
A Large Batch Optimizer Reality Check:
Traditional, Generic Optimizers Suffice Across Batch

Sizes

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recently the LARS and LAMB optimizers have been proposed for training neural1

networks faster using large batch sizes. LARS and LAMB add layer-wise normal-2

ization to the update rules of Heavy-ball momentum and Adam, respectively, and3

have become popular in prominent benchmarks and deep learning libraries. How-4

ever, without fair comparisons to standard optimizers, it remains an open question5

whether LARS and LAMB have any benefit over traditional, generic algorithms. In6

this work we demonstrate that standard optimization algorithms such as Nesterov7

momentum and Adam can match or exceed the results of LARS and LAMB at large8

batch sizes. Our results establish new, stronger baselines for future comparisons9

at these batch sizes and shed light on the difficulties of comparing optimizers for10

neural network training more generally.11

1 Introduction12

In recent years, hardware systems employing GPUs and TPUs have enabled neural network training13

programs to process dramatically more data in parallel than ever before. The most popular way to14

exploit these systems is to increase the batch size in the optimization algorithm (i.e. the number15

of training examples processed per training step). On many workloads, modern systems can scale16

to larger batch sizes without significantly increasing the time per step [Jouppi et al., 2017, Wang17

et al., 2019], thus proportionally increasing the number of training examples processed per second.18

If researchers can use this increased throughput to reduce the time required to train each neural19

network, then they should achieve better results by training larger models, using larger datasets, and20

by exploring new ideas more rapidly.21

As the capacity for data parallelism continues to increase, practitioners can take their existing,22

well-tuned training configurations and re-train with larger batch sizes, hoping to achieve the same23

performance in less training time [e.g. Ying et al., 2018]. On an idealized data-parallel system with24

negligible overhead from increasing the batch size, they might hope to achieve perfect scaling, a25

proportional reduction in training time as the batch size increases.26

However, achieving perfect scaling is not always straightforward. Changing the batch size changes27

the training dynamics, requiring the training hyperparameters (e.g. learning rate) to be carefully28

re-tuned in order to maintain the same level of validation performance.1 In addition, smaller batch29

sizes provide implicit regularization from gradient noise that may need to be replaced by other forms30

of regularization when the batch size is increased. Finally, even with perfect tuning, increasing31

1 Although there are heuristics for adjusting the learning rate as the batch size changes, these heuristics inevitably
break down sufficiently far from the initial batch size and it is also not clear how to apply them to other training
hyperparameters (e.g. momentum).

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



the batch size eventually produces diminishing returns. After a critical batch size, the number of32

training steps cannot be decreased in proportion to the batch size – the number of epochs must33

increase to match the validation performance of the smaller batch size. See Shallue et al. 2019 for a34

survey of the effects of data parallelism on neural network training. Once these effects are taken into35

account, there is no strong evidence that increasing the batch size degrades the maximum achievable36

performance on any workload. At the same time, the ever-increasing capacity for data parallelism37

presents opportunities for new regularization techniques that can replace the gradient noise of smaller38

batch sizes and new optimization algorithms that can extend perfect scaling to larger batch sizes by39

using more sophisticated gradient information [Zhang et al., 2019].40

You et al. [2017] proposed the LARS optimization algorithm in the hope of speeding up neural41

network training by exploiting larger batch sizes. LARS is a variant of stochastic gradient descent42

(SGD) with momentum [Polyak, 1964] that applies layer-wise normalization before applying each43

gradient update. Although it is difficult to draw strong conclusions from the results presented in the44

LARS paper, 2 the MLPerf3 Training benchmark4 adopted LARS as one of two allowed algorithms45

in the closed division for ResNet-50 on ImageNet and it became the de facto standard algorithm for46

that benchmark task. With MLPerf entrants competing to find the fastest-training hyperparameters47

for LARS, the first place submissions in the two most recent MLPerf Training competitions used48

LARS to achieve record training speeds with batch sizes of 32,678 and 65,536, respectively. No49

publications or competitive submissions to MLPerf have attempted to match these results with a50

standard optimizer (e.g. Momentum or Adam). However, MLPerf entrants do not have a strong51

incentive (nor are necessarily permitted by the rules) to explore other algorithms because MLPerf52

Training is a systems benchmark that requires algorithmic equivalence between submissions to make53

fair comparisons. Moreover, since the main justification for LARS is its excellent performance on54

ResNet-50 at large batch sizes, more work is needed to quantify any benefit of LARS over standard55

algorithms at any batch size.56

You et al. [2019] later proposed the LAMB optimizer to speed up pre-training for BERT [Devlin57

et al., 2018] using larger batch sizes after concluding that LARS was not effective across workloads.58

LAMB is a variant of Adam [Kingma and Ba, 2014] that adds a similar layer-wise normalization step59

to LARS. You et al. [2019] used LAMB for BERT pre-training with batch sizes up to 65,536 and60

claimed that Adam cannot match the performance of LAMB beyond batch size 16,384.61

In this paper, we demonstrate that standard optimizers, without any layer-wise normalization tech-62

niques, can match or improve upon the large batch size results used to justify LARS and LAMB. In63

Section 2, we show that Nesterov momentum [Nesterov, 1983] matches the performance of LARS on64

the ResNet-50 benchmark with batch size 32,768. We are the first to match this result with a standard65

optimizer. In Section 3, contradicting the claims in You et al. [2019], we show that Adam obtains66

better BERT pre-training results than LAMB at the largest batch sizes, resulting in better downstream67

performance metrics after fine-tuning.68

In addition, we establish a new state-of-the-art for BERT pretraining speed, reaching an F1 score of69

90.46 in 7,818 steps using Adam at batch size 65,536 (we report training speed in steps because our70

focus is algorithmic efficiency, but since we compare LARS and LAMB to simpler optimizers, fewer71

training steps corresponds to faster wall-time in an optimized implementation – our BERT result72

with Adam also improves upon the wall-time record of LAMB reported in You et al. 2019). Taken73

together, our results establish stronger training speed baselines for these tasks and batch sizes, which74

we hope will assist future work aiming to accelerate training using larger batch sizes.75

In addition to the contributions mentioned above, we demonstrate several key effects that are often76

overlooked by studies aiming to establish the superiority of new optimization algorithms. We show77

that future work must carefully disentangle regularization and optimization effects when comparing a78

new optimizer to baselines. We also report several under-documented details used to generate the79

best LARS and LAMB results, a reminder that future comparisons should document any novel tricks80

and include them in baselines. Finally, our results add to existing evidence in the literature on the81

difficulty of performing independently rigorous hyperparameter tuning for optimizers and baselines.82

2 The modified AlexNet on ImageNet benchmark did not have well-established accuracy targets from prior
work and LARS used a more general learning rate schedule than the momentum baseline. For ResNet-50 on
ImageNet, LARS achieved sub-par accuracy numbers and was not compared to any other optimizer at the same
batch size, leaving open the possibility that a generic optimizer would scale just as well as LARS. 3 MLPerf is
a trademark of MLCommons.org. 4 https://mlperf.org/training-overview

2

https://mlperf.org/training-overview


In particular, we show that the optimal shape of the learning rate schedule is optimizer-dependent (in83

addition to the scale), and that differences in the schedule can dominate optimizer comparisons at84

smaller step budgets and become less important at larger step budgets.85

1.1 Related work86

Shallue et al. [2019] and Zhang et al. [2019] explored the effects of data parallelism on neural network87

training for different optimizers, finding no evidence that larger batch sizes degrade performance88

and demonstrating that different optimizers can achieve perfect scaling up to different critical batch89

sizes. You et al. [2017, 2019] developed the LARS and LAMB optimizers in the hope of speeding up90

training by achieving perfect scaling beyond standard optimizers. Many other recent papers have91

proposed new optimization algorithms for generic batch sizes or larger batch sizes [see Schmidt92

et al., 2020]. Choi et al. [2019] and Schmidt et al. [2020] demonstrated the difficulties with fairly93

comparing optimizers, showing that the hyperparameter tuning protocol is a key determinant of94

optimizer rankings. The MLPerf Training benchmark [Mattson et al., 2019] provides a competitive95

ranking of neural network training systems, but does not shed much light on the relative performance96

of optimizers because entrants are limited in the algorithms they can use and the hyperparameters97

they can tune.98

2 Matching LARS on ImageNet99

The MLPerf training benchmark for ResNet-50 v1.5 on ImageNet [Mattson et al., 2019] aims to100

reach 75.9% validation accuracy in the shortest possible wall-clock time. In the closed division of101

the competition, entrants must choose between two optimizers, SGD with momentum or LARS, and102

are only allowed to tune a specified subset of the optimization hyperparameters, with the remaining103

hyperparameter values set by the competition rules.5 The winning entries in the two most recent104

competitions used LARS with batch size 32,768 for 72 training epochs6 and LARS with batch size105

65,536 for 88 training epochs,7 respectively. Kumar et al. [2019] later improved the training time106

for batch size 32,768 by reaching the target accuracy in 64 epochs. These are currently the fastest107

published results on the ResNet-50 benchmark. However, it has been unclear whether LARS was108

necessary to achieve these training speeds since no recent published results or competitive MLPerf109

submissions have used another optimizer. In this section, we describe how we matched the 64 epoch,110

32,768 batch size result of LARS using standard Nesterov momentum.8111

A fair benchmark of training algorithms or hardware systems must account for stochasticity in112

individual training runs. In the MLPerf competition, the benchmark metric is the mean wall-clock113

time of 5 trials after the fastest and slowest trials are excluded. Only 4 out of the 5 trials need to reach114

the target accuracy and there is no explicit limit on the number of times an entrant can try a different115

set of 5 trials. Since our goal is to compare algorithms, rather than systems, we aim to match the116

LARS result in terms of training steps instead (but since Nesterov momentum is computationally117

simpler than LARS, this would also correspond to faster wall-clock time on an optimized system).118

Specifically, we measure the median validation accuracy over 50 training runs with a fixed budget of119

2,512 training steps9 at a batch size of 32,768. When we ran the published LARS training pipeline,10120

LARS achieved a median accuracy of 75.97% and reached the target in 35 out of 50 trials. We121

consider the LARS result to be matched by another optimizer if the median over 50 trials exceeds the122

target of 75.9%.123

2.1 Nesterov momentum at batch size 32k124

This section describes how we used the standard Nesterov momentum optimizer to train the ResNet-125

50 v1.5 on ImageNet to 75.9% validation accuracy in 2,512 update steps at a batch size of 32,768,126

matching the best published LARS result at this batch size. Although we implemented our own127

training program, the only logical changes we made to the published LARS pipeline were to the128

optimizer and the optimization hyperparameters. Our model implementation and data pre-processing129

pipeline were identical to those required under the MLPerf closed division rules (see Appendix B).130

5 https://git.io/JtknD 6 https://mlperf.org/training-results-0-6
7 https://mlperf.org/training-results-0-7 8 The 88 epoch, 65,536 batch size result is
faster in terms of wall-clock time but requires more training epochs, indicating that it is beyond LARS’s perfect
scaling regime. Although LARS obtains diminishing returns when increasing the batch size from 32,768 to
65,536, future work could investigate whether Nesterov momentum drops off more or less rapidly than LARS.
9 Corresponding to 64 training epochs in Kumar et al. [2019]. 10 https://git.io/JtsLQ

3

https://git.io/JtknD
https://mlperf.org/training-results-0-6
https://mlperf.org/training-results-0-7
https://git.io/JtsLQ


We present two Nesterov momentum hyperparameter configurations that achieve comparable per-131

formance to LARS. Configuration A achieved a median accuracy of 75.97% (the same as LARS)132

and reached the target accuracy in 34 out of 50 trials. Configuration B is a modified version of133

Configuration A designed to make as few changes as possible to the LARS hyperparameters; it134

achieved a median accuracy of 75.92% and reached the target in 29 out of 50 trials. See Appendix D.1135

for the complete hyperparameter configurations.136

To achieve these results, we tuned the hyperparameters of the training pipeline from scratch using137

Nesterov momentum. We ran a series of experiments, each of which searched over a hand-designed138

hyperparameter search space using quasi-random search [Bousquet et al., 2017]. Between each139

experiment, we modified the previous search space and/or tweaked the training program to include140

optimization tricks and non-default hyperparameter values we discovered in the state-of-the-art LARS141

pipeline. The full sequence of experiments we ran, including the number of trials, hyperparameters142

tuned, and search space ranges, are provided in Appendix D.4. Once we had matched the LARS143

result with Configuration A, we tried setting each hyperparameter to its value in the LARS pipeline in144

order to find the minimal set of changes that still achieved the target result, producing Configuration145

B. The remainder of this section describes the hyperparameters we tuned and the techniques we146

applied on the journey to these results.147

2.1.1 Nesterov Momentum Optimizer148

Nesterov momentum is a variant of classical or “heavy-ball” momentum defined by the update rule149

vt+1 = µvt +∇`(θt),
θt+1 = θt − ηt (µvt+1 +∇`(θt)) ,

where v0 = 0, θt is the vector of model parameters after t steps, ∇`(θt) is the gradient of the loss150

function `(θ) averaged over a batch of training examples, µ is the momentum, and ηt is the learning151

rate for step t. We prefer Nesterov momentum over classical momentum because it tolerates larger152

values of its momentum parameter [Sutskever et al., 2013] and sometimes outperforms classical153

momentum, although the two algorithms perform similarly on many tasks [Shallue et al., 2019, Choi154

et al., 2019]. We tuned the Nesterov momentum µ in Configurations A and B. We discuss the learning155

rate schedule {ηt} separately in Section 2.1.4.156

2.1.2 Batch normalization157

The ResNet-50 v1.5 model uses batch normalization [Ioffe and Szegedy, 2015], defined as158

BN(x(l)) =

(
x(l) − mean(x(l))√

var(x(l)) + ε

)
× γ(l) + β(l),

where x(l) is a vector of pre-normalization outputs from layer l, mean(·) and var(·) denote the159

element-wise sample mean and variance across the batch of training examples,11 and γ(l) and β(l)160

are trainable model parameters.161

Batch normalization introduces the following tuneable hyperparameters: ε, the small constant added162

to the sample variance; the initial values of γ(l) and β(l); and ρ, which governs the exponential163

moving averages of the scaling factors used in evaluation. The LARS pipeline uses ε = 10−5 and164

ρ = 0.9. It sets the initial value of β(l) to 0.0 everywhere, but the initial value of γ(l) depends on165

the layer: it sets γ(l) to 0.0 in the final batch normalization layer of each residual block, and to 1.0166

everywhere else. In Configuration A, we tuned ε, ρ, and γ0, the initial value of γ(l) in the final batch167

normalization layer of each residual block. In Configuration B, we used the same values as LARS for168

ε and ρ, but we found that choosing γ0 between 0.0 and 1.0 was important for matching the LARS169

result with Nesterov momentum.170

2.1.3 Regularization171

In Configuration A, we tuned both the L2 regularization coefficient λ and label smoothing172

coefficient τ [Szegedy et al., 2016]. The LARS pipeline uses λ = 10−4 and τ = 0.1.173

11 In a distributed training environment the mean and variance are commonly computed over a subset of the full
batch. The LARS pipeline uses a “virtual batch size” of 64, which we also use to avoid changing the training
objective [Hoffer et al., 2017].

4



Crucially, the LARS pipeline does not apply L2 regularization to the bias variables of the174

ResNet model nor the batch normalization parameters γ(l) and β(l) (indeed, the published175

LARS pipeline does not even apply LARS to these parameters – it uses Heavy-ball momen-176

tum). This detail is extremely important for both LARS and Nesterov momentum to achieve177

the fastest training speed. Configuration B used the same λ and τ as Configuration A.178

Nesterov LARS
pwarmup 2 1
ηpeak 7.05 29.0
ηfinal 6× 10−6 10−4

1− µ 0.02397 0.071
λ 5.8× 10−5 10−4

τ 0.15 0.10
γ0 0.4138 0.0

Table 1: The hyperparameters of
Configuration B that differ from
state-of-the-art LARS at batch size
32,768 [Kumar et al., 2019].

179

2.1.4 Learning rate schedule180

The LARS pipeline uses a piecewise polynomial schedule181

ηt =

ηinit + (ηpeak − ηinit)
(

t
twarmup

)pwarmup

, t ≤ twarmup

ηfinal + (ηpeak − ηfinal)
(

T−t
T−twarmup

)pdecay

t > twarmup,

with ηinit = 0.0, ηpeak = 29.0, ηfinal = 10−4, pwarmup = 1,182

pdecay = 2, and twarmup = 706 steps. In Configuration A, we re-183

tuned all of these hyperparameters with Nesterov momentum.184

In Configuration B, we set ηinit, pdecay, and twarmup to the same185

values as LARS, changing only pwarmup from 1 to 2 and re-186

scaling ηpeak and ηfinal.187

2.1.5 Comparing Nesterov momentum and LARS188

Table 1 shows the hyperparameter values for Configuration B that differ from the state-189

of-the-art LARS pipeline. Aside from re-tuning the momentum, learning rate scale, and190

regularization hyperparameters (whose optimal values are all expected to change with the191

optimizer), the only changes are setting pwarmup to 2 instead of 1 and re-tuning γ0.192

0 500 1000 1500 2000 2500
Step

0

MAX

Re
la

tiv
e 

St
ep

 S
ize

LARS
Nesterov

Figure 1: The learning rate schedules
of LARS and Nesterov momentum Con-
figuration B. Aside from re-scaling, the
only difference is setting the warmup
polynomial power to 2 instead of 1.

193

Figure 1 shows the LARS learning rate schedule com-194

pared to the Nesterov momentum schedule. Even though195

these schedules are similar, we found that each optimizer196

had a different optimal value of the warmup polynomial197

power. As Table 2 shows, Nesterov momentum performs198

better with pwarmup = 2 instead of 1, while the opposite199

is true with LARS. As discussed in Agarwal et al. [2020],200

optimizers can induce implicit step size schedules that201

strongly influence their training dynamics and solution202

quality, and it appears from Table 2 that the implicit step203

sizes of Nesterov momentum and LARS may evolve dif-204

ferently, causing the shapes of their optimal learning rate205

schedules to differ.206

Although the main concern of a practitioner is validation performance, the primary task of an207

optimization algorithm is to minimize training loss. Table 2 shows that Nesterov momentum achieves208

higher training accuracy than LARS, despite similar validation performance. Thus, it may be more209

appropriate to consider the layerwise normalization of LARS to be a regularization technique, rather210

than an optimization technique.211

Spending even more effort tuning LARS or Nesterov momentum would likely further improve the212

current state-of-the-art for that optimizer. Meaningful optimizer comparisons are only possible213

with independent and equally intensive tuning efforts, and we do not claim that either optimizer214

outperforms the other on this benchmark. That said, if the main evidence for LARS’s utility as a215

“large-batch optimizer” is its performance on this particular benchmark, then more evidence is needed216

to quantify any benefit it has over traditional, generic optimizers like Nesterov momentum.217

2.2 Lessons learned218

In hindsight, it was only necessary to make a few changes to the LARS pipeline to match its219

performance at batch size 32,768 with Nesterov momentum. However, Table 1 does not accurately220

represent the effort required when attempting to match a highly tuned training-speed benchmark.221

5



pwarmup Nesterov LARS
1 75.79% 75.97%
2 75.92% 75.69%

Optimizer Train Acc Test Acc
Nesterov 78.97% 75.93%

LARS 78.07% 75.97%
Table 2: (Left) The best warmup schedule differs for Nesterov momentum and LARS. Values are
medians over 50 training runs after setting pwarmup without retuning other hyperparameters. (Right)
Median train and test accuracies over 50 training runs for Nesterov momentum Configuration B and
LARS.

Firstly, as described in Sections 2.1.2 and 2.1.3, the strong results of LARS depend partly on a few222

subtle optimization tricks and non-default values of uncommonly-tuned hyperparameters. Fortunately,223

in this case we could discover these tricks by examining the open-source code required for MLPerf224

submissions, but machine learning research papers do not always report these important details.225

Researchers can easily waste a lot of experiments and produce misleading results before getting all of226

these details right. We demonstrate the importance of adding these tricks to our Nesterov momentum227

pipeline in Appendix C; without these tricks (or some new tricks), we likely would not have been228

able to match the LARS performance.229

Secondly, the learning rate schedule really matters when trying to maximize performance with a230

relatively small step budget. Both LARS and Nesterov momentum are sensitive to small deviations231

from the optimized learning rate schedules in Figure 1, and neither schedule works as well for the232

other optimizer. Although relatively minor changes were sufficient to match LARS with Nesterov233

momentum, there is no way to know a priori how the optimal schedule will look for a new optimizer234

Wu et al. [2018]. Even in toy settings where the optimal learning rate schedule can be derived, it235

does not fit into commonly used schedule families and depends strongly on the optimizer Zhang236

et al. [2019]. Indeed, this problem applies to the other optimization hyperparameters as well: it237

is extremely difficult to know which are worth considering ahead of time. Finally, even when we238

narrowed down our hyperparemeter search spaces around the optimal point, the volume of our search239

spaces corresponding to near-peak performance was small, likely due to the small step budget [Shallue240

et al., 2019]. We investigate how these effects change with a less stringent step budget in Section 4.241

3 Stronger BERT pretraining speed baselines242

You et al. [2019] developed the LAMB optimizer in the hope of speeding up training for BERT-Large243

[Bidirectional Encoder Representations from Transformers, Devlin et al., 2018]. BERT training244

consists of two phases. The “pretraining” phase has two objectives: (1) predicting masked tokens245

based on the rest of the sequence (a masked language model), and (2) predicting whether two246

given sentences follow one from another. Finally, the “fine-tuning” phase refines the model for a247

downstream task of interest. BERT pretraining takes a considerable amount of time (up to 3 days on248

16 Cloud TPU-v3 chips Jouppi et al. [2017]), whereas the fine-tuning phase is typically much faster.249

Model quality is typically assessed on the downstream metrics, not on pretraining loss, making BERT250

training a somewhat awkward benchmark for optimization research.251

You et al. [2019] used LAMB for BERT pretraining with batch sizes up to 65,536 and claimed that252

LAMB outperforms Adam batch size 16,384 and beyond. The LAMB optimizer has since appeared253

in several NLP toolkits, including as Microsoft DeepSpeed and NVIDIA Multi-node BERT training,254

and as a benchmark task in MLPerf v0.7.12255

As shown in Table 3, we trained Adam (with decoupled weight decay) baselines that achieve better256

results than both the LAMB and Adam results reported in You et al. [2019]. Our new Adam257

baselines obtain better F1 scores on the development set of the SQuaD v1.1 task in the same number258

of training steps as LAMB for both batch size 32,768 and the hybrid 65,536-then-32,768 batch259

size training regime in You et al. [2019]. We also ran Adam at batch size 65,536 to reach nearly260

the same F1 score as the hybrid batch size LAMB result, but in much fewer training steps. We261

believe 7,818 steps is a new state-of-the-art for BERT pretraining speed [in our experiments, it262

also improves upon the 76-minute record claimed in You et al., 2019]. Additionally, at batch263

size 32,768 our Adam baseline got a better pretraining loss of 1.277 compared to LAMB’s 1.342.264

12 We do not consider the MLPerf task in this paper since it is a warm-start, partial training task.

6



Batch size Step budget LAMB Adam
32k 15,625 91.48 91.58

65k/32k 8,599 90.58 91.04
65k 7,818 – 90.46

Table 3: Using Adam for pretraining exceeds
the reported performance of LAMB in You et al.
[2019] in terms of F1 score on the downstream
SQuaD v1.1 task.

265

We used the same experimental setup as You266

et al. [2019], including two pretraining phases267

with max sequence lengths of 128 and then 512.268

In order to match You et al. [2019], we reported269

the F1 score on the downstream SQuaD v1.1270

task as the target metric, although this metric271

introduces potential confounds: optimization272

efficiency should be measured on the training273

task using training and held-out data sets. Fortunately, in this case better pretraining performance274

correlated a with higher F1 score after fine-tuning. See Appendix B.2 for additional experiment275

details. We tuned Adam hyperparameters independently for each pretraining phase, specifically276

learning rate η, β1, β2, the polynomial power for the learning rate warmup pwarmup, and weight277

decay λ, using quasi-random search [Bousquet et al., 2017]. See Appendix D.2 for the search spaces.278

In addition to hyperparmeter tuning, our improved Adam results at these batch sizes are also likely279

due to two implementation differences. First, the Adam implementation in You et al. [2019] comes280

from the BERT open source code base, in which Adam is missing the standard bias correction.13281

The Adam bias correction acts as an additional step size warm-up, thereby potentially improving the282

stability in the initial steps of training. Second, the BERT learning rate schedule had a discontinuity283

at the start of the decay phase due to the learning rate decay being incorrectly applied during warm-up284
14 (see Figure 2 in Appendix B). This peculiarity is part of the official BERT release and is present in285

3000+ copies of the BERT Training code on GitHub.286

4 Investigating a less stringent step budget287

Part of what makes comparing optimizers so difficult is that the hyperparameter tuning tends to288

dominate the comparisons [Choi et al., 2019]. Moreover, tuning becomes especially difficult when289

we demand a fixed epoch budget even when dramatically increasing the batch size [Shallue et al.,290

2019]. Fixing the epoch budget as the batch size increases is equivalent to demanding perfect scaling291

(i.e. that the number of training steps decreases by the same factor that the batch size is increased).292

We can view the role of hyperparameter tuning for large batch training as resisting the inevitable end293

of perfect scaling. For example, it might be possible to extend perfect scaling using delicately tuned294

learning rate schedules, but comparing optimizers under these conditions can make the learning rate295

schedule dominate the comparison by favoring some algorithms over others. Therefore, in order to296

better understand the behavior of LARS and LAMB compared to Nesterov Momentum and Adam, we297

ran additional ResNet-50 experiments with a more generous 6,000 step budget (vs 2,512 in Section 2)298

and a more simplistic cosine learning rate schedule. At batch size 32,768, this budget should let us299

reach better validation accuracy than the MLPerf target of 75.9%.300

Although not mentioned in You et al. [2017], the state-of-the-art MLPerf pipeline for “LARS” actually301

uses both LARS and Heavy-ball Momentum, with Momentum applied to the batch normalization and302

ResNet bias parameters and LARS applied to the other parameters. You et al. [2019] does not mention303

whether LAMB was only applied to some parameters and not others. If layerwise normalization can304

be harmful for some model parameters, this is critical information for practitioners using LARS or305

LAMB, since it might not be obvious which optimizer to apply to which parameters. To investigate306

this, we trained both pure LARS and LAMB configurations, as well as configurations that did not307

apply layerwise normalization to the batch normalization and ResNet bias parameters. Moreover,308

LAMB’s underlying Adam implementation defaults to ε = 10−6, rather than the typical 10−7 or309

10−8. In some cases, ε can be a critical hyperparameter for Adam [Choi et al., 2019], so we included310

Adam configurations with both ε = 10−6 and ε = 10−8.311

Table 4 shows the validation accuracy of these different configurations after training for 6,000312

steps with batch size 32,768. In every case, we used a simple cosine decay learning rate sched-313

ule and tuned the initial learning rate and weight decay using quasi-random search. We used314

momentum parameters of 0.98 for Nesterov momentum and 0.929 for LARS, respectively, based315

on the tuned values from Section 2. We used default hyperparameters for Adam and LAMB316

except where specified. We set all other hyperparameters to the same values as the state-of-the-317

art LARS pipeline, except we set γ0 = 1.0. See Appendix D.3 for more details. As expected,318

13 https://git.io/JtY8d 14 See https://git.io/JtnQW and https://git.io/JtnQ8.

7

https://git.io/JtY8d
https://git.io/JtnQW
https://git.io/JtnQ8


highly tuned learning rate schedules and optimizer hyperparameters are no longer necessary with319

a less stringent step budget. Multiple optimizer configurations in Table 4 exceed the MLPerf320

target accuracy of 75.9% at batch size 32,768 with minimal tuning. Training with larger batch321

sizes is not fundamentally unstable: stringent step budgets make hyperparameter tuning trickier.322

Weights
Optimizer

Bias/BN
Optimizer

Top-1

Nesterov Nesterov 76.7
LARS Momentum 76.9
LARS LARS 76.9

Adam (ε = 10−8) Adam (ε = 10−8) 76.2
Adam (ε = 10−6) Adam (ε = 10−6) 76.4

LAMB LAMB 27.3
LAMB Adam (ε = 10−8) 76.3
LAMB Adam (ε = 10−6) 76.3

Table 4: Validation accuracy of ResNet-50 on Ima-
geNet trained for 6,000 steps instead of 2,512. The
second column is the optimizer that was applied
to the batch norm and ResNet bias variables. We
report the median top-1 accuracy over 5 seeds of
the best hyperparameter setting in a refined search
space. See Appendix D.3 for details.

323

In Table 4, “pure LAMB” performs extremely324

poorly: LAMB only obtains reasonable results325

when it is not used on the batch normalization326

and ResNet bias parameters, suggesting that lay-327

erwise normalization can indeed be harmful on328

some parameters. “Pure LARS” and Nesterov329

momentum perform roughly the same at this330

step budget, but the MLPerf LARS pipeline,331

which is tuned for a more stringent step bud-332

get, does not use LARS on all parameters, at333

least suggesting that the optimal choice could334

be budget-dependent.335

Many new neural net optimizers, including336

LAMB, are introduced alongside claims that337

the new optimizer does not require any—or at338

least minimal—tuning. Unfortunately, these339

claims require a lot of work to support, since340

they require trying the optimizer on new prob-341

lems without using those problems during the342

development of the algorithm. Although our ex-343

periments here are not sufficient to determine344

which optimizers are easiest to tune, experiments like these that operate outside the regime of highly345

tuned learning rate schedules can serve as a starting point. In this experiment, LARS and LAMB do346

not appear to have an advantage in how easy they are to tune even on a dataset and model that were347

used in the development of both of those algorithms. LAMB is a variant of Adam and performs about348

the same as Adam with the same value of ε; LARS is more analogous to Momentum and indeed349

Nesterov momentum and LARS have similar performance.350

5 Discussion351

Our results show that standard, generic optimizers suffice for achieving strong results across batch352

sizes. Therefore, any research program to create new optimizers for training at larger batch sizes353

must start from the fact that Momentum, Adam, and likely other standard methods work fine at batch354

sizes as large as those considered in this paper. The LARS and LAMB update rules have no more355

to do with the batch size (or “large” batches) than the Momentum or Adam update rules. Although356

You et al. [2019] presented convergence rate bounds for LARS and LAMB to support their claims357

of superior performance, we show in Appendix A that Adam satisfies a similar bound to LAMB.358

These bounds all rely on very unrealistic assumptions.15 Most of all, they are loose upper bounds359

on the worst case behavior of the algorithms, not accurate reflections of optimizer performance in360

reality. Whether layer-wise normalization can be useful for optimization or regularization remains an361

open question. However, if LARS and LAMB have any advantage over standard techniques, it is not362

that they work dramatically better on the tasks and batch sizes in You et al. [2017, 2019]. This is363

not to suggest that there is nothing interesting about studying neural network optimization at larger364

batch sizes. For example, as gradient noise decreases, there may be opportunities to harness curvature365

information and extend the region of perfect scaling [Zhang et al., 2019]. However, there is currently366

no evidence that LARS and LAMB scale better than Momentum and Adam.367

Our primary concern in this paper has been matching the state of the art—and establishing new368

baselines—for training speed measurements of the sort used to justify new techniques and algorithms369

for training with larger batch sizes. In contrast, many practitioners are more concerned with obtaining370

the best possible validation error with a somewhat flexible training time budget. Part of the reason371

why matching LARS at batch size 32,768 was non-trivial is because getting state of the art training372

15 All convergence bounds assume no momentum is used, and the Lavg bound for LAMB also assumes β2 = 0,
when it is typically 0.999. Additionally, Lavg could still be large if L∞ is large, but we leave an empirical
analysis of this to future work.

8



speed requires several tricks and implementation details that are not often discussed. It was not373

obvious to us a priori which ones would prove crucial. These details do not involve changes to the374

optimizer, but they interact with the optimizer in a regime where all hyperparameters need to be well375

tuned to stay competitive, making it necessary to re-tune everything for a new optimizer.376

In neural network optimization research, training loss is rarely discussed in detail and evaluation377

centers on validation/test performance since that is what practitioners care most about. However,378

although we shouldn’t only consider training loss, it is counter-intuitive and counter-productive to379

elide a careful investigation of the actual objective of the optimizer. If a new optimizer achieves better380

test performance, but shows no speedup on training loss, then perhaps it is not a better optimizer so381

much as an indirect regularizer. 16 Indeed, in our experiments we found that Nesterov momentum382

achieves noticeably better training accuracy on ResNet-50 than the LARS configuration we used,383

despite reaching roughly the same validation accuracy. Properly disentangling possible regularization384

benefits from optimization speed-ups is crucial if we are to understand neural network training,385

especially at larger batch sizes where we lose some of the regularization effect of gradient noise.386

Hypothetically, if the primary benefit of a training procedure is regularization, then it would be better387

to compare the method with other regularization baselines than other optimizers.388

Ultimately, we only care about batch size to the extent that higher degrees of data parallelism lead389

to faster training. Training with a larger batch size is a means, not the end goal. New optimizers—390

whether designed for generic batch sizes or larger batch sizes—have the potential to dramatically391

improve algorithmic efficiency across multiple workloads, but our results show that standard opti-392

mizers can match the performance of newer alternatives on the workloads we considered. Indeed,393

despite the legion of new update rule variants being proposed in the literature, standard Adam and394

Momentum remain the workhorses of practitioners and researchers alike, while independent empirical395

comparisons consistently find no clear winner when optimizers are compared across a variety of396

workloads [Schmidt et al., 2020]. Meanwhile, as Choi et al. [2019] and our results underscore,397

comparisons between optimizers crucially depend on the effort spent tuning hyperparameters for each398

optimizer. Given these facts, we should regard with extreme caution studies claiming to show the399

superiority of one particular optimizer over others. Part of the issue stems from current incentives in400

the research community; we overvalue the novelty of new methods and undervalue establishing strong401

baselines to measure progress against. This is particularly problematic in the study of optimizers,402

where the learning rate schedule is arguably more important than the choice of the optimizer update403

rule itself! As our results show, the best learning rate schedule is tightly coupled with the optimizer,404

meaning that tuning the learning rate schedule for a new optimizer will generally favor the new405

optimizer over a baseline unless the schedule of the baseline is afforded the same tuning effort.406

6 Conclusion407

In this work, we demonstrated that standard optimizers, without any layer-wise normalization408

techniques, can match or exceed the large batch size results used to justify LARS and LAMB. Future409

work attempting to argue that a new algorithm is useful by comparing to baseline methods or results,410

including those established in this paper, faces a key challenge in showing that the gains are due to the411

new method and not merely due to better tuning or changes to the training pipeline (e.g. regularization412

tricks). Although gains from tuning will eventually saturate, we can, in principle, always invest more413

effort in tuning and potentially get better results for any optimizer. However, our goal should be414

developing optimizers that work better across many different workloads when taking into account the415

amount of additional tuning they require.416

Moving forward, if we are to reliably make progress we need to rethink how we compare and evaluate417

new optimizers for neural network training. Given how sensitive optimizer performance is to the418

hyperparameter tuning protocol and how difficult it is to quantify hyperparameter tuning effort, we419

can’t expect experiments with self-reported baselines to always lead to fair comparisons. Ideally, new420

training methods would be evaluated in a standardized competitive benchmark, where submitters of421

new optimizers do not have full knowledge of the evaluation workloads. Some efforts in this direction422

have started, for instance the MLCommons Algorithmic Efficiency Working Group17, but more work423

needs to be done to produce incentives for the community to publish well-tuned baselines and to424

reward researchers that conduct the most rigorous empirical comparisons.425

16 Deep learning folk wisdom is that “any method to make training less effective
can serve as a regularizer,” whether it is a bug in gradients or a clever algorithm.
17 https://mlcommons.org/en/groups/research-algorithms/

9

https://mlcommons.org/en/groups/research-algorithms/


Checklist426

1. For all authors...427

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s428

contributions and scope? [Yes] See Sections 2, 3, 4429

(b) Did you describe the limitations of your work? [Yes] We had a lengthy discussion of430

the limitations and scope of the work in Section 5431

(c) Did you discuss any potential negative societal impacts of your work? [No] We did432

not discuss this in the main text. Our primary contribution is to improve experimental433

protocols for other methodological work, which is so removed from specific machine434

learning applications that it is hard to determine the net impact. That said, more435

effective experimental protocols should lead to more effective science which in turn436

should lead to more effective machine learning applications. Whether this development437

is positive or negative for society will depend on who stands to gain from the use of438

machine learning in future applied contexts. Additionally, although our work should, in439

the long run, save computational resources for individual researchers, in net across the440

community this may or may not produce an aggregate savings because more efficient441

machine learning training, by making larger scale projects more accessible, can lead442

to an increased demand for compute resources [York, 2006], which can have varying443

degrees of negative environmental impacts [Patterson et al., 2021].444

(d) Have you read the ethics review guidelines and ensured that your paper conforms to445

them? [Yes]446

2. If you are including theoretical results...447

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix A448

for a comprehensive description of the problem setting.449

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.450

3. If you ran experiments...451

(a) Did you include the code, data, and instructions needed to reproduce the main experi-452

mental results (either in the supplemental material or as a URL)? [No] We will include453

a link to all code and all possible reproducibility instructions after the anonymized454

reviewing period is over.455

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they456

were chosen)? [Yes] We are extremely detailed about our tuning procedures and dataset457

details, see Appendices B, D.458

(c) Did you report error bars (e.g., with respect to the random seed after running experi-459

ments multiple times)? [Yes] While we do not report error bars in the tables in the main460

text, Appendices B.2, C contains box plots showing the quartiles of the distribution461

over random seeds.462

(d) Did you include the total amount of compute and the type of resources used (e.g., type463

of GPUs, internal cluster, or cloud provider)? [No] In Appendix B we state that we464

run on Google TPUs, however we do not tally up the total number of experiments run465

(although an interested reader could compute it from the information we provided in466

our detailed appendices given that we list all intermediate experiments, no matter how467

silly in hindsight).468

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...469

(a) If your work uses existing assets, did you cite the creators? [Yes] We reference the470

relevant citations for all models, datasets, and techniques.471

(b) Did you mention the license of the assets? [No]472

(c) Did you include any new assets either in the supplemental material or as a URL? [No]473

(d) Did you discuss whether and how consent was obtained from people whose data you’re474

using/curating? [N/A]475

(e) Did you discuss whether the data you are using/curating contains personally identifiable476

information or offensive content? [N/A]477

5. If you used crowdsourcing or conducted research with human subjects...478

10



(a) Did you include the full text of instructions given to participants and screenshots, if479

applicable? [N/A]480

(b) Did you describe any potential participant risks, with links to Institutional Review481

Board (IRB) approvals, if applicable? [N/A]482

(c) Did you include the estimated hourly wage paid to participants and the total amount483

spent on participant compensation? [N/A]484

References485

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.486

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew487

Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath488

Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,489

Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent490

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,491

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on492

heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from493

tensorflow.org.494

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive495

gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.496

Olivier Bousquet, Sylvain Gelly, Karol Kurach, Olivier Teytaud, and Damien Vincent. Critical hyper-497

parameters: No random, no cry. arXiv, 2017. URL https://arxiv.org/abs/1706.03200.498

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal499

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and500

Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL501

http://github.com/google/jax.502

Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and George E503

Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446,504

2019.505

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep506

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.507

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the gen-508

eralization gap in large batch training of neural networks. arXiv preprint arXiv:1705.08741,509

2017.510

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by511

reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.512

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,513

Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of514

a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer515

Architecture, pages 1–12, 2017.516

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint517

arXiv:1412.6980, 2014.518

Sameer Kumar, Victor Bitorff, Dehao Chen, Chiachen Chou, Blake Hechtman, HyoukJoong Lee,519

Naveen Kumar, Peter Mattson, Shibo Wang, Tao Wang, et al. Scale mlperf-0.6 models on google520

tpu-v3 pods. arXiv preprint arXiv:1909.09756, 2019.521

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson,522

Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debojy-523

oti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia,524

Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo525

Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St.526

John, Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff Young, and527

11

https://www.tensorflow.org/
https://arxiv.org/abs/1706.03200
http://github.com/google/jax


Matei Zaharia. MLPerf training benchmark. arXiv preprint arXiv:1910.01500, 2019. URL528

https://arxiv.org/abs/1910.01500.529

Yurii E Nesterov. A method for solving the convex programming problem with convergence rate530

O(1/kˆ2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.531

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,532

David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv533

preprint arXiv:2104.10350, 2021.534

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR535

Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.536

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley–537

benchmarking deep learning optimizers. arXiv preprint arXiv:2007.01547, 2020.538

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and539

George E Dahl. Measuring the effects of data parallelism on neural network training. Journal of540

Machine Learning Research, 20(112):1–49, 2019.541

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization542

and momentum in deep learning. In ICML, 2013.543

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking544

the inception architecture for computer vision. In Proceedings of the IEEE conference on computer545

vision and pattern recognition, pages 2818–2826, 2016.546

Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu, and cpu platforms for547

deep learning. arXiv preprint arXiv:1907.10701, 2019.548

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in549

stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.550

Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image classification at551

supercomputer scale. arXiv preprint arXiv:1811.06992, 2018.552

Richard York. Ecological paradoxes: William stanley jevons and the paperless office. Human Ecology553

Review, pages 143–147, 2006.554

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv555

preprint arXiv:1708.03888, 2017.556

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan557

Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep558

learning: Training bert in 76 minutes. In International Conference on Learning Representations,559

2019.560

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris561

Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights562

from a noisy quadratic model. In Advances in Neural Information Processing Systems, pages563

8196–8207, 2019.564

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and565

Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching566

movies and reading books. In Proceedings of the 2015 IEEE International Conference on Computer567

Vision (ICCV), ICCV ’15, page 19–27, USA, 2015. IEEE Computer Society. ISBN 9781467383912.568

doi: 10.1109/ICCV.2015.11. URL https://doi.org/10.1109/ICCV.2015.11.569

12

https://arxiv.org/abs/1910.01500
https://doi.org/10.1109/ICCV.2015.11

