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Abstract

Pre-trained language models (PLMs) have001
consistently demonstrated outstanding perfor-002
mance across a diverse spectrum of natural lan-003
guage processing tasks. Nevertheless, despite004
their success with unseen data, current PLM-005
based representations often exhibit poor robust-006
ness in adversarial settings. In this paper, we007
introduce RobustSentEmbed, a self-supervised008
sentence embedding framework designed to009
improve both generalization and robustness in010
diverse text representation tasks and against011
a diverse set of adversarial attacks. Through012
the generation of high-risk adversarial pertur-013
bations and their utilization in a novel objec-014
tive function, RobustSentEmbed adeptly learns015
high-quality and robust sentence embeddings.016
Our experiments confirm the superiority of Ro-017
bustSentEmbed over state-of-the-art represen-018
tations. Specifically, Our framework achieves a019
significant reduction in the success rate of var-020
ious adversarial attacks, notably reducing the021
BERTAttack success rate by almost half (from022
75.51% to 38.81%). The framework also yields023
improvements of 1.59% and 0.23% in seman-024
tic textual similarity tasks and various transfer025
tasks, respectively.026

1 Introduction027

Pre-trained Language Models (PLMs) have demon-028

strated state-of-the-art performance in learning con-029

textual word embeddings (Devlin et al., 2019), con-030

tributing to significant advancements in various031

Natural Language Processing (NLP) tasks (Yang032

et al., 2019; He et al., 2021; Ding et al., 2023).033

PLMs, including prominent models like BERT (De-034

vlin et al., 2019) and GPT-3 (Brown et al., 2020),035

have revolutionized text classification, sentence036

representation, and machine translation among a037

plethora of diverse NLP tasks. While PLMs have038

expanded their focus to include universal sentence039

embeddings, which effectively capture the seman-040

tic representation of input text, PLM-based sen-041

tence representations lack two crucial characteris- 042

tics: generalization and robustness. 043

Extensive research efforts have been dedicated 044

to the development of universal sentence embed- 045

dings employing PLMs (Reimers and Gurevych, 046

2019; Zhang et al., 2020; Neelakantan et al., 2022; 047

Wang et al., 2023). Although these embeddings 048

have demonstrated proficiency in generalization 049

across various downstream tasks (Sun et al., 2019; 050

Gao et al., 2021), they exhibit limitations when 051

subjected to adversarial settings and remain vulner- 052

able to adversarial attacks (Nie et al., 2020; Wang 053

et al., 2021). Existing research has highlighted 054

the limited robustness of PLM-based representa- 055

tions (Garg and Ramakrishnan, 2020; Wu et al., 056

2023; Hauser et al., 2023). The vulnerability arises 057

when these representations can be easily deceived 058

by making small, imperceptible modifications to 059

the input text. 060

To address these limitations, we propose a 061

method to obtain robust sentence embeddings 062

called RobustSentEmbed. The main idea is to gen- 063

erate small adversarial perturbations and employ an 064

efficient contrastive objective (Chen et al., 2020). 065

The goal is to enhance the adversarial resilience of 066

the sentence embeddings. Specifically, our frame- 067

work involves an iterative collaboration between 068

an adversarial perturbation generator and the PLM- 069

based encoder to generate high-risk perturbations 070

in both token-level and sentence-level embedding 071

spaces. RobustSentEmbed then employs a con- 072

trastive learning objective in conjunction with a 073

token replacement detection objective to maximize 074

the similarity between the embedding of the orig- 075

inal sentence and the adversarial embedding of a 076

positive pair (the former objective) as well as its 077

edited sentence (the latter objective). 078

We have conducted comprehensive experiments 079

to substantiate the efficacy of the RobustSentEm- 080

bed framework. The tasks encompass TextAt- 081

tack (Morris et al., 2020) assessments, adversar- 082
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ial Semantic Textual Similarity (STS) tasks, Non-083

adversarial STS tasks (Conneau and Kiela, 2018),084

and transfer tasks (Conneau and Kiela, 2018). Two085

initial series of experiments were designed to eval-086

uate the robustness of our sentence embeddings087

against various adversarial attacks and tasks. Sub-088

sequently, we conducted two final series of exper-089

iments to assess the quality of our embeddings090

in the contexts of semantic similarity and natu-091

ral language understanding. RobustSentEmbed092

demonstrates significant improvements in robust-093

ness, reducing the attack success rate from 75.51%094

to 38.81% against the BERTAttack attack and from095

71.86% to 12.80% on adversarial STS. Moreover,096

the framework outperforms existing methods in ten097

out of thirteen tasks while obtaining comparable098

results with the other three, showcasing improve-099

ments of 1.59% and 0.23% on STS tasks and NLP100

transfer tasks, respectively.101

Contributions. Our main contributions are sum-102

marized as follows:103

• We introduce RobustSentEmbed, an innova-104

tive framework designed for generating sen-105

tence embeddings that are robust against ad-106

versarial attacks. Existing methods are vul-107

nerable to such adversarial challenges. Ro-108

bustSentEmbed fills this gap by generating109

high-risk perturbations and utilizing an effi-110

cient adversarial objective function.1111

• We conduct comprehensive experiments to112

empirically evaluate the effectiveness of the113

RobustSentEmbed framework. The empiri-114

cal findings substantiate the efficacy of our115

framework, as demonstrated by its superior116

performance in both robustness and general-117

ization benchmarks.118

2 Related Work119

Recently, self-supervised methods using con-120

trastive objectives have become prominent for121

learning effective and robust text representations:122

SimCSE, as outlined by Gao et al. (2021), intro-123

duced a minimal augmentation method involving124

the application of two distinct dropout masks to125

predict the input sentence. The ConSERT model126

(Yan et al., 2021) employed four unique data aug-127

mentation techniques, namely adversarial attacks,128

token shuffling, cut-off, and dropout, to generate129

1Our code are publicly available at https://github.com/
GoodFlower123/RobustSentEmbed

a variety of perspectives in order to carry out a 130

contrastive objective. Miao et al. (2021) utilized 131

adversarial training to improve the robustness of 132

contrastive learning. They achieved this by incor- 133

porating regularization into their learning objective, 134

combining benign contrastive learning with an ad- 135

versarial contrastive scenario. Rima et al. (2022) 136

proposed a novel method for training language pro- 137

cessing models, combining adversarial training and 138

contrastive learning. Their approach incorporates 139

linear perturbations to input embeddings and uses 140

contrastive learning to minimize the distance be- 141

tween the original and perturbed representations. 142

Pan et al. (2022) introduced a simple technique to 143

improve the fine-tuning of Transformer-based en- 144

coders. Their method involves regularization by 145

generating adversarial examples through word em- 146

bedding perturbations and using contrastive learn- 147

ing to obtain noise-invariant representations. 148

Unlike existing approaches for training text rep- 149

resentation through contrastive adversarial learning 150

(Yan et al., 2021; Miao et al., 2021; Rima et al., 151

2022; Pan et al., 2022), our framework generates 152

more efficient, high-risk perturbations at both the 153

token-level and sentence-level within the embed- 154

ding space. Furthermore, our framework utilizes 155

a robust contrastive objective and incorporates an 156

adversarial replaced token detection method, lead- 157

ing to high-quality text representations that yield 158

improved generalization and robustness character- 159

istics. 160

3 The Proposed Framework 161

We introduce RobustSentEmbed, a straightforward 162

yet highly effective method for generating robust 163

text representation. Given a PLM fθ(.) as the en- 164

coder and a raw dataset D, our framework aims 165

to pre-train fθ(·) on D to enhance the efficacy of 166

sentence embeddings across a wide range of NLP 167

tasks (improved generalization) and to fortify its 168

resilience against various adversarial attacks (im- 169

proved robustness). Figure 1 presents an overview 170

of our framework. The framework involves an 171

iterative interaction between the perturbation gen- 172

erator and the fθ(.) encoder to produce high-risk 173

adversarial perturbations in both token-level and 174

sentence-level embedding spaces. These pertur- 175

bations provide the essential adversarial examples 176

required for adversarial training by both the fθ(.) 177

encoder and a PLM-based discriminator. The sub- 178

sequent sections will delve into the main compo- 179
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Figure 1: The general architecture of the RobustSentEmbed framework.

nents of our framework.180

3.1 Perturbation Generator181

Adversarial perturbation involves adding mali-182

ciously crafted perturbations into benign data, with183

the objective of misleading Machine Learning184

(ML) models (Goodfellow et al., 2015). A highly185

effective and broadly applicable method for gener-186

ating adversarial perturbations is to apply a small187

noise δ within a norm-constraint ball, aiming to188

maximize the adversarial loss function:189

arg max
||δ||≤ϵ

L(fθ(X + δ), y), (1)190

where fθ(.) denotes an ML model parameterized191

with X as the sub-word embeddings. There are192

numerous gradient-based algorithms designed to193

address this optimization problem. Our framework194

extends the token-level perturbation method pro-195

posed by Li and Qiu (2021) by complementing the196

perturbation with an innovative sentence-level per-197

turbation generator in order to generate worst-case198

adversarial examples. The main idea is to train a199

PLM-based model to withstand a broad spectrum200

of adversarial attacks, spanning both word and in-201

stance levels.202

Recognizing the different roles that individual to-203

kens play within a sentence, the RobustSentEmbed204

framework incorporates a scaling index to allow205

larger perturbations for tokens exhibiting larger206

gradients during the normalization of token-level 207

perturbations: 208

ni =
∥ηt

i∥P
maxj∥ηt

j∥P
, (2) 209

where ηt
i represents the token-level perturbation 210

for word i at step t of the gradient ascent, and P de- 211

notes the type of norm constraint. Considering the 212

encoder fθ(.) and an input sentence x, RobustSen- 213

tEmbed passes the sentence through fθ(.) by apply- 214

ing standard dropout twice. This process yields two 215

different embeddings, denoted as "positive pairs" 216

and represented as (X,X+). Finally, the newly 217

adjusted token-level perturbation is formulated as: 218

ηt+1
i = ni ∗ (ηt

i + γ
gηi

∥gηi∥P )
, (3) 219

220
ηt+1 ← Π∥η∥P≤ϵ(η

t), (4) 221

where gηi = ∇ηLcon,θ(X + δt−1 + ηt−1, {X+}) 222

is the gradient of the contrastive learning loss with 223

respect to η. The perturbation is generated by the 224

ℓ∞ norm-ball with radius ϵ, and Π projects the 225

perturbation onto the ϵ-ball. 226

To generate adversarial perturbations at the 227

sentence-level, RobustSentEmbed employs a com- 228

bination of the Fast Gradient Sign Method (FGSM) 229

(Goodfellow et al., 2015) and the Projected Gradi- 230

ent Descent (PGD) technique (Madry et al., 2018). 231

The framework iterates using this combination, 232

3



specifically T-step FGSM and K-step PGD, to sys-233

tematically reinforce invariance within the embed-234

ding space. Ultimately, this strategy leads to en-235

hanced generalization and robustness. It proceeds236

with the following steps to update the perturbation237

for PGD in iteration k + 1 and FGSM in iteration238

t+ 1:239

δk+1
pgd = Π∥δ∥P≤ϵ(δ

k + αg(δk)/∥g(δk)∥P ), (5)240

241
δt+1
fgsm = Π∥δ∥P≤ϵ(δ

t + βsign(g(δt))), (6)242

where g(δn) = ∇δLcon,θ(X + δn, {X+}) with243

n = t or k represents the gradient of the con-244

trastive learning loss with respect to δ. The vari-245

ables α and β denote the step sizes for the attacks,246

while sign(.) yields the vector’s sign. The final247

perturbation is obtained by employing a practical248

combination of T-step FGSM and K-step PGD:249

δfinal = ρδKpgd + (1− ρ)δTfgsm, (7)250

where 0 ≤ ρ ≤ 1 modulates the relative impor-251

tance of each separate perturbation in the formation252

of the final perturbation.253

3.2 Robust Contrastive Learning254

To achieve robust text representations through ad-255

versarial learning, we employ a straightforward256

approach that can be described as the combination257

of a Replaced Token Detection (RTD) objective258

(Figure 1, right) with a novel self-supervised con-259

trastive learning objective (Figure 1, left).260

Our framework extends an adversarial version261

of the RTD task used in ELECTRA (Clark et al.,262

2020). In this approach, given an input sentence263

x, ELECTRA utilizes a pre-trained masked lan-264

guage model as the generator G to recover ran-265

domly masked tokens in x
′
= Mask(x), resulting266

in the edited sentence x
′′
= G(x

′
). Subsequently,267

a discriminator D is tasked with predicting whether268

token replacements have occurred, which consti-269

tutes the RTD task. As illustrated in Figure 1, the270

perturbation generator module introduces token-271

aware perturbations into the embedding of each272

individual token, making it more challenging for273

discriminator D to perform the RTD task effec-274

tively. The gradient of D can be back-propagated275

into f through h = fθ(x). This mechanism en-276

courages f to make vector h sufficiently informa-277

tive, enhancing its resilience against token-level278

adversarial attacks. Consequently, our framework279

employs the following adversarial objective for a280

single sentence x:281

Lx
RTD =

|x|∑
j=1

[−1(Xadv
j = Xj) logD(Xadv, h, j) 282

−1(Xadv
j ̸= Xj) log (1−D(Xadv, h, j))], (8) 283

where Xadv = X
′′
+ η

max(K, T )
i represent the 284

ith perturbed token in x. The training objective 285

for the batch B is LRTD, θ =
∑|B|

i=1 L
xi
RTD. Fur- 286

thermore, we use self-supervised contrastive learn- 287

ing to acquire effective low-dimensional represen- 288

tations by bringing semantically similar samples 289

closer and pushing dissimilar ones further apart. 290

Let {(xi, x+i )}Ni=1 denote a set of N positive pairs, 291

where xi and x+i are semantically correlated and 292

(zi, z
+
i ) represents the corresponding embedding 293

vectors for the positive pair (xi, x+i ). We define 294

zi’s positive set as zposi = {z+i }, while the nega- 295

tive set znegi = {z−i } is the set of positive pairs 296

from other sentences in the same batch. Then, the 297

contrastive training objective is defined as follows: 298

Lcon,θ(zi, z
pos
i , zneg

i ) = 299

− log(

∑
z
pos
i

exp(sim(zi, z
+
i )/τ)∑

(z
pos
i ∪ z

neg
i ) exp(sim(zi, z

+ or−
i )/τ)

), (9) 300

where τ denotes a temperature hyperparameter 301

and sim(u, v) = u⊤v
∥u∥.∥v∥ is the cosine similarity 302

between two representations. Our framework uti- 303

lizes contrastive learning to maximize the similarity 304

between clean examples and their adversarial per- 305

turbation by incorporating the adversarial example 306

as an additional element within the positive set: 307

LRobustSentEmbed, θ := Lcon,θ(z, {zpos, zadv}, {zneg}). 308

309
Ltotal :=LRobustSentEmbed, θ + λ1 · Lcon, θ(zadv, {zpos}, {zneg})

+ λ2 · LRTD, θ,

(10) 310

where zadv = z + δfinal represents the adversarial 311

perturbation of the input sample x in the embed- 312

ding space, and λ1, λ2 denote weighting coeffi- 313

cients. The first component of the total contrastive 314

loss (Eq. 10) is designed to optimize the sentence- 315

level similarity between the input sample x, its 316

positive pair, and its adversarial perturbation, while 317

the second component serves to regularize the loss 318

by encouraging the convergence of the adversarial 319

perturbation and the positive pair of x. The final 320

component introduces the adversarial Replaced To- 321

ken Detection (RTD) objective into the total con- 322

trastive loss. 323

4



Adversarial Attack Model IMDB MR SST2 YELP MRPC SNLI MNLI-Mismatched Avg.

TextFooler
SimCSE-BERTbase 75.32 65.53 71.49 79.67 80.07 72.65 68.54 72.61
USCAL-BERTbase 61.94 48.71 55.38 62.30 60.18 54.82 53.74 56.72

RobustSentEmbed-BERTbase 40.02 31.39 35.83 43.78 37.54 36.99 34.15 37.10

TextBugger
SimCSE-BERTbase 52.21 42.04 49.67 56.19 56.73 45.39 40.16 48.91
USCAL-BERTbase 39.16 27.37 31.90 41.25 37.86 30.79 25.45 33.40

RobustSentEmbed-BERTbase 23.16 17.49 19.62 27.93 19.37 18.05 15.51 20.16

PWWS
SimCSE-BERTbase 64.41 55.73 60.48 67.54 68.15 56.09 52.58 60.71
USCAL-BERTbase 51.95 40.67 45.29 52.30 46.86 50.92 39.37 46.77

RobustSentEmbed-BERTbase 32.94 28.05 29.28 29.14 24.72 26.28 27.90 28.33

BAE
SimCSE-BERTbase 73.50 61.83 68.27 75.15 77.84 69.06 65.43 70.15
USCAL-BERTbase 58.57 46.19 51.72 59.49 58.38 50.90 51.16 53.77

RobustSentEmbed-BERTbase 37.16 29.12 31.43 40.96 35.53 33.87 31.85 34.27

BERTAttack
SimCSE-BERTbase 78.42 66.94 73.59 80.87 82.16 74.35 72.22 75.51
USCAL-BERTbase 63.23 51.08 57.73 63.96 63.05 55.41 55.86 58.62

RobustSentEmbed-BERTbase 41.51 34.19 38.16 44.96 38.26 38.60 35.98 38.81

Table 1: Attack success rates (lower is better) of various adversarial attacks applied to three sentence embeddings
(SimCSE, USCAL, and RobustSentEmbed) across five text classification and two natural language inference tasks.
RobustSentEmbed reduces the attack success rate to less than half across all attacks.

4 Evaluation and Experimental Results324

This section presents a comprehensive set of exper-325

iments conducted to validate the proposed frame-326

work’s effectiveness in terms of robustness and327

generalization metrics. To evaluate robustness, the328

experiments include adversarial attacks and adver-329

sarial Semantic Textual Similarity (STS) tasks. To330

evaluate generalization, the experiments include331

non-adversarial STS and transfer tasks within the332

SentEval framework.2 Appendices A and B pro-333

vide training details and ablation studies that illus-334

trate the effects of hyperparameter tuning.335

4.1 Adversarial Attacks336

We evaluate the robustness of our framework337

against various adversarial attacks, comparing it338

with two state-of-the-art sentence embedding mod-339

els: SimSCE (Gao et al., 2021) and USCAL (Miao340

et al., 2021). We fine-tuned the BERT-based PLM341

across seven text classification and natural lan-342

guage inference tasks, specifically MRPC (Dolan343

and Brockett, 2005), YELP (Zhang et al., 2015),344

IMDb (Maas et al., 2011), Movie Reviews (MR)345

(Pang and Lee, 2005), SST2 (Socher et al., 2013),346

Stanford NLI (SNLI) (Bowman et al., 2015), and347

Multi-NLI (MNLI) (Williams et al., 2018). To as-348

sess the robustness of our fine-tuned model, we349

investigated the impact of five popular adversarial350

attacks: TextBugger (Li et al., 2019), PWWS (Ren351

et al., 2019), TextFooler (Jin et al., 2020), BAE352

2https://github.com/facebookresearch/SentEval

(Garg and Ramakrishnan, 2020), and BERTAttack 353

(Li et al., 2020b). Additional information of these 354

attacks is provided in Appendix C. To ensure sta- 355

tistical validity, we conducted each experiment five 356

times, with each iteration comprising 1000 adver- 357

sarial attack samples. 358

Table 1 presents the average attack success rates 359

of five adversarial attacks applied to three sentence 360

embeddings. Notably, our embedding framework 361

consistently outperforms the other two embedding 362

methods, demonstrating significantly lower attack 363

success rates (less than half) across all text classifi- 364

cation and natural language inference tasks. Con- 365

sequently, RobustSentEmbed achieves the lowest 366

average attack success rate against all adversarial 367

attack techniques. These findings substantiate the 368

robustness of our embedding framework and high- 369

light the vulnerabilities of other state-of-the-art sen- 370

tence embeddings when confronted with various 371

adversarial attacks. 372

Figure 2 presents the results of 1000 attacks con- 373

ducted on two fine-tuned sentence embeddings, as- 374

sessing the average number of queries required 375

and the resulting accuracy reduction. Attacks on 376

the RobustSentEmbed framework are represented 377

by green data points, while red points denote at- 378

tacks on the USCAL approach (Miao et al., 2021). 379

Each pair of connected points corresponds to a spe- 380

cific attack. Ideally, a robust sentence embedding 381

should be positioned in the top-left region of the 382

graph, indicating that it necessitates a higher num- 383

ber of queries for an attack to deceive the model 384
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Adversarial Attack Model AdvSTS-B AdvSICK-R Avg.

TextFooler
SimCSE-BERTbase 21.07 24.17 22.62
USCAL-BERTbase 16.52 18.71 17.62

RobustSentEmbed-BERTbase 7.18 8.53 7.86

TextBugger
SimCSE-BERTbase 27.49 28.34 27.91
USCAL-BERTbase 21.52 24.88 23.20

RobustSentEmbed-BERTbase 11.32 12.94 12.13

PWWS
SimCSE-BERTbase 24.15 26.82 25.49
USCAL-BERTbase 21.28 23.65 22.47

RobustSentEmbed-BERTbase 12.68 13.90 13.29

BAE
SimCSE-BERTbase 26.92 28.81 27.86
USCAL-BERTbase 22.92 25.48 24.20

RobustSentEmbed-BERTbase 10.53 12.09 11.31

BERTAttack
SimCSE-BERTbase 31.60 32.85 32.23
USCAL-BERTbase 26.02 28.51 27.26

RobustSentEmbed-BERTbase 12.58 13.02 12.80

Table 2: Attack success rates (lower is better) of five adversarial attack techniques applied to three sentence
embeddings (SimCSE, USCAL, and RobustSentEmbed) across two Adversarial Semantic Textual Similarity
(AdvSTS) tasks (i.e. AdvSTS-B and AdvSICK-R). RobustSentEmbed reduces the attack success rate to less than
half across all attacks.

Figure 2: Average number of queries and the resulting
accuracy reduction for two fine-tuned embeddings.

while causing minimal performance degradation.385

Across all adversarial attacks, RobustSentEmbed386

consistently exhibits greater stability compared to387

the USCAL method. In other words, a larger num-388

ber of queries is required for RobustSentEmbed,389

resulting in a lower accuracy reduction (i.e., better390

performance) compared to USCAL.391

4.2 Robust Embeddings392

We introduce a new task named Adversarial Se-393

mantic Textual Similarity (AdvSTS) to assess the394

robustness of sentence embeddings. AdvSTS395

leverages an efficient adversarial technique, like396

TextFooler, to manipulate an input sentence pair of397

a non-adversarial STS task in a manner that leads 398

the target model to generate a regression score that 399

maximally deviates from the actual score (truth la- 400

bel). As a result, we generate an adversarial STS 401

dataset by transforming all benign instances from 402

the original (i.e. non-adversarial) dataset into adver- 403

sarial examples. Table 2 presents the attack success 404

rates of five adversarial attacks applied to three 405

sentence embeddings, including our framework. 406

These evaluations are conducted for two AdvSTS 407

tasks, specifically AdvSTS-B (originated from STS 408

Benchmark (Cer et al., 2017)) and AdvSICK-R 409

(originated from SICK-Relatedness (Marelli et al., 410

2014)). Notably, our framework consistently out- 411

performs the other two sentence embedding meth- 412

ods, exhibiting significantly lower attack success 413

rates across both AdvSTS tasks and all employed 414

adversarial attacks. These results provide addi- 415

tional evidence supporting the notion that Robust- 416

SentEmbed generates robust text representation. 417

4.3 Semantic Textual Similarity (STS) Tasks 418

In this section, we assess the performance of our 419

framework across seven Semantic Textual Similar- 420

ity (STS) tasks encompassing STS datasets from 421

2012 to 2016 (Agirre et al., 2012, 2013, 2014, 2015, 422

2016), STS Benchmark, and SICK-Relatedness. To 423

benchmark our framework’s effectiveness, we con- 424

ducted a comparative analysis against a range of 425

unsupervised sentence embedding approaches, in- 426
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
GloVe embeddings (avg.) ♡ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow ♣ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening ♣ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
ConSERT-BERTbase 64.56 78.55 69.16 79.74 76.00 73.91 67.35 72.75
ATCL-BERTbase 67.14 80.86 71.73 79.50 76.72 79.31 70.49 75.11
SimCSE-BERTbase 68.66 81.73 72.04 80.53 78.09 79.94 71.42 76.06
USCAL-BERTbase 69.30 80.85 72.19 81.04 77.52 81.28 71.98 76.31
RobustSentEmbed-BERTbase 71.90 81.12 74.92 82.38 79.43 82.02 73.53 77.90
RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
ConSERT-RoBERTabase 66.90 79.31 70.33 80.57 77.95 81.42 68.16 74.95
SimCSE-RoBERTabase 68.75 80.81 71.19 81.79 79.35 82.62 69.56 76.30
USCAL-RoBERTabase 69.28 81.15 72.81 81.47 80.55 83.34 70.94 77.08
RobustSentEmbed-RoBERTabase 70.03 82.15 73.27 82.48 79.61 83.82 71.66 77.57
USCAL-RoBERTalarge 68.70 81.84 74.26 82.52 80.01 83.14 76.30 78.11
RobustSentEmbed-RoBERTalarge 69.30 81.76 75.14 83.57 79.74 83.90 77.08 78.64

Table 3: Semantic Similarity performance on STS tasks (Spearman’s correlation, “all” setting) for sentence
embedding models. We emphasize the top-performing numbers among models that share the same pre-trained
encoder. ♡: results from Reimers and Gurevych (2019); ♣: results from (Gao et al., 2021); All remaining results
have been reproduced and reevaluated by our team. RobustSentEmbed produces the most effective sentence
representations that are more general in addition to robust representation (section 4.2 and 4.1).

cluding: 1) baseline methods such as GloVe (Pen-427

nington et al., 2014) and average BERT embed-428

dings; 2) post-processing methods like BERT-flow429

(Li et al., 2020a) and BERT-whitening (Su et al.,430

2021); and 3) state-of-the-art methods such as Sim-431

CSE (Gao et al., 2021) and USCAL (Miao et al.,432

2021). We validate the findings of the SimCSE,433

ConSERT, and USCAL frameworks by replicat-434

ing their results. The empirical outcomes, as pre-435

sented in Table 3, consistently establish the superior436

performance of our RobustSentEmbed framework437

in contrast to various other sentence embeddings.438

Our framework achieves the highest average Spear-439

man’s correlation score when compared to state-of-440

the-art approaches. Specifically, utilizing the BERT441

encoder, our framework surpasses the second-best442

embedding method, USCAL, by a margin of 1.59%.443

Moreover, RobustSentEmbed achieves the highest444

score in the majority of individual STS tasks, out-445

performing other embedding methods in 6 out of 7446

tasks. For the RoBERTa encoder, RobustSentEm-447

bed outperforms the state-of-the-art embeddings in448

five out of seven STS tasks and attains the highest449

average Spearman’s correlation score.450

4.4 Transfer Tasks451

We leveraged transfer tasks to assess the per-452

formance of our framework, RobustSentEmbed,453

across a diverse range of text classification tasks,454

including sentiment analysis and paraphrase iden- 455

tification. Our evaluation encompassed six trans- 456

fer tasks: CR (Hu and Liu, 2004), SUBJ (Pang 457

and Lee, 2004), MPQA (Wiebe et al., 2005), SST2 458

(Socher et al., 2013), and MRPC (Dolan and Brock- 459

ett, 2005). We trained a logistic regression classifier 460

on top of the fixed sentence embeddings. To ensure 461

the reliability of our findings, we replicated the 462

SimCSE, ConSERT, and USCAL frameworks. The 463

outcomes, as presented in Table 4, demonstrate the 464

superior performance of our framework in terms of 465

average accuracy when compared to other sentence 466

embeddings. Specifically, when utilizing the BERT 467

encoder, our framework outperforms the second- 468

best embedding method by a margin of 0.23%. Fur- 469

thermore, RobustSentEmbed achieves the highest 470

score in four out of six text classification tasks. A 471

similar trend is observed for the RoBERTa encoder. 472

Overall, based on the results presented in Tables 3 473

and 4, we conclude that RobustSentEmbed gener- 474

ates general sentence representation in addition to 475

robust representation (4.1 and section 4.2 ). 476

In conclusion, the comprehensive experiments, 477

as indicated by the outcomes in Tables 1, 2, 3, and 478

4, along with Figure 2, confirm the exceptional 479

performance of RobustSentEmbed in text repre- 480

sentation and resilience against adversarial attacks 481

and adversarial tasks. These findings highlight the 482

framework’s outstanding robustness and general- 483
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Model MR CR SUBJ MPQA SST2 MRPC Avg.
GloVe embeddings (avg.) ♣ 77.25 78.30 91.17 87.85 80.18 72.87 81.27
Skip-thought ♡ 76.50 80.10 93.60 87.10 82.00 73.00 82.05
BERT-[CLS] embedding ♣ 78.68 84.85 94.21 88.23 84.13 71.13 83.54
ConSERT-BERTbase 79.52 87.05 94.32 88.47 85.46 72.54 84.56
SimCSE-BERTbase 81.29 86.94 94.72 89.49 86.70 75.13 85.71
USCAL-BERTbase 81.54 87.12 95.24 89.34 85.71 75.84 85.80
RobustSentEmbed-BERTbase 82.06 86.28 95.42 89.61 86.12 76.69 86.03
SimCSE-RoBERTabase 81.15 87.15 92.38 86.79 86.24 75.49 84.87
USCAL-RoBERTabase 82.15 87.22 92.76 87.74 84.39 76.20 85.08
RobustSentEmbed-RoBERTabase 81.57 87.66 93.51 87.94 85.04 76.89 85.44
USCAL-RoBERTalarge 82.84 87.97 93.12 88.48 86.28 76.41 85.85
RobustSentEmbed-RoBERTalarge 82.56 88.51 93.84 88.65 86.18 77.01 86.13

Table 4: Results of transfer tasks for different sentence embedding models. ♣: results from Reimers and Gurevych
(2019); ♡: results from Zhang et al. (2020); We emphasize the top-performing numbers among models that share
the same pre-trained encoder. All remaining results have been reproduced and reevaluated by our team. RobustSen-
tEmbed outperforms all other methods, regardless of the pre-trained language model (BERTbase, RoBERTabase, or
RoBERTalarge).

ization capabilities, underscoring its potential as a484

versatile method for generating high-quality sen-485

tence embeddings.486

4.5 Distribution of Sentence Embeddings487

We employed two critical metrics, alignment and488

uniformity (Wang and Isola, 2020), for evaluating489

the quality of our representations. With a distri-490

bution of positive pairs ppos, alignment computes491

the expected distance between the embeddings of492

paired instances:493

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2 (11)494

Uniformity measures how well the embeddings are495

uniformly distributed in the representation space:496

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 (12)497

Figure 3 shows the uniformity and alignment of dif-498

ferent sentence embedding models. Smaller values499

indicate better performance. In comparison to the500

other representations, RobustSentEmbed achieves501

a similar level of uniformity (-2.295 vs. -2.305)502

but exhibits superior alignment (0.051 vs. 0.073).503

This demonstrates that our framework is more effi-504

cient in optimizing the representation space in two505

different directions.506

5 Conclusion and Future Work507

This paper introduces RobustSentEmbed, a self-508

supervised sentence embedding framework enhanc-509

Figure 3: ℓalign − ℓuniform plot of models based on
BERTbase. Lower uniformity and alignment is better.

ing robustness against adversarial attacks while 510

achieving state-of-the-art performance in text repre- 511

sentation and NLP tasks. Current sentence embed- 512

dings are vulnerable to attacks, and RobustSentEm- 513

bed addresses this by generating high-risk pertur- 514

bations at token and sentence levels. These pertur- 515

bations are incorporated into novel contrastive and 516

difference prediction objectives. The framework 517

is validated through comprehensive experiments 518

on semantic textual similarity and transfer learning 519

tasks, confirming its robustness against adversar- 520

ial attacks and semantic similarity tasks. In future 521

research, we aim to investigate the use of hard neg- 522

ative examples to further enhance the effectiveness 523

of text representations. 524
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6 Limitations525

Despite the effectiveness of our approach and its526

notable performance, there are potential limitations527

to our framework:528

• The framework is primarily tailored for de-529

scriptive models like BERT, adept at language530

understanding and representation, including531

tasks such as text classification. However, its532

direct application to generative models like533

GPT, focused on generating coherent and con-534

textually relevant text, may pose challenges.535

Thus, applying our methodology to enhance536

generalization and robustness in generative537

pre-trained models might have limitations.538

• Utilizing substantial GPU resources is neces-539

sary for pre-training large-scale models like540

RoBERTalarge in our framework. Due to lim-541

ited GPU availability, we had to use smaller542

batch sizes during pre-training. Although543

larger batch sizes typically result in better per-544

formance, our experiments had to compro-545

mise and use smaller batch sizes to efficiently546

generate sentence embeddings within GPU547

constraints.548
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A Training Details875

we initialize our sentence encoder using the check-876

points obtained from BERT (Devlin et al., 2019)877

and RoBERTa (Liu et al., 2019). RobustSentEm-878

bed utilizes the representation of the [CLS] token879

as the starting point and incorporates a pooler layer880

on top of the [CLS] representations to facilitate con-881

trastive learning objectives. The training process882

of RobustSentEmbed involves 4 epochs. The best883

checkpoint, determined by the highest average STS884

score, is selected for final evaluation. To train the885

model, we utilize a dataset consisting of 106 ran-886

domly sampled sentences from English Wikipedia,887

as provided by the SimCSE framework (Gao et al.,888

2021). The average training time for RobustSen-889

tEmbed is 2-4 hours. As our framework is ini-890

tialized with pre-trained checkpoints, it exhibits891

robustness that is not sensitive to batch sizes, thus892

enabling us to employ batch sizes of either 64 or893

128.894

B Ablation Studies895

In this section, we conduct an analysis of the im-896

pact of five critical hyperparameters employed in897

the RobustSentEmbed framework on its overall per-898

formance. BERTbase is employed as the encoder,899

and the assessment of hyperparameters is carried900

out using the development set of STS tasks.901

B.1 Step Sizes in Perturbation Generator902

The RobustSentEmbed framework integrates two903

step sizes, denoted as α and β, to conduct iterative904

updates during the PGD and FGSM perturbation905

Figure 4: The impact of step sizes in perturbation gener-
ation on the average performance of STS tasks.

generation processes, respectively. Figure 4 shows 906

the cooperative impact of adjusting the ranges for 907

these two step sizes in generating high-risk per- 908

turbations, a crucial aspect for achieving an effec- 909

tive contrastive learning objective. The outcomes 910

demonstrate more substantial improvements when 911

β is fine-tuned to a lower bound, coupled with α 912

set to an upper bound. More precisely, enhanced 913

performance is evident when α and β are allocated 914

ranges of [1e-4, 1e-6] and [1e-3, 1e-4], respectively. 915

Consequently, we employ α = 1e-5 and β = 1e-3 916

for our experiments, as this configuration yields the 917

optimal results among the different configurations. 918

B.2 Step Numbers in Perturbation Generator 919

RobustSentEmbed employs T-step FGSM and K- 920

step PGD iterations to acquire high-risk adversarial 921

perturbations for the contrastive learning objective. 922

For simplicity in perturbation generation analysis, 923

we establish K = T. The influence of varying step 924

numbers (N = K or T) on effectiveness is illustrated 925

in Figure 5. A gradual improvement is observed as 926

N increases from 1 to 12; however, beyond N=12, 927

the improvement becomes negligible. Addition- 928

ally, higher N results in longer running time and 929

inequitable resource allocation. Consequently, we 930

opt for N=5 in our experiments. 931

B.3 Norm Constraint 932

To ensure imperceptibility in the generated adver- 933

sarial examples, RobustSentEmbed regulates the 934

magnitude of the perturbation vectors (whether δ 935

or η). This control is achieved through the utiliza- 936

tion of three commonly employed norm functions: 937

L1, L2, and L∞, to restrict the magnitude of the 938

perturbation to small values. The averaged Spear- 939
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Figure 5: The impact of the step number (represented
by N = K or T) in the T-step FGSM and K-step PGD
methods on the averaged correlation of the STS tasks.

man’s correlation of these norm functions across940

different Semantic Textual Similarity tasks is pre-941

sented in Table 5. The L∞ norm exhibits superior942

correlation in comparison to the other two norms,943

thus warranting its selection as the norm function944

for our experimental assessment.945

Norm Correlation
L∞ 77.90
L2 76.84
L1 76.52

Table 5: The impact of the norm constraint on perturba-
tion generation on the average performance of various
STS tasks.

B.4 Contrastive Learning Loss946

The first part of the total loss function (Equation947

10) is dedicated to optimizing the similarity be-948

tween the input instance x and its positive pair949

(xpos), as well as the similarity between x and its950

adversarial perturbation (xadv). While this indi-951

rectly brings xpos and xadv closer, our findings in-952

dicate that incorporating direct contrastive learning953

between xpos and xadv (the second part of Equa-954

tion 10) through the regularization of the objective955

function in the first part helps us achieve enhanced956

clean accuracy and robustness. Additionally, the957

third part of the total loss function introduces the958

adversarial replaced token detection objective into959

the loss function, making it more challenging for960

adversarial training to converge. Figure 6 illustrates961

the impact of different values of the weighting co-962

efficients (i.e., λ1, λ2) on the final performance of963

our framework. As illustrated, when λ1 = 1/128964

Figure 6: The impact of weighting coefficients in the
total loss function on the average performance of STS
tasks.

and λ2 = 0.005, the framework achieves the high- 965

est average accuracy for semantic textual similarity 966

tasks. We utilize λ1 = 1/128 and λ2 = 0.005 for 967

all other experiments. 968

B.5 Modulation Factor 969

RobustSentEmbed includes a modulation factor, 970

represented as 0 ≤ ρ ≤ 1, to adjust the relative 971

importance of each individual perturbation (PGD 972

and FGSM) in the formation of the sentence-level 973

perturbation. The efficacy of different values of this 974

modulation factor on semantic textual similarity 975

tasks is detailed in Table 6. The findings reveal that 976

ρ = 0.5 yields the highest averaged correlation 977

across the examined magnitudes, underscoring its 978

capability to generate more powerful perturbations. 979

Consequently, we employ this configuration in the 980

setup of our framework. 981

ρ Correlation
0 76.06
0.25 76.85
0.5 77.90
0.75 77.34
1 76.34

Table 6: The impact of the modulation factor on the
average performance of different Semantic Textual Sim-
ilarity (STS) tasks in generating the final perturbation.

C Adversarial Attack Methods 982

This section provides additional details regarding 983

the various adversarial attacks. The TextBugger 984

method (Li et al., 2019) identifies crucial words by 985
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analyzing the Jacobian matrix of the target model986

and selects the optimal perturbation from a set of987

five generated perturbations. The PWWS (Ren988

et al., 2019) employs a synonym-swap technique989

based on a combination of word saliency scores and990

maximum word-swap effectiveness. TextFooler991

(Jin et al., 2020) identifies significant words, gath-992

ers synonyms, and replaces each such word with993

the most semantically similar and grammatically994

correct synonym. The BAE (Garg and Ramakrish-995

nan, 2020) employs four adversarial attack strate-996

gies involving word replacement and/or word in-997

sertion operations to generate substitutions. The998

BERTAttack (Li et al., 2020b) comprises two steps:999

(a) identifying vulnerable words/sub-words and1000

(b) utilizing BERT MLM to generate semantic-1001

preserving substitutes for the vulnerable tokens.1002

D RobustSentEmbed Algorithm1003

Algorithm 1 illustrates our framework’s approach1004

to generating a norm-bounded perturbation at both1005

the token-level and sentence-level using an iterative1006

process. It confuses the fθ(·) encoder by treating1007

the perturbed embeddings as different instances.1008

Our framework then utilizes a contrastive learn-1009

ing objective in conjunction with a replaced token1010

detection objective to maximize the similarity be-1011

tween the embedding of the input sentence and1012

the adversarial embedding of its positive pair (for-1013

mer objective), as well as its edited sentence (latter1014

objective).1015

Algorithm 1: RobustSentEmbed Algo-
rithm

Input: Epoch number E, PLM Encoder fθ , dataset of
raw sentences D , embedding perturbation {δ,
η}, dropout masks m1 and m2, perturbation
bound ϵ, adversarial step sizes {α, β, γ},
learning rate ξ, perturbation modulator ρ,
weighting coefficients {λ1, λ2}, adversarial
steps {K, T}, contrastive learning objective
Lcon,θ (eq. 9), ELECTRA generator G(.) and
discriminator D(.)

Output: Robust Sentence Representation
V ∈ RN∗D ← 1√

D
U(−σ, σ)

for epoch = 1, ..., E do
for minibatch B ⊂ D do

δ0 ← 1√
D
U(−σ, σ) , η0

i ← V[wi]

X = fθ.embedding(B, m1)
X+ = fθ.embedding(B, m2)
for t = 1, ...,max(K, T ) do

gδ =
∇δLcon,θ(X + δt−1 + ηt−1, {X+})
if t ≤ K then

δt
pgd = Π∥δ∥P≤ϵ(δ

t−1 +

αg(δt−1)/∥g(δt−1)∥P )
end
if t ≤ T then

δt
fgsm = Π∥δ∥P≤ϵ(δ

t−1 +

βsign(g(δt−1)))
end
gηi =
∇ηLcon,θ(X + δt−1 + ηt−1, {X+})
ηt
i = ni ∗ (ηt

i−1 + γgηi/∥gηi∥P )
ηt ← Π∥η∥P≤ϵ(η

t)
end
V[wi]← η

max(K, T )
i

δf = ρδK
pgd + (1− ρ)δT

fgsm

for x ∈ B do
x

′′
= G(MLM(x))

Xadv = X
′′
+ η

max(K, T )
i

Lx
RTD, θ =

∑|x|
j=1[−1(X

adv
j = Xj) logD(Xadv, fθ(x), j)

−1(Xadv
j ̸= Xj) log (1−D(Xadv, fθ(x), j))]

end
LRTD, θ =

∑|B|
i=1 L

xi
RTD

LRobustEmbed, θ :=

Lcon, θ(X, {X+, X + δf})

Ltotal := LRobustEmbed,θ + λ1 · Lcon,θ(X + δf , {X+})
+ λ2 · LRTD,θ

θ = θ − ξ∇θLtotal

end
end
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