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Abstract

Current state-of-the-art generative approaches frequently rely on a two-stage train-
ing procedure, where an autoencoder (often a VAE) first performs dimensionality
reduction, followed by training a generative model on the learned latent space.
While effective, this introduces computational overhead and increased sampling
times. We challenge this paradigm by proposing Consistency Training of Vari-
ational AutoEncoders (CoVAE), a novel single-stage generative autoencoding
framework that adopts techniques from consistency models to train a VAE archi-
tecture. The CoVAE encoder learns a progressive series of latent representations
with increasing encoding noise levels, mirroring the forward processes of diffusion
and flow matching models. This sequence of representations is regulated by a time
dependent β parameter that scales the KL loss. The decoder is trained using a
consistency loss with variational regularization, which reduces to a conventional
VAE loss at the earliest latent time. We show that CoVAE can generate high-quality
samples in one or few steps without the use of a learned prior, significantly out-
performing equivalent VAEs and other single-stage VAEs methods. Our approach
provides a unified framework for autoencoding and diffusion-style generative
modeling and provides a viable route for one-step generative high-performance
autoencoding. Our code is publicly available at https://github.com/gisilvs/covae.

Figure 1: (Left) Schematic representation of CoVAE. The VAE-style model is trained to learn a
time-dependent latent distribution, which transitions to Gaussian as time increases. With a loss similar
to Consistenct Training, the reconstruction at a smaller time steps is used as a target (therefore does
not receive gradients, represented with the dashed line) for the prediction at the bigger time steps.
(Right) 2-step uncurated samples from CoVAE trained on CelebA 64.
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1 Introduction

Deep Generative Models (DGMs) are deep neural networks trained to generate samples from an
unknown data distribution, generally by learning a mapping between samples from such a distri-
bution and random noise. Variational Autoencoders (VAEs) (Kingma, 2013; Rezende et al., 2014)
were among the first DGMs to scale to high-dimensional data by learning a mapping with a lower
dimensional latent space. However, despite the several improvements such as the integration with
Normalizing Flows (Rezende & Mohamed, 2015; Kingma et al., 2016; Kobyzev et al., 2020; Papa-
makarios et al., 2021) and the use of hierarchical latents (Sønderby et al., 2016; Maaløe et al., 2019;
Child, 2021; Vahdat & Kautz, 2020), VAEs remained inferior in terms of generative performances
when compared to other DGMs such as Generative Adversarial Networks (Goodfellow et al., 2014;
Karras et al., 2020b). More recently, Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b) have achieved impressive state-of-the-art generative results in domains such
as images (Karras et al., 2022, 2024) and video (Ho et al., 2022; Ruhe et al., 2024), but are limited in
efficiency as they require several function evaluations for generation. Many alternatives have been
proposed to achieve comparable performances while reducing the computational requirements, such
as distillation methods (Salimans & Ho, 2022) or few-step models like Consistency Models (CMs)
(Song et al., 2023; Lu & Song, 2025), Shortcut Models (Frans et al., 2025), Inductive Model Matching
(Zhou et al., 2025) and MeanFlow (Geng et al., 2025a). However, all these methods are constrained
to work in the data space, making it hard to scale to high-dimensional data. Moreover, there are
several works showing that high-dimensional data generally live in a lower-dimensional manifold
(Pope et al., 2021; Brown et al., 2023; Stanczuk et al., 2024; Loaiza-Ganem et al., 2024; Ventura
et al., 2025) verifying the so-called manifold hypothesis (Bengio et al., 2013) and suggesting the
benefit of working with lower-dimensional representations. Therefore, it became common practice
to employ a two-stage training procedure, where a VAE is pretrained to perform dimensionality
reduction, and then a powerful prior model such as the ones mentioned above is trained on the
learned latent space, allowing for efficient and scalable generation (Rombach et al., 2022; Podell et al.,
2024; Esser et al., 2024). In this work, we introduce a single-stage training procedure for generative
autoencoders that combines β-VAEs and consistency model into a unified framework. To this end,
we propose a model that integrates training techniques from discrete Consistency Models with a
time-dependent VAE, which we name Consistency Training of Variational AutoEncoders (CoVAE)
(see figure 1). Through a dedicated regularization scheme, the CoVAE encoder learns a sequence of
progressively noised latent representation, which transitions from point masses to a standard Gaussian
distribution. Each level of encoding correspond to a given value of β, making the approach similar to
an amortized ensemble of β-VAEs. This resembles the forward processes commonly used in diffusion
models but it is fully leaned through the encoder architecture and it performs meaningful feature
disentanglement and compression similarly to a traditional VAE encoding. Trained by replacing the
standard VAE reconstruction loss with a consistency reconstruction loss defined over the series of
latents, CoVAE achieves high sample quality and diversity, dramatically improving over equivalent
VAEs and approaching the performance of modern generative models.

2 Background

2.1 Variational Autoencoders

In Variational Autoencoders (Kingma, 2013; Rezende et al., 2014), an encoder network Eϕ(.) :
RD → R2d parametrized by ϕ is used to learn a mapping for data points x ∼ pdata to a probability
distribtion over a latent space p(z | x). In the simplest case, this probability is assumed to be
a diagonal Gaussian qϕ(z | x) = N (Eµ

ϕ(x),E
σ
ϕ(x)

2I), with Eµ
ϕ and Eσ

ϕ being partitions of the
encoder output representing mean and standard deviation of the distribution. The encoder is paired
with a prior distribution p(z) over the latents, commonly spherical Gussian, and a decoder network
Dθ(.) : Rd → RD parametrized by θ is trained to map latents back to the data space. The architecture
is trained with a variational loss, which can be expressed as:

LVAE(θ,ϕ, β) = Ex,z

[
∥Dθ(z)− x∥2 + βKL(N (Eµ

ϕ(x),E
σ
ϕ(x)

2I)||N (0, I))
]
, (1)

where β is a scalar hyperparameter that regulates the trade-off between deterministic decoding and
posterior coverage.
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The latent variable z ∼ qϕ(z | x) is obtained with the so-called reparametrization trick, necessary
for backpropagating the gradients to the encoder through the sampling operation:

z = Eµ
ϕ(x) + Eσ

ϕ(x)ϵ, ϵ ∼ N (0, I). (2)

In this expression, the mean encoder Eµ
ϕ(x) defines the deterministic latent embedding of the data

point x while Eσ
ϕ(x) regulates the level of additive white noise. The effective signal-to-noise ratio∥∥∥Eµ

ϕ(x)
∥∥∥2 / ∥∥Eσ

ϕ(x)
∥∥2 implicitly depends on β, with low values corresponding to near-deterministic

latent encoding. In general, increasing β promotes disentanglement in the latent space, while smaller
values of β favor reconstruction. However, while generally improving performance, it is hard to
find a value of β which perfectly recovers the prior while generating high-quality samples (Higgins
et al., 2017; Burgess et al., 2018). While theoretically sound, VAEs are known to generate relatively
poor-quality samples, mostly due to the prior hole problem (Hoffman & Johnson, 2016; Rosca et al.,
2018), which happens when the aggregate posterior fails to match the prior, resulting in regions of
the prior which are not decoded to in-distribution data. A widespread solution is to train with small β
for good reconstruction, and then train post-hoc a powerful generative model as prior distribution on
the learned latent. While this effectively solves the prior hole problem, it results in additional training
compute and model parameters, as well as increased sampling time.

2.2 Diffusion Models

Here, we will offer a minimalist introduction to diffusion models specifically designed to connect
with related concepts and formulas in VAEs. For a complete SDE based formulation see Song et al.
(2021b). A diffusion model is defined by its time-dependent noise-injection model, which usually
has a linear Gaussian form:

xt = F(x, t) = atx+ btϵ, ϵ ∼ N (0, I), (3)

where at and bt are time dependent scalar functions. As t increases, xt becomes more heavily
noised, until xT ≈ N (0, I) at the maximum time step T . Then, a time dependent neural network
x̂θ(., .) : RD → RD is trained to predict the original clean sample x from its corrupted version xt:

LDSM(θ) = Et

[
λ(t)Ex

[
Ext|x

[
∥x̂θ(xt, t)− x∥2

]]]
(4)

where λ(t) is a time dependent weighting function. We refer to this objective as the Denoising Score
Matching (DSM) loss. Once the model is trained, one may sample from pdata by starting at pure
noise xT = ϵ ∼ N (0, I) and integrating a deterministic dynamical system (Song et al., 2021a):

xt−∆t = xt −∆t
(
ȧtx̂θ(xt, t) + ḃtϵ̂(xt, t)

)
(5)

where ϵ̂ is an estimate of the noise obtained from the model prediction:

ϵ̂(xt, t) =
xt − atx̂θ(xt, t)

bt
, (6)

In practice one can use a discretization schedule t0, t1, . . . , tN−1, set ∆t = ti − ti−1, and iterate
equation 5 until t0, yielding a sample x ≈ pdata.

2.3 Consistency Models

Consistency Models (Song et al., 2023) are a recent alternative to DMs designed for one or few-
step generation. In CMs, a time dependent neural network fθ(., .) : RD → RD is trained to
learn the solution to the deterministic denoising process in Eq. 5 without the need for an explicit
numerical integration. More specifically, CMs directly learn the mapping from xt to x instead of
learning the vector field that determines the dynamics like a diffusion model. CMs must satisfy
two conditions, namely the boundary condition fθ(x, 0) = x and the self-consistency condition
fθ(xt, t) = fθ(xt′ , t

′), which states that points xt and xt′ on the same deterministic denoising path
at different time steps t and t′ should map to the same solution. In practice, these conditions are
commonly enforced with the preconditioning from Karras et al. (2022):

fθ(xt, t) = cskip(t)xt + cout(t)F θ(xt, t), (7)
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DSM CM CoVAE

Figure 2: In this figure, we show a diagram of how CoVAE works compared to Diffusion and
Consistency Models. In Diffusion and Consistency, a forward process F is used to add noise to data
depending on the time step t. Then a network x̂θ is trained to be the average denoiser for DSM, or
fθ to match the prediction at the previous time step for discrete CMs with the reconstruction loss L.
In CoVAE, the encoder Eϕ is used to obtain a noisy latent state zt with the reparametrization trick,
similarly to F . However, in this case we use a dashed line, as the noising process is enforced by the
regularization term β(t), and there is not a direct relationship with time. The decoder Dθ then maps
the latents back to the data space, and is trained with a loss similar to CMs.

where cskip(.) and cout(.) are time dependent scalar functions such that cskip(0) = 1 and cout(0) = 0.
While CMs can be trained with a continuous formulation, the continuous objective can be subject
to instabilities and requires several technicalities to work properly (Lu & Song, 2025). A common
alternative is the discrete time objective:

Ldisc
CM(θ) = Ext,t

[
λ(t) ∥fθ(xt, t)− fθ−(xt′ , t

′)∥2
]

(8)

where t and t′ are neighboring time steps chosen according to the defined discretization strategy
(Song & Dhariwal, 2024; Geng et al., 2025b), and θ− is a frozen copy of the network parameters
which does not require gradients. Intuitively, this loss function gradually "bootstraps" the initial
boundary condition at t = 0 to the final pure noise state by minimizing differences along the path.
During training, the discretization steps transition from coarse to fine grained, bootstrapping the
signal from early time steps to the later ones. Sampling from CMs can be then done in a single or few
steps by predicting the initial conditions of samples from the final noise distribution. For our current
purposes, it is important to note that, due to the boundary conditions, the consistency loss reduces to
a conventional autoencoder reconstruction loss when t′ = 0:

∥fθ(xt, t)− x∥2 (9)
where xt = atx + btϵ. This suggests that the network fθ(xt, t) can be interpreted as a decoder
architecture and that the forward noise-injection model F(x, t) can be interpreted as a non-learned
(and rather trivial) encoder.

3 Method

Before introducing our contribution, we highlight some similarities between the models discussed
in section 2, also shown in figure 2. We first direct the attention to equations 2 and 3, noting
that the forward kernel commonly used in diffusion can be seen as a time-dependent version of
the reparametrization trick, where drift and diffusion terms are simple, predefined, dimensionality-
preserving transformations. On the contrary, VAEs use learned nonlinear dimensionality-reducing
mapping as drift and diffusion terms. Note that in DMs the diffusion term does not need to be scalar
and can be data dependent (see appendix A from Song et al. (2021b)). To bridge the gap between
VAEs and DMs, one can extend β-VAEs to learn a time dependent encoding and decoding:

Lt−VAE(θ,ϕ) = Et[LVAE(θ, ϕ, β(t))] , (10)
where β(t) is a monotonically increasing weighting function. By appropriately defining β(t), the
learned latents transition between delta distributions and Gaussians, and the reparametrization trick
can be expressed as:

zt = Eµ
ϕ(x, t) + Eσ

ϕ(x, t)ϵ, ϵ ∼ N (0, I). (11)
Equation 11 now resembles closely a forward noise-injection model, effectively defining an underlying
latent noising process. The reconstruction part of equation 10 is now the latent-to-data equivalent
to the DSM loss from equation 4. In this form, the resulting model would not bring any tangible
benefit over standard β-VAEs, as it would simply result in a amortization of several β-VAEs, sharing
the same limitations of each single model, i.e. the limiting tradeoff between reconstruction and
generation quality.
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3.1 Training VAEs as Consistency Models

Our main proposal is to replace the reconstruction loss of the time-dependent β-VAE from Eq. 10
with a latent consistency loss inspired by Eq. 8. Given a time discretization t0, t1, . . . , tN−1 = T
with N time steps, and imposing the identity function at t0 as boundary condition, we can now define
a loss for Consistency Training of Variational AutoEncoders (CoVAEs):

LCoVAE(θ,ϕ) = Ex,z,ti

[
λ(ti)

∥∥Dθ(zti , ti)−Dθ−(zti−1
, ti−1)

∥∥2 (12)

+β(ti)KL(N (Eµ
ϕ(x, ti),E

σ
ϕ(x, ti)

2I)||N (0, I))
]
,

where λ(t) is a monotonically decreasing weighting function generally used in CMs, and θ− are
copies of the model parameters that do not receive gradients. The latent variables zti and zti−1

are
obtained with the time-dependent reparametrization trick from equation 11 using the same random
direction ϵ at both times ti and ti−1. With the CoVAE objective, the decoder learns the solution of
the latent dynamics and the latent-to-data mapping jointly. Like in discrete CMs, such a solution
is bootstrapped from the earlier time steps to the later ones. The resulting model is a autoencoder
that can be trained end-to-end with the Consistency Training objective from equation 12. Note that,
differently from DMs and CMs, where the time has a direct effect on the forward process, for CoVAE
the effect of time is implicitly defined by the weighting functions β(t) and λ(t), which regulate the
level of feature disentanglement.

3.2 Boundary conditions in latent space

While imposing the identity function at t0 is enough to respect the initial condition required by
CMs, we found in practice that using such a simple parametrization can lead to instabilities during
training (see Appendix D.1). Similarly to CMs, we aim to incorporate an EDM-style parametrization
from equation 7, which cannot be directly used in our settings, as the latent variable zt and the
output of the decoder generally live in spaces with different dimensionality. We propose a different
parametrization where instead of using the noisy state xt (or latent state zt in CoVAE), we use a
learned approximation of the average decoder E[x | zt]. The average decoder will be a faithful
reconstruction for small t, while will be a blurry reconstruction as t increases. This quantity is
unknown but can be obtained by training a neural network x̂θ with the time-dependent VAE loss
from equation 10. Note that we use on purpose the same notation x̂θ as for DSM, to stress that the
role of the network is the same, i.e. to recover the clean data from the latent zt or noisy state xt. The
decoder parametrization becomes as follows:

Dθ(zt, t) = cskip(t)x̂θ−(zt, t) + cout(t)rθ(zt, t), (13)

where rθ models the residual of the average decoder network. Note how the parameters of the
average decoder network are frozen and do not receive gradients. Instead, the reconstruction part of
the CoVAE loss is modified with an additional denoiser-style loss:

Lrec
CoVAE = Ex,z,ti

[
λ(ti)

(∥∥Dθ(zti , ti)−Dθ−(zti−1
, ti−1)

∥∥2 + λd(t) ∥x̂θ(zti , ti)− x∥2
)]
,

(14)

where λd(.) is another time dependent weighting function used to regulate the interplay between
consistency and denoising loss. In practice, we double the output channels of the decoder, and use
half for x̂θ and the other half for rθ, resulting in a negligible increase in model parameters and
compute. This is motivated by the fact that the weights of the denoiser network are generally used
as initialization for training CMs (Geng et al., 2025b; Lu & Song, 2025), which suggests a certain
degree of compatibility between the features needed for the two losses. The identity function at t0 is
still applied.

3.3 Training and sampling with CoVAE

We report the pseudocode for the CoVAE loss in algorithm 1. After training, the model can be used
to generate data by decoding samples from the prior like in stadard VAEs. In addition, CoVAEs
can leverage the learned time dependent latent mapping to perform multi-step sampling, similarly
to CMs, by re-encoding the generated data at intermediate time steps, adding new noise with the
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Algorithm 1 CoVAE Loss

Input: data distribution pdata, decoder parameters θ, encoder parameters ϕ, weighting functions
λ(·), β(·) and λd(.), discrete time step distribution p(t)
Sample x ∼ pdata, ti ∼ p(t), ϵ ∼ N(0, I)

zti ← Eµ
ϕ(x, ti) + Eσ

ϕ(x, ti)ϵ

zti−1
← Eµ

ϕ−(x, ti−1) + Eσ
ϕ−(x, ti−1)ϵ

Ld
CoVAE(θ,ϕ)← ∥x̂θ(zt, t)− x∥2

Lcm
CoVAE(θ,ϕ)←

∥∥Dθ(zt, t),Dθ−(zti−1
, ti−1)

∥∥2
Lkl
CoVAE(ϕ)← KL(N (Eµ

ϕ(x, ti), E
σ
ϕ(x, ti)

2I)||N (0, I))

LCoVAE(θ, ϕ)← λ(ti)[Lcm
CoVAE(θ,ϕ) + λd(ti)Ld

CoVAE(θ,ϕ)] + β(ti)Lkl
CoVAE(ϕ)

Output: LCoVAE(θ, ϕ)

reparametrization trick, and re-denoising (see algorithm 2). Note that, for a two-step sampling
procedure, three function evaluations are required (twice the decoder and once the encoder). We
report the several design choices used for training CoVAE in Appendix C, while we describe
alternative formulations for CoVAE in Appendix F.

4 Experiments

In this section, we report experimental results on common image benchmarks. We use Frechet
Inception Distance (FID) (Heusel et al., 2017) as an evaluation metric, both on 50k samples from the
models and on encoded-decoded training images using the whole dataset, to evaluate generative and
reconstruction performance. For CoVAE, we always use t = σmin to compute the reconstruction FID.
We provide additional visualizations and samples from our models in Appendix E.

4.1 MNIST

t: 0.050 t: 0.504 t: 0.841 t: 1.320 t: 3.000
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Figure 3: t-SNE embedding of samples from the encoded latents for 10k MNIST images at different
time steps, with consistent per-sample noise mask across the time steps.

As a simple benchmark, we compare the results from an equivalent VAE, β-VAE and CoVAE on
MNIST (Deng, 2012), where we train a model with a 7 × 7 latent space and one channel (16×
compression rate). The models were trained for 400k iterations with batch size 128 and EMA
rate 0.9999. CoVAE was trained with the hyperparameters described in Appendix C. From the
results in table 1, we can see how CoVAE shows significantly improved results without having to
trade-off generation and reconstruction like in β-VAEs, confirming the benefits of the bootsrtapped
time-dependent objective. To further analyze the behavior of the learned time-dependent latent
representation, we show in figure 3 the result of 2D t-SNE (Van der Maaten & Hinton, 2008) on
samples from the embedding of 10k images from the trainig set for different time steps, with the same
noise mask used for sampling across different time steps. Form small time steps, the samples from
each class are embedded in well separated areas, while they gradually become more random as time
increases. Additional latent space visualizations are reported in Appendix E.1, figure 7. Similarly,
in figure 4 we show the Signal-to-Noise Ratio (SRN) of the learned latent space averaged over the
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same 10k image embeddings. From the plot, we can see how the average SNR transitions from a
very large value corresponding to almost no noise, to a value close to zero approaching pure noise in
latent space.

0 1 2 3
t

100

102

104

S
N

R
(t

)

Latent SNR on MNIST

Figure 4: SNR of the latent space
for the trained CoVAE model over
the different time steps.

FID (↓) on MNIST
1 step 2 steps Rec.

VAE 17.2 - 21.17

β-VAE (β = 0.5) 13.24 - 16.56

CoVAE (ours) 5.62 3.83 2.19

Table 1: FID results (lower is better) for Co-
VAE and VAE baselines on MNIST.

4.2 CIFAR-10

We use CIFAR-10 (Krizhevsky et al., 2009) to assess the generative peroformance of CoVAE. as
it is a common image benchmark for DGMs. We refer the reader to Appendix C for a description
of all the hyperparameters used, and to Appendix D.1 for an ablation over different configurations
used for CoVAE, including a comparison with and without the boundary conditions from equation 13.
In the following, we train our models using the 112M parameters configuration (meaning that the
decoder has roughly the same number of parameters as the architectures commonly used in CMs for
CIFAR-10) and batch size 1024. For the baselines and CoVAE, we use a 1024-dimensioanl latent
space. To further improve the generative performance, we train CoVAE with a patch-based adversarial
loss Ladv like in (Esser et al., 2021; Rombach et al., 2022). In table 2 we report the results obtained
with our model, compared to the VAE and β-VAE baselines, as well as NVAE (Vahdat & Kautz, 2020)
and DC-VAE (Parmar et al., 2021). These baselines were chosen as they are the best performing
VAE-based methods using a single stage training procedures and without training a separate prior to
sample from. See Appendix B for a more detailed discussion about the baselines, and Appendix D.2
for a comparison with a broader selection of models. CoVAE significantly outperforms the equivalent
VAE and β-VAE baselines, and outperforms both NVAE and DC-VAE, and the additional adversarial
loss further improves generative and reconstruction performance. Two-steps samples from CoVAE
w/ Ladv are shown in figure 5.

FID (↓) on CIFAR-10
Model 1 step 2 steps Rec.

VAE 96.09 - 60.76
β-VAE (β = 0.1) 66.79 - 30.23
NVAE 23.49 - 2.67
DC-VAE 17.9 - 21.4
CoVAE (ours) 17.21 14.06 2.36
CoVAE w/ Ladv (ours) 11.69 9.82 2.15

FID (↓) on CelebA 64
Model 1 step 2 steps Rec.

NVAE 14.74 - -
DC-VAE 19.9∗ - 14.3∗
CoVAE w/ Ladv (ours) 8.27 7.15 4.90

∗DC-VAE reports results on 128 × 128 resolu-
tion.

Table 2: FID (↓) on CIFAR-10 (left) and CelebA 64 (right). Lower is better. "Rec." is Reconstruction
FID.

4.3 CelebA 64 and image manipulation

We further test CoVAE on CelebA Liu et al. (2015) resized to 64 × 64, as it is another common
baseline for VAE-based methods. Also here we use CoVAE with×3 compression rate, corresponding
of latent space of 4096 dimensions. We report the FID results in table 2. CoVAE achieves high sample
quality and reconstruction compared to the baselines, with samples shown in figure 1. Similarly to
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other VAE-based models, the latent space learned by CoVAE can be used for image manipulation.
However, in our case we have access to a time-dependent latent space, which allows to trade-off
between faithful reconstruction and disentanglement in latent space. We show the effect of latent
space interpolation at different time steps in figure 5, and provide a comprehensive analysis in
Appendix E.

x0 t = 0.0500 x1

x0 t = 1.4702 x1

x0 t = 3.0000 x1

Figure 5: (Left) 2-step samples from CIFAR-10 with CoVAE w/ Ladv. (Right) Latent interpolation
on CelebA with different interpolation strengths.

5 Conclusions

In this work, we have introduced CoVAE, a unified, single-stage training framework that combines
VAEs with a consistency-based decoder loss to enable high-quality one- or few-step sampling, without
resourcing to complex priors or multi-stage training. We further provided a set of design choices for
training, achieving high sample quality on image generation benchmarks.

Limitations and future work: While CoVAE shows promising results, we highlight here the main
limitations and possible directions for further improvement. A limitation compared to VAEs is that
with our formulation we cannot easily compute a tight evidence lower bound, making it non-trivial to
evaluate the data log-likelihood.

The proposed training strategy was mainly driven by empirical evaluations, and relies on hyper-
parameters such as weighting functions and discretization scheme. Deriving more principled design
choices could lead to a simpler training procedure as well as improved performance. The chosen
architecture is similar to the one used in latent diffusion (Rombach et al., 2022), but recent works
(Skorokhodov et al., 2025; Chen et al., 2025) show how improving the architecture leads to substantial
boost in generative performance, efficiency, and compressibility. We believe that designing an ad-hoc
architecture for CoVAE could bring similar benefits. Finally, there have been many improvements in
the training techniques of Consistency Models, and integrating some strategies with CoVAE such as
initializing from a pretrained model (Geng et al., 2025b), focusing the training on later time steps
(Lee et al., 2025), and using a continuous formulation (Lu & Song, 2025) could lead to superior
results.

The close structural similarities between CoVAEs and VAEs suggest that performance can also
be improved using well known VAE approaches such as the use of structured prior and posterior
models. In particular, hierarchical approaches have proven to be very effective in VAEs Vahdat &
Kautz (2020) and could lead to substantial improvements in CoVAE generative performance. Note
that any pre-existing VAE architecture can be extended for CoVAE training by simply adding time
conditioning.
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A Related Work

Single and few-steps generative models: Recently, many single or few-step generative models that
can retain the generative performance of diffusion models have emerged, such as Consistency Models
(Song et al., 2023; Song & Dhariwal, 2024; Geng et al., 2025b; Lu & Song, 2025; Dao et al., 2025),
Shortcut Models (Frans et al., 2025), Inductive Model Matching (Zhou et al., 2025) and MeanFlow
(Geng et al., 2025a), and have also been used as priors for pretrained VAEs, further reducing sampling
time while retaining comparable generative performance. With our method, we aim to show that
despite the success obtained by two-stage training procedures, it is possible to obtain a competitive
VAE with a single training stage and simple prior and posterior distributions. To an extent, CoVAE
can be seen as a way to unify latent CMs and pretrained VAE into a single model.

Learning the forward process: Several works have explored learning data-dependent forward
processes in ambient space: Nielsen et al. (2024) use an encoder to parameterize the noise injection,
Bartosh et al. (2024a) learn the drift and diffusion terms of the SDE directly, while Bartosh et al.
(2024b) further extend this by combining invertible flows with diffusion for exact likelihoods. Unlike
these methods, which still rely on separate score models or iterative sampling in data space, CoVAE
learns a progressive noising process directly in latent space and unifies encoding, noising, and
decoding within a single time-dependent VAE trained with a consistency objective. Other methods
(Pooladian et al., 2023; Liu et al., 2023; Lee et al., 2023; Albergo et al., 2024; Li et al., 2024; Silvestri
et al., 2025) implicitly alter the forward process by introducing a coupling between data and noise.
Among these, Lee et al. (2023); Silvestri et al. (2025) use a neural network to learn the data-noise
coupling in a VAE-style formulation, showing similarities to CoVAE, especially Silvestri et al. (2025)
which applies this idea in the context of CMs. However, all these methods remain restricted to the
ambient space, while CoVAE jointly learns the latent mapping and the forward process directly in
latent space, including the latent-to-noise coupling.

Using a time-depedent VAE: Some recent works employ a time-dependent VAE architecture similar
to ours. Specifically, Batzolis et al. (2023) uses a time-dependent encoder in combination with a
pretrained score model which can be directly used as a decoder, effectively obtaining an improved
VAE method, but still requiring the iterative sampling procedure of DMs. The work from ? also uses
a time dependent β-VAE regularized to obtain a latent space that transitions to isotropic Gaussian as
time increases. However, they then need to train a non-linear diffusion model in such a latent space,
falling in the two-stage training procedures, and require several steps for sampling. Compared to
these methods, we solely rely on the time-dependent VAE, and can perform generation in one or few
steps.

B A broader discussion on CoVAE and related methods

In this section, we provide a comprehensive comparison between CoVAE and other related methods
in the literature. The main objective of this work was to develop a competitive generative model,
that could generate samples with one or few steps while trained with an end-to-end procedure and
with latent spaces of arbitrary dimensions. At its core, CoVAE is an extension of β-VAEs, by
learning several latent representations with increasing disentanglement, and using the bootstrapped
reconstruction loss from CMs. From our experiments, it is clear how our formulation is superior to
VAEs and β-VAEs with equivalent architecture. As additional baselines, we have included NVAE
(Vahdat & Kautz, 2020), which is a powerful hierarchical VAE using a complex architecture including
several normalizing flows. Due to the hierarchical nature, NVAE’s latent dimensionality is generally
much larger than the ambient space. CoVAE performs significantly better than NVAE, despite the
simpler architecture and smaller latent dimensionality. We believe that the CM-like reconstruction
loss could be beneficial to NVAE and similar hierarchical models, but we leave this exploration for
future work. Another baseline included in our evaluation is DC-VAE (Parmar et al., 2021), as it uses
a one-stage training procedure and a simple prior. Differently to our approach, DC-VAE can achieve
great results with a much smaller latent representation (128 for CIFAR-10, 512 for CelebA) thanks to
the combination of contrastive and adversarial losses. However, CoVAE can outperform DC-VAE
even without adversarial loss, and the reconstruction quality obtained by DC-VAE is generally poor.

Regarding the performance comparison between two-stage latent models and CoVAE, we could not
find many baselines using our same datasets. However, there are a few methods that report results for
CIFAR-10 and CelebA 64, namely LSGM (Vahdat et al., 2021), VAEBM (Xiao et al., 2021), D2C
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(Sinha et al., 2021) and DiffuseVAE (Pandey et al., 2022). Notably, LSGM is also a single-stage
training procedure, even though it still uses separate models for autoencoder and diffusion prior.
They achieve an FID of 2.10 on CIFAR-10 with 138 function evaluations. VAEBM is a two stage
training procedure combining NVAE with an energy based model prior. At inference, they to run
an MCMC chain to sample from the prior. They achieve 12.19 FID on CIFAR-10 and 5.31 FID
on CelebA 64. D2C combines a VAE with a diffusion prior and a contrastive loss. They achieve
10.11 FID on CIFAR-10 with 59 function evaluations, and 5.7 FID on CelebA 64 with 100 NFE.
Finally, DiffuseVAE is also a latent diffusion model with a diffusion prior, and achieves 2.62 FID on
CIFAR-10 and 3.97 on CelebA 64, with 1000 sampling steps from the prior. In comparison CoVAE
still outperforms some of these models on CIFAR-10, and on CelebA 64 can perform comparably to
VAEBM and D2C while requiring significantly less computation.

Compared to single stage models for few-steps sampling like Consistency Models, Shortcut Models,
Inductive Model Matching, and MeanFlows, CoVAE achieves worse FID results. However, the
aforementioned models are restricted to work in ambient space, making it hard scale to high-
dimensional datasets unless used in combination with a pretrained autoencoder. The disadvantages of
the two-stage models over CoVAE is the need for more training budget and memory (VAE model +
prior model), and, perhaps less relevant, the need for more sampling steps. In fact, even for one step
latent CMs, generating samples requires one forward from the prior and one from the decoder, while
CoVAE requires only one decoder pass. However, for two-steps sampling, CoVAE requires three
function evaluations, decoder, encoder, and decoder again, while latent CM requires two forward
passes from the prior and one from the decoder. Whether or not it is an advantage to use CoVAE in
this scenario depends on the specific architectural choices and the quality of the resulting samples.
Similarly, training the VAE for latent models is generally faster than training CoVAE, so the one
stage training procedure is advantageous only when training CoVAE is faster than training VAE +
prior, which can become challenging to achieve for high-dimensional data.

C Experimental Details

C.1 Design choices for training CoVAE

Training CoVAE requires a number of design choices which we discuss here. Similarly to discrete
CMs, we have to choose discretization strategy, timestep distribution, weighting functions λ(t), β(t)
and λd(t), the scalar functions cin(t), cskip(t) and cout(t), and minimum and maximum time values
σmin and σmax. For the discretization strategy, we reuse the discretization introduced in Karras et al.
(2022) and used in Song et al. (2023) for consistency training:

ti =

(
σ
1/ρ
min +

i− 1

N(k)− 1

(
σ1/ρ
max − σ

1/ρ
min

))ρ

, (15)

where ρ is a scalar hyperparameter controlling the "linearity" of the discretization (ρ = 1 results in a
linear discretization, while increasing ρ transitions towards logarithmic), k ∈ [0,K] is the current
training iteration, K is the total training iterations, i ∈ [1, N(k)] is the discretization step and N(k)
is a discretization curriculum returning the number of discretization steps at the current iteration. As
N(k) we choose to use the exponential curriculum from Song & Dhariwal (2024):

N(k) = min
(
s02

⌊ k
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+ 1, K ′ =
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log2⌊s1/s0⌋+ 1

⌋
, (16)

where s0 = 2 and s1 = 256 are initial and final number of steps respectively. During training, we
sample time steps uniformly from the given discretization. In CMs, t1 = σmin is the minimum value
that the time steps can assume, and the boundary conditions impose the identity at t1. In CoVAE, we
additionally add t0 = 0 to the time steps and apply the boundary condition at t0. This allows us to
choose exactly σmin as the first time step used by the encoder (while in CMs σmin is never actually
used as the boundary condition applies). After an initial tuning phase (details in C.4), we choose
σmin = 0.05, σmax = 3, ρ = 7, β(t) = t2 and λ(t) = 1/t. We always set cskip(t) = 1 (using the
derivation in section F.1.3 as a guideline), cin(t) = 1, while for cout(t) and λd(t), we use linear
interpolations:

cout(t) =
t− σmin

σmax − σmin
, λd(t) = cd + (1− cd)

(
1− t− σmin

σmax − σmin

)
, (17)
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where cd = 0.1 is used to reduce the effect of the average decoder loss as t increases, to avoid conflict
with the consistency loss. These linear weights are chosen empirically as we do not have an analytic
expression for the SNR. The time t is processed as log(t)/4 like in Karras et al. (2022). For the
decoder loss, we use the pseudo-huber loss defined like in Song & Dhariwal (2024), while for the
average decoder we use the L2 loss. We train all the models for 400k iterations with Exponential
Moving Average of the weights (EMA), with rate µEMA = 0.9999. During training, we make sure
that the network uses the same dropout mask for target and prediction computation, as commonly
done in CMs. As architecture, we reuse DDPM++ (Ho et al., 2020; Karras et al., 2022) which is
based on U-Net (Ronneberger et al., 2015), but without the skip connections between different latent
resolutions, effectively obtaining a non-hierarchical time-dependent VAE architecture, where the
latent dimensionality is defined by the spatial resolution and channels after encoding. We reuse also
the middle block and 1× 1 convolution from Rombach et al. (2022). Following Lu & Song (2025),
we replace the Adaptive Group Normalization with Adaptive Double Normalization. The latent size
is defined by an the number of channels zch multiplied by the spatial resolution after the encoder. The
encoder reduces spatial dimensionality by 8 for MNIST and CIFAR-10, and by 16 for CelebA 64.

C.2 Adversarial Loss

The adversarial loss is used only after kw warm-up steps, which we set to be half of the training
iterations, and is multiplied by a scaling factor:

λadv(k, t) = λ(t)
k − kw
K − kw

∗ λadv ∗ I
(
t >

σmax(k − kw)
K − kw

)
, (18)

where k is the current training iteration, λ(t) is the same time weighting function used for the
CoVAE loss, λadv = 0.05 is a constant hyperparameter, and I(.) is a gate function which applies the
adversarial loss to time steps progressively as the iterations increase. The rationale behind the gating
is that smaller time steps are better approximations of the data earlier during training.

C.3 Network configurations

In section D.1 we use different configurations for the neural network in the ablation for different
network size. The network differ for the channel multipliers and number of residual blocks as follows:

• Model with 35.8M parameters: Channel multiplyers = [2, 2, 2], resdual blocks = 2;
• Model with 54.2M parameters: Channel multiplyers = [2, 2, 2], resdual blocks = 4;
• Model with 94M parameters: Channel multiplyers = [2, 2, 4], resdual blocks = 2.

We report in table 3 the hyperparameters used for the models in section 4. All our models are trained
with precision BFloat16. For training, we use the random seed 42, while for evaluation we set it to
32.

C.4 Initial tuning phase

To find a suitable set of hyperparameters for CoVAE, we use the architecture with 35.8M parameters
with batch size 128 and 3× compression rate on CIFAR-10. In early experiments we used λ(t) = 1/t
and β(t) = t, but we found the reconstruction loss to become unstable for small value of t. We
therefore changed β(t) = t2 to allow for more faithful reconstruction at early time steps without the
need to lower σmin too much. We further did a grid search with the following hyperparameters, with
s0 = 2 and s1 = 256:

• σmin = [0.01, 0.05, 0.1, 0.2];
• σmax = [1, 1.5, 2, 3, 4, 5];
• ρ = [3, 5, 7].

These experiments were run with dropout probability 20%. Afterwards, we experimented with
dropout rates [0%, 10%, 20%, 30%] for the best model with σmin = 0.05, σmax = 3 and ρ = 7, and
found 20% dropout rate to work best. We use these hyperparameters also on MNIST and CelebA 64
without further tuning. For the β-VAE baseline we tuned β with the same settings, and searched with
the values β = [0.05, 0.1, 0.5, 1.5, 2], and found β = 0.1 to work best (while β = 0.5 worked best
for MNIST).
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Model Setups MNIST CIFAR-10 CelebA 64
Model Channels 64 128 128
N◦ of ResBlocks 2 4 2
Attention Resolution [14] [16,8] [16,8]
Channel multiplyer [2, 2, 2] [2, 2, 4] [1, 2, 2, 4]
Model capacity 8M 112M 81.7M
Latent size 49 1024 4096
Discriminator Capacity - 3M 3.7M
Encoder GFLOPs 1.4 17.4 15.0
Decoder GFLOPs 2.5 25.3 37.1
Training Details
Minibatch size 128 1024 800
Batch per device 128 512 400
Iterations 400k 400k 400k
Dropout probability 20% 20% 20%
Optimizer RAdam RAdam RAdam
Learning rate 0.0001 0.0001 0.0001
EMA rate 0.9999 0.9999 0.9999
Gradient clip value 200 200 200
Number of GPUs 1 2 2
GPU types A100 H100 H100

Table 3: Model configurations and training details for CoVAE for the different datasets.

C.5 Multistep sampling

Algorithm 2 Multistep CoVAE Sampling

Input: Decoder Dθ, encoder Eϕ, sequence of time points τ1 > τ2 > · · · > τN−1

Sample ϵ ∼ N (0, I)
x← Dθ(ϵ, τ1) ▷ Choose τ1 = σmax

for n = 2 to N − 1 do
Sample ϵ ∼ N (0, I)
zτn ← Eµ

ϕ(x, τn) + Eσ
ϕ(x, τn)ϵ

x← Dθ(zτn , τn)
end for
Output: x

To find the optimal time step for multi-step sampling, we first try all the available steps after training,
and select the one that gives the best 2-steps FID. We then repeat the procedure for 3 and 4 steps,
keeping fixed the time steps found at the previous iteration. While this might not be optimal for more
than 2 sampling iterations, we believe it can already provide a good enough heuristic for finding good
multi-step sampling times. For MNIST, we use t = 0.8538 (idx=162) for 2-steps. For CIFAR-10 and
CelebA 64 we test 2, 3 and 4 steps, corresponding to 3, 5 and 7 NFEs, and report the FID results
and corresponding time steps in table 4. While increasing the sampling steps results in lower FID,
the improvements decrease as we use more sampling iterations. Perhaps counterintuitively, in some
cases adding an extra sampling iteration achieves improved results when re-adding noise at a bigger
time step than the iteration before.

Model, Data Time steps Indexes (∈ [1, 257]) FID
CoVAE, CIFAR-10 [1.412, 0.6745, 0.7266] [198, 146, 151] [14.06, 13.35, 13.01]
CoVAE w/ Ladv, CIFAR-10 [2.4343, 2.3447, 2.0397] [240, 237, 226] [9.82 , 9.19, 8.83]
CoVAE w/ Ladv, CelebA 64 [1.9376, 2.1193, 2.0659] [222, 229, 227] [7.15, 6.98, 6.82]

Table 4: Multistep FID results and corresponding time steps and time indexes. The results are
reported as [2-steps, 3-steps, 4-steps] in the corresponding lists.
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C.6 Data processing

For all the datasets we rescale the values to be in the range [-1,1]. For CIFAR-10 and CelebA 64 we
also apply random horizontal flip with 50% probability. For CelebA 64, we first take the center crop
of size 148× 148 and then resize to 64× 64 as done in Xiao et al. (2021).

D Additional results

D.1 Ablation on CIFAR-10

As a base model, we select an architecture with 32.8M parameters, latent size 1024, and batch size
128. By varying these factors in isolation, we can see the effect of each on the generative performance,
measured in FID. The remaining hyperparameters are the same as outlined in Appendix C. We report
the results of the ablation in figure 6, where we note how CoVAE greatly benefits from bigger latent
size, while also improving as batch size and model parameters increase. In the bottom-right plot,
we compare the effect of different losses. The first two bars labeled "L2" and "ph" correspond to
training the model without boundary condition from equation 13, and with L2 and pseudo-huber
loss respectively. The others are a combination of the two, where for example "L2+ph" means that
the average decoder network x̂θ is trained with L2 loss and the ovreall decoder Dθ is trained with
pseudo-huber loss. Note that using only the pseudo-huber loss like in the second column usually
leads to instabilities, and the model diverges during training.
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Figure 6: Visualization of the 1-step FID performance (lower is better) for CoVAE with varying
hyperparameters. The green bar corresponds to the same run.

D.2 Broader comparison on CIFAR-10

We report in table 5 the FID results on CIFAR-10 from a broad selection of generative models, as
CIFAR-10 is a commonly used baseline. While many direct generation methods achieve superior
quality cmpared to CoVAE, CoVAE is among the best few-step methods to work in latent space,
and without the need for a two-stage training procedure. The NFEs for latent models accounts for
function evaluations needed for the prior plus the decoder.
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METHOD NFE (↓) FID (↓)
VAE-Based
NVAE (Vahdat & Kautz, 2020) 1 23.49
DC-VAE (Parmar et al., 2021) 1 17.9
VAEBM (Xiao et al., 2021) 17 12.19

Diffusion-based
DDIM (Song et al., 2021a) 10 8.23

20 6.84
50 4.67

DPM-Solver (Lu et al., 2022) 10 4.70
DPM-Solver++ (Lu et al., 2025) 10 2.91
DPM-Solver-v3 (Zheng et al., 2023) 10 2.51
Score SDE (Song et al., 2021b) 2000 2.20
DDPM (Ho et al., 2020) 1000 3.17
Flow Matching (Lipman et al., 2023) 142 6.35
EDM (Karras et al., 2022) 35 2.04

Diffusion + VAE
D2C (Sinha et al., 2021) 11 17.71

51 10.11
101 10.15

DiffuseVAE (Pandey et al., 2022) 1001 2.62
LSGM (Vahdat et al., 2021) 147 2.10

Diffusion Distillation
PD (Salimans & Ho, 2022) 1 8.34

2 5.58
TRACT (Berthelot et al., 2023) 1 3.78

2 3.32
CD (LPIPS) (Song et al., 2023) 1 3.55

2 2.93
sCD (Lu & Song, 2025) 1 3.66

2 2.52
CTM (Kim et al., 2024) 2 1.87

Direct Generation
Glow (Kingma & Dhariwal, 2018) 1 48.9
Residual Flow (Chen et al., 2019) 1 46.4
BigGAN (Brock et al., 2019) 1 14.7
StyleGAN2 (Karras et al., 2020b) 1 9.26
StyleGAN2-ADA (Karras et al., 2020a) 1 2.92
CT (LPIPS) (Song et al., 2023) 1 8.70

2 5.83
iCT (Song & Dhariwal, 2024) 1 2.83

2 2.46
sCT (Lu & Song, 2025) 1 2.85

2 2.06
IMM (Zhou et al., 2025) 1 3.20

2 1.98
MeanFLow (Geng et al., 2025a) 1 2.92

Ours
CoVAE 1 17.21

3 14.06
CoVAE w/ Ladv 1 11.69

3 9.82

Table 5: Comparison of FID performance with a broad selection of generative models.
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E Qualitative Results

E.1 Latent space visualization for MNIST

The CoVAE model trained on MNIST has a latent size spatially organized as a 7× 7 grid. This allows
us to visualize the latents as grayscale images and get a visual understanding of the learned latent
dynamics. In figure 7 we show the learned mean and standard deviation for some of the training
images, while varying the time step of the embedding. We further pair each image with a latent noise
mask, and show the corresponding sample from the encoded distribution. At small time steps, the
encoded means resembles a downscaled version of the input images, and the standard deviations are
generally small, resulting in samples indistinguishable from the means. As the time step increases,
the mean values get closer to zero and the standard deviations closer to one, resulting in posterior
samples which are almost identical to the noise mask. Note that it is not necessary for each encoded
distribution at time t = σmax to perfectly match the prior, i.e. isotropic Gaussian, but as in VAEs, we
need the aggregate posterior to recover the prior.
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Figure 7: Visualization of latent space learned by CoVAE for different time steps.
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E.2 Generated samples

We report here additional samples from our models, on MNIST in figure 8, CIFAR-10 in figures 9
and 10, and on CelebA 64 in figures 11. Zoom in for best results.

Figure 8: 1-step (FID=5.62, left) and 2-step (FID=3.83, right) generation from CoVAE on MNIST.

Figure 9: 1-step (FID=17.21, left) and 2-step (FID=14.06, right) generation from CoVAE on CIFAR-
10.
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Figure 10: 1-step (FID=11.69, left) and 2-step (FID=9.82, right) generation from CoVAE w/ Ladv

on CIFAR-10.

Figure 11: 1-step (FID=8.27, left) and 2-step (FID=7.15, right) generation from CoVAE w/ Ladv on
CelebA 64.
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E.3 Latent interpolation on CelebA 64

In this section, we analyze the effect of image latent space interpolation at different time steps, where
a scalar value α is used to interpolate between latent vectors z0 and z1 sampled from the embeddings
of two different images x0 and x1 with the same random direction ϵ. We show the reconstructions
from the interpolations for different α and different time steps in figures 12 and 13. For small time
steps, while the reconstructions without interpolation are almost perfect, we can notice overlapping of
the two original images for intermediate values of α, especially for images with very distinct features.
As t increases, the reconstructions get further away from the original input, but the interpolations
transition smoothly between the two images, indicating better latent space disentanglement.

E.4 Latent manipulation on CelebA 64

Similarly to what done in other VAE works such as Parmar et al. (2021); Pandey et al. (2022), we
show some results from latent space manipulation using CelebA 64, as it has 40 annotated binary
attributes per image. To add or remove one of such attributes, we first compute an estimate of the
latent direction za of that attribute by encoding N images with the attribute and N without, sampling
from the respective latent spaces, obtaining zp for positive latent vectors and zn negatives, and then
subtracting the respective means as:

za =
1

N

∑
(zp)−

1

N

∑
(zn), (19)

where we set N = 100. The modified latent of an encoded image that does not have the selected
attribute is computed with the following:

z′ = z + ψza, (20)

where ψ is a scalar that regulates the strength of the update. Similarly, to remove an attribute one can
simply subtract za instead. As CoVAE can obtain latent representations at different time steps, we
show the effect of latent manipulation at different time steps and for different manipuation strength
in figures 14 and 15, obtained with CoVAE /w Ladv. For the modifications at small time steps to
become visible, a bigger ψ is needed, which also seems to introduce some artifacts, but can obtain a
faithful reconstruction to the original image. For bigger time steps, the modifications tend to be more
visible already with small ψ, and increasing ψ has less visible artifacts, but the reconstructed image
is further away from the original input.
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x0 t = 0.0500 x1

x0 t = 0.3545 x1

x0 t = 0.8415 x1

Figure 12: The figure shows the reconstruction from latent space interpolation between two data
points displayed on the right and left hand side columns. The interpolations are obtained with mixing
factor α ∈ [0, 0.2, 0.4, 0.6, 0.8, 1] from left to right in the central grid. The embeddings are obtined
with time step t displayed on top.
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x0 t = 1.4702 x1

x0 t = 2.2295 x1

x0 t = 3.0000 x1

Figure 13: Continuation of figure 12 for higher values of t.
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Input

Figure 14: Latent space manipulation experiments adding the latent direction for the attribute
"Eyeglasses". The first row with ψ = 0 corresponds to no manipulation, and is used to show the
reference reconstructed embedding.
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Input

Figure 15: Latent space manipulation experiments adding the latent direction for the attribute
"Blonde". The first row with ψ = 0 corresponds to no manipulation, and is used to show the reference
reconstructed embedding.
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F Alternative formulations for CoVAE

In this section we discuss alternative formulations for CoVAE. We first show how CoVAE can be
simplified to reuse components from CMs while being more efficient to train. We then show how
CoVAE can be used with discrete data. While these formulations did not match CoVAE’s performance
in simple benchmarks, we believe they can be interesting twists on the main framework, and we leave
the scaling and improvements of such variants to future work.

F.1 Simplified CoVAE

In its original formulation, CoVAE learns a time-dependent embedding that mimicks the forward
processes commonly used in DMs. This mechanism has the downside of heavily relying on the choice
of weighting functions λ(t) and β(t), as well as a careful tuning of σmin and σmax. Furthermore,
there is no analytic formulation of the SNR at different time steps, which is an important quantity
used to design several components for training and sampling with DMs (see for example Kingma
et al. (2021)). In this section, we show that the CoVAE formulation can be modified to use standard
forward processes commonly used in DMs, while reducing the need for several empirical components.
In particular, we can formulate the time-dependent encoder as a combination of an encoder without
time dependence and a forward process in latent space:

zt = atEϕ(x) + btϵ, ϵ ∼ N (0, I) (21)

where at and bt are time dependent scalar functions. A valid choice is, for example, at = 1 and
bt = t like in the Variance Exploding case. With this formulation, the latent space transitions to a
Gaussian distribution without requiring the λ(t) and β(t) regularization terms, and we can reuse
most of the components used for training DMs and CMs. However, we need to add a regularization
for the encoder, to avoid it learning arbitrarily large embeddings. To this end, we add a latent
regularization of the form γ ∥Eϕ(x)∥2 to the reconstruction loss in equation 14, where γ is a scalar
hyperparameter (γ = 0.001 in our experiments). Such a regularization is equivalent to imposing a
KL loss with fixed variance. Alternatively, to further simplify the model and removing the need for
extra hyperparameters, we simply normalize the output of the encoder with LayerNorm (Ba et al.,
2016) followed by tanh activation. The training procedure for this simplified CoVAE (s-CoVAE)
model is the same as for CoVAE, but is more efficient as the encoder network needs to be used only
once for each training example (instead of twice), reusing the encoded representation and applying
the latent forward kernel at both times ti and ti−1. We train s-CoVAE by reusing the same strategy
as iCT from (Song & Dhariwal, 2024), with σmin = 0.002, σmax = 80, s0 = 10, s1 = 1280, and
the Variance Exploding kernel. For the encoder, we do not use adaptive GroupNorm as the model
is not time conditioned. As now we know how the forward process progressively adds noise to the
data, we can reuse the scaling factors cskip(t) and cout(t) from iCT in the boundary conditions in
equation 13. However, as the learned average decoder is a different quantity, we need a custom
value for cskip(t). In the following section, we will show that setting cskip(t) = 1 matches the
variance of cskip(t)xt in CMs, while we keep cout(t) and cin(t) as in iCT. Similarly to CoVAE, we
add an average decoder loss scaling factor λd(t) = σ2

data/(t
2 + σ2

data) (corresponding to cskip(t)
from iCT). We test this formulation on CIFAR-10 using the same settings from section D.1 (32.8M
parameters, latent size 1024, and batch size 128). The model with γ regularization achieves 1-step
FID of 40.42, while the method with normalization performs slightly better, with 38.18 1-step FID.
In this experiment, CoVAE performs better than s-CoVAE (27.21 FID), likely thanks to the learned
latent forward dynamics, but we believe that s-CoVAE, if scaled properly, can be a viable alternative
as it is faster to train and requires less hyperparameters.

F.1.1 Derivation of the Average Denoiser in VE Diffusion

We consider the Variance Exploding (VE) forward process:

F(x, t) = x+ tϵ, ϵ ∼ N (0, I) (22)

Assume the data distribution is x ∼ N (0, σ2
dataI). We want to compute the posterior mean:

x̂t = E[x | xt] (23)
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This is a Gaussian denoising problem: we observe xt which is a noisy version of x. Since both x
and the noise are Gaussian, the posterior p(x | xt) is also Gaussian. Let:

p(x) = N (x; 0, σ2
dataI)

p(x) | x) = N (xt;x, t
2I)

Then by Bayes’ rule:
p(x | xt) ∝ p(xt | x)p(x) (24)

This is a standard case of Gaussian conjugate priors. The posterior mean is given by:

x̂t =

(
1

σ2
data

+
1

t2

)−1

·
(xt

t2

)
(25)

Simplifying:

x̂t =
σ2

data

σ2
data + t2

xt (26)

F.1.2 Variance and Standard Deviation

The variance of the posterior mean across samples xt is:

Var(x̂t) =

(
σ2

data

σ2
data + t2

)2

· Var(xt) (27)

Since:
Var(xt) = Var(x+ tϵ) = σ2

data + t2 (28)
We have:

Var(x̂t) =
σ4

data

σ2
data + t2

(29)

And therefore, the standard deviation is:

Std(x̂t) =
σ2

data√
σ2

data + t2
(30)

F.1.3 Boundary conditions with average denoiser

The boundary conditions commonly used in CMs are of the form:
fθ(xt, t) = cskip(t)xt + cout(t)F θ(xt, t) (31)

with cskip(σmin) = 1 and cout(σmin) = 0. For the VE case, cskip(t) is defined as:

cskip(t) =
σ2
data

t2 + σ2
data

(32)

The variable cskip(t) is used to multiply xt which has a standard deviation of
√
t2 + σ2

data, so that

STD(cskip(t)xt) =
σ2

data√
σ2

data+σ2(t)
. As we can see, this is already equivalent to the standard deviation

of the average denoiser x̂t, so the new boundary condition is simply:
fθ(xt, t) = x̂t + cout(t)F θ(xt, t), (33)

where in practice we approximate the average decoder/denoiser with a neural network.

F.2 CoVAE with discrete data

Differently than DMs and CMs that work in ambient space, CoVAE learns a data-dependent mapping
to the latent space, which allows us to work with both discrete and continuous data. While using
CoVAE with discrete data is not the focus of this work, we report here results from a prof of concept
on binary MNIST, where instead of the L2 and pseudo-huber loss, we use the binary cross-entropy
loss. In Figure 16 we show 1-step samples from CoVAE, trained with the same hyperparameters used
in 4, apart from σmin that was raised to 0.5, achieving 1-step sampling FID of 0.58 and reconstruction
FID of 0.17. While from this simple experiment it is not easy to tell how scalable the setting can be
to complex discrete data such as text and biological data, we believe it can be an interesting direction
for future research.
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Figure 16: 1-step samples from binary MNIST, FID=0.58.
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