online algorithm suffers

RegretT (J
(i)
r ) ≥ 1

20

√
q̄Kopt(J (i)

r ) for some i ∈ [K], (23)

even when the DM has complete knowledge on q1, . . . , qT , and Q̂t is equal to the ground truth Q in each of the
instances in {J (i)

r }i∈[K].

Once we establish inequalities (21, 22, 23), the Theorem is shown. We remark that (22, 23) are direct consequences of
(Badanidiyuru et al., 2013). We first extract the instances {J (i)

c }i∈[K], {J
(i)
r }i∈[K] that are constructed in (Badanidiyuru

et al., 2013), then we construct the instances I(1), I(2). After that, we prove (21), which establish the Theorem.

Instances {J (i)
c }i∈[K]. These instances are single resource instances, with determinsitic rewards but stochastic consumption.

According to (Badanidiyuru et al., 2013), we first set parameters

η =
1

32
min

{
1,

√
K

B

}
, T =

16B

η(1/2− η)
,

and set qt = q for all t ∈ [T ]. The instances J (1)
c , . . . , J

(K)
c share the same B, T, {qt}Tt=1, and the instances share the same

(deterministic) reward function:

R(a) = r(a) =

{
1 if a ∈ [K] \ {a0}
0 if a = a0

.

In contrast, instances J (1)
c , . . . , J

(K)
c differ in the resource consumption model. We denote C(i)(a) as the random consump-

tion of arm a in instance J
(i)
c . The probability distribution of C(i)(a) for each a, i ∈ [K] is defined as follow:

C(i)(a) ∼


Bern(1/2) if a ∈ [K] \ {a0, i}
Bern(1/2− η) if a = i

Bern(0) if a = a0

,

where Bern(p) denotes the Bernoulli distribution with mean d. The regret lower bound (22) is a direct consequence of
Lemma 6.10 in (Badanidiyuru et al., 2013), by incorporating the scaling factor q̄ into the rewards earned by the DM and the
optimal reward.

Instances {J (i)
r }i∈[K]. These instances are single resource instances, with random rewards but deterministic consumption.

These instances share the same B, T > K (set arbitrarily), the same demand volume seqeunce, which is qt = q for all
t ∈ [T ], and the same resource consumption model, in that c(a) = 0 for all a ∈ A. These instances only differ in the reward
distributions. We denote R(i)(a) as the random reward of arm a in instance J

(i)
r . The probability distribution of R(i)(a) for

each a, i ∈ [K] is defined as follow:

R(i)(a) ∼


Bern

(
1
2 − 1

4

√
K
T

)
if a ∈ [K] \ {a0, i}

Bern(1/2) if a = i

Bern(0) if a = a0

.

The regret lower bound (23) is a direct consequence of Claim 6.2a in (Badanidiyuru et al., 2013), by incorporating the
scaling factor q̄ into the rewards earned by the DM and the optimal reward.

Construct I(1), I(2). We first describe {q(1)t }Tt=1, {q
(2)
t }Tt=1. As previously mentioned, for t ∈ {1, . . . , T0}, we have

q
(1)
t = q

(2)
t = qt. To define q

(1)
t , q

(2)
t for t ∈ {T0 + 1, . . . , T}, first recall that |Q̂T0+1 −Q| ≥ ϵT0+1, where ϵT0+1 satisfies

(20). By (20), we know that

q(T − T0) ≤ Q̂T0+1 −
T0∑
t=1

qt − ϵT0+1 < Q̂T0+1 −
T0∑
t=1

qt + ϵT0+1 ≤ q(T − T0)

14
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We set q(1)T0+1 = . . . = q
(1)
T ∈ [q, q] and q

(2)
T0+1 = . . . = q

(2)
T ∈ [q, q] such that based on current instance {qt}T0

t=1 we have

ever received, we construct the following two subsequent instances I(1) = {q(1)t }Tt=T0+1, I(2) = {q(2)t }Tt=T0+1, such that

Q(1) =

T∑
t=1

q
(1)
t = Q̂T0+1 − ϵT0+1, Q(2) =

T∑
t=1

q
(2)
t = Q̂T0+1 + ϵT0+1,

which is valid by the stated inequalities.

Next, we define the parameters {r(a)}a∈A, {c(a, 1)}a∈A, B, and recall that d = 1. Similar to the proof for Lemma 3.1,
we only consider deterministic instances, so it is sufficient to define the mean rewards and consumption amounts. To
facilitate our discussion, we specify A = [K] = {1, 2, . . . ,K}, with K ≥ 3 and arm K being the null arm. The parameters
{r(a)}a∈A, {c(a, 1)}a, B shared between instances I(1), I(2) are defined as follows:

r(a) =


1 if a = 1,

(1 + c)/2 if a = 2,

0 if a ∈ {3, . . . ,K},

and

c(a, 1) =


1 if a = 1,

c if a = 2,

0 if a ∈ {3, . . . ,K},

where

c =
Q̂T0+1 − ϵT0+1

Q̂T0+1 + ϵT0+1

.

Finally, we set
B = Q̂T0+1 − ϵT0+1.

Inequality (20) ensures that c,B > 0.

Proving (21). To evaluate the regrets in the two instances, we start with the optimal reawrds. The optimal reward in I(1) is
Q̂T0+1 − ϵT0+1, which is achieved by pulling arm 1 until the resource is exhasuted. The optimal reward for I(2) is Q̂T0+1,
which is achieved by pulling arm 2 until the resource is exhasuted.

Consider the execution of the fixed but arbitrary online algorithm during time steps 1, . . . , T0 in each of the instances. The
prediction oracle returns the same prediction Q̂t for t ∈ {1, . . . , T0} in both instances, since both instances share the same
r, c, B, T and q

(1)
t = q

(2)
t for t ∈ {1, . . . , T0}. Consequently, the fixed but arbitrary online algorithm has the same sequence

of arm pulls A1, . . . , AT0
during time steps 1, . . . , T0 in both instances I(1), I(2). Now, for each arm i ∈ {1, 2}, we define

Ni = {t ∈ {1, . . . , T0} : At = i}, which has the same realization in instances I(1), I(2). Since N1 ∪N2 ⊆ [T0], at least
one of the cases

∑
t∈N1

qt ≤ 1
2

∑T0

s=1 qs or
∑

t∈N2
qt ≤ 1

2

∑T0

s=1 qs holds.

We denote RewardT (I
(i)) as the expected reward of the online algorithm in instance I(i). We proceed with the following

case consideration:

Case 1:
∑

t∈N1
qt ≤ 1

2

∑T0

s=1 qs. We consider the online algorithm’s execution on I(1), which yields

RewardT (I
(1)) ≤

∑T0

s=1 qs
2

· 1 +
∑T0

s=1 qs
2

· 1
2
(1 + c) +

(
Q̂T0+1 − ϵT0+1 −

T0∑
s=1

qs

)
· 1

=

(
T0∑
s=1

qs

)(
−1

4
+

1

4
c

)
+ Q̂T0+1 − ϵT0+1.

Hence,

RegretT (I
(1)) ≥

(
T0∑
s=1

qs

)
· 1
4
(1− c) =

∑T0

s=1 qsϵT0+1

2(Q̂T0+1 + ϵT0+1)
≥

∑T0

s=1 qsϵT0+1

6(Q̂T0+1 − ϵT0+1)
=

∑T0

s=1 qsϵT0+1

6Q(1)
,

15



Bandits with Knapsacks: Advice on Time-Varying Demands

where the last inequality is by the well response condition that guarantees that 2ϵT0+1 ≤ Q̂T0+1. For the last equality, recall
Q̂T0+1 − ϵT0+1 =

∑T
t=1 q

(1)
t .

Case 2:
∑

t∈N2
qt ≤ 1

2

∑T0

s=1 qs. We consider the online algorithm’s execution on I(2), which yields

RewardT (I
(2)) ≤

(
T0∑
s=1

qs −
∑
t∈N2

qt

)
· 1 +

∑
t∈N2

qt ·
1

2
(1 + c) +

(
B −

(
T0∑
s=1

qs −
∑
t∈N2

qt

)
−
∑
t∈N2

qt · c

)
·

1
2 (1 + c)

c

=

T0∑
s=1

qs

(
1− 1 + c

2c

)
+

(∑
s∈N2

qs

)[
−1 +

1 + c

2
+

1 + c

2c
− 1 + c

2

]
+B · 1 + c

2c

= −
∑T0

s=1 qsϵT0+1

Q̂T0+1 − ϵT0+1

+

(∑
s∈N2

qs

)
· ϵT0+1

Q̂T0+1 − ϵT0+1

+ Q̂T0

≤ −
∑T0

s=1 qsϵT0+1

2(Q̂T0+1 − ϵT0+1)
+ Q̂T0+1.

Hence,

RegretT (I
(2)) ≥

∑T0

s=1 qsϵT0+1

2(Q̂T0+1 − ϵT0+1)
≥

∑T0

s=1 qsϵT0+1

2(Q̂T0+1 + ϵT0+1)
=

∑T0

s=1 qsϵT0+1

2Q(2)
.

Altogether, the Theorem is proved.

B.3. Consistency Between Regret Upper and Lower Bounds

Recall that in the proof of Theorem 3.2, we constructed two instances I(1), I(2) such that (see (21):

RegretT (I
(i)) ≥

∑T0

t=1 qtϵT0+1

6Q(i)
for some i ∈ {1, 2}, (24)

where RegretT (I
(i)) is the regret of an arbitrary but fixed online algorithm on I(i), with its prediction oracle satisfying that

|Q(i) − Q̂t| ≤ ϵT0+1 for each i ∈ {1, 2}. (25)

In the lower bound analysis on I(1), I(2), we establish the regret lower bound (24) solely hinging on the model uncertainty
on Q(1), Q(2), and the bound (24) still holds when the DM knows {Pa}a∈A.

In particular, we can set the online algorihtm to be OA-UCB, with an oracle that satisfies the property (25) above. Now,
also recall in our construction that q(1)t = q

(2)
t = qt for all t ∈ [T0], thus the predictions Q̂t for t ∈ [T0] are the same in

the two instances, whereas Q(1) = Q̂T0+1 − ϵT0+1 but Q(2) = Q̂T0+1 + ϵT0+1, while we still have Q(2) ≤ 3Q(1), so that
Q(1) = Θ(Q(2)). Therefore, (24) is equivalent to

max
i∈{1,2}

{RegretT (I
(i))} ≥ Ω

(∑T0

t=1 qtϵT0+1

Q(1)

)
. (26)

To demonstrate the consistency, it suffices to show

max
i∈{1,2}

{
1

Q(1)

τ−1∑
t=1

qtϵ
(i)
t

}
= Ω

(∑T0

t=1 qtϵT0+1

Q(1)

)
. (27)

where ϵ(i)t = |Q̂t −Q(i)| is the prediction error on instance I(i) at time t. Indeed, to be consistent, we should have Theorem
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4.3 holds true for both instances, while (26) still holds true. We establish (27) as follows:

max
i∈{1,2}

{
τ−1∑
t=1

qtϵ
(i)
t

}
≥

τ−1∑
t=1

qt
ϵ
(1)
t + ϵ

(2)
t

2

=

τ−1∑
t=1

qt
|Q̂t − Q̂T0+1 + ϵT0+1|+ |Q̂t − Q̂T0+1 − ϵT0+1|

2

≥
τ−1∑
t=1

qt
2ϵT0+1

2
(28)

≥
T0∑
t=1

qtϵT0+1. (29)

Step (28) is by the triangle inequality, and step (29) is by the fact that for any algorithm that fully exhausts the resource, its
stopping time τ > T0 (In the case when OA-UCB does not fully consume all the resource at the end of time T , by definition
we have τ = T + 1 > T0). By construction, the common budget B in both instances is strictly larger than

∑T0

t=1 qt, thus the
resource is always not exhasuted at T0, since at time t ∈ [T0] the DM consumes at most qt units of resource. Altogether,
(27) is shown and consistency is verified.

C. Proof of Theorem 4.3
Before we embark on the proof, we first state a well known result on online gradient descent:
Lemma C.1 (Theorem 3.1 in (Hazan et al., 2016)). Suppose {ft} are convex functions, then Online Gradient Descent
presented in Algorithm 3 applied on {ft} with step sizes {ηt = D

G
√
t
} guarantees the following for all T ≥ 1:

T∑
t=1

ft(xt)− min
x∗∈S

T∑
t=1

ft(x
∗) ≤ 3

2
GD

√
T ,

where D = diam(S) and G = maxt ∥∇ft∥.

Algorithm 3 Online Gradient Descent
1: Initialize convex set S, x1 ∈ K, step sizes {ηt}Tt=1.
2: for t = 1, 2, ..., T do
3: Play xt and observe cost ft(xt).
4: Update

xt+1 = ΠS (xt − ηt∇ft(xt)) .

5: end for

Now we begin the proof of Theorem 4.3. Denote UCBr,t = (UCBr,t(a))a∈A, LCBc,t = (LCBc,t(a, i))a∈A,i∈[d]. We first
claim that, at a time step t ≤ τ ,

eAt
∈ argmax

u∈∆|A|

UCB⊤
c,tu− Q̂t

B
· µ⊤

t LCB⊤
c,tu. (30)

In fact, the following linear optimization problem

max UCB⊤
r,tu− Q̂t

B
· µ⊤

t LCB⊤
c,tu

s.t. u ∈ ∆|A|

has an extreme point solution such that u∗ = ea for some a ∈ A. According to the definition of At, we know that u∗ = eAt .
Then the claim holds. Suppose u∗ is an optimal solution of (2), then we have OPTLP = Qr⊤u∗, Qc⊤u∗ ≤ B1 and
u∗ ∈ ∆|A|. By the optimality of (30), we have

UCBr,t(At)−
Q̂t

B
· µ⊤

t LCBc,t(At) = UCB⊤
r,teAt

− Q̂t

B
· µ⊤

t LCB⊤
c,teAt

≥ UCB⊤
r,tu

∗ − Q̂t

B
· µ⊤

t LCBc,tu
∗,

17
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which is equivalent to

UCB⊤
r,tu

∗ − UCBr,t(At) +
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − LCB⊤
c,tu

∗
)

≤ Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − LCBc,t(At)

)
.

Times qt on both side and sum all t from 1 to τ − 1 and apply Lemma C.1 with ft(x) =
qtQ̂t

B

(
B
Q̂t

1d − LCBc,t(At)
)⊤

x,

S = {µ : ∥µ∥1 ≤ 1,µ ≥ 0d}, D = diam(S) =
√
2, G = maxt ∥∇ft∥ = M , then we obtain

τ−1∑
t=1

qtUCB⊤
r,tu

∗ −
τ−1∑
t=1

qtUCBr,t(At) +

τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − LCB⊤
c,tu

∗
)

≤
τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − LCBc,t(At)

)

≤ min
µ∗∈S

τ−1∑
t=1

qt
Q̂t

B
·
(

B

Q̂t

1d − LCBc,t(At)

)⊤

µ∗ +O
(
M

√
T
)

≤
τ−1∑
t=1

qt
Q̂t

B
·
(

B

Q̂t

1d − LCBc,t(At)

)⊤

µ+O
(
M

√
T
)
, ∀µ ∈ S.

(31)

Recap by lemma 4.2 that with probability ≥ 1− 3KTdδ, we have

LCBc,t ≤ c.

Hence, with probability ≥ 1− 3KTdδ,

τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − LCB⊤
c,tu

∗
)

≥
τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d − c⊤u∗
)

(32a)

=

τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d −
B

Q
1d

)
+

τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q
1d − c⊤u∗

)
(32b)

≥
τ−1∑
t=1

qt
Q̂t

B
· µ⊤

t

(
B

Q̂t

1d −
B

Q
1d

)
(32c)

=

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
∥µt∥1, (32d)

where (32a) comes from Lemma 4.2, (32b) comes from rearranging the sum, and (32c) comes from the fact the definition
of u∗. We first consider the case τ ≤ T , which implies that there exists j0 ∈ [d] such that

τ∑
t=1

qtCt,j0 > B ⇒
τ−1∑
t=1

qtCt,j0 > B − q. (33)

Take µ = λej0 , where λ ∈ [0, 1] is a constant that we tune later. In this case, with probability ≥ 1− 3KTδ,

τ−1∑
t=1

qtUCB⊤
r,tu

∗ ≥
τ−1∑
t=1

qtr
⊤
t u

∗ = OPTLP
Qτ−1

Q
, (34)
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and

λ

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

1d − LCBc,t(At)

)⊤

ej0 = λ

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− LCBc,t(At, j0)

)

= λ

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
+ λ

τ−1∑
t=1

qt
Q̂t

B

(
B

Q
− Ct,j0

)

+ λ

τ−1∑
t=1

qt
Q̂t

B
(Ct,j0 − LCBc,t(At, j0)) .

(35)

Then we deal with each term respectively:

τ−1∑
t=1

qt
Q̂t

B

(
B

Q
− Ct,j0

)
=

τ−1∑
t=1

qt
Q

B

(
B

Q
− Ct,j0

)
+

τ−1∑
t=1

qt
Q̂t −Q

B

(
B

Q
− Ct,j0

)
(36a)

≤ Qτ−1 −
Q

B

τ−1∑
t=1

qtCt,j0 +
1

B

τ−1∑
t=1

qtϵt

∣∣∣∣BQ − Ct,j0

∣∣∣∣ (36b)

< Qτ−1 −Q+
Q

B
q +

1

B

τ−1∑
t=1

qtϵt
B

Q
+

1

B

τ−1∑
t=1

qtϵtCt,j0 (36c)

≤ Qτ−1 −Q+
Q

B
q +

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt, (36d)

where (36a) comes from rearranging the sum, (36c) comes from the (33), and (36d) comes from the assumption that Ct,j0

is supported in [0, 1]. Similarly,

τ−1∑
t=1

qt
Q̂t

B
(Ct,j0 − LCBc,t(At, j0)) =

τ−1∑
t=1

qt
Q

B
(Ct,j0 − LCBc,t(At, j0)) +

τ−1∑
t=1

qt
Q̂t −Q

B
(Ct,j0 − LCBc,t(At, j0))

≤ Q

B

∣∣∣∣∣
τ−1∑
t=1

qt (Ct,j0 − LCBc,t(At, j0))

∣∣∣∣∣+ 1

B

τ−1∑
t=1

qtϵt,

(37)

where the equality comes from rearranging the sum, and the inequality comes from the assuption that |Q̂t − Q| ≤ ϵt,
0 ≤ LCBc,t(At, j0), Ct,j0 ≤ 1. Combine (35), (36) and (37), we obtain

λ

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

1d − LCBc,t(At)

)⊤

ej0 ≤ λ

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
+ λ

(
Qτ−1 −Q+

Q

B
q +

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt

)

+ λ

(
Q

B

∣∣∣∣∣
τ−1∑
t=1

qt (Ct,j0 − LCBc,t(At, j0))

∣∣∣∣∣+ 1

B

τ−1∑
t=1

qtϵt

)

≤ λ

(
Qτ−1 −Q+

Q

B
q +

Q

B

∣∣∣∣∣
τ−1∑
t=1

qt (Ct,j0 − LCBc,t(At, j0))

∣∣∣∣∣
)

+

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
+O

((
1

Q
+

1

B

) τ−1∑
t=1

qtϵt

)
,

(38)

where the second inequality comes from the assumption that λ ∈ [0, 1]. Finally, combine (31), (32), (34), (38), we obtain

OPTLP
Qτ−1

Q
−

τ−1∑
t=1

qtUCBr,t(At) +

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
∥µt∥1

≤λ

(
Qτ−1 −Q+

Q

B
q +

Q

B

∣∣∣∣∣
τ−1∑
t=1

qt (Ct,j0 − LCBc,t(At, j0))

∣∣∣∣∣
)

+

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
+O

((
1

Q
+

1

B

) τ−1∑
t=1

qtϵt

)
,

19



Bandits with Knapsacks: Advice on Time-Varying Demands

which is equivalent to

OPTLP −
τ−1∑
t=1

qtUCBr,t(At) ≤ OPTLP

(
1− Qτ−1

Q

)
+ λ

(
Qτ−1 −Q+

Q

B
q +

Q

B

∣∣∣∣∣
τ−1∑
t=1

qt (Ct,j0 − LCBc,t(At, j0))

∣∣∣∣∣
)

+

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
(1− ∥µt∥1) +O

((
1

Q
+

1

B

) τ−1∑
t=1

qtϵt

)
+O

(
M

√
T
)
.

Let λ = OPTLP
Q ≤ 1 (This is because OPTLP = Qr⊤u∗ ≤ Q), then we can further derive with probability ≥ 1− 3KTdδ,

OPTLP −
τ−1∑
t=1

qtUCBr,t(At) ≤ OPTLP

(
1− Qτ−1

Q

)
+

OPTLP

Q

(
Qτ−1 −Q+

Q

B
q +

Q

B

∣∣∣∣∣
τ−1∑
t=1

qt (Ct,j0 − LCBc,t(At, j0))

∣∣∣∣∣
)

+

τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
(1− ∥µt∥1) +O

((
1

Q
+

1

B

) τ−1∑
t=1

qtϵt

)
+O

(
M

√
T
)

=
OPTLP

B
q +

OPTLP

B

∣∣∣∣∣
τ−1∑
t=1

qt (Ct,j0 − LCBc,t(At, j0))

∣∣∣∣∣+
τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
(1− ∥µt∥1)

+O

((
1

Q
+

1

B

) τ−1∑
t=1

qtϵt

)
+O

(
M

√
T
)

≤ O

(
log

(
1

δ

)
OPTLP

(√
qK

B
+

qK

B
log

(
T

K

))
+

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt +M
√
T

)

= O

(
log

(
1

δ

)
OPTLP

√
qK

B
+

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt +M
√
T

)
,

(39)

where the second inequality comes from Lemma D.10 and the following
τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
(1− ∥µt∥1) ≤

τ∑
t=1

qt
Q̂t

B

∣∣∣∣BQ − B

Q̂t

∣∣∣∣ = 1

Q

τ∑
t=1

qt

∣∣∣Q̂t −Q
∣∣∣ ≤ 1

Q

τ∑
t=1

qtϵt.

The above concludes our arguments for the case τ ≤ T . In complement, we then consider the case τ > T , which means that
τ = T + 1, and no resource is fully exhausted during the horizon. With probability ≥ 1− 3KTδ, we have

T∑
t=1

qtUCB⊤
r,tu

∗ ≥
T∑

t=1

qtr
⊤
t u

∗ = OPTLP. (40)

Take µ = 0 and combine (31), (32), (40), with probablity ≥ 1− 3KTδ, we have

OPTLP −
τ−1∑
t=1

qtUCBr,t(At) ≤ −
τ−1∑
t=1

qt
Q̂t

B

(
B

Q̂t

− B

Q

)
∥µt∥1 +O

(
M

√
T
)

≤ O

(
1

Q

τ−1∑
t=1

qtϵt +M
√
T

)
.

(41)

Combine (41) and (39), for any stopping time τ , with probability ≥ 1− 3KTdδ, we have

OPTLP −
τ−1∑
t=1

qtUCBr,t(At) ≤ O

(
log

(
1

δ

)
OPTLP

√
qK

B
+

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt +M
√
T

)
.

By Lemma D.9, we can further derive it to the high probability bound, that with probability ≥ 1− 3KTdδ,

OPTLP −
τ−1∑
t=1

qtRt ≤ O

log

(
1

δ

)OPTLP

√
qK

B
+

√√√√qK

τ−1∑
t=1

qtRt + qK log

(
T

K

)+

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt +M
√
T


≤ O

(
log

(
1

δ

)(
OPTLP

√
qK

B
+
√
qKOPTLP

)
+

(
1

Q
+

1

B

) τ−1∑
t=1

qtϵt +M
√
T

)
,

where the second inequality comes from the fact that OPTLP ≥
∑τ−1

t=1 qtRt. Now we finish the proof of Theorem 4.3.
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D. Proofs for Confidence Radii
This section contains proofs for the confidence radius results, which largely follow the literature, but we provide complete
proofs since we are in a non-stationary setting. Section D.1 provides the proof for Lemma 4.1, which allows us to extract the
implicit constants in existing proofs in (Babaioff et al., 2015; Agrawal & Devanur, 2014). Section D.2 provides the proof for
Lemma 4.2. Finally, section D.3, we prove inequalities (14, 15).

D.1. Proof for Lemma 4.1, due to (Babaioff et al., 2015; Agrawal & Devanur, 2014)

In this subsection, we prove Lemma 4.1 by following the line of arguments in (Babaioff et al., 2015). We emphasize that a
version of the Lemma has been proved in (Babaioff et al., 2015). We dervie the Lemma for the purpose of extracting the
values of the constant coefficients. We first extract some relevant concentration inequalities in the following two Lemmas.

Lemma D.1 (Theorem 8 in (Chung & Lu, 2006)). Suppose {Ui}ni=1 are independent random variables satisfying Ui ≤ M ,
for 1 ≤ i ≤ n almost surely. Let U =

∑n
i=1 Ui, ∥U∥2 =

∑n
i=1 E[U2

i ]. With probability ≥ 1− e−x, we have

U − E[U ] ≤
√
2∥U∥2x+

2x

3
max{M, 0}.

Lemma D.2 (Theorem 6 in (Chung & Lu, 2006)). Suppose Ui are independent random variables satisfying Ui−E[Ui] ≤ M ,
M > 0, for 1 ≤ i ≤ n. Let U =

∑n
i=1 Ui, Var(U) =

∑n
i=1 Var(Ui), then with probability ≥ 1− e−x, we have

U − E[U ] ≤
√
2Var(U)x+

2Mx

3
.

Using Lemma D.2, we first derive the following Lemma that bounds the empirical mean:

Lemma D.3. Let {Xi}ni=1 be independent random variables supported in [0, 1]. Let X =
∑n

i=1 Xi and Var(X) =∑n
i=1 Var(Xi). For any fixed x > 0, With probability ≥ 1− 2e−x, we have

|X − E[X]| ≤
√

2Var(X)x+
2x

3
.

Proof of Lemma D.3. Apply Lemma D.2 with Ui = Xi, Ui = −Xi, respectively, and M = 1, then with probability
≥ 1− 2e−x, we have

|X − E[X]| ≤
√

2Var(X)x+
2x

3
.

Next, we bound the difference between the ground truth variance and its empirical counterpart using Lemma D.1:

Lemma D.4. Suppose Xi are independent random variables supported in [0, 1]. Let X =
∑n

i=1 Xi, Var(X) =∑n
i=1 Var(Xi), Vn =

∑n
i=1 (Xi − E[Xi])

2then with probability ≥ 1− 3e−x, we have√
Var(X) ≤

√
Vn + 2

√
x.

Proof of Lemma D.4. The proof follows the line of argument in (Audibert et al., 2009). First, we apply Lemma D.1 with
Ui = −(Xi − E[Xi])

2 and M = 0. With probability ≥ 1− e−x, we have

Var(X) ≤ Vn +

√√√√2

(
n∑

i=1

E
[
(Xi − E[Xi])

4
])

x ≤ Vn +

√√√√2

(
n∑

i=1

E
[
(Xi − E[Xi])

2
])

x = Vn +
√

2Var(X)x. (42)
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Since Xi ∈ [0, 1] almost surely for all i ∈ [n], we have

Var(Xi) = E[X2
i ]− E[Xi]

2 ≤ E[Xi]− E[Xi]
2 ≤ 1

4
.

Now, observe that

Var(X) =
∑
i=1

Var(Xi) ≤
n∑

i=1

1

4
=

n

4
⇒
√

Var(X) ≤
√
n

2
.

If 2
√
x ≥

√
n
2 , then the Lemma evidently holds. Otherwise, we assume 2

√
x ≤

√
n
2 , which is equivalent to x ≤ n

16 .
Combining Lemma D.3 and (42), with probability ≥ 1− 3e−x, we have,

Var(X) ≤ Vn +
√

2Var(X)x+
(X − E[X])

2

n

≤ Vn +
√
2Var(X)x+

1

n

(
2Var(X)x+

4

3
x
√

2Var(X)x+
4x2

9

)
≤ Vn +

√
2Var(X)x+

1

n

(
2
√

Var(X)x ·
√
n

2

√
n

4
+

4

3

√
2Var(X)x · n

16
+

4x

9
· n

16

)
=
√

Var(X)x

(
13

12

√
2 +

1

4

)
+
(
Vn +

x

36

)
.

Consequently, we can derive an upper bound for
√

Var(X):

√
Var(X) ≤

√
x

2

(
13

12

√
2 +

1

4

)
+

1

2

√
x

(
13

12

√
2 +

1

4

)2

+ 4
(
Vn +

x

36

)
≤
√

Vn + 2
√
x,

which proves the Lemma.

Lemma D.5. Suppose Xi are independent random variables supported in [0, 1]. Let X =
∑n

i=1 Xi, then with probability
≥ 1− 3e−x, we have

|X − E[X]| ≤
√
2Xx+ 4x.

Proof of Lemma D.5. Apply Lemma D.3 and Lemma D.4, we directly derive that with probability ≥ 1− 3e−x

|X − E[X]| ≤
√
2Var(X)x+

2x

3
≤
√
2Vnx+

(
2
√
2 +

2

3

)
x <

√
2Vnx+ 4x ≤

√
2Xx+ 4x,

where the last inequality comes from the fact that for random variable whose support is [0, 1], then its variance is always
smaller than its mean.

Lemma D.6 (Theorem 1.1 in (Dubhashi & Panconesi, 2009)). Suppose Xi are independent random variables supported in
[0, 1]. Let X =

∑n
i=1 Xi, then for any R > 2eE[X], we have

P(X > R) ≤ 2−R.

Now we turn back to the proof of Lemma 4.1. Denote δ = e−x. Apply Lemma D.5 then with probability ≥ 1− 3δ, we have,

N
∣∣∣V̂ − E

[
V̂
]∣∣∣ ≤√2NV̂ log

(
1

δ

)
+ 4 log

(
1

δ

)
,

which is equivalent to , ∣∣∣V̂ − E
[
V̂
]∣∣∣ ≤ rad

(
V̂ , N, δ

)
. (43)
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Besides,

P
(

rad
(
V̂ , N, δ

)
> 3rad

(
E
[
V̂
]
, N, δ

))
≤ P

(
V̂ > 9E

[
V̂
]
+ 32 log

(
1

δ

))
≤ 2−9E[V̂ ]−32 log( 1

δ )

≤ δ.

(44)

Therefore, combining (43) and (44), the lemma holds.

D.2. Proof for Lemma 4.2

By Lemma 4.1, with probability ≥ 1− 3KTδ, we have

|r(a)− R̂t(a)| ≤ rad(R̂t(a), N
+
t−1(a), δ).

Hence with probability ≥ 1− 3KTδ,{
r(a) ≤ R̂t(a) + rad(R̂t(a), N

+
t−1(a), δ)

r(a) ≤ 1
⇒

r(a) ≤ min
{
R̂t(a) + rad(R̂t(a), N

+
t−1(a), δ), 1

}
= UCBr,t(a).

Similarly, with probability ≥ 1− 3KTdδ,
LCBc,t(a) ⪯ c(a).

D.3. Proof for Inequalities 14, 15

We first provide the two lemmas:

Lemma D.7 (Theorem 1.6 in (Freedman, 1975)). Suppose {Ui}ni=1 is a martingale difference sequence supported in [0, 1]
with respect to the filtration {Fi}ni=1. Let U =

∑n
i=1 Ui, and V =

∑n
i=1 Var(Ui|Fi−1). Then for any a > 0, b > 0, we

have
P (|U | ≥ a, V ≤ b) ≤ 2e−

a2

2(a+b) .

Lemma D.8. Suppose {Xi}ni=1 are random variables supported in [0, 1], where Xi is Fi-measurable and {Fi}ni=1 is a
filtration. Let Mi = E[Xi|Fi−1] for each i ∈ {1, . . . , n}, and M =

∑n
i=1 Mi. Then with probability ≥ 1− 2nδ, we have∣∣∣∣∣

n∑
i=1

(Xi −Mi)

∣∣∣∣∣ ≤ O

(√
M log

(
1

δ

)
+ log

(
1

δ

))
.

Proof of Lemma D.8. The proof follows the line of Theorem 4.10 in (Babaioff et al., 2015). Let Ui = Xi −Mi for each
i ∈ {1, . . . , n}. Clearly, {Ui}ni=1 is a martingale difference sequence with respect to the filtration {Fi}ni=1. Since

Var(Ui|Fi−1) = Var(Xi|Fi−1) = E[X2
i |Fi−1]− E[Xi|Fi−1]

2 ≤ E[Xi|Fi−1] = Mi almost surely,

we have V =
∑n

i=1 Var(Ui|Fi−1) ≤
∑n

i=1 Mi = M almost surely. Apply Lemma D.7 with a =
√

2b log
(
1
δ

)
+ 2 log

(
1
δ

)
for any b ≥ 1, it follows that with probability ≤ 2δ,

|U | =

∣∣∣∣∣
n∑

i=1

Ui

∣∣∣∣∣ ≥ O

(√
b log

(
1

δ

)
+ log

(
1

δ

))
& V ≤ b,

Take the union bound over all integer b from 1 to n, noting that V ≤ M and b − 1 ≤ M ≤ b for some b ∈ {1, . . . , n}
almost surely, with probability ≥ 1− 2nδ we have∣∣∣∣∣

n∑
i=1

(Xi −Mi)

∣∣∣∣∣ ≤ O

(√
M log

(
1

δ

)
+ log

(
1

δ

))
.

23



Bandits with Knapsacks: Advice on Time-Varying Demands

Altogether, the lemma holds.

Now, we paraphrase inequalities 14, 15 as Lemmas D.9, D.10, and provide their proofs.
Lemma D.9. With probability ≥ 1− 3KTδ, we have∣∣∣∣∣

τ−1∑
t=1

qtUCBr,t(At)−
τ−1∑
t=1

qtRt

∣∣∣∣∣ ≤ O

log

(
1

δ

)
√√√√qK

τ−1∑
t=1

qtRt + qK log

(
T

K

) .

Lemma D.10. With probability ≥ 1− 3KTdδ, we have∣∣∣∣∣
τ−1∑
t=1

qtLCBc,t(At, i)−
τ−1∑
t=1

qtCt,i

∣∣∣∣∣ ≤ O

(
log

(
1

δ

)(√
qKB + qK log

(
T

K

)))
, ∀i ∈ [d].

Proof of Lemma D.9. First with probability ≥ 1− 2Tδ, we have∣∣∣∣∣
τ−1∑
t=1

qtr(At)−
τ−1∑
t=1

qtRt

∣∣∣∣∣ = q

∣∣∣∣∣
τ−1∑
t=1

qt
q
(r(At)−Rt)

∣∣∣∣∣ (45a)

≤ O


√√√√q log

(
1

δ

) τ−1∑
t=1

qtr(At) + q log

(
1

δ

) (45b)

≤ O


√√√√q log

(
1

δ

) τ−1∑
t=1

qtUCBr,t(At) + q log

(
1

δ

) , (45c)

where (45c) comes from Lemma 4.2. Inequality (45b) comes from Lemma D.8, where we apply Xt = qtRt

q and

Ft−1 = σ({As, qs, Rs, {Cs,i}di=1, Q̂s}t−1
s=1 ∪ {qt}). Then with probability ≥ 1− 3KTδ, we also have

∣∣∣∣∣
τ−1∑
t=1

qtUCBr,t(At)−
τ−1∑
t=1

qtr(At)

∣∣∣∣∣ ≤ 6

τ−1∑
t=1

qtrad(r(At), N
+
t−1(At), δ) (46a)

≤ 6
∑

a∈A:Nτ−1(a)>0

Nτ−1(a)∑
n=1

qn(a)rad (r(a), n, δ) (46b)

= 6q
∑

a∈A:Nτ−1(a)>0

Nτ−1(a)∑
n=1

qn(a)

q

√2r(a) log
(
1
δ

)
n

+
4

n
log

(
1

δ

) (46c)

≤ 6q
∑

a∈A:Nτ−1(a)>0

(
2

√
2r(a)

Qτ−1(a)

q
log

(
1

δ

)
+ 4 (1 + log(Nτ−1(a))) log

(
1

δ

))
(46d)

≤ 12

(√
2qK log

(
1

δ

)∑
a∈A

r(a)Qτ−1(a) + 2qK log

(
T

K

)
log

(
1

δ

)
+ 2qK log

(
1

δ

))
(46e)

= 12


√√√√2qK log

(
1

δ

) τ−1∑
t=1

qtr(At) + 2qK log

(
T

K

)
log

(
1

δ

)
+ 2qK log

(
1

δ

) (46f)

≤ 12


√√√√2qK log

(
1

δ

) τ−1∑
t=1

qtUCBr,t(At) + 2qK log

(
T

K

)
log

(
1

δ

)
+ 2qK log

(
1

δ

) ,

(46g)
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where

• (46a) comes from the following, with probability ≥ 1− 3KTδ,

|UCBr,t(At)− r(At)| ≤
∣∣∣R̂t−1(At)− r(At)

∣∣∣+ rad(R̂t−1(At), N
+
t−1(At), δ)

≤ 2rad(R̂t−1(At), Nt−1(At), δ)

≤ 6rad(r(At), Nt−1(At), δ).

• (46b) comes from rearranging the sum. qn(a) means the n-th adversarial term that the algorithm selects a.

• (46c) comes from the definition of rad(·, ·, ·).

• (46d) comes from the following

n∑
i=1

wi√
i
=

n∑
i=1

2wi

2
√
i
≤

n∑
i=1

2wi√∑i
j=1 wj +

√∑i−1
j=1 wj

=

n∑
i=1

2

√√√√ i∑
j=1

wj −

√√√√i−1∑
j=1

wj

 = 2

√√√√ n∑
i=1

wi,

and
n∑

i=1

wi

i
≤

n∑
i=1

1

i
≤ (1 + log(n)).

where wi ∈ (0, 1].

• In (46d) and (46e) Qt(a) =
∑

s∈[t],As=a qs.

• (46e) comes from Jansen inequality.

Combine (45) and (46), we have

τ−1∑
t=1

qtUCBr,t(At) ≤
τ−1∑
t=1

qtrt +O


√√√√qK log

(
1

δ

) τ−1∑
t=1

qtUCBr,t(At) + qK log

(
T

K

)
log

(
1

δ

)
+ qK log

(
1

δ

) ,

which is equivalent to


√√√√τ−1∑

t=1

qtUCBr,t(At)−O

(√
qK log

(
1

δ

))2

≤
τ−1∑
t=1

qtrt +O

(
qK log

(
T

K

)
log

(
1

δ

)
+ qK log

(
1

δ

))
,

Hence,√√√√τ−1∑
t=1

qtUCBr,t(At) ≤ O

(√
qK log

(
1

δ

))
+

√√√√τ−1∑
t=1

qtrt +O

(
qK log

(
T

K

)
log

(
1

δ

)
+ qK log

(
1

δ

))

≤

√√√√τ−1∑
t=1

qtrt +O

(√
qK log

(
T

K

)
log

(
1

δ

)
+

√
qK log

(
1

δ

))
.

(47)

Combine (45) and (46), (47), we finish the proof.
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Proof of Lemma D.10. The proof is quite similar to Lemma D.9, so we omit the descriptive details. Similarly, with
probability ≥ 1− 2Tdδ, we have

∣∣∣∣∣
τ−1∑
t=1

qtc(At, i)−
τ−1∑
t=1

qtCt,i

∣∣∣∣∣ = q

∣∣∣∣∣
τ−1∑
t=1

qt
q
(c(At)− Ct,i)

∣∣∣∣∣
≤ O


√√√√q log

(
1

δ

) τ−1∑
t=1

qtc(At, i) + q log

(
1

δ

)
≤ O


√√√√q log

(
1

δ

) τ−1∑
t=1

qtUCBc,t(At, i) + q log

(
1

δ

) ,

(48)

Then with probability ≥ 1− 3KTdδ, we also have

∣∣∣∣∣
τ−1∑
t=1

qtLCBc,t(At, i)−
τ−1∑
t=1

qtc(At, i)

∣∣∣∣∣ ≤ 6
τ−1∑
t=1

qtrad(c(At, i), N
+
t−1(At), δ)

≤ 6
∑

a∈A:Nτ−1(a)>0

Nτ−1(a)∑
n=1

qn(a)rad (c(a, i), n, δ)

= 6q
∑

a∈A:Nτ−1(a)>0

Nτ−1(a)∑
n=1

qn(a)

q

√2c(a, i) log
(
1
δ

)
n

+
4

n
log

(
1

δ

)
≤ 6q

∑
a∈A:Nτ−1(a)>0

(
2

√
2c(a, i)

Qτ−1(a)

q
log

(
1

δ

)
+ 4 (1 + log(Nτ−1(a))) log

(
1

δ

))

≤ 12

(√
2qK log

(
1

δ

)∑
a∈A

c(a, i)Qτ−1(a) + 2qK log

(
T

K

)
log

(
1

δ

)
+ 2qK log

(
1

δ

))

≤ 12


√√√√2qK log

(
1

δ

) τ−1∑
t=1

qtUCBc,t(At, i) + 2qK log

(
T

K

)
log

(
1

δ

)
+ 2qK log

(
1

δ

) .

(49)

Similarly,

∣∣∣∣∣
τ−1∑
t=1

qtUCBc,t(At, i)−
τ−1∑
t=1

qtc(At, i)

∣∣∣∣∣ ≤ 6

τ−1∑
t=1

qtrad(c(At, i), N
+
t−1(At), δ)

≤ O


√√√√qK log

(
1

δ

) τ−1∑
t=1

qtUCBc,t(At, i) + qK log

(
T

K

)
log

(
1

δ

)
+ qK log

(
1

δ

) .

(50)

Combine (48) and (50), we have

∑τ−1
t=1 qtUCBc,t(At, i) ≤

∑τ−1
t=1 qtCt,i +O

(√
qK log

(
1
δ

)∑τ−1
t=1 qtUCBc,t(At, i) + qK log

(
T
K

)
log
(
1
δ

)
+ qK log

(
1
δ

))
,

which is equivalent to


√√√√τ−1∑

t=1

qtUCBc,t(At, i)−O

(√
qK log

(
1

δ

))2

≤
τ−1∑
t=1

qtCt,i +O

(
qK log

(
T

K

)
log

(
1

δ

)
+ qK log

(
1

δ

))
,
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Hence,√√√√τ−1∑
t=1

qtUCBc,t(At, i) ≤ O

(√
qK log

(
1

δ

))
+

√√√√τ−1∑
t=1

qtCt,i +O

(
qK log

(
T

K

)
log

(
1

δ

)
+ qK log

(
1

δ

))

≤

√√√√τ−1∑
t=1

qtCt,i +O

(√
qK log

(
T

K

)
log

(
1

δ

)
+

√
qK log

(
1

δ

))

≤
√
B +O

(√
qK log

(
T

K

)
log

(
1

δ

)
+

√
qK log

(
1

δ

))
,

(51)

where the last inequality comes from the definition of the stopping time τ . Combine (48) and (49), (51), we finish the
proof.
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